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Abstract

As the central city of Hunan Province, Changsha is a key to
grasping how carbon emission growth is playing out and
getting the peak carbon emission event to happen faster
than initially planned. In this study, it adopts the data
from 2011 to 2022 to build the LMDI-STIRPAT model and
forecast the carbon emission trend of Changsha. Through
scenario simulations, the research identifies the primary
factors influencing carbon emissions, projects future
emission trajectories, and determines the optimal
pathways for emission reduction. The main results: (1)
The energy structure restrains the growth of carbon
emission, while the population size is still a big pusher
that helps increase the carbon emission. (2) Out of eight
forecasting situations, only situation S1 arrives at the
carbon peak goal by 2030, which achieves 20.37 Mt,
whereas the others vary in their delay. (3) Changsha
reaches its carbon peak according to the plan in the low-
carbon situation S1, making it the most effective option
for emission cuts. To achieve this, the paper gives
recommendations such as modifying energy consumption

structure, optimizing industrial layout, and reinforcing
related the policy framework supporting cities low carbon
transition and explained in conclusion.

Keywords: Energy intensity; sensitivity analysis; carbon
emission forecasting; scenario analysis

1. Introduction

With the rapid development of the global economy,
carbon dioxide emissions have been rapidly increasing,
and the degree of global warming has also been
increasing. The occurrence frequency of natural disasters
(Babu et al. 2025) all over the world has been rapidly
rising, and the occurrence of extreme days is also
becoming more and more frequent (Jasmine et al. 2025).
The melting of sea ice, increase of sea level, floods and
storm and other disasters have become more serious by
the effects of rising sea level, it is a big danger for
ecosystem, climate (Kumar et al. 2025)and sustainable
development of humans. As per the IPCC, the
temperature of the entire world has been increasing since
the last 100 years due to the greenhouse gases produced
from the burning of fossil fuel and the industries. So,
reducing carbon emissions has become the main way to
stop the earth getting too warm, and all the countries
need to work together. During the Reform and Opening-
up period, China’s economic growth is based on the huge
amount of energy consumption which leads to a large
continuous emission of carbon dioxide. In response to the
increasing climate risk, China has made the commitment
at 75th session of UN General Assembly to achieve peak
carbon before 2030 and carbon neutral before 2060.

Dual carbon goal, Carbon Peak and Carbon Neutrality,
have turned into a central theme for policies and
academic works in China. Now we are trying to find low-
carbon development models. Government supported low
carbon city pilot project is one of the earliest policy
instruments to promote these goals. It attempts to
reconcile ecological sustainability with economic growth.
In 2010, 2012 and 2017, 81 cities became national low-
carbon pilot cities, including Changsha in the third batch.
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The Changsha government wants to promote high quality
development and encourage the use of energy saving and
emission reduction technology, so they have made
making the economy less polluting a key goal.

In terms of factors influencing carbon emissions, from the
research literature we can see that most of the papers will
use IDA to analyze which components affect carbon
dioxide emissions, like urban population, economy scale,
energy intensity, energy consumption. Also, it can be
investigated well on the influence that every factor has
over carbon emission (Liu et al. 2021; Fan et al. 2017). As
for different IDA approaches, LMDI is most acknowledged
as a good approach to adopt for resource and
environment research because it has the advantage of
being a zero-residual property, additivity, and ease of
result interpretation (Dong et al. 2019; Long et al. 2019;
Ding et al. 2020; Yang et al. 2020); (Ang et al. 2001).
Furthermore, it handles zeros in the data well (Ang 2005;
Ang et al. 2007). Existing studies using the LMDI method
decompose emissions by carbon emission coefficients,
energy structure, energy intensity, industrial structure,
economic development, and population size (Chong et al.
2019; Mohmmed et al. 2019; Zheng et al. 2019). Take
Shanghai as an example, it is shown that an increase in
per capita GDP and population size is the main cause of
the increase in carbon emissions, and a decrease in
energy intensity has greatly reduced the amount of
emissions. (Gu et al. 2019; Li et al. 2023b) carried out an
empirical decomposition of CO2 emissions in Tianjin with
the LMDI method, and found that improvement of energy
efficiency and energy structure optimization are very
important to reduce carbon emissions.

Forecasting carbon emissions generally uses the system
dynamics models (Feng et al. 2013; Zhao et al. 2024; Li et
al. 2024), neural network models (Sun et al. 2021), long-
term energy alternatives planning system (LEAP) models
(Nieves et al. 2019; Maduekwe et al. 2020), STIRPAT
models (Rokhmawati et al. 2024; Xiao et al. 2023). (Luo et
al. 2023) used system dynamic models to forecast the
carbon emission peak and post-peak trends in the
Guangdong - Hong Kong - Macao Greater Bay Area and its
surrounding cities. (Ren et al. 2021) developed an
improved fast learning network prediction algorithm to
forecast the carbon emissions of Guangdong from 2020 to
2060. (Cai et al. 2023) applied the LEAP model to do 4
scenario analysis about the CO: emissions of Bengbu,
Anhui Province in 2030, also simulating the influence of
various emission reduction policies. (Fang et al. 2019)
used STIRPAT model combined with scenario analysis to
check if the carbon emissions in 30 Chinese provinces
would peak in 2030. Among them, among all these
methods dynamics system, has a strong advantage in a
large number of variables, multiple variables situation,
more feedback, nonlinear. However this heavily
dependents on the modeler’s skill, so it would be
subjective. Neural network models have better fit on
complex data patterns, more accurately, but needs a lot
of data set. The LEAP model has the flexibility and
transparency of scenario simulation and policy evaluation.
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But, it relies heavily on expert input, which may introduce
bias. On the contrary, STIRPAT model is a kind of statistic
model, which can take into account the factors that reflect
the real situation and policy implementation. Moreover,
we can do the scenario analysis for different emission
trackways by changing these elements, which is also
flexible.

