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Abstract

Concerns about both flavored and traditional waterpipe smoking continue to grow because
of their considerable environmental and health impacts. This study aims to conduct a
comprehensive evaluation of the levels of polychlorinated biphenyls (PCBs) and organochlorine
pesticides (OCPs) present in wastewater generated from waterpipe use. Samples from four major
brands of flavored tobacco (Nakhla, Al fakher, Al tawareg, Tangiers) and traditional tobacco were
analyzed. The mean concentration levels of Y OCPs in Nakhla, Al-Fakher, Al Tawareg and
Tangiers brands were 111.25, 125.51, 122.70, and 98.13 ng/L, respectively, and in traditional
tobacco samples was 132.23 ng/L. The PCBs concentrations in flavored tobacco samples were

10.36 -11.94 ng/L, which exceeds the concentration in traditional tobacco at 10.26 pg/L. B-HCH


mailto:arfaeiniah@yahoo.com

35

36

37

38

39

40

41

42

43

44

45

46
47

48

49

50

51

52

53

54

55

56

was the most prevalent OCP, representing up to 51% in flavored tobacco wastewater and 45% in
traditional tobacco wastewater. PCB194 was the most common PCB congener, consistently
making up 24-25% of the entire PCB concentration. The risk quotient (RQ) for values traditional
and flavored hookah wastewater were ranged from 0.00 (6-HCH) to 2.46 (endosulfan) and 0.00
(0-HCH) to 3.50 (endosulfan), respectively. The environmental and health impacts of hookah
wastewater, particularly concerning PCBs and OCPs and other toxic compounds, are becoming
increasingly concerning. Despite the comparatively low toxic equivalent (TEQ) values associated
with hookah wastewater, the continuous discharge of such waste into aquatic environments present
considerable threats to the wellbeing of both natural habitats and people. Addressing this
contamination requires concerted efforts from policymakers, researchers, and communities

worldwide to develop effective solutions.

Keywords: Waterpipe, Wastewater, Tobacco, Organochlorine pesticide, Polychlorinated
biphenyls

Introduction

Tobacco smoking represents a significant global health challenge, as a major preventable
cause of mortality and morbidity (Danaei et al., 2017; De Silva et al., 2024; Masjedi et al., 2023d).
Tobacco consumption patterns have shifted in recent years, with a decline in cigarette smoking but
an increase in waterpipe tobacco smoking, which is one of the most traditional and widespread
methods worldwide (Dehvari and Babaei, 2022; Khodadost et al., 2020). This increased prevalence
of waterpipe tobacco smoking causes concern about both the health risks to smokers and the
potential adverse environmental impacts associated with the frequent disposal of concentrated

hazardous wastes from waterpipe smoking (Heydari et al., 2024a; Kassem et al., 2020a; Masjedi
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et al., 2023a; Masjedi et al., 2023d; Maziak et al., 2015; Rashidi et al., 2024a; Soleimani et al.,

2024a; Soleimani et al., 2025b; Termeh-Zonoozi et al., 2023).

A waterpipe is made up of a water container with a bowl at the top filled with waterpipe
tobacco. The tobacco is ignited by burning charcoal placed on top, and the generated smoke flows
through the water before it is breathed in (Edwards et al., 2021; Termeh-Zonoozi et al., 2023).
After each use, the charcoal residues, aluminum foil used to cover the waterpipe tobacco during
smoking, and burnt or partially burnt tobacco residues are discarded as waste. Additionally,
approximately 94% of the smoked water from waterpipe is disposed of as wastewater in bathroom
or kitchen sinks, where it flows into onsite septic systems or municipal sewer systems, with some
also being discarded in toilet, backyard soil, or street storm drain (Edwards et al., 2021; Hsieh et

al., 2021; Kassem et al., 2020a).

Previous scientific reports confirmed high concentrations of various pollutants, including
BTEX (Heydari et al., 2020; Jafari et al., 2020; Masjedi et al., 2023¢e), PAHs (Masjedi et al.,
2023c; Rashidi et al., 2024b; Soleimani et al., 2025a) , heavy metals (Masjedi et al., 2023b;
Masijedi et al., 2020) , and aromatic amines (Heydari et al., 2024b; Soleimani et al., 2024b) in fresh
tobacco and tobacco smoke. However, these toxic chemicals may be present in the waterpipe
wastes and wastewater. As a result, releasing waterpipe wastewater into the environment can add
these pollutants to soil and water systems, leading to their buildup and contributing to overall
environmental contamination (Edwards et al., 2021). Few researches evaluated the pollutants, such
as toxic elements (Al-Kazwini et al., 2015; Jafari et al., 2020; Qamar et al., 2015), BTEX (Masjedi
et al., 2023d), aldehydes, nicotine (Edwards et al., 2021), furanic compounds (Schubert et al.,
2012), and primary aromatic amines (Heydari et al., 2024a; Schubert et al., 2011) in waterpipe

wastewater. Despite the detection of various chemicals in waterpipe wastewater, other toxic
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compounds that may also be present, such as biphenyls, polychlorinated biphenyls (PCBs),

pesticides, and herbicides, have not been thoroughly investigated.

