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Abstract 

Metal-organic frameworks (MOFs) are new porous 
crystalline materials that have shown excellent application 
potential in pollutant degradation. This study used a one-
pot method to prepared the composite catalyst ANI@ZIF-
8. XRD and SEM techniques were used to characterize the 
crystal structure and micromorphology. The performance 
of ANI@ZIF-8 and ZIF-8 as photocatalysts for the 
degradation of Rhodamine B (RhB) under UV light 
irradiation was also investigated. The results show that 
compared with pure ZIF-8, the ANI@ZIF-8 catalyst has a 
more outstanding photocatalytic degradation effect on 
RhB dye, with a degradation rate as high as 91.1%. This 
advantage stems from the electronic structural interaction 
between aniline and ZIF-8, which both promotes the 
excitation process of electrons and inhibits the 
recombination of photogenerated electrons and holes, 
thereby improving the photocatalytic efficiency. Free 
radical capture experiments confirmed that superoxide 
radicals and hydroxyl radicals are the main active species 
in the RhB degradation process. The results of the cyclic 
experiment indicate that, the ANI@ZIF-8 catalyst can be 
effectively reused five times, significantly improving the 
economy of the process. Therefore, the ANI@ZIF-8 
material provides a promising technological approach for 
the development of photocatalysts that can efficiently and 
stably treat wastewater organic pollutants. 
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1. Introduction 

With the rapid development of modern industry and the 
continuous acceleration of global industrialization, the 
problem of water pollution is deteriorating at an alarming 
rate and has become a critical environmental challenge 

restricting the sustainable development of human society, 
among which the discharge of organic dye wastewater is 
particularly prominent (Liang et al. 2018; Lin et al. 2024; 
Ren et al. 2024; Zheng et al. 2025; Abdipour and Asgari 
2024). The textile and printing and dyeing industry, as the 
main source of organic dye wastewater, uses a large 
amount of various dyes in its production process (Khaliq et 
al. 2025; Ren et al. 2024; Viswanathan 2018; BLANCO-
BRIEVA et al. 2024; Kamani et al. 2024). According to 
incomplete statistics, about 100000-150000 tons of dyes 
are discharged into the environment with wastewater 
every year worldwide (Jaihindh et al. 2025). These dyes 
not only color water bodies and damage natural 
landscapes, but also pose a serious threat to the 
ecological environment and human health (Liu et al. 2025; 
Lu et al. 2026). As a common organic dye, Rhodamine B is 
widely used in textile, printing and dyeing, food and other 
industries (Geng et al. 2025; Qi et al. 2025; Qin et al. 2025; 
Wang et al. 2025). It is highly toxic, difficult to degrade, 
and easy to accumulate in the environment. If it is directly 
discharged without effective treatment, it will cause 
irreversible damage to the water ecosystem. The main 
methods for treating organic dye wastewater include 
flocculation (Chiavola et al. 2023; Maroli et al. 2024), 
adsorption (Song et al. 2022; Xiang et al. 2025), 
electrocatalysis (Dakave et al. 2024; Gajić et al. 2025) and 
photocatalysis (Huang, Zhu, et al. 2025; Saif et al. 2025). 
Among them, the flocculation method and the adsorption 
method can easily induce the risk of secondary pollution, 
and the electrocatalysis method faces the practical 
problem of high operating costs (Ahmad et al. 2018; Al-
Tohamy et al. 2022). All three types of technologies have 
certain application limitations. In comparison, 
photocatalytic technology can use solar energy to 
completely degrade organic pollutants into harmless 
carbon dioxide and water. It has outstanding advantages 
such as high efficiency, environmental protection, and 
energy saving. It has become one of the current research 
hotspots in the field of organic dye wastewater treatment 
(Chen et al. 2026; El Mouhri et al. 2026; Touili et al. 2026). 
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Many semiconductor photocatalysts, such as TiO2(Anucha 
et al. 2022; Bertagna Silva and Marques 2025; Kaur et al. 
2025), g-C₃N₄(Cai et al. 2025; Huang, Xu, et al. 2025; Khan 
et al. 2025; Mirzaei et al. 2025), ZnO(Hariharan 2006; 
Majumder et al. 2020; Morales-Flores et al. 2011; Silva et 
al. 2016), CdS(Haewon Byeon et al. 2025; Cheng et al. 
2018; Nagamine et al. 2020; Repo et al. 2013) and 
BiVO4(Nguyen et al. 2020; Pingmuang et al. 2017; Song et 
al. 2017), have been used to treat organic pollutants in 
wastewater. Among them, TiO2, as the first-generation 
semiconductor photocatalyst, has attracted the interest of 
many researchers because of its stable chemical 
properties, good photocatalytic efficiency, non-toxicity, 
low cost and easy preparation. However, the application 
of TiO2 photocatalysts in wastewater treatment is limited 
due to low porosity, small specific surface area, and poor 
activity (Qu et al. 2013; Schneider et al. 2014). Poor 
adsorption capacity, difficult to recycle, narrow light 
response range, high selectivity for pollutants, and only 
utilizing ultraviolet light from sunlight. Therefore, there is 
a need to develop a semiconductor material with a slower 
carrier recombination speed and better light absorption 
ability in the UV visible region to replace TiO2 
photocatalyst. 