In summary, this paper has the following major
contributions: The first is that most of the studies on
carbon emissions driving forces and forecasts at present
are focused on the national and provincial levels, but the
studies at the city level are still few. Second, this is a
combined approach using LMDI method + extended
STIRPAT model. This combined model allows us to
conduct comprehensive and systematic analysis on the
factors driving carbon emissions at city level. It also
forecasts when Changsha will reach its carbon peak and
looks at what changes might happen in reducing carbon.
With Changsha in focus this research looks at, projects its
main drivers of carbon emissions and offers advice to help
the city develop.

2. Methods and Data

2.1. Calculation of carbon emissions

In terms of prior research, energy consumption is usually
the largest part of a nations greenhouse gas inventory and
accounts for more than 90% of CO2 emissions (Wen et al.
2020). Therefore, many scholars concentrate their
research on calculating the carbon emissions from energy
use. For this paper, we’re going to be using the emission
factor to find the CO: emission for Changsha. Using
relevant literature (Angin et al. 2022) and city-level data
on the consumption of major energy, as well as using the
2006 IPCC guidelines for national greenhouse gas
inventories, we quantify the CO2 emissions from the major
energy source of the city. Calculate it is:

n (1)
1= EC;<EE; <EF,

i=1
Where, | is the total amount of carbon emission of
Changsha; EC; is the consumption of the i-th kind of
energy; EE; is the carbon emission factor for the i-th kind
of energy; EFi is the standard coal conversion factor for
the i-th kind of energy.

2.2. LMDI model

This article uses the LMDI model to decompose and
analyze the carbon emissions of Changsha, and to
decompose the carbon emissions of Changsha associated
with various factors. Considering the city’s context, we
take the following decomposition factors: the carbon
emission coefficient of energy, the structure of energy,
the intensity of energy, economic development, and the
scale of the population, as expressed in Equation (2):

N n (2)
I. EE E G
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i=1
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Where | denotes total carbon dioxide emissions; /i denotes
the carbon dioxide emissions from the i-th energy source;
Ei denotes the consumption of the i-th energy source; E
denotes the total energy consumption; G denotes the
gross regional product; P denotes the population size; Cl =
Ii/Ei denotes the carbon emission coefficient of energy; ESi
= E//E denotes the energy structure; T = E/G denotes
energy intensity; A = G/P denotes the level of economic
development.

According to the LMDI model, the change in Changsha’s
CO2 emissions from period 0 (base period) to period t
(target period) is AI=I'—7°. It is then possible to
calculate the effect of 5 driving factors on Changsha’s CO2
emissions, as shown in Eqgs (3)—(8).

n 3)
— 0_
AI=T' = [°= CI{XES{ X T/ < A{x P!
i=1

—ZCI? xESIxT xA"xp°
i=1
=Alep +Algg + Al + Al + Al (4)
SRR ! (5)
I -I; CL,
Al —Z iDL xin—L
Inl; -Inl; CL;

t 10 t (6)
Al; —Z Ll 5 xIn Tlo
Inl{-Inl{ T,

o Al (7)
AIA—Z—OXln—B
Inl{-Inl{ A

Al _i I I0 Pit (8)
Pyt 1n1° PO

Where t denotes the last year of the reporting period, and
0 represents the beginning year of the reporting period, Al
denotes the change in CO, in Changsha City from period 0
(base period) to period t, Ala denotes energy carbon
Table 1. Explanation of the variables in the STIRPAT model

emission coefficient effect, Ales denotes energy structure
effect, Alr denotes energy intensity effect, Ala denotes the
effect of economic development level, and Alr denotes
the population size effect.

To quantify the contribution of each factor from the base
period to period t, we extend the carbon emission effect
formulation. The contribution rate of each factor to the
total CO; emissions is defined as:
:&:AICI +AIES +&+ﬂ+ (9)
Al Al Al Al Al

AL,
— 1 “CRG+CRyg +CR1+CR, +CR,

Where CR stands for the contribution rate of each factor,
Alc stands for the amount of CO, emission increased by
factor C, Al stands for the total amount of increase in CO2
emission, CRc represents the contribution rate of energy
carbon emission coefficients, CRes represents the
contribution rate of energy structure, and CRr represents
the contribution rate of energy intensity; CRa represents
the contribution rate of economic development, and CRp
represents the contribution rate of population size.

2.3. STIRPAT model

IPAT identity (Ehrlich et al. 1971) has been used
extensively since the 1970s to analyze environmental
impacts, which assumes that all drivers have equal
proportional impacts. To solve the problems discussed
before, (Dietz et al. 1997) introduced the STIRPAT model
in which different effects of those factors could be
provided. The basic form of the IPAT model is as follows:

b d
I =aP ACT e (10)

where | denotes environmental impact, P denotes
population size, A denotes GDP per capita, T denotes
technology level, a denotes model coefficient, b, ¢, and d
denote elasticity exponents of the corresponding
variables, and e denotes random error term.

Symbol Variables Description Units
| CO, emissions Total carbon dioxide emissions metric tonnes (Mt)
P Population size Total Resident Population at Year-End 10* persons
. The ratio of regional GDP to the total
A GDP per capita . CNY 10, 000 Yuan /Person
population at the end of the year
. . . . Tons of standard coal / CNY 10,
T Energy intensity Energy consumption per unit of GDP
000 Yuan
L Ratio of urban residents to the total
u Urbanization rate ) %
population at the end of the year
Ratio of Tertiary Industry Output Value to
N Industrial Structure . Y Y . P %
Regional Gross Domestic Product
. . . The ratio of total carbon emissions to
M Carbon emissions intensity —

regional gross domestic product

On the foundation of IPAT identity, the STIRPAT model is
chosen here as an adaptable stochastic framework to

evaluate environmental impacts. Based on the specific
circumstances of Changsha City and the findings of prior



research (Kong et al. 2022; Zeng et al. 2022), we added up
three traditional P, A, T variables to three influential
drivers of CO2 emissions, they were population, economic

growth rate, energy intensity, the proportion of
urbanization, the structure of industry, and carbon
intensity. Model is set up like this:

InI=Ina +bIlnP +cInA +dInT + (11)

flnU + gIlnN +hInM +Ine

Where | is Changsha’s CO2 emissions, P is the total
number of people, A is GDP per capita, T is energy
intensity, U is urbanization rate, N is industrial structure,
and M is carbon emission intensity. The parameter a is the
model coefficient, while b, ¢, d, f, g, and h are the
elasticity coefficients corresponding to each variable. The
term e represents the random error. Detailed definitions
of these variables and their changes over the study period
are presented in Table 1 and illustrated in Figure 1.
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Figure 1. Changes in the indicators during the study period

2.4. Scenario analysis

Using scenario analysis, we project Changsha’s future CO,
emissions. To examine whether and when the city will
reach its peak emissions, scenarios and forecasts were

developed for the period of 2023—2060. The growth rates
of population size, economic development, energy
intensity, industrial structure, urbanization, and carbon
emissions intensity were determined based on historical
trajectories, policy plans, and related studies. Accordingly,
each variable was assigned high, medium, and low growth
paths. The parameter settings are listed in Table 2.
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2.4.1. Population size

According to the Changsha Statistical Yearbook, the
resident population at the end of 2022 was 10.4206
million, and the natural population growth rate is 0.59
percent higher than in the previous year. Based on the
2012-2022 data, the average natural population growth
rate is 4.79 percent. In recent years, this rate has slowed
noticeably. From 2018 to 2022, Changsha’s average
natural population growth rate declined to 2.7 percent
and exhibits a slowing, stable pattern. Accordingly, under
the baseline scenario (S2), the population growth rate for
2023 to 2025 is set at 2.7 percent. The detailed
parameters are listed in Table 2.

2.4.2. Per capita GDP

The growth rate of per capita GDP aligns with the overall
economic growth rate. According to Changsha’s
Fourteenth Five-Year Plan and the 2035 long-term
objectives (the Plan), the city targets an average annual
GDP growth rate of 7.8 percent during 2021-2025. Based
on the plan and recent GRP data, the computed five-year
average GDP growth rate for Changsha is 6.8 percent.
Accordingly, we set the growth path for 2023-2060 as
follows: Under the baseline scenario (S2), per capita GDP
grows at 6.8 percent during 2023-2025. As the economy
transitions to a new normal, the growth rate is expected
to decline gradually. The detailed parameters are listed in
Table 2.

2.4.3. Energy intensity

Drawing on the GDP growth plan set out in the Thirteenth
Five-Year Plan for National Economic and Social
Development, the Implementation Plan for Carbon
Peaking in Changsha, and the Outline of the Vision Goals
for 2035, from 2015 to 2020, energy intensity falls by 20
percent in Changsha, averaging about 4 percent per year.
By 2025, it will be 15% less than the 2020 level which
would amount to around a 3% average annual decrease.
So for our baseline scenario (S2) we go 3% annually off
from 2023-2025. In parallel, broader development trends
and local conditions are considered. The detailed
parameters are listed in Table 2.

2.4.4. Urbanization rate

The urbanization rate (U) is a key indicator of social
development. In recent years, Changsha has advanced
integrated urban and rural development, and the rate of
urbanization has risen steadily. Given the high starting
level, its growth converges to a stable pace. This rate
reached 83.27 percent in 2022. To limit the impact of
interannual variation, we used the Five-Year average
growth rate of 0.5 percent for 2018-2022 as the
representative value. Accordingly, under the baseline
scenario (S2), the urbanization rate is set at 0.5 percent
per year for 2023-2025. The detailed parameters are
listed in Table 2.

2.4.5. Industrial structure

Changsha’s industrial structure (N) shifts from the
secondary to the tertiary sector, with the share of services
exceeding 50 percent in 2013. In line with the moderation
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of economic growth, the pace of structural upgrading has
stabilized in recent years. Drawing on statistics for 2013 to
2022, the tertiary sector recorded an average annual
growth rate of 0.71 percent. Accordingly, under the

baseline scenario (S2), the annual pace of industrial
structure (N) is set at 0.7 percent for 2023 to 2025. The
detailed parameters are listed in Table 2.

Table 2. Parameter settings in low (L), medium (M), and high (H) speed development conditions

2023-2025 2026-2030 2031-2040 2041-2050 2051-2060
o L 2.2 1.7 1.2 0.7 0.2
Population Size
P) M 2.7 2.2 1.7 1.2 0.7
H 3.2 2.7 2.2 1.7 1.2
Per Capita GDP L 6.8 5.8 4.8 3.8 2.8
er a&')a M 7.8 6.8 5.8 4.8 3.8
H 8.8 7.8 6.8 5.8 4.8
. L -2.5 -2 -1.5 -1 -0.5
Energy Intensity
™ M -3 -2.5 -2 -1.5 -1
H -3.5 -3 -2.5 -2 -1.5
o L 0.45 0.4 0.35 0.3 0.25
Urbanization
M 0.5 0.45 0.4 0.35 0.3
Rate (U)
H 0.55 0.5 0.45 0.4 0.45
ndustrial L 0.6 0.5 0.4 0.3 0.2
ndustria
" M 0.7 06 0.5 0.4 0.3
Structure (N)
H 0.8 0.7 0.6 0.5 0.4
o L 3.3 3.6 3.9 4.2 -4.5
Carbon Emission
. M -3.6 -3.9 -4.2 -4.5 -4.8
Intensity (M)
H -3.9 -4.2 -4.5 -4.8 -5.1

6

Note: ‘L7, ‘M,
2.4.6. Carbon emission intensity

2

Drawing on the Thirteenth Five-Year Plan for National
Economic and Social Development, CO2 emissions per unit
of gross regional product declined by 17 percent from 2015
to 2020, corresponding to an average annual decrease of
3.4 percent. On January 13th, 2023, the Changsha
municipal government issued the Plan for Implementing
Changsha’s Efforts Towards carbon peaking which states
that it aims to reach an 18% drop in CO2 emission per unit
of GDP by 2025 in line with China’s target. Therefore, under
the baseline scenario, carbon emission intensity will drop
by 3.6 percent annually from 2023 to 2025. The detailed
parameters are listed in Table 2.