PCBs and organochlorine pesticides (OCPs) belong to the group of persistent pollutants
that can persist for long durations in the environment and build up in adipose tissue (Moon et al.,
2017). Exposure to PCBs and OCPs is associated with numerous harmful health outcomes,
including damage to immune, nervous and reproductive systems, an heightened risk of various
cancers—including breast cancer— and adverse effects on neurodevelopment (Dickerson et al.,
2019; Koual et al., 2019; Mouly and Toms, 2016; Rezek et al., 2008; Zhang et al., 2010). Despite
restrictions on their use, PCBs and several OCPs, including hexachlorocyclohexanes (HCHs),
hexachlorobenzene (HCB), and dichlorodiphenyltrichloroethane (DDT) have remained as
environmental concerns in some regions (Wang et al., 2016c). PCBs are widespread contaminants
found throughout the environment owing to their persistent chemical properties and affinity for
accumulating in fats (Dickerson et al., 2019). Some researchers have reported the negative impacts
of smoking on PCBs concentrations in human body, exhibiting higher levels in smokers than
nonsmokers (D'Errico et al., 2012; Dickerson et al., 2019; Moon et al., 2017; Oltramare et al.,
2025). OCPs were widely used for control of insect-borne epidemics, such as malaria, and
agricultural cultivation (Karimi et al., 2020; Qi et al., 2014; Taufeeq et al., 2021a), and may be
applied during the cultivation of tobacco products (Arfaeinia et al., 2024b). Previous studies
detected residues of OCP in present in tobacco and its derivatives (Arfaeinia et al., 2024b; Qi et
al., 2014; Taufeeq et al., 2021a). In a study, PCBs and OCPs were detected in leachate from
smoked cigarette butts, indicating that these compounds are released from discarded cigarette butts

into the aquatic ecosystem (Arfaeinia et al., 2024b). Exposure to these hazardous substances in
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humans may occur through consuming contaminated fatty foods (Arisawa et al., 2011), inhalation

and/or dermal contact (Schettgen et al., 2012).

This study introduces novel insights by comprehensively measuring concentrations of
PCBs and OCPs—vpersistent organic pollutants—in waterpipe wastewater from both flavored and
traditional tobacco, an area previously underexplored compared to prior research on general
chemical toxicity, heavy metals, or solid waste. It tests hypotheses of potentially harmful levels,
quantifies ecological risks, and differentiates wastewater impacts, thereby highlighting new
contaminants from this emerging tobacco waste source and advancing environmental toxicology
beyond existing aquatic toxicity assessments. The primary objective of this work was to
comprehensively assess the concentration levels of PCBs and OCPs compounds in waterpipe
wastewater, with a particular focus on both flavored and traditional tobacco. We hypothesized that
wastewater from waterpipe may contain OCPs and PCBs at concentrations capable of posing
environmental harm. In addition, we evaluated the ecological risks associated with the detected
OCP and PCB compounds. This study seeks to provide meaningful insight into the levels of these
hazardous chemicals in waterpipe wastewater, thereby enhancing understanding of their
contribution to environmental pollution and supporting the development of improved waste

management practices.

2. Material and Methods

2.1. Study protocol and sample collection
In this study, the presence and concentrations of 11 PCBs and 12 OCPs were measured in
wastewater collected from hookah bowls using both flavored and traditional tobaccos. Four

commonly available flavored tobacco brands—Nakhla, Al-Fakher, Al Tawareg, and Tangiers—
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were selected for analysis. After a typical smoking session at local cafés, the wastewater remaining
in the hookah bowls was immediately collected to preserve analyte integrity. For each flavored
tobacco brand, 10 wastewater samples were obtained. Additionally, 10 wastewater samples from
bowls using freshly smoked traditional (non-flavored) tobacco were collected for comparison and
analysis of the target contaminants. A total of 50 wastewater samples were collected immediately
following waterpipe use. Of these, 40 samples were derived from four distinct flavored tobacco
brands, while the remaining 10 originated from traditional (unflavored) tobacco. All samples were
placed in opaque, foil-wrapped glass bottles, transported to the laboratory within approximately 2
hours of collection in a chilled container containing ice packs, and subsequently stored at —4 °C in
the dark conditions until analysis. To preserve analyte stability and prevent volatilization, samples
were kept at this temperature without exposure to light during storage. Sample extraction was

carried out within a maximum holding time of 48 hours after collection for all samples.

2.2. Sample preparation and extraction

The target pollutants were extracted from waterpipe wastewater samples with using the
dispersive liquid-liquid microextraction (DLLME) method based on our previous study (Jorfi et
al., 2022; Soleimani et al., 2023). The extraction solvent was dichloromethane (DCM) and
dispersion solvent was acetone. The extraction process involved placing 10 ml of the waterpipe
wastewater sample in a 15 ml polypropylene tube and then adding 50 pl of triphenyl phosphate
(TPP) solution. A cloudy solution was formed through rapid injection of 1 ml of DLLME solution
composed of acetone and dichloromethane (9:1). Following one minute of agitation, the mixture
was centrifuged at 6500 rpm for five minutes, and the lower dichloromethane layer containing

PCBs and OCPs was extracted for further analysis and quantification.
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To minimize contamination and guarantee methodological accuracy, all glassware and
polypropylene tubes were meticulously rinsed with methanol and DCM, and blank samples
(containing only solvents and internal standard, without wastewater) were processed together with
the real wastewater samples. The trace levels quantified in blank samples were applied to adjust
the samples results accordingly, ensuring that any background contamination was subtracted from

the sample measurements.

2.3. OCPs and PCBs analysis

The gas chromatograph-mass spectrometer (GC-MS) instrument comprising the Agilent
7890 GC and Agilent 5975 MS (Agilent Technologies, Palo Alto, CA) was utilized for OCPs and
PCBs analysis. This setup featured a split/splitless injection port and an ultra-inert column
measuring 30 meters long, millimeters in diameter, and 25 micrometers thick. The oven
temperature program was initiated at 55°C, held for one minute, subsequently rose at a rate of 1°C
per minute to 150°C for two min, and finished with a 20°C/min increase to 280°C for 15 min. For
OCPs, the oven was first heated to 80°C for 1 min, then ramped at 30°C/min to 175°C (hold for 4
min), and finally gradually increased at 3°C/min to 225°C, holding this temperature for 10 min to
ensure complete elution of analytes. The system was injected with one microliter of every extract,
and its pulse was maintained at 40 psi for 0.2 min at 300°C. To identify and quantify the analysts,
a selected ion monitoring (SIM) mode was employed, consisting of one quantitative ion and two
qualifier ions for each compound. Quality control and quality assurance (QA/QC) were carried out
according to our previous study, and information such as retention time, spiked concentration
(ppb), average of obtained concentration (ppb), average of spike recovery (%) , acceptable range

