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Abstract 

As the central city of Hunan Province, Changsha is a key to 
grasping how carbon emission growth is playing out and 
getting the peak carbon emission event to happen faster 
than initially planned. In this study, it adopts the data 
from 2011 to 2022 to build the LMDI-STIRPAT model and 
forecast the carbon emission trend of Changsha. Through 
scenario simulations, the research identifies the primary 
factors influencing carbon emissions, projects future 
emission trajectories, and determines the optimal 
pathways for emission reduction. The main results: (1) 
The energy structure restrains the growth of carbon 
emission, while the population size is still a big pusher 
that helps increase the carbon emission. (2) Out of eight 
forecasting situations, only situation S1 arrives at the 
carbon peak goal by 2030, which achieves 20.37 Mt, 
whereas the others vary in their delay. (3) Changsha 
reaches its carbon peak according to the plan in the low-
carbon situation S1, making it the most effective option 
for emission cuts. To achieve this, the paper gives 
recommendations such as modifying energy consumption 

structure, optimizing industrial layout, and reinforcing 
related the policy framework supporting cities low carbon 
transition and explained in conclusion. 

Keywords: Energy intensity; sensitivity analysis; carbon 
emission forecasting; scenario analysis 

1. Introduction 

With the rapid development of the global economy, 
carbon dioxide emissions have been rapidly increasing, 
and the degree of global warming has also been 
increasing. The occurrence frequency of natural disasters 
(Babu et al. 2025) all over the world has been rapidly 
rising, and the occurrence of extreme days is also 
becoming more and more frequent (Jasmine et al. 2025). 
The melting of sea ice, increase of sea level, floods and 
storm and other disasters have become more serious by 
the effects of rising sea level, it is a big danger for 
ecosystem, climate (Kumar et al. 2025)and sustainable 
development of humans. As per the IPCC, the 
temperature of the entire world has been increasing since 
the last 100 years due to the greenhouse gases produced 
from the burning of fossil fuel and the industries. So, 
reducing carbon emissions has become the main way to 
stop the earth getting too warm, and all the countries 
need to work together. During the Reform and Opening-
up period, China’s economic growth is based on the huge 
amount of energy consumption which leads to a large 
continuous emission of carbon dioxide. In response to the 
increasing climate risk, China has made the commitment 
at 75th session of UN General Assembly to achieve peak 
carbon before 2030 and carbon neutral before 2060. 

Dual carbon goal, Carbon Peak and Carbon Neutrality, 
have turned into a central theme for policies and 
academic works in China. Now we are trying to find low-
carbon development models. Government supported low 
carbon city pilot project is one of the earliest policy 
instruments to promote these goals. It attempts to 
reconcile ecological sustainability with economic growth. 
In 2010, 2012 and 2017, 81 cities became national low-
carbon pilot cities, including Changsha in the third batch. 
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The Changsha government wants to promote high quality 
development and encourage the use of energy saving and 
emission reduction technology, so they have made 
making the economy less polluting a key goal. 

In terms of factors influencing carbon emissions, from the 
research literature we can see that most of the papers will 
use IDA to analyze which components affect carbon 
dioxide emissions, like urban population, economy scale, 
energy intensity, energy consumption. Also, it can be 
investigated well on the influence that every factor has 
over carbon emission (Liu et al. 2021; Fan et al. 2017). As 
for different IDA approaches, LMDI is most acknowledged 
as a good approach to adopt for resource and 
environment research because it has the advantage of 
being a zero-residual property, additivity, and ease of 
result interpretation (Dong et al. 2019; Long et al. 2019; 
Ding et al. 2020; Yang et al. 2020); (Ang et al. 2001). 
Furthermore, it handles zeros in the data well (Ang 2005; 
Ang et al. 2007). Existing studies using the LMDI method 
decompose emissions by carbon emission coefficients, 
energy structure, energy intensity, industrial structure, 
economic development, and population size (Chong et al. 
2019; Mohmmed et al. 2019; Zheng et al. 2019). Take 
Shanghai as an example, it is shown that an increase in 
per capita GDP and population size is the main cause of 
the increase in carbon emissions, and a decrease in 
energy intensity has greatly reduced the amount of 
emissions. (Gu et al. 2019; Li et al. 2023b) carried out an 
empirical decomposition of CO2 emissions in Tianjin with 
the LMDI method, and found that improvement of energy 
efficiency and energy structure optimization are very 
important to reduce carbon emissions. 