2.4.7. Sensitivity analysis

A sensitivity analysis is used to assess the stability and
robustness of the model. It quantifies how each factor
affects CO2 emission outcomes. For the sensitivity
analysis, the rates of change are set within their observed
ranges as follows: population size (P) at 0.2 percent, 1.7
percent, and 3.2 percent; per capita GDP (A) at 2.8
percent, 4.8 percent, and 7.8 percent; energy intensity (T)
at —0.5 percent, —2.0 percent, and —3.5 percent;
urbanization rate (U) at 0.25 percent, 0.4 percent, and
0.55 percent; industrial structure (N) at 0.2 percent, 0.5
percent, and 0.8 percent; and carbon emissions intensity
(M) at —4.5 percent, —4.2 percent, and —3.9 percent. The
sensitivity results are shown in Figure 2. The sensitivity
analysis showed that population size (P) is one of the
strongest determinants of emissions; increasing its rate to
3.2 percent raises CO2 emissions by 0.71 percent. By
contrast, the impact of industrial structure (N) is modest;
a 0.8 percent increase in industrial structure (N) raises
emissions by 0.09 percent. Accordingly, scenario design

and ‘H” represent low, medium, and high parameter levels.

must pay attention to population changes, and industrial
structure should be improved at the same time.
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2.4.8. Scenario settings

Scenario analysis is a vital tool for forecasting carbon
emission pathways across multiple scales. It gives likely
future trends by judging key drivers under various
assumptions. By relying on the expanded STIRPAT model,
we did scenario analysis to predict the CO2 emission
trends from 2023 to 2060 of Changsha under different
situations. There were 8 scenarios based on sample data
and relevant studies (Li, Chen, and You 2023b; Li et al.
2023a; Dong et al. 2022): low carbon (S1), baseline (S2),
high carbon (S3), industrial optimization (S4), green
development (S5), clean development (S6), energy saving
(S7), and economic slowdown (S8). The specific parameter
of all scenarios is Table 3.

(1) Low carbon scenario (S1)

Low carbon scenario (S1): all variables have low rates of
change and strong control. Scenario evaluates the natural
trend of emissions taking aggressive policies to limit
growth.

(2) Baseline scenario (S2)

In baseline scenario (S2) all the rates of change for all
variables are set to medium. This situation is in line with
how Changsha is currently developing, following what has
already happened, accounting for the continued impact of
existing policies as is, without making further changes.

(3) High carbon scenario (S3)

Set all variables to their highest growth rates to simulate

carbon emissions under the fastest urbanization in
Changsha, assuming that each index grows at its
maximum.

(4) Industrial optimization scenario (S4)

Industrial structure (N) is set to be a high growth rate, but
all others are middle. Guided by Changsha’s 14th Five-
year plan and related policy, it expands the third industry,
especially modern service industry, education and social
security, and improves traditional industry. These efforts
Table 3. Scenario settings.
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can hold back high energy consuming and emitting
industries.

(5) Green development scenario (S5)

Building upon the baseline scenario, this case sets high
rates for energy intensity (T), industrial structure (N), and
carbon emission intensity (M), whereas the other
variables remain unchanged. According to the
Implementation Plan for Changsha’s carbon peaking work,
it emphasizes the regulation of the energy mix and the
promotion of the application of new energy to change
industrial structure in order to achieve environmental
goals.

(6) Clean development scenario (S6)

Building on the baseline case, this one assigns a high rate
of reduction to carbon emission intensity (M), and holds
all else constant. It is prioritizing eco and environment
safety and is enforcing strict dual constraints on total
energy consumption and intensity of consumption,
providing an all-around and systematic incentive for the
improvement, usage of the high-efficient energy-saving
facilities and tools and strengthening control on the
emissions from industrial production as well as household
activities.

(7) Energy-saving development scenario (S7)

The rate of change for energy intensity (T) is a high value
but the rest are medium. Environmental protection has
been strengthened in Changsha in recent years, its energy
intensity is also showing an improvement trend in the past
five years, and there is still great room for energy
reduction. In this case, we make things even stricter about
following energy rules, we step up our talks with other
places about new tech, and we push ourselves to get
better at using new tech, which makes it go down faster
for us to use less energy, and that causes our emissions to
go down too.

Scenario Population Per Capita Energy Urbanization Industrial E‘:\?;;?:ﬂ
Size (P) GDP (A) Intensity (T) Rate (U) Structure(N) Intensity(M)
Low Carbon Scenario (S1) L L L L L L
Baseline Scenario (S2)
M M M M M M
High Carbon Scenario
H H H H H H
(S3)
Industrial Optimization
. M M M M H M
Scenario (54)
Green Development
) M M H M M H
Scenario (S5)
Clean Development
. M M M M M H
Scenario (S6)
Energy-Saving
Development Scenario M M H M M M
(s7)
Economic Slowdown
M H M H M M

Scenario (S8)
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(8) Economic slowdown scenario (S8)

The rates of change for GDP per capita (A) and the
urbanization rate (U) are set to high values, while the
other variables are set to medium values. This scenario
represents Changsha’s emission trend under a binding
national carbon peaking constraint, where low carbon
development is prioritized over economic growth. The city
moderates economic growth by implementing energy-
saving and carbon-reduction policies, which lower CO:
emissions and bring the emissions peak forward.

2.5. Data source

Data for other indicators, including year-end resident
population and gross domestic product, are drawn from
the Changsha Statistical Yearbook, the Hunan Statistical
Yearbook, and the China Energy Statistical Yearbook for
the period 2011 to 2022. Carbon emission factors by fuel
and standard coal conversion coefficients are obtained
from data released by national authorities and the China
Statistical Yearbook.