for spike recovery (%), intraday RSD% of spike recovery, acceptable range for intraday RSD (%),
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interday RSD% of spike recovery, acceptable range for interday RSD (%), LOD (ppb) and LOQ
(ppb) are provided in that study as well as in Table S1 (Jorfi et al., 2022; Soleimani et al., 2023).
For PCBs compounds, LODs were between 0.03 and 0.07 ug/L and LOQs were between 0.10 and
0.23 pg/L, For OCPs compounds, LODs were between 0.06 and 0.08 pug/L and LOQs were
between 0.18 and 0.26 pg/L. This indicated that the analytical method is capable of detecting and

reliably quantifying the target compounds at trace levels.

2.4. Eco-toxicological risk assessments for OCPs and PCBs

The toxic equivalent (TEQ) was calculated based on approach described by Van et al. (
2006b). This involved applying the detected concentrations of PCBs in waterpipe wastewater
samples by the World Health Organization's (WHO, 2005) toxic equivalency factors (TEFs) for

humans and other mammals, as indicated in Equation (1):

Equation 1: TEQ = X£[Ci x TEFi]

The toxic equivalency of a mixture is computed by aggregating the concentrations of its

individual components (Ci) after each concentration has been weighted by a corresponding TEF.

The environmental hazard associated with the identified OCP compounds in waterpipe
wastewaters was assessed by employing the risk quotient (RQ) approach. The specific formula for

calculation of the RQ is as follow:

Equation 2 R _ MEC
quation 2: Q_PNEC
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Where MEC is the quantified level of OCPs (ng/l) in waterpipe wastewater samples, while
PNEC is the predicted no-effect concentration values derived from the Guo et al. ( 2023) research.
The PNEC values obtained through division of the LCso or ECso by Assessment Factor (AF) set at

a constant value of 1000, utilizing a consistent Assessment Factor (AF) of 1000 for all substances.

The application of an AF = 1000 is in accordance with widely accepted ecological risk
assessment frameworks, including the European Union Technical Guidance Document (EU TGD),
Organization for Economic Co-operation and Development (OECD) guidelines (ECB-JRC, 2003),
and the European Chemicals Agency (ECHA) guidance under the European Union Registration,
Evaluation, Authorization and Restriction of Chemicals (REACH) (ECHA, 2008). This
conservative assessment factor is recommended when available toxicity data are limited to acute
laboratory tests and the lack of chronic toxicity data (ECHA, 2008; Arfaeinia et al., 2024a; ECB-
JRC, 2003). The use of a consistent AF across all compounds guarantees methodological
consistency and delivers a conservative estimate of ecological risk in complex matrices such as
wastewater (Arfaeinia et al., 2024a). Environmental risk is considered moderate when RQ values

fall between 0.1 and 1 and values less than 0.1 correspond to a low risk (Nie et al., 2015).

2.5. Statistical analyzes

Data analysis was conducted using SPSS (Version 27). Specifically, Independent Samples Test
was employed to identify significant differences in PCBs/OCPs concentrations across the two
fruit-flavored and traditional waterpipe wastewater samples. The p-value less than 0.05 was

considered the cutoff for statistical significance.

3. Results and discussion

3.1. The OCPs concentration levels in waterpipe wastewater
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In this study, the concentrations of OCPs in wastewater produced from fruit-flavored and
traditional waterpipe tobacco were measured, and the results are summarized in Table 1. As noted,
the mean Y OCP concentrations in waterpipe wastewater from fruit-flavored tobacco were 111.25,
125.51, 122.70, and 98.13 ng/L for the Nakhla, Al-Fakher, Al Tawareg, and Tangiers brands,
respectively. In comparison, traditional tobacco samples showed a higher average concentration
of 132.23 ng/L. DDT isomers were not detected in the wastewater samples from fruit-flavored
waterpipe tobacco. Fig. 1 presents a violin plot comparing the ZOCP concentrations in wastewater
from fruit-flavored versus traditional tobacco. The results of the Independent Samples Test
evaluating differences in ZOCP concentrations between the two wastewater types are summarized
in Table S2. The concentration of ) OCPs did not differ significantly between the two traditional
and fruit-flavored waterpipe wastewater (p-value>0.05). Although higher concentrations were
observed in traditional waterpipe wastewater. Among the OCPs compounds, the concentration
levels of DDE (dichlorodiphenyldichloroethylene), DDD (dichlorodiphenyltrichloroethane), DDT
(dichlorodiphenyltrichloroethane) and chlordane were significantly different between the two

traditional and fruit-flavored waterpipe wastewater (p-value <0.05).

Table 1. The individual concentrations (mean =+ sd, ng/L) of OCPs in waterpipe wastewater from
flavored and traditional tobacco

Flavored

PRycide Nakhla Al-fakher Al Tawareg Tangiers Traditional
Aldrin 1.01+0.73 1.77+1.03 1.74+1.40 1.7+1.21 2.39+1.29
Dieldrin 4.38+1.78 3.93+£2.60 3.96+1.82 4.5+1.82 5.12+3.01
Heptachlor 9.124+4.61 10.55+6.883 11.21+£2.35 7.51+4.18 13.06+£7.83
Chlordane 2.14+1.46 3.60+2.74 1.74+1.59 2.354+2.20 1.05+0.59
Endosulfan 8.39+6.32 10.49+7.54 7.10+£7.26 7.02+8.32 49143.67
o-HCH 38.8t17.41 41.94+31.04 54.07+£35.57 42.42+17.76 44.07+15.14
B-HCH 53.65+£29.07 65.62+37.23 84.50+51.70  55.80+30.61 66.02+34.26
vy-HCH 0.357+0.31 0.42+0.26 0.33+0.31 0.84+0.78 0.66+0.63
6-HCH 0.83+0.59 1.13+0.78 1.77+1.06 1.27+1.01 1.37+1.49
XHCH 89.36+33.85 102.2+53.42 103.92+60.43 79.98+40.47 102.91+43.77
p,p'-DDE ND ND ND ND 0.52+0.24
p,p'-DDD ND ND ND ND 4.18+2.41
p,p'-DDT ND ND ND ND 2.06+0.35