Forecasting carbon emissions generally uses the system 
dynamics models (Feng et al. 2013; Zhao et al. 2024; Li et 
al. 2024), neural network models (Sun et al. 2021), long-
term energy alternatives planning system (LEAP) models 
(Nieves et al. 2019; Maduekwe et al. 2020), STIRPAT 
models (Rokhmawati et al. 2024; Xiao et al. 2023). (Luo et 
al. 2023) used system dynamic models to forecast the 
carbon emission peak and post-peak trends in the 
Guangdong - Hong Kong - Macao Greater Bay Area and its 
surrounding cities. (Ren et al. 2021) developed an 
improved fast learning network prediction algorithm to 
forecast the carbon emissions of Guangdong from 2020 to 
2060. (Cai et al. 2023) applied the LEAP model to do 4 
scenario analysis about the CO2 emissions of Bengbu, 
Anhui Province in 2030, also simulating the influence of 
various emission reduction policies. (Fang et al. 2019) 
used STIRPAT model combined with scenario analysis to 
check if the carbon emissions in 30 Chinese provinces 
would peak in 2030. Among them, among all these 
methods dynamics system, has a strong advantage in a 
large number of variables, multiple variables situation, 
more feedback, nonlinear. However this heavily 
dependents on the modeler’s skill, so it would be 
subjective. Neural network models have better fit on 
complex data patterns, more accurately, but needs a lot 
of data set. The LEAP model has the flexibility and 
transparency of scenario simulation and policy evaluation. 

But, it relies heavily on expert input, which may introduce 
bias. On the contrary, STIRPAT model is a kind of statistic 
model, which can take into account the factors that reflect 
the real situation and policy implementation. Moreover, 
we can do the scenario analysis for different emission 
trackways by changing these elements, which is also 
flexible. 

In summary, this paper has the following major 
contributions: The first is that most of the studies on 
carbon emissions driving forces and forecasts at present 
are focused on the national and provincial levels, but the 
studies at the city level are still few. Second, this is a 
combined approach using LMDI method + extended 
STIRPAT model. This combined model allows us to 
conduct comprehensive and systematic analysis on the 
factors driving carbon emissions at city level. It also 
forecasts when Changsha will reach its carbon peak and 
looks at what changes might happen in reducing carbon. 
With Changsha in focus this research looks at, projects its 
main drivers of carbon emissions and offers advice to help 
the city develop. 

2. Methods and Data 

2.1. Calculation of carbon emissions 

In terms of prior research, energy consumption is usually 
the largest part of a nations greenhouse gas inventory and 
accounts for more than 90% of CO2 emissions (Wen et al. 
2020). Therefore, many scholars concentrate their 
research on calculating the carbon emissions from energy 
use. For this paper, we’re going to be using the emission 
factor to find the CO2 emission for Changsha. Using 
relevant literature (Angin et al. 2022) and city-level data 
on the consumption of major energy, as well as using the 
2006 IPCC guidelines for national greenhouse gas 
inventories, we quantify the CO2 emissions from the major 
energy source of the city. Calculate it is: 

n

i i i

i=1

I= EC ×EE ×EF  

(1) 

Where, I is the total amount of carbon emission of 
Changsha; ECi is the consumption of the i-th kind of 
energy; EEi is the carbon emission factor for the i-th kind 
of energy; EFi is the standard coal conversion factor for 
the i-th kind of energy. 

2.2. LMDI model 

This article uses the LMDI model to decompose and 
analyze the carbon emissions of Changsha, and to 
decompose the carbon emissions of Changsha associated 
with various factors. Considering the city’s context, we 
take the following decomposition factors: the carbon 
emission coefficient of energy, the structure of energy, 
the intensity of energy, economic development, and the 
scale of the population, as expressed in Equation (2): 

n n

i i
i

ii=1 i=1

I E E G
I= × × × ×P= CI×ES ×T×A×P

E E G P   

(2) 
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Where I denotes total carbon dioxide emissions; Ii denotes 
the carbon dioxide emissions from the i-th energy source; 
Ei denotes the consumption of the i-th energy source; E 
denotes the total energy consumption; G denotes the 
gross regional product; P denotes the population size; CI = 
Ii/Ei denotes the carbon emission coefficient of energy; ESi 
= Ei/E denotes the energy structure; T = E/G denotes 
energy intensity; A = G/P denotes the level of economic 
development. 