3. Results and Discussion

3.1. Analysis of Changsha carbon emission influencing
factors

Using equations (2) to (8), we calculate the effects of the
carbon emissions coefficient, energy structure, energy
intensity, economic development, and population size on
Changsha’s CO, emissions for 2012-2022. The
decomposition results and contribution rates for 2012-
2022 are presented in Figure 3 and Figure 4.

2+ s (YA
v
- [ A

1 1 1 1 1 1 1 1 1 1 1
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 3 Decomposition of the Drivers of CO, Emissions in
Changsha.

The LMDI decomposition indicates that changes in
Changsha’s CO, emissions are shaped by several drivers.
Among the factors that reduce emissions, optimization of
the energy structure and declines in the energy carbon-
emission coefficient make the most consistent negative
contributions. Their reducing effect is especially clear in
2015-2017 and again after 2021, matching coal-to-gas
switching, the rollout of distributed photovoltaics, and
industrial energy-saving upgrades. By contrast, the
energy-intensity effect has generally acted as a positive
driver of emissions; however, in recent years it turned
negative, suggesting that industrial restructuring,
technological progress, and upgrades in traditional heavy

industry have started to cut energy use per unit of output
and thus restrain emissions. Overall, the population-scale
effect remains a promoter of emissions: with continued
economic expansion and rising urbanization, population
growth has exerted upward pressure on CO,. Finally, the
economic-development effect is the core driver of
emissions growth. The economic-development effect is
the core driver of emissions growth. It is directly tied to
Changsha’s expansion model, with average GDP growth
above 8 percent. This pace has accelerated social
development and encouraged industrial clustering, which
in turn raises energy use and carbon emissions.
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Figure 4. Contribution Rates of Drivers to Changsha’s CO,
Emissions

3.2. STIRPAT model
3.2.1. Multicollinearity test

In multiple regression analysis, multicollinearity among
independent variables can distort the estimated
coefficients (Yang et al. 2023). To address this issue, we
used SPSS to test for multicollinearity among the
regressors. Several pairs exhibit correlation coefficients as
high as 0.9. The detailed results are shown in Figure 5. On
this basis, assessed multicollinearity using the variance
inflation factor (VIF); all variables had VIF values greater
than 10 (Table 4), indicating a serious multicollinearity
problem. Therefore, multicollinearity among the
explanatory variables should be eliminated to obtain valid
results.
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Figure 5. Test results of Spearman correlation coefficient for
variables



3.2.2. Analyses of model fitting

To prevent distorted model evaluation, the constructed
model is estimated with ridge regression to mitigate
multicollinearity in the independent variables. As shown
in Figure 6 and Figure 6, when K = 0.03, the regression
Table 4. The results of the multicollinearity test.
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coefficients for the influencing factors become stable. The
detailed results of the ridge regression analysis are
presented in Table 5.

Variable t Value Standard Error Sig Value VIF
c -10.939 0.483 0.000
InP 13.668 0.074 0.000 44.162
InA 10.067 1.131 0.000 347.811
InT -1.713 0.030 0.147 60.211
InU -0.289 0.124 0.784 52.861
InN -1.379 0.084 0.226 19.202
InM 11.698 0.104 0.000 562.013
Table 5. Results of ridge regression analysis for each variable
B SE(B) Beta R? Adj R? F
Constant 0.07 0.207 0.000 0.996 0.993 F=67.01,P=0.003,
Sig F=0.00007
InP 0.224 0.277 0.243
InA 0.177 0.366 0.230
InT 0.152 0.536 0.161
InU 0.123 0.122 0.123
InN 0.119 0.118 0.119
InM 0.194 0.194 0.206
AIDGE TRACE . and the fit is satisfa.ctory. The STIRPAT modgl relat.ing
20.00 SanA Changsha’s CO, emissions to the explanatory variables is:
© K
1500 o'eT In1=0.07+0.224InP+0.177InA+0.152InT (12)
R O:E: +0.123InU+0.119InN+0.194InM
K
10.00 InM
Ok Equation (12) indicates that a 1 percent change in
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Figure 6. Ridge trace of various influencing variables

R-SQUARE VS. K
1.00

80

60 °

RSQ
°

40 °

.00

K

Figure 6. The ridge trace map of the R? value and k value

Based on the ridge regression diagnostics (Table 5), R? and
the adjusted R? are above 0.99, the F value was 67.01, and
the F statistic also passed the significance level test of
0.1%, indicating that the regression equation is significant

population size, per capita GDP, energy intensity,
urbanization rate, industrial structure, and carbon
intensity corresponds to changes in CO2 emissions of
0.224 percent, 0.177 percent, 0.152 percent, 0.123
percent, 0.119 percent, and 0.194 percent, respectively.
Accordingly, the relative contribution ranking is:
population size (P) > carbon intensity (M) > per capita GDP
(A) > energy intensity (T) > urbanization rate (U) >
industrial structure (N).
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Figure 8. Comparison of CO, emission simulation values and
actual values
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To further validate the extended STIRPAT model after
ridge regression, we compare the CO, emission simulated
values with the actual values. As shown in Figure 8, the
average annual error between the simulated values and
the actual values for Changsha is 6 percent, indicating a
satisfactory goodness of fit. The model is therefore
suitable for projecting future CO, emissions in Changsha.