XDDT ND ND ND ND 5.8342.53
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Due to its susceptibility to a wide range of diseases, tobacco cultivation often needs the
utilize of various chemical treatments, including organic pesticides (Lopez Davila et al., 2020).
OCPs are used as pesticides in agriculture, including tobacco farming. Residues from these
pesticides can remain on the crops and be present in final products (Kartalovi¢ et al., 2020a). As
well as, OCP residues can accumulate in soil and water over time and be absorbed by plants during
growth (Guo et al., 2019). In addition to these, there is a possibility that manufacturing equipment
or materials could introduce small amounts of OCP residues into tobacco products. Therefore, both
environmental factors (such as contamination during cultivation) and industrial processes (like
pesticide use or combustion) contribute to the presence of PCBs and OCPs in tobacco products.
The extensive application of pesticides in tobacco fields leads to their accumulation in the final
product, and when used with hookah, some of it is also trapped in the water in the hookah bowl,
creating a toxic wastewaters (Quadroni and Bettinetti, 2019). The increased pesticide levels found
in waterpipe wastewaters of traditional tobaccos may be because this type of tobaccos are
comprised entirely of tobacco, whereas flavored tobaccos are only 30% tobacco, with the rest
consisting of sweeteners and flavorings added during processing (Kassem et al., 2020b; Kassem
et al., 2018). Thus, during waterpipe use OCPs residues leach into wastewater, with higher
concentrations in traditional tobacco—composed entirely of tobacco—compared to flavored
varieties (only ~30% tobacco, diluted by additives), resulting in elevated pesticide-to-mass ratios

and greater trapment in hookah water.

Hexachlorocyclohexane (HCH) isomers had the maximum concentration level in both
fruit-flavored and traditional tobacco wastewaters samples. The concentration of Y HCH in
Nakhla, Al-Fakher, Al Tawareg and Tangiers brands were 89.36, 102.19, 103.91, and 79.98 ng/L,

respectively, and in traditional tobacco samples was 102.91 ng/L. The elevated concentrations of
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HCH compounds in the waterpipe wastewater samples could result from their persistent and non-
volatile characteristics nature, combined with careless pesticide application in tobacco farming and
the considerable microbial breakdown resistance of HCHs (Abbas, 2021; Wang et al., 2016a). The
predominance of B-HCH comes from its higher chemical stability and lower biodegradability in
comparison with other HCH isomers. Unlike a- and y-HCH, B-HCH shows greater resistance to
microbial decomposition and volatilization, leading to its accumulation preferentially in
environmental matrices such as wastewater (Mehboob et al., 2013; Qian et al., 2019). The presence
of HCHs, a type of insecticide, is frequently observed in agricultural areas, including rivers in
India (Chakraborty et al., 2016), Pakistan (Taufeeq et al., 2021b), Iran (Kafaei et al., 2020), Egypt
(Barakat et al., 2013), and China (Wang et al., 2016b), which are affected by activities such as
tobacco farming (Taufeeq et al., 2021b). Significant amounts of o- and B-HCH, by-product
substances in the making of lindane, were improperly discarded, posing environmental and health
risks (Ma et al., 2020; Sineli et al., 2016), particularly because of the elevated toxicity of HCHs
that are related to endocrine, neurological, renal, and gastrointestinal concerns, along with immune
system damage (Ali et al., 2020; Kong et al., 2014), with B-HCH being the most hazardous to
mammals (Jackovitz and Hebert, 2015; Kafaei et al., 2020). Subsequent to HCHs, heptachlor
exhibited the next highest concentration among the waterpipe wastewater samples analyzed. The
concentration of this pollutant in the samples from fruit-flavored tobacco in Nakhla, Al-Fakher, Al
Tawareg and Tangiers brands were 9.12, 10.55, 11.21, and 7.51 ng/L, respectively, and in
traditional tobacco samples was 13.05 ng/L. The International Agency for Research on Cancer
(IARC) has classified heptachlor as a substance that may cause cancer in humans (Vainio et al.,
1991). Because of their long-lasting nature and tendency to lipids, heptachlor residues persist in

the environment, affecting life forms in both land and water ecosystems (McManus et al., 2013).
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Interestingly, DDT isomers were not found in waterpipe wastewater samples of fruit-flavored
tobacco, but were present in waterpipe wastewater samples of local tobacco samples at a XDDT
levels of 5.82 pg/L. In a 2019 research by Quadroni and Bettinetti (Bettinetti et al., 2012), DDT
pesticide was detected to be the most prevalent in 78.57% of in tobacco products samples, with
concentration levels of 9 ng/g of pp’-DDT and 13 ng/g of pp’-DDE. A research by Rahman et al.,
(Rahman et al., 2012) reported that the average DDT residue in tobacco leaf samples collected
from different areas in Kushtia, Bangladesh was 4000 ng/g. DDT and its by-products such as DDD
and DDE can adversely affect the liver as well as normal and cancerous tissues that respond to

estrogen (Liu et al., 2022; Wang et al., 2022).

These results underscore varietal differences driven by tobacco content and combustion
dynamics, with traditional types posing higher risks from undiluted pesticide legacies, while
HCH/heptachlor ubiquity reflects global agricultural bans' incomplete mitigation. Elevated f-HCH
toxicity to mammals further amplifies concerns for endocrine/neurological damage in exposed
ecosystems. This interpretation extends literature by mechanistically linking cultivation practices

to waterpipe-specific waste pollution, advocating refined monitoring in high-use regions.
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Fig.1. Violin plot of Y OCPs concentrations levels in waterpipe wastewater from fruit-flavored and traditional
tobacco.