According to the LMDI model, the change in Changsha’s 
CO2 emissions from period 0 (base period) to period t 

(target period) is 
t 0ΔI=I I− . It is then possible to 

calculate the effect of 5 driving factors on Changsha’s CO2 
emissions, as shown in Eqs (3)–(8). 

n
t 0 t

i

i=1

n
0 0 0 0 0

i=1

ΔI=I = CI × ×T ×A ×

CI × ×T ×A ×

t t t t
i i i i

i i i i i

I ES P

ES P

−

−




 

(3) 

CI ES T A PΔI Δ Δ Δ ΔI I I I= + + + +  
(4) 

n t 0 t
i i i

CI t 0 0
i i ii=1

I -I CI
ΔI = ×ln

lnI -lnI CI
  

(5) 

n t 0 t
i i i

T t 0 0
i i ii=1

I -I T
ΔI = ×ln

lnI -lnI T
  

(6) 

n t 0 t
i i i

A t 0 0
i i ii=1

I -I A
ΔI = ×ln

lnI -lnI A
  

(7) 

n t 0 t
i i i

P t 0 0
i i ii=1

I -I P
ΔI = ×ln

lnI -lnI P
  

(8) 

Where t denotes the last year of the reporting period, and 

0 represents the beginning year of the reporting period, I 
denotes the change in CO₂ in Changsha City from period 0 

(base period) to period t, ICI denotes energy carbon 

emission coefficient effect, IES denotes energy structure 

effect, IT denotes energy intensity effect, IA denotes the 

effect of economic development level, and IP denotes 
the population size effect. 

To quantify the contribution of each factor from the base 
period to period t, we extend the carbon emission effect 
formulation. The contribution rate of each factor to the 
total CO₂ emissions is defined as: 

C CI A

CI ES T A P

ΔI ΔI ΔI ΔI ΔI
CR= = + + + +

ΔI ΔI ΔI ΔI ΔI

ΔI
=CR +CR +CR +CR +CR

ΔI

ES T

P
 

(9) 

Where CR stands for the contribution rate of each factor, 

IC stands for the amount of CO2 emission increased by 

factor C, I stands for the total amount of increase in CO2 
emission, CRCI represents the contribution rate of energy 
carbon emission coefficients, CRES represents the 
contribution rate of energy structure, and CRT represents 
the contribution rate of energy intensity; CRA represents 
the contribution rate of economic development, and CRP 
represents the contribution rate of population size. 

2.3. STIRPAT model 

IPAT identity (Ehrlich et al. 1971) has been used 
extensively since the 1970s to analyze environmental 
impacts, which assumes that all drivers have equal 
proportional impacts. To solve the problems discussed 
before, (Dietz et al. 1997) introduced the STIRPAT model 
in which different effects of those factors could be 
provided. The basic form of the IPAT model is as follows: 

b c dI aP A T e=  (10) 

where I denotes environmental impact, P denotes 
population size, A denotes GDP per capita, T denotes 
technology level, a denotes model coefficient, b, c, and d 
denote elasticity exponents of the corresponding 
variables, and e denotes random error term. 

 

Table 1. Explanation of the variables in the STIRPAT model 

Symbol Variables Description Units 

I CO2 emissions Total carbon dioxide emissions metric tonnes (Mt) 

P Population size Total Resident Population at Year-End 104 persons 

A GDP per capita 
The ratio of regional GDP to the total 

population at the end of the year 
CNY 10, 000 Yuan /Person 

T Energy intensity Energy consumption per unit of GDP 
Tons of standard coal / CNY 10, 

000 Yuan 

U Urbanization rate 
Ratio of urban residents to the total 

population at the end of the year 
% 

N Industrial Structure 
Ratio of Tertiary Industry Output Value to 

Regional Gross Domestic Product 
% 

M Carbon emissions intensity 
The ratio of total carbon emissions to 

regional gross domestic product 
— 

 

On the foundation of IPAT identity, the STIRPAT model is 
chosen here as an adaptable stochastic framework to 

evaluate environmental impacts. Based on the specific 
circumstances of Changsha City and the findings of prior 
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research (Kong et al. 2022; Zeng et al. 2022), we added up 
three traditional P, A, T variables to three influential 
drivers of CO2 emissions, they were population, economic 
growth rate, energy intensity, the proportion of 
urbanization, the structure of industry, and carbon 
intensity. Model is set up like this: 

lnI = lna + blnP + clnA + dlnT +
 

flnU + glnN + hlnM + lne  
(11) 

Where I is Changsha’s CO2 emissions, P is the total 
number of people, A is GDP per capita, T is energy 
intensity, U is urbanization rate, N is industrial structure, 
and M is carbon emission intensity. The parameter a is the 
model coefficient, while b, c, d, f, g, and h are the 
elasticity coefficients corresponding to each variable. The 
term e represents the random error. Detailed definitions 
of these variables and their changes over the study period 
are presented in Table 1 and illustrated in Figure 1. 