MOFs materials, as an emerging class of porous materials, 
have enormous potential for applications in various fields, 
especially in the field of photocatalysis, where they have 
attracted much attention (Bétard and Fischer 2011; 
Fattah-alhosseini et al. 2024; Khan et al. 2023). Compared 
with other MOFs materials, ZIFs have the excellent 
properties of both zeolites and metal-organic frameworks, 
attracting the attention of a large number of researchers. 
Among many ZIFs, ZIF-8 is the most representative one, 
which not only has good specific surface area, thermal 
stability, chemical stability and water resistance, but also 
has adjustable porosity and abundant active sites (Lee et 
al. 2015; Tuncel and Ökte 2021; Wang et al. 2020). As is 
well known, ZIF-8 has excellent performance in 
adsorption, separation, catalysis, drug delivery and 
biosensors. Consequently, ZIF-8 derived composite 
materials are widely used and studied as catalysts in 
photocatalytic reactions. 

In recent years, research has found that encapsulating 
functional molecules in the pores of MOFs can effectively 
modulate the electronic structure and photophysical 
properties of MOFs materials (Cui et al. 2016; Mancuso et 
al. 2020; Thaggard et al. 2022; Guo et al. 2023; Li et al. 
2025). As an organic molecule with good photoelectric 
properties, aniline contains conjugated π bonds in its 
molecular structure, which can absorb visible light and 
produce electronic transitions (Bhadra et al. 2009). At 
present, the photocatalytic degradation applications of 
ZIF-8 are mostly achieved by constructing heterojunctions 
with semiconductor materials (Elaouni et al. 2022). 
However, relevant research on coating aniline on ZIF-8 
and using it as a photocatalyst has not yet been reported. 
Encapsulating aniline in ZIF-8 is expected to change the 
electron cloud distribution of ZIF-8, promote the 
separation of photogenerated electron-hole pairs, 

broaden its photoresponse range, and thus improve the 
photocatalytic ability of ZIF-8 to degrade organic 
pollutants. Based on this premise, this study successfully 
synthesized aniline-encapsulated ZIF-8 compounds using a 
one-pot method, systematically explored its 
photocatalytic degradation performance of Rhodamine B, 
revealed its photocatalytic reaction mechanism, provided 
solid theoretical support and practical guidance for the 
development of efficient and stable photocatalytic 
materials for organic dye wastewater treatment, and 
promoted the large-scale practical application of 
photocatalytic technology in the field of water pollution 
control. 