3.2. The PCBs concentration levels in waterpipe wastewater

The measured concentrations of ) PCBs in wastewater samples generated from both
flavored and traditional waterpipe tobacco are presented in Table 2. All tested waterpipe
wastewater samples contained PCBs, indicating that waterpipe tobacco wastewater represents a
significant source of these environmental pollutants. As shown in Table 2, the mean concentrations
of > PCBs in wastewater from fruit-flavored tobacco brands—Nakhla, Al-Fakher, Al-Tawareg,
and Tangiers—were 11.41, 11.05, 11.94, and 11.65 pg/L, respectively. The mean concentration in
traditional tobacco wastewater samples was 10.26 ng/L. According to our findings, the average

> PCB concentrations in tobacco brand wastewaters, ranked from highest to lowest, are: Al-
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Tawareg, Tangiers, Nakhla, Al-Fakher, followed by traditional brands. The violin plot of Y PCBs
concentrations levels in waterpipe wastewater from fruit-flavored and traditional tobacco are
shown in Fig. 2. The results of Independent Samples Test are presented in Table S2. The detection
of > PCBs in all waterpipe wastewater samples indicates that waterpipe tobacco—regardless of
flavor type—serves as a consistent source of these persistent organic pollutants. Although the
concentrations did not differ significantly between flavored and traditional tobacco (p-
value>0.05), the slightly elevated Y PCB levels observed in flavored brands (11.05-11.94 ug/L)
compared to traditional tobacco (10.26 ug/L) may reflect compositional and processing differences
between the two product types. Elevated concentrations of PCBs in wastewater samples of fruit-
flavored can arise from the use of flavoring agents, substantial quantities of organic chemicals,
sweeteners, scents, and essential oils introduced during processing of these type of tobacco (Farley
et al., 2018; Masjedi et al., 2023b). Moreover, the slight variations in PCBs concentrations across
wastewaters from various brands may also be linked to environmental factors affecting leaf
contamination pathways: tobacco grown in soils impacted by historical PCB emissions, near
industrial areas, or irrigated with contaminated water can accumulate PCB residues that later
transfer into tobacco smoke and ultimately into the waterpipe bowl (Verma et al., 2010; Zhu et al.,
2014). The similar magnitude of PCB concentrations between flavored and traditional varieties
suggests that agricultural contamination pathways remain dominant; however, the slightly higher
levels in flavored products may reflect an additive effect of processing-related inputs. These
findings reinforce the hydrophobic and combustion-stable nature of PCBs, their ability to partition
into the water phase during smoking, and the potential role of both agricultural environments and
manufacturing practices in shaping PCB burdens in waterpipe wastewater. This mechanistic

understanding highlights why PCB pollution persists across tobacco types and supports the need



320 for greater monitoring of additive-rich flavored products, whose complex composition may

321  enhance the mobilization or introduction of persistent pollutants.

Table 2. The individual concentrations (mean =+ sd, pug/L) of PCBs in waterpipe wastewater from
flavored and traditional tobacco.

Flavored oe
PCBs Nakhla Al-fakher Al Tawareg Tangiers Traditgnal
PCB77 2.14+£1.15 2.17+1.21 1.84+1.10 2.03+1.29 1.84+1.06
PCBS81 1.16£0.67 0.984+0.68 1.09+0.59 1.17+£0.65 1.194+0.62
PCB114 0.78+0.46 0.7440.30 0.82+0.46 0.86+0.46 0.74+0.4
PCB118 0.91+0.65 0.87+0.80 1.174+0.67 1.17+0.82 0.80+0.64
PCBI123 0.41+£0.27 0.34+0.25 0.42+0.27 0.43+0.27 0.34+0.18
PCBI126 0.20+0.19 0.214+0.18 0.224+0.19 0.2240.18 0.21£0.20
PCBI156 0.59+0.23 0.56+0.19 0.58+0.21 0.69+0.24 0.60+0.25
PCB157 0.17+0.14 0.16+0.12 0.19+0.14 0.19+0.14 0.1940.11
PCB167 2.01+£1.12 1.76£1.23 2.28+1.31 2.05+1.22 1.794£1.00
PCB189 0.93+0.31 0.86+0.27 0.91+0.28 0.86+0.44 0.924+0.17
PCB194 3.08+1.65 2.72+1.60 3.20+1.72 3.06+1.55 2.74+1.47
322
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324 Fig.2. Violin plot of Y} PCBs concentrations levels in waterpipe wastewater from fruit-flavored and traditional
325 tobacco