 

Figure 1. Changes in the indicators during the study period 

2.4. Scenario analysis 

Using scenario analysis, we project Changsha’s future CO₂ 
emissions. To examine whether and when the city will 
reach its peak emissions, scenarios and forecasts were 

developed for the period of 2023-2060. The growth rates 

of population size, economic development, energy 
intensity, industrial structure, urbanization, and carbon 
emissions intensity were determined based on historical 
trajectories, policy plans, and related studies. Accordingly, 
each variable was assigned high, medium, and low growth 
paths. The parameter settings are listed in Table 2. 

2.4.1. Population size 

According to the Changsha Statistical Yearbook, the 
resident population at the end of 2022 was 10.4206 
million, and the natural population growth rate is 0.59 
percent higher than in the previous year. Based on the 
2012-2022 data, the average natural population growth 
rate is 4.79 percent. In recent years, this rate has slowed 
noticeably. From 2018 to 2022, Changsha’s average 
natural population growth rate declined to 2.7 percent 
and exhibits a slowing, stable pattern. Accordingly, under 
the baseline scenario (S2), the population growth rate for 
2023 to 2025 is set at 2.7 percent. The detailed 
parameters are listed in Table 2. 

2.4.2. Per capita GDP 

The growth rate of per capita GDP aligns with the overall 
economic growth rate. According to Changsha’s 
Fourteenth Five-Year Plan and the 2035 long-term 
objectives (the Plan), the city targets an average annual 
GDP growth rate of 7.8 percent during 2021-2025. Based 
on the plan and recent GRP data, the computed five-year 
average GDP growth rate for Changsha is 6.8 percent. 
Accordingly, we set the growth path for 2023-2060 as 
follows: Under the baseline scenario (S2), per capita GDP 
grows at 6.8 percent during 2023-2025. As the economy 
transitions to a new normal, the growth rate is expected 
to decline gradually. The detailed parameters are listed in 
Table 2. 

2.4.3. Energy intensity 

Drawing on the GDP growth plan set out in the Thirteenth 
Five-Year Plan for National Economic and Social 
Development, the Implementation Plan for Carbon 
Peaking in Changsha, and the Outline of the Vision Goals 
for 2035, from 2015 to 2020, energy intensity falls by 20 
percent in Changsha, averaging about 4 percent per year. 
By 2025, it will be 15% less than the 2020 level which 
would amount to around a 3% average annual decrease. 
So for our baseline scenario (S2) we go 3% annually off 
from 2023-2025. In parallel, broader development trends 
and local conditions are considered. The detailed 
parameters are listed in Table 2. 

2.4.4. Urbanization rate 

The urbanization rate (U) is a key indicator of social 
development. In recent years, Changsha has advanced 
integrated urban and rural development, and the rate of 
urbanization has risen steadily. Given the high starting 
level, its growth converges to a stable pace. This rate 
reached 83.27 percent in 2022. To limit the impact of 
interannual variation, we used the Five-Year average 
growth rate of 0.5 percent for 2018-2022 as the 
representative value. Accordingly, under the baseline 
scenario (S2), the urbanization rate is set at 0.5 percent 
per year for 2023-2025. The detailed parameters are 
listed in Table 2. 

2.4.5. Industrial structure 

Changsha’s industrial structure (N) shifts from the 
secondary to the tertiary sector, with the share of services 
exceeding 50 percent in 2013. In line with the moderation 
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of economic growth, the pace of structural upgrading has 
stabilized in recent years. Drawing on statistics for 2013 to 
2022, the tertiary sector recorded an average annual 
growth rate of 0.71 percent. Accordingly, under the 

baseline scenario (S2), the annual pace of industrial 
structure (N) is set at 0.7 percent for 2023 to 2025. The 
detailed parameters are listed in Table 2. 

 

Table 2. Parameter settings in low (L), medium (M), and high (H) speed development conditions 

  2023-2025 2026-2030 2031-2040 2041-2050 2051-2060 

Population Size 

(P) 

L 2.2 1.7 1.2 0.7 0.2 

M 2.7 2.2 1.7 1.2 0.7 

H 3.2 2.7 2.2 1.7 1.2 

Per Capita GDP 

(A) 

L 6.8 5.8 4.8 3.8 2.8 

M 7.8 6.8 5.8 4.8 3.8 

H 8.8 7.8 6.8 5.8 4.8 

Energy Intensity 

(T) 

L -2.5 -2 -1.5 -1 -0.5 

M -3 -2.5 -2 -1.5 -1 

H -3.5 -3 -2.5 -2 -1.5 

Urbanization 

Rate (U) 

L 0.45 0.4 0.35 0.3 0.25 

M 0.5 0.45 0.4 0.35 0.3 

H 0.55 0.5 0.45 0.4 0.45 

Industrial 

Structure (N) 

L 0.6 0.5 0.4 0.3 0.2 

M 0.7 0.6 0.5 0.4 0.3 

H 0.8 0.7 0.6 0.5 0.4 

Carbon Emission 

Intensity (M) 

L -3.3 -3.6 -3.9 -4.2 -4.5 

M -3.6 -3.9 -4.2 -4.5 -4.8 

H -3.9 -4.2 -4.5 -4.8 -5.1 

Note: “L”, “M,” and “H” represent low, medium, and high parameter levels. 