2. Materials and Methods 

2.1. Chemicals and Reagents 

Zinc nitrate hexahydrate (Zn(NO3)2⋅6H2O, 99%), aniline 
(C6H5N2, 99.5%), 2-methylimidazole (C4H6N2, 99.8%), p-
Benzoquinone (C6H4O2, 98%), isopropyl alcohol (C3H8O, 
99.7%) and triethanolamine (C6H15NO3, 98%) were 
purchased from Sigma-Aldrich Co., Ltd. Methanol (CH3OH, 
99.5) and ethanol (C2H5OH, 95%) were obtained from 
Macklin Chemical Reagent Co., Ltd. All the reagents were 
procured from commercial suppliers and utilized directly 
without undergoing any additional purification or 
treatment procedures. 

2.2. One-pot synthesis of ANI@ZIF-8 

The preparation of ANI@ZIF-8 adhered to the subsequent 
experimental protocol (see Figure 1). In a standard 
ANI@ZIF-8 synthesis, 1.00 g of anilin and 0.60 g (2 mmol) 
of Zn(NO3)2⋅6H2O were dissolved in 20 mL of methanol. 
Meanwhile, 0.65 g (8 mmol) of 2-methylimidazole was 
dissolved in a separate 20 mL of methanol. Subsequently, 
these two solutions were combined. The resulting mixture 
was continuously stirred at ambient temperature for 24 
hours. The generated white precipitate was harvested via 
centrifugation and repeatedly rinsed with ethanol to 
thoroughly eliminate the residual 2-methylimidazole. 
Ultimately, the sample was dried at room temperature. 
For comparison, ZIF-8 was prepared by the same synthesis 
procedure as above, but in the absence of ANI. 

 

Figure 1. Schematic illustration of the one-pot preparation of 

ANI@ZIF-8. 

2.3. Characterization 

The powder X-ray diffraction (PXRD) patterns of the 
samples were measured by an X-ray diffractometer 
(Rigaku, MiniFlex II) equipped with monochromated Cu-
Kα radiation (λ = 1.5418 Å). The crystal morphology and 
size were examined Via scanning electron microscopy 
(SEM; Hitachi, SU8010). 
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2.4. Photocatalytic Degradation Experiment 

The photocatalytic degradation performance of ZIF-8 and 
ANI@ZIF-8 was investigated under visible light. The 
rhodamine B solution was used as a simulated polluted 
water sample. In a dark environment, the suspension was 
stirred at a speed of 600 revolutions per minute for 30 
minutes to reach the adsorption/desorption equilibrium 
state. For photocatalysis, the RhB solution containing the 
photocatalyst was exposed to a 500-watt xenon lamp, 
with a fixed distance maintained between the light source 
and the light reaction chamber. At 0–30 minute intervals, 
5 mL aliquots of the solution were collected via syringe, 
centrifuged to separate the supernatant from the 
photocatalyst, and analyzed using a UV-Visible 
spectrometer at 554 nm (Figure 2a). The residual RhB 
concentration was determined using a calibration curve (Y 
= 0.0291X - 0.0009, R² = 0.9999) (Figure 2b). The 
photocatalytic degradation efficiency (%) was calculated 
using Equation (1), where C0 (mg L⁻¹) and Ct (mg L⁻¹) 
denote the initial and time-dependent dye 
concentrations, respectively: 

( ) ( )= 0 0Photocatalytic degradation %   –  /  100tC C C  

 

Figure 2. (a) UV-vis absorbances for RhB under visable light 

irradiation, (b) standard curve of RhB. 

2.5. Role of Radical Trapping Scavengers 

In a photocatalysis experiment, various radical scavengers 
were employed to explore their respective contributions 
during the photocatalytic degradation process. Prior to 
reaching the adsorption-desorption equilibrium phase, 
active trapping agents (p-Benzoquinone, isopropyl 
alcohol, triethanolamine), namely BQ, TPA and TEOA, 
were added to the solution under identical experimental 
settings. These reagents are specifically designed to 

capture superoxide free radicals, hydroxyl free radicals 
and holes. 