326



327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

The individual concentrations of PCBs in wastewaters samples from different fruit-
flavored tobaccos as well as traditional tobacco are also detailed in Table 2. As indicated, average
concentration of PCB77, PCB81, PCB114, PCB118, PCB123, PCB126, PCB156, PCB157,
PCB167, PCB189 and PCB194 in wastewater samples of waterpipe with fruit-flavoured tobacco
were 2.05+1.19, 1.10 £ 0.65, 0.81 £0.43, 1.03 £ 0.75, 0.43 £ 0.29, 0.22 £ 0.18, 0.64 + 0.28, 0.27
+0.39,2.03 £1.23, 0.92+£0.40, and 3.05 £ 1.61 pg/L, respectively. The mean concentration levels
of PCB77, PCB&1, PCB114, PCB118, PCB123, PCB126, PCB156, PCB157, PCB167, PCB189
and PCB194 in wastewater samples of waterpipe with traditional tobacco were also 1.84 + 1.06,
1.19 £ 0.62, 0.74 £ 0.40, 0.80 + 0.64, 0.33 +£ 0.18, 0.21 = 0.20, 0.60 £ 0.25, 0.19 £ 0.11, 1.79 =
1.00, 0.92 £ 0.17, and 2.74 £ 1.47 ng/L, respectively. As can be seen, PCB194 exhibited the
maximum concentration level among all quantified PCBs congeners. This observation could be
explained by the durable chemical structure and resistance to degradation of PCB194, which tends
to accumulate more easily in wastewater in relation to the other congeners (Beyer and Biziuk,
2009). Moreover, its higher lipid affinity may contribute to stronger adsorption to particulate
matter in the waterpipe residues, resulting in higher detected concentrations (Urbaniak et al.,
2017). A study quantified dioxin-like PCB congeners (e.g., PCB 77, PCB 105, PCB 114, PCB
118) with toxicity equivalent values ranging from 8.7x107° to 3.21x10* ng WHO-TEQ per
cigarette (Adesina et al., 2022). Inhalation of these pollutants was associated with non-
carcinogenic health risks, as HQ values exceeded safe limits (Adesina et al., 2022). It should be
noticed that industrial processes have caused the the emission of a significant amount of PCBs into
the ecosystem, especially, and the analogues readily build up in the environmental compartments
(e.g., atmosphere, water, soil, and sediments), particularly in the nearby regions because of their

persistence (Kim et al., 2017; Mao et al., 2021; Mila et al., 2022; Rivoira et al., 2022). Previous
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researches across many countries has consistently reported that the PCBs level in surface soil were
closely associated with closeness to the source areas (Mao et al., 2021; Zhao et al., 2016).
Numerous studies have shown that the increased PCB levels in the environmental matrices are a
consequence of historical usage or improper disposal of PCBs-related goods (Meijer et al., 2003).
PCBs can contaminate soil, air, and water and tobacco plants may absorb these chemicals from
the environment during cultivation (Guo et al., 2019). The combustion of tobacco during smoking
can release PCBs into the mainstream smoke. Studies have identified various PCB congeners in
cigarette smoke, indicating that combustion processes contribute to their presence (Adesina et al.,
2022). Although less documented, manufacturing processes might also introduce trace amounts of
PCBs into tobacco products due to contamination or use of contaminated materials. Therefore,
during waterpipe smoking, some of PCBs enters the smoke and is inhaled by the smoker,
endangering his health. Additionally, some PCBs trapped in the waterpipe water, and the release

of this water into the environment can have various eco-toxicological effects.

3.3. Environmental Toxicity of OCPs and PCBs

Although direct evidence connecting wastewater from waterpipe to substantial PCB or
OCP contamination is limited compared with well-known sources such as industrial discharge or
agricultural runoff, the release of these pollutants into aquatic environments still presents serious
ecological and public-health risks due to their persistence, toxicity, and tendency to bio-
accumulate in living organisms. The ecological risks related with OCPs in waterpipe wastewater
for aquatic environment are provided in Table 3. The assessment of ecological risks posed by
individual OCPs in traditional tobacco waterpipe wastewater showed that the RQ values were
ranged from 0.00 (6-HCH) to 2.46 (endosulfan). The RQ value of endosulfan was greater than 1,

with high ecological risk. As well as, the RQ values of B-HCH, 6-HCH, chlordan, p,p'-DDE, p,p'-
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DDT and heptachlor were less than 0.1, with low ecological risks. Other compounds such as a-
HCH, y-HCH, aldrin and dieldrin have medium ecological risks (0<RQ<1). In the case of flavored
tobacco, the RQ values were ranged from 0.00 (6-HCH) to 3.50 (endosulfan). The RQ value of
endosulfan was generally greater than 1, with high ecological risk. As well as, the RQ values of -
HCH, 6-HCH, chlordan, dieldrin and heptachlor were less than 0.1, with low ecological risks.

Other compounds such as a-HCH, y-HCH and aldrin have medium ecological risks (0<RQ<1).

Table 3. Ecological hazard metrics related to organochlorine pesticides (OCPs) in waterpipe wastewater
for aquatic media

OCPs Traditional Tobacco Flavored Tobacco
MEC PNEC RQ MEC PNEC RQ
o-HCH 44.07 370 0.12 38.51 370 0.11
B-HCH 66.02 3140 0.02 54.13 3140 0.02
v-HCH 0.66 2.9 0.23 0.32 2.9 0.11
6-HCH 1.37 1580 0.00 0.91 1580 0.00
Aldrin 2.39 10 0.24 1.03 10 0.11
Chlordan 1.05 90 0.01 1.87 90 0.02
Endosulfan 491 2 2.46 6.99 2 3.50
p,p'-DDE 0.52 15 0.03 <LOD 15 -
Dieldrin 5.12 50 0.11 3.05 50 0.06
p,p'-DDD 4.18 9 0.46 <LOD 9 -
p.p-DDT 2.06 30 0.07 <LOD 30 -
Heptachlor 13.06 150 0.09 7.63 150 0.05

The TEQs of the PCBs in the in flavored and traditional waterpipe wastewater for aquatic
media ranged from 8.1x10° (PCB157) to 0.02 (PCB126) and 5.7x10° (PCB157) to 0.02
(PCB126) ng/L (Table 4). In a study, the TEQ values of dioxin-like PCBs in cigarette butts
leachates were low, and it is reported that continuous discharge into water bodies could pose long-
term environmental and health dangers (Arfaeinia et al., 2024a). The ecological impact of
waterpipe wastewater is an increasing issue, particularly regarding its toxicological effects on
aquatic ecosystems and human health. Despite the shallow TEQs observed in waterpipe

wastewater, continuous discharge can lead to significant ecological and health risks. The TEF and