3.2.3. Carbon emission prediction analysis

Based on the extended STIRPAT model, this study
forecasts Changsha’s CO, emission trends for 2023-2060.
The results are shown in Figure 9 and

Figure 10.
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Figure 9. Eight scenarios of CO; Emission trends in Changsha
from 2023 to 2060

Figure 10. Predictions of carbon emissions and carbon emissions
intensity in Changsha from 2023 to 2060 under 8 scenarios

Based on various scenarios of the change of Changsha
city’s CO2 emission from 2023 to 2060, and the actual
situation and policy orientation of the development of the
city, the main conclusions are as follows. The timing of
Changsha’s carbon peak varies significantly across
different development paths, ranging from as early as
2030 (S1) to as late as 2050 (S3), as summarized in Table
6. The maximum value of CO2 emissions is 20.37-21.91
Mt, as can be seen from Table 6, which further
demonstrates that the regulatory impact can be seen in
policy, a large amount of the use of new technology is the
result of emission. Implementation point of view, among
all, S1 (low-carbon) becomes the key approach to
achieving carbon peak in 2030. And it also stresses on
optimizing the energy mix and the more that we can have
renewables, which is very aligned to what Changsha is
doing in terms of green industrial transition, their goal is
to grow more off photovoltaics, grow more energy
storage. On the contrary, the delayed peaks shown in the
high carbon and economic slowdown scenarios are due to
the bad impacts of still depending on traditional energy
intensive industries, slow economic speed, and slow
adoption of green technology, all of which cause the
peaking process to be postponed. In short, the above
forecast can provide a certain amount of evidence for the
differentiated policies of Changsha. In terms of keeping
economic growth and clean energy substitution and
improving energy efficiency to achieve an earlier and
lower peak of CO2 emissions.

Table 6. Peak year and peak CO, emissions in Changsha under different scenario Combinations

S1 S2 S3 S5 S6 S7 S8
Timing of peak 2030 2040 2050 2040 2040 2040 2040 2040
CO; emissions
Peak CO, (Mt) 20.37 20.95 21.91 20.99 21.19 20.95 20.67 21.37

4. Conclusions and Policy Implications

4.1. Conclusions

(1) Employ the LMDI method to discover what determines
the CO2 emissions of Changsha. Use an extended STIRPAT
model, link emissions to some driving factors, and then
calculate what the projected emission levels and their
peak years will be in different situations.

(2) And the LMDI decomposition indicates that the energy
structure (ES) is the main restriction for the CO2 emission

growth, and economic development (A) is the main
reason for the emission increase in Changsha.

(3) Among the 8 scenarios, the time when the carbon
peak occurs differs, and the carbon peaks in 2040 in the
baseline (S2), industrial optimization (S4), green
development (S5), energy-saving development (S7), and
clean development (S6) scenarios; the high-carbon
scenario (S3) peaks in 2050. Only the low carbon scenario
S1 achieves its peak by 2030, satisfying the 2030 peaking
goal.
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(4) Comparison of S1 shows that the low-carbon scenario
represents the optimal low-carbon path for Changsha. It
can ensure that the city’s economy can continue to
develop, and at the same time achieve a relatively low
peak in CO2 emissions.

(5) When we built this carbon emission model, there is a
sort of subjectivity that will prevent us from taking all of
the factors that affect the emissions. Future studies will
try more scientific and thorough way and add more
driving factors to improve the accuracy and authenticity of
the model.

4.2. Policy implications

(1) A low-growth path centered on structural optimization
and efficiency gains

Projection results indicate that low-carbon deployment is
the main lever for realizing an earlier and lower peak in
the low-carbon scenario. Well if we had an easier mix of
energies, if we could just use the energy that we have,
better if you will, then it would be like kind of a big deal.
So, the policy of Changsha is to go from expanding the
amount of increase to improving the carbon efficiency of
each dollar of GDP. In real life, energy-intensive industries
must go through technical renovations to transition from
crude production with high value to refined production
with high value, and should not increase in quantity. Given
the deceleration of urbanization, effort should focus on
making the best out of the existing urban space and
upgrading the efficiency of the energy system. That is to
say, directing a limited amount of public resources toward
structural upgrades and technological innovation, so as to
steer the economy and society towards higher quality,
lower consumption endogenous growth even within a
slower growth context.

(2) Deepen industrial structure optimization and develop
green industries

Changsha gets an important chance to make things ready
for deep decarbonization during the slower-growth part
of the low-carbon situation. The city has to make up these
deficiencies in infrastructure and management during this
period. Important priorities are optimizing industrial
structure for high-quality, sustainable progress, releasing
more energy-saving possibilities, and making energy
efficiency better. As for carbon-intensive projects,
advanced efficiency techniques must be adopted to make
thorough modernization for traditional manufacturing. At
the same time, improve fiscal incentives and support
green industry policies to promote the use of low carbon
and clean production technologies. Development of green
industrial parks, cultivation of clustering effects, it would
be conducive to form robust low-carbon clusters.

(3) Improve basics and do long-term planning during low-
growth period

According to the scenario projection, Changsha’s carbon
peak time and quantity differ greatly among different
development paths. Low-carbon scenario (S1) emissions
hit a peak sooner and lower. In contrast to this is the high
carbon scenario S3, and the other pathways all delay the
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peak and have more emissions. In this way, Changsha
should apply different emission reduction stage to each
scenario. In a low carbon world, we would want to push
energy transition. During times of economic slowdown,
policies should focus more on promoting green
technologies and innovations so that there would be
lesser effect on CO2 emissions due to lesser growth.

To create a changing adjustment mechanism to make the
reaching-peak process safe and controlling

Changsha must build a regulatory system if it wants to
make the carbon peak work, we cannot ignore energy
structure or number of people. Specific measure is to
implement frequent monitoring of the rate of reduction of
the structure of energy-saving in key areas and the rate of
increase in carbon emissions due to population; establish
specific warning threshold values for these indicators
according to the results of the model’s sensitivity analysis;
and immediately trigger the corresponding tiered
response measures whenever the threshold values are
reached. It forms a loop of management: “watching-
worrying-handling-updating”. It points the limited policy
resources to the most important risk factors with
precision, so as to protect the peak emission path in a
systematic way.

5. Discussion

This research will be using the LMDI method and the
STIRPAT model to do a projection of Changsha’s future
CO2 emissions under several different scenarios and it
would give out the peak year and the amount of emission
that year is at. Prediction will become the reference
points of regulating Changsha’s future carbon emissions in
the future. Among the 8 scenarios, only the low-carbon
scenario (S1) can allow Changsha to achieve carbon
peaking in 2030. The way we go, requires regulation on
how much we burn for energy, structural modifications on
the structures that use energy, very slow rate of GDP
(growing economy). This goes hand-in-hand with what the
city has going on presently with their sustainable efforts in
greener industries such as photovoltaics and storage. It
seems as if the 2030 carbon peaking is likely to be
achievable if the current policy can be preserved and
strengthened. The high carbon scenario (S3) is quite
different as there is a notable delay in reaching its peak
because continuous consumption of traditional energy
consumes results in more emission and postpones the
decarbonization process.