2.6. Recycling of Photocatalyst 

In order to systematically evaluate the stability and 
cyclability of samples in the photocatalytic degradation 
system, this study designed and carried out five rounds of 
cyclic experiments. After each round of RhB dye 
photocatalytic degradation reaction, the photocatalyst 
was recovered and washed three times with ultrapure 
water to completely remove surface adsorbed impurities, 
and then dried in a constant temperature oven at 60°C for 
12 hours. After drying, it was sealed and stored in a sealed 
bottle for subsequent cycle experiments. 

3. Results and Discussion 

3.1. Powder X-ray diffraction (PXRD) 

Figure 3 shows the XRD patterns of ZIF-8 and ANI@ZIF-8. 
It can be seen that the peak position of the characteristic 
peak of ANI@ZIF-8 is highly consistent with that of the 
parent ZIF-8, indicating that the crystal structure of ZIF-8 
was not damaged during the in-situ encapsulation process 
of ANI molecules. This indicates that the crystal structure 
of ZIF-8 was not damaged during the in-situ encapsulation 
process of ANI molecules. Furthermore, the comparison 
found that the diffraction peak intensity of ANI@ZIF-8 at 
2θ=7.36° is significantly weaker than that of the parent 
ZIF-8. This result further confirms that ANI has been 
successfully encapsulated within the ZIF-8 crystal 
structure. 

 

Figure 3. PXRD patterns of ZIF-8 and ANI@ZIF-8. 

 

Figure 4. SEM images of (a) ZIF-8 and (b) ANI@ZIF-8 

3.2. Scanning electron microscopy (SEM) 

Figure 4 shows the SEM images of ZIF-8 and ANI@ZIF-8. 
As shown in the Figure 4, both materials exhibit unique 
polyhedral geometry, and the particle size of ANI@ZIF-8 is 
significantly larger than that of pure ZIF-8. This indicates 
that the encapsulation process of aniline molecules within 
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the ZIF-8 framework does not affect its original 
morphology and only increases the particle size. 

3.3. Photocatalytic Degradation Performance 

 

Figure 5. The adsorption performance of RhB by ZIF-8 and 

ANI@ZIF-8 under dark conditions. 

Under normal temperature and in the absence of light, 
the adsorption performance of ZIF-8 and ANI@ZIF-8 for 
rhodamine B is shown in Figure 5. It can be seen that the 
addition of both materials can significantly improve the 
adsorption effect of RhB, and the adsorption amount 
increases with the extension of adsorption time. When 
the adsorption time reaches 30 minutes, the adsorption 
amount tends to be stable and reaches the maximum 
value. Therefore, it was finally determined that the 
adsorption pretreatment conditions before subsequent 
photocatalytic reactions were: adsorption at room 
temperature in the dark for 30 minutes. 

 

Figure 6. The degradation of RhB under the conditions of ZIF-8 

and ANI@ZIF-8 catalysts. 

Figure 6 shows the experimental curve of photocatalytic 
degradation of RhB dye by 50 mg ZIF-8 and ANI@ZIF-8. As 
shown in the Figure 6, both samples can effectively 
degrade RhB. However, the degradation effect of 
ANI@ZIF-8 was significantly better than that of pure ZIF-8. 
After 30 minutes of reaction, the degradation rate of 
ANI@ZIF-8 is as high as 91.1%, which basically achieving 
complete degradation of RhB. This indicates that the 
aniline encapsulation modification has a significant 
improvement effect on the catalytic performance of ZIF-8. 

Figure 7 shows different concentrations of ANI@ZIF-8 
Comparison of catalytic degradation effects of RhB 

pollutant solution. It can be seen that within a certain 
concentration range, the catalytic effect of the new 
composite material ANI@ZIF-8 on RhB increases as the 
catalyst concentration increases. The higher the 
concentration, the better the catalytic effect. Among 
them, the removal rates of RhB by 25 mg, 50 mg, and 75 
mg ANI@ZIF-8 were 77.5%, 91.1%, and 93.2% 
respectively, which shows that increasing the catalyst 
concentration can significantly improve the degradation 
efficiency, while there is no significant difference in the 
degradation effect between 50 mg and 75 mg 
concentrations.  