389  TEQ approach is indeed a well-established method for assessing the risk associated with exposure
390 to PCBs and other dioxin-like substances (Van den Berg et al., 2006b), particularly in dietary
391  contexts. However, its application in non-living environmental components (including soil, water,
392  orair) presents several challenges (Arfaeinia et al., 2024b). Its application in abiotic environmental
393 matrices requires careful consideration of bioavailability, transport mechanisms, and
394  environmental fate. By addressing these challenges through targeted research and interdisciplinary
395 collaboration, we can enhance our risk assessment frameworks and better protect human health
396  and the environment. To accurately assess human risk for abiotic environments, it is suggested to
397 utilize congener-targeted equations across the entire model rather than relying on the TEQ model.
398  This approach is crucial because the fate and transfer properties of different congeners vary
399  significantly (Van den Berg et al., 2006a), which can lead to inaccuracies if a generalized TEQ
400  framework is applied. While the concentrations of PCBs and OCPs from waterpipe wastewater
401  may be relatively low compared to other pollutants, their continuous release poses significant risks

402  due to bioaccumulation effects on aquatic ecosystems.

403 Table 4. The toxicity equivalent (TEQ) and Toxic Equivalency Factors (TEFs) values of PCBs in
404 waterpipe wastewater for aquatic media
PCBs Concentrations TEF TEQs
Traditional tobacco Flavored tobacco (WHO 2005) Traditional tobacco Flavored tobacco
PCB77" 1.84 2.05 0.0001 1.8E-04 2E-04
PCBSI” 1.19 1.1 0.00001 1E-05 1.1E-05
PCB114™ 0.74 0.8 0.00003 2.2E-05 2.4E-05
PCB118™ 0.8 1.03 0.00003 2.4E-05 3.1E-05
PCB126" 0.21 0.22 0.01 0.02 0.02
PCB156™ 0.6 0.64 0.00003 1.8E-05 1.9E-05
PCB157" 0.19 0.27 0.00003 5.7E-06 8.1E-06
PCB167" 1.79 2.03 0.00003 5.8E-05 6.1E-05
PCB189+" 0.92 0.92 0.00003 2.4E-05 2.8E-05
282 *: non-ortho substituted PCBs; **: mono-ortho substituted PCBs

407
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4- Practical applications and future research prospects

Both PCBs and OCPs are classified as POPs, known for their carcinogenic, immunotoxic,
and neurotoxic effects (Androutsopoulos et al., 2013; Lauby-Secretan et al., 2013). These
compounds can bio accumulate in human tissues through inhalation or environmental exposure
(Adesina et al., 2022; Kartalovi¢ et al., 2020b; Thakur and Pathania, 2020; Zhu et al., 2022). This
study showed that various hazardous pollutants including OCPs and PCBs can enter the
environment through waterpipe wastewater and/or tobacco waste and negatively impact the
terrestrial and aquatic ecosystems. To effectively diminish the ecological effect of waterpipe
tobacco wastewaters, it is suggested that multi-pronged approach be taken. Countries with high
rates of waterpipe use, particularly within the Middle East region, such as Iran, should prioritize
thorough tobacco waste-specific waste management policies. Moreover, it is essential to highlight
the duty of tobacco of tobacco manufacturers in handling their products not just during production,
but also after they are used and disposed. They must be forced to adopt Extended Producer
Responsibility (EPR) programs to fulfill this. Moreover, to prevent these pollutants from entering
the environment, specific actions are needed, such as public education and increasing smokers'
awareness of the serious consequences of discharging these pollutants into the environment. In
addition, while this study found that hookah wastewater can contain hazardous chemicals, its
effects on terrestrial organisms/plants were not assessed. Additional scientific research is needed
to understand the level of toxicity of this type of hazardous wastewater poses to both
aquatic/terrestrial organisms. Simultaneously, researches of smokers’ behavior could explore
attitudes regarding the disposal of tobacco waste and highlights the significance of educational

initiatives.
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4. Conclusion

This study evaluated the environmental health risks associated with wastewater generated
from waterpipe tobacco use, with special emphasis on PCBs and OCPs. The results showed that
flavored and traditional waterpipe tobacco products contribute to the contamination of aquatic and
terrestrial ecosystems, while flavored waterpipe tobacco products have higher concentrations of
PCBs, because of the addition of flavoring material. The analysis showed that PCB194 was the
most abundant PCBs in both flavored and traditional tobacco products, whereas f-HCH and a-
HCH were the most prevalent pesticides in all analyzed samples. In addition, waterpipe wastewater
demonstrated considerable detection of OCP residues, which might underline the urgent need to
control these toxic substances. The research put more focus on controlling the methods of disposal
of waterpipe waste so as to suppress the negative consequences on the environment and public
health. Proper management systems involving effective waste management strategies like
wastewater treatment and proper disposal methods could reduce the adverse effects of on both
aquatic and terrestrial ecosystems. Such these insights help to improve the understanding of the
toxic burden associated with waterpipe tobacco waste and set a foundation for further research and
policy initiatives aimed at mitigating pollutants and protecting both the environment and human
health. This would call for cooperation among policymakers and industry stakeholders in dealing
with such challenges effectively, reducing the ecological impact of tobacco products and

preserving human health.
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Supplementary Information

Table S1. Quality control and quality assurance of OCPs and PCBs quantitation analysis
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PCB 114 17.09 1.62 81.10 11.06 19.80 0.04 0.14

PCB 153 17.5 1.80 90.06 15.81 22.16 0.05 0.16

PCB 105 17.7 1.67 83.73 7.91 20.57 0.04 0.14

PCB 138 18.69 1.73 86.41 11.83 18.79 0.06 0.21

PCB 180 22.19 1.50 74.83 11.31 16.47 0.07 0.23

746
747
748  Table S2. The comparison of OCPs and PCBs compounds levels between the two traditional and fruit-flavored waterpipe wastewater
Levene's Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval of