Second, the use of many scenarios here has very good
methodological worth and practical policy references.
Compared with the low-carbon scenario (S1) and the high-
carbon scenario (S3), as well as the economic slowdown
scenario (S8), the analysis finds the best way out as well as
imagining the risks caused by policy failure or unexpected
disaster. It will promote some caution from policymakers,
making them more sensitive to risk in that sense. For
example, the delayed carbon peak in economic slowdown
scenario (S8), which shows that we cannot sacrifice
sustainable economic growth for the low carbon
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transition. A solid economy gives the important base for
progress in energy tech and infra renewal.

There are some restrictions to this study because of data
accessibility, the picked drivers might not include all the
complex and different causes affecting CO2 emissions.
With more comprehensive and correct data, it is expected
that the research in the future will be more extensive and
rigorous. And Changsha is treated as an isolated system in
this study, which does not take the interaction with other
areas into account. Future work can improve the focus of
a single city to the level of the urban agglomeration in
order to more accurately reflect the regional CO:
emissions. Although with limitations, the key findings and
policy suggestions of this study are still reference
materials. And it recognizes those limitations form the
basis for where | should put my energy for research in the
future.
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1 Appendix

2 Table 1. Changes in the indicators during the study period

Year Populat:)c::ss;zne) (P) (10¢ d eveloprE:::t?/-r:‘)I(CIO" CNY) Energy mtzrr\\lsvl;cz) (M(e*(10° Urbanization rate (U) (%) Industrial structure (N)(%) Carbon eml(s:/:;m intensity
2011 740.36 7.39697 0.30385 68.62 46.7 0.39381
2012 766.18 8.08941 0.28744 68.99 49.7 0.35473
2013 787.46 8.76523 0.27619 70.55 52.1 0.32735
2014 813.11 9.26649 0.27834 72.45 52.7 0.29064
2015 828.27 10.26549 0.25622 75.44 54.2 0.25361
2016 859.03 10.67064 0.26361 77.56 55.6 0.23492
2017 902.94 11.13053 0.22499 79.86 57.2 0.21418
2018 928 11.21297 0.22653 81.93 57.6 0.21135
2019 963.56 11.98963 0.19818 82.46 57.7 0.19002
2020 1006.08 12.06914 0.18436 82.6 57.5 0.18218
2021 1023.93 12.96056 0.17235 83.16 57.2 0.17225
2022 1042.06 13.40241 0.15488 83.27 56.8 0.15687
3 Table 2. Sensitivity of carbon emission changes to the rate of various factors
The change Rate of Per capita Rate of Energy Rate of Rate of Rate of Industry Rate of The change Rate of
rate of change in GDP change change in intensity change in change of change in structure change in rate of carbon change in
population carbon rate (A) /% carbon change rate carbon urbanization carbon changing carbon emission carbon
P) /% emissions/% emissions/% (T)/% emissions/% rate(U)/% emissions/% rate(N)/% emissions/% intensity(M)/%  emissions/%
0.2 0.04477 1.8 0.31627 -0.5 -0.07616 0.25 0.03072 0.2 0.02378 -4.5 -0.88927
1.7 0.37831 4.8 0.83329 -2 -0.30661 0.4 0.04911 0.5 0.05937 -4.2 -0.82895
3.2 0.70807 7.8 1.33828 -3.5 -0.54007 0.55 0.06749 0.8 0.09487 -3.9 -0.76878
4 Table 3. Decomposition of the Drivers of CO, Emissions in Changsha
Year AICI AIES AIT AIA AIP
2012 1.24568 -0.30266 0.48789 0.18691 -1.51281
2013 0.27089 -0.31474 0.63286 0.21608 -0.58964
2014 -0.88117 -0.0701 -0.50342 -0.29016 2.02806
2015 -0.60527 0.36198 -0.44744 -0.08073 0.83889
2016 -0.03011 -0.01099 -0.01494 -0.01408 0.07064
2017 -0.00292 0.01694 -0.00451 -0.00533 -0.00414
2018 0.98595 0.04121 0.04476 0.16606 -1.10789
2019 -0.02947 0.06872 -0.03443 -0.01933 0.01544

2020 0.34078 -0.15811 0.01445 0.09444 -0.27485
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2021 -1.32174 -0.64249 0.67973 0.16776 1.42955
2022 -1.25781 1.31972 -0.41395 -0.21672 1.09254
Table 4. Contribution Rates of Drivers to Changsha’s CO; Emissions
Year CRc| CREs CRT CRA CRp
2012 1186.26742 -288.229 464.62373 177.99108 -1440.65324
2013 125.72613 -146.07515 293.72374 100.28682 -273.66154
2014 -311.13817 -24.75216 -177.75512 -102.45497 716.10042
2015 -897.57067 536.78936 -663.51974 -119.7176 1244.01864
2016 -5674.73439 -2070.52581 -2816.58006 -2653.31278 13315.15304
2017 -7156.02484 41571.99577 -11073.93977 -13083.51117 -10158.51999
2018 757.88549 31.67584 34.40833 127.64935 -851.61902
2019 -3185.04794 7427.94807 -3721.60531 -2089.59506 1668.30024
2020 2039.62261 -946.32124 86.50834 565.22183 -1645.03154
2021 -422.53119 -205.38849 217.29451 53.6278 456.99737
2022 -240.13759 251.95761 -79.0294 -41.37573 208.5851
Table 5. Spearman examines the original data
Year Inl InP InA InT InU InN InM
2011 3.07114 6.60714 11.23622 -1.19123 -0.37659 -0.76096 -0.9319
2012 3.0904 6.64142 11.3179 -1.24674 -0.37121 -0.69877 -1.0364
2013 3.11772 6.66881 11.39474 -1.28665 -0.34885 -0.65128 -1.11672
2014 3.08643 6.70087 11.45263 -1.2789 -0.32227 -0.64026 -1.23567
2015 3.071 6.71934 11.54832 -1.36173 -0.28183 -0.61337 -1.37196
2016 3.06963 6.7558 11.59591 -1.33328 -0.25412 -0.5873 -1.4485
2017 3.06924 6.80566 11.64464 -1.49168 -0.2249 -0.55893 -1.54093
2018 3.09069 6.83303 11.641 -1.48489 -0.1993 -0.55112 -1.55424
2019 3.08889 6.87063 11.71301 -1.61856 -0.19286 -0.55037 -1.66062
2020 3.09653 6.91382 11.72235 -1.69085 -0.19116 -0.55369 -1.70277
2021 3.12932 6.9314 11.781 -1.75821 -0.1844 -0.55822 -1.75882
2022 3.08691 6.94895 11.81451 -1.86509 -0.18308 -0.56658 -1.85231

