Skip to main content

Effect of various parameters in removing Cr and Ni from model wastewater by using electrocoagulation

  • Authors (legacy)
    Vlachou M., Hahladakis J. and Gidarakos E.
    Download PDF
  • 1077_published.pdf
  • Paper ID
    1077
  • Paper status
    Published
  • Date paper accepted
Abstract

The performance of a laboratory scale electrocoagulation system for the removal of Cr and Ni from model wastewater was studied systematically using iron and aluminum electrodes with an effective surface area of 13.8 cm2 and a distance of 4 cm. The influence of several parameters, such as initial concentration, electrode combination, current supply and initial pH was investigated during electrocoagulation process. The increase in initial concentration favored removal rate, did not affect nickel removal, but restricted chromium removal, thus indicating its required mechanism of reducing hexavalent ion to trivalent. The best removal efficiency, when metals existed separately in treated solutions, was accomplished with the use of iron electrodes for Cr (50%) and with aluminum electrodes for Ni (90%). When metals co-existed, iron electrodes achieved the best result, which was 76% for Cr and 82% for Ni, leaving 30 mg l-1 and 17 mg l-1 of residual concentrations, respectively, after 180 min of treatment. Solutions’ nominal pH appeared to be optimal, since increasing or decreasing their initial value did not benefit the electrocoagulation process. Chromium and nickel simultaneous removal was best achieved for conditions of 100 mg l-1 initial concentration, pH 5 and a current of 0.8 A.

Copy to clipboard
Cite this article