Mean the Difference

F Sig. t df Sig. (2-tailed) | Difference Std. Error Difference Lower Upper

PCB77 | Equal variances assumed .141 .709 911 47 .367 .39067 42883 -.47204 1.25337
Equal variances not assumed 912 14.010 377 .39067 42833 -.52795 1.30928
PCB81 | Equal variances assumed 132 718 119 43 .906 .02881 24158 -.45838 51601
Equal variances not assumed 113 13.619 911 .02881 .25401 -.51742 .57505
PCB11 | Equal variances assumed 116 735 1.259 43 215 .20107 .15969 -.12097 52311
4 Equal variances not assumed 1.174 13.286 261 20107 17133 -.16825 .57039
PCBI11 | Equal variances assumed 1.144 2901 1.172 43 248 31424 26811 -.22646 .85494
8 Equal variances not assumed 1.239 15.835 .233 31424 .25366 -.22394 .85243
PCB12 | Equal variances assumed 1.534 222 1.895 44 .065 .18972 .10011 -.01203 .39148
3 Equal variances not assumed 2.154 17.681 .045 .18972 .08807 .00445 .37500
PCB12 | Equal variances assumed .028 .868 1.690 38 .099 .11423 .06758 -.02257 25104
6 Equal variances not assumed 1.695 15.543 .110 .11423 .06738 -.02895 25742
PCB15 | Equal variances assumed 768 .387 1.418 37 .165 .15828 11162 -.06788 .38444
6 Equal variances not assumed 1.289 13.490 219 .15828 12276 -.10596 42252
PCB15 | Equal variances assumed 574 454 1.001 34 324 .13028 .13009 -.13409 .39466
7 Equal variances not assumed 1.467 33.662 152 .13028 .08884 -.05033 .31089




PCB16 | Equal variances assumed 1.075 .305 577 47 .566 .24875 43088 -.61808 1.11557
7 Equal variances not assumed .639 16.136 .532 .24875 .38944 -.57626 1.07375
PCB18 | Equal variances assumed .047 .830 1.240 40 222 .18457 .14885 -.11627 48541
9 Equal variances not assumed 1.221 14.726 241 .18457 15114 -.13811 .50724
PCB19 | Equal variances assumed 258 .614 .547 48 .587 31197 .57015 -.83440 1.45833
4 Equal variances not assumed .564 14.387 .582 31197 .55355 -.87228 1.49621
TPCBs | Equal variances assumed .962 332 .893 48 376 1.25080 1.40054 -1.56518 4.06678

Equal variances not assumed 1.010 16.486 327 1.25080 1.23842 -1.36826 3.86986
Aldrin | Equal variances assumed 2.016 .162 -1.412 47 .164 -.64833 45904 -1.57180 27513

Equal variances not assumed -1.181 11.657 261 -.64833 .54878 -1.84794 55128
Dieldri | Equal variances assumed .005 942 -1.067 48 292 -1.05075 .98522 -3.03167 .93017
n Equal variances not assumed -.876 11.449 .399 -1.05075 1.19922 -3.67766 1.57616
Heptac | Equal variances assumed 2.182 .146 -2.376 48 .022 -5.42975 2.28529 -10.02463 -.83487
hlor Equal variances not assumed -1.957 11.470 .075 -5.42975 2.77505 -11.50721 .64771
Chlorda | Equal variances assumed 9.746 .003 1.603 48 116 1.14025 71143 -.29017 2.57067
ne Equal variances not assumed 2.729 44.065 .009 1.14025 41789 .29808 1.98242
Endosul | Equal variances assumed 5.987 .018 1.220 48 228 3.05937 2.50798 -1.98326 8.10200
fan Equal variances not assumed 1.743 27.244 .093 3.05937 1.75569 -.54150 6.66024
alphaH | Equal variances assumed .240 .626 321 48 .750 3.25825 10.14786 -17.14540 23.66190
CH Equal variances not assumed 371 17.099 715 3.25825 8.77935 -15.25642 21.77292
betaHC | Equal variances assumed .800 376 -.804 48 425 -11.89675 14.80084 -41.65583 17.86233
H Equal variances not assumed -.895 16.073 384 -11.89675 13.29740 -40.07553 16.28203
gamma | Equal variances assumed 1.664 .203 -1.185 48 242 -.21325 .18001 -.57519 .14869
HCH Equal variances not assumed -.963 11.358 .356 -.21325 22143 -.69874 27224
deltaH | Equal variances assumed 1.303 259 -.490 48 .626 -.19175 39112 -.97815 .59465
CH Equal variances not assumed -.380 10.976 711 -.19175 .50470 -1.30289 .91939
THCH | Equal variances assumed .180 .673 -.521 48 .605 -9.04500 17.37225 -43.97424 25.88424

Equal variances not assumed -.546 14.718 .594 -9.04500 16.58032 -44.44427 26.35427




DDE Equal variances assumed 90.717 .000 -8.685 48 .000 -.41600 .04790 -.51231 -.31969
Equal variances not assumed -4.205 9.000 .002 -.41600 .09894 -.63982 -.19218
DDD | Equal variances assumed 284.488 .000 -8.919 48 .000 -3.76000 42155 -4.60758 -2.91242
Equal variances not assumed -4.318 9.000 .002 -3.76000 .87075 -5.72977 -1.79023
DDT Equal variances assumed 76.347 .000 -11.578 48 .000 -1.65200 14268 -1.93888 -1.36512
Equal variances not assumed -5.605 9.000 .000 -1.65200 29472 -2.31870 -.98530
TDDT | Equal variances assumed 132.499 .000 -14.260 48 .000 -5.82800 40870 -6.64974 -5.00626
Equal variances not assumed -6.904 9.000 .000 -5.82800 .84420 -7.73772 -3.91828
TOCPs | Equal variances assumed .020 .889 -973 48 336 -17.82750 18.33090 -54.68424 19.02924
Equal variances not assumed -.981 14.012 343 -17.82750 18.17147 -56.79836 21.14336
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