Table 6. Comparison of CO, emission simulation values and actual values

Year Simulation value Actual value
2011 21.56646 20.90692
2012 21.98585 20.93799
2013 22.59471 21.07437
2014 21.89876 21.07665
2015 21.56345 20.87151
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2016 21.53384 21.13568

2017 21.52564 20.81589

2018 21.99226 20.98343

2019 21.95272 20.59049

2020 22.12108 20.42587

2021 22.85854 20.29356

2022 21.90917 19.78551

Table 7. Eight scenarios of CO, Emission trends in Changsha from 2023 to 2060

Year S1 S2 S3 sS4 S5 S6 S7 S8
2023 19.89544 19.93074 19.96552 19.93309 19.93826 19.91869 19.92761 19.96486
2024 20.00597 20.07703 20.14716 20.08177 20.09219 20.05276 20.07073 20.14584
2025 20.11712 20.22439 20.33046 20.23156 20.24731 20.18774 20.21488 20.32846
2026 20.16817 20.30398 20.45935 20.31358 20.34327 20.26187 20.28874 20.43923
2027 20.21935 20.38388 20.58906 20.39592 20.43969 20.33627 20.36286 20.55061
2028 20.27066 20.46409 20.7196 20.4786 20.53656 20.41094 20.43726 20.66259
2029 20.32209 20.54462 20.85096 20.56162 20.63389 20.48588 20.51193 20.77519
2030 20.37366 20.62546 20.98315 20.64497 20.73168 20.5611 20.58687 20.8884
2031 20.36796 20.65354 21.05791 20.67553 20.77229 20.59516 20.59047 20.93105
2032 20.36227 20.7044 21.13293 20.72889 20.83589 20.65198 20.61674 20.99687
2033 20.35657 20.75538 21.20821 20.78239 20.89967 20.70895 20.64304 21.06289
2034 20.35088 20.78363 21.28377 20.81314 20.94061 20.74325 20.64666 21.10591
2035 20.34519 20.81193 21.3596 20.84395 20.98163 20.77761 20.65028 21.149
2036 20.3395 20.84027 21.43569 20.8748 21.02273 20.81203 20.65389 21.19219
2037 20.33381 20.86864 21.51206 20.9057 21.06392 20.8465 20.65751 21.23547
2038 20.32812 20.89706 21.5887 20.93664 21.10518 20.88104 20.66113 21.27883
2039 20.31011 20.92551 21.66561 20.96762 21.14652 20.91562 20.66475 21.32228
2040 20.29212 20.954 21.74279 20.99866 21.18795 20.95027 20.66838 21.36582
2041 20.22887 20.9285 21.75944 20.97559 21.17012 20.94251 20.59987 21.3364
2042 20.16582 20.90303 21.7761 20.95254 21.15232 20.93476 20.53158 21.30702
2043 20.10297 20.87759 21.79277 20.92952 21.13452 20.927 20.46353 21.27768
2044 20.04031 20.85218 21.80946 20.90653 21.11675 20.91925 20.39569 21.24838
2045 19.97785 20.8268 21.82616 20.88356 21.09898 20.9115 20.32809 21.21912
2046 19.91558 20.80146 21.84287 20.86061 21.08124 20.90376 20.26071 21.18991
2047 19.85351 20.77614 21.85959 20.83769 21.0635 20.89602 20.19355 21.16073
2048 19.79163 20.75086 21.87633 20.8148 21.04579 20.88828 20.12661 21.13159
2049 19.72994 20.7256 21.89308 20.79193 21.02808 20.88054 20.0599 21.10249
2050 19.66844 20.70038 21.90984 20.76909 21.0104 20.87281 19.9934 21.07343
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2051 19.56235 20.6217 21.8649 20.69261 20.93348 20.82253 19.85712 20.97211
2052 19.45684 20.54333 21.82006 20.61641 20.85684 20.77748 19.7266 20.87128
2053 19.35189 20.46525 21.77531 20.54049 20.78049 20.72743 19.59213 20.77093
2054 19.24751 20.38747 21.73065 20.46485 20.70441 20.67751 19.45858 20.67106
2055 19.14369 20.30999 21.68608 20.38949 20.62861 20.6277 19.32594 20.57167
2056 19.03937 20.2328 21.6416 20.3144 20.55309 20.57802 19.1942 20.47276
2057 18.93668 20.1559 21.59721 20.2396 20.47785 20.52845 19.06337 20.37433
2058 18.83454 20.0793 21.55292 20.16507 20.40288 20.479 18.93342 20.27637
2059 18.73294 20.00298 21.50871 20.09081 20.32819 20.42968 18.80436 20.17888
2060 18.6319 19.92696 21.4646 20.01682 20.25377 20.38047 18.67618 20.08186




	c598060cf6f2b899fa6f60bc71add5d5fdc7c5a56c0fa5765a8976400d876cee.pdf