 

Figure 7. The RhB degradation graphs under different addition 

amounts of ANI@ZIF-8. 

 

Figure 8. Photocatalytic Degradation Mechanism Diagram 

photocatalytic mechanism. 

The photocatalytic reaction mechanism is as follows (see 
Figure 8): under light conditions, the aniline molecules 
encapsulated in ZIF-8 are first excited by light to form 
excited state aniline (*aniline). The electrons of excited 
aniline can be transferred to the conduction band (CB) of 
ZIF-8 to achieve spatial separation of electrons, while the 
corresponding holes remain on the excited aniline. In 
addition, the conjugated structure of aniline molecules 
can interact with the electronic structure of ZIF-8, 
regulating the electron excitation process and effectively 
suppressing the recombination of photo generated 
electron hole pairs, thereby enhancing the photocatalytic 
degradation efficiency of RhB solution. 

The photocatalytic reusability performance of the prepared 
sample was evaluated through five cycle experiments, and 
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the results are shown in Figure 9. The photocatalytic 
performance of the ANI@ZIF-8 material decreased slightly 
during the cycle test, which is speculated to be related to 
the detachment of nanoparticles during the washing 
process. Nevertheless, its photocatalytic degradation rate 
of RhB can still reach 77.8%. 

 

Figure 9. Reusability of radicals of ANI@ZIF-8 composite in 

photocatalytic degradation process. 

 

Figure 10. Role of radicals of ANI@ZIF-8 composite in 

photocatalytic degradation process. 

In order to explore the mechanism of active components 
of ANI@ZIF-8 composites, this study used free radical 
capture experiments to analyze the key active 
components in the photocatalytic degradation of RhB. In 
the experiment, benzoquinone (BQ), triethanolamine 
(TEOA), and isopropanol (IPA) were used as quenchers for 
superoxide radicals (O₂⁻), holes (h⁺), and hydroxyl radicals 
(· OH), respectively. The results are shown in Figure 10. It 
can be seen that after the addition of BQ and IPA, the RhB 
degradation efficiency decreased from 91.1% to 80.5% 
and 60.7%, respectively, while the degradation rate of the 
TEOA system only slightly decreased to 88.3%. This shows 
that O₂⁻ and ·OH play a dominant role in the 
photocatalytic reaction, with a relatively small 
contribution from h⁺. The organic pollutants are 
eventually oxidized and decomposed into CO₂, H₂O and 
small molecular compounds. 

4. Conclusion 

In this study, ANI@ZIF-8 composite was synthesized using 
a one-pot method, its phase and morphology were 
systematically characterized by XRD and SEM, and it was 

used as a photocatalytic material in the degradation 
experiment of RhB. The results show that (1) the 
conjugated structure of aniline molecules can interact 
with the electronic structure of ZIF-8, regulating the 
electron excitation process and effectively suppressing the 
recombination of photo generated electron hole pairs. (2) 
ANI@ZIF-8, as a photocatalyst, has a degradation rate of 
91.1% for RhB, which is significantly better than pure ZIF-
8. (3) In the photocatalytic degradation reaction, O₂⁻ and 
·OH free radicals play a dominant role. (4) After five cycles 
of use, the degradation rate of RhB by the compound still 
reached 77.8%, indicating that the compound has 
excellent stability, effectiveness and economy. In 
summary, the successful synthesis of ANI@ZIF-8 provides 
a useful reference for the development of efficient, 
practical and economical photocatalysts, and has good 
application prospects in the treatment of organic dyes in 
textile wastewater in the future. 

This study was supported by the Pingdingshan University’s 
Ph.D. Research Startup Fund Project (grant number PXY-
BSQD-2023009) and the Science and Technology Public 
Relations Project of Henan Province (grant number 
252102230087). 
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