2.4.6.  Carbon emission intensity 

Drawing on the Thirteenth Five-Year Plan for National 
Economic and Social Development, CO2 emissions per unit 
of gross regional product declined by 17 percent from 2015 
to 2020, corresponding to an average annual decrease of 
3.4 percent. On January 13th, 2023, the Changsha 
municipal government issued the Plan for Implementing 
Changsha’s Efforts Towards carbon peaking which states 
that it aims to reach an 18% drop in CO2 emission per unit 
of GDP by 2025 in line with China’s target. Therefore, under 
the baseline scenario, carbon emission intensity will drop 
by 3.6 percent annually from 2023 to 2025. The detailed 
parameters are listed in Table 2. 

2.4.7. Sensitivity analysis 

A sensitivity analysis is used to assess the stability and 
robustness of the model. It quantifies how each factor 
affects CO2 emission outcomes. For the sensitivity 
analysis, the rates of change are set within their observed 
ranges as follows: population size (P) at 0.2 percent, 1.7 
percent, and 3.2 percent; per capita GDP (A) at 2.8 
percent, 4.8 percent, and 7.8 percent; energy intensity (T) 

at − 0.5 percent, − 2.0 percent, and − 3.5 percent; 

urbanization rate (U) at 0.25 percent, 0.4 percent, and 
0.55 percent; industrial structure (N) at 0.2 percent, 0.5 
percent, and 0.8 percent; and carbon emissions intensity 

(M) at −4.5 percent, −4.2 percent, and −3.9 percent. The 
sensitivity results are shown in Figure 2. The sensitivity 
analysis showed that population size (P) is one of the 
strongest determinants of emissions; increasing its rate to 
3.2 percent raises CO2 emissions by 0.71 percent. By 
contrast, the impact of industrial structure (N) is modest; 
a 0.8 percent increase in industrial structure (N) raises 
emissions by 0.09 percent. Accordingly, scenario design 

must pay attention to population changes, and industrial 
structure should be improved at the same time. 

 

Figure 2. Sensitivity of carbon emission changes to the rate of 

various factors 
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2.4.8.  Scenario settings 

Scenario analysis is a vital tool for forecasting carbon 
emission pathways across multiple scales. It gives likely 
future trends by judging key drivers under various 
assumptions. By relying on the expanded STIRPAT model, 
we did scenario analysis to predict the CO2 emission 
trends from 2023 to 2060 of Changsha under different 
situations. There were 8 scenarios based on sample data 
and relevant studies (Li, Chen, and You 2023b; Li et al. 
2023a; Dong et al. 2022): low carbon (S1), baseline (S2), 
high carbon (S3), industrial optimization (S4), green 
development (S5), clean development (S6), energy saving 
(S7), and economic slowdown (S8). The specific parameter 
of all scenarios is Table 3. 

(1) Low carbon scenario (S1) 

Low carbon scenario (S1): all variables have low rates of 
change and strong control. Scenario evaluates the natural 
trend of emissions taking aggressive policies to limit 
growth. 

(2) Baseline scenario (S2) 

In baseline scenario (S2) all the rates of change for all 
variables are set to medium. This situation is in line with 
how Changsha is currently developing, following what has 
already happened, accounting for the continued impact of 
existing policies as is, without making further changes. 

(3) High carbon scenario (S3) 

Set all variables to their highest growth rates to simulate 
carbon emissions under the fastest urbanization in 
Changsha, assuming that each index grows at its 
maximum. 

(4) Industrial optimization scenario (S4) 

Industrial structure (N) is set to be a high growth rate, but 
all others are middle. Guided by Changsha’s 14th Five-
year plan and related policy, it expands the third industry, 
especially modern service industry, education and social 
security, and improves traditional industry. These efforts 

can hold back high energy consuming and emitting 
industries. 

(5) Green development scenario (S5) 

Building upon the baseline scenario, this case sets high 
rates for energy intensity (T), industrial structure (N), and 
carbon emission intensity (M), whereas the other 
variables remain unchanged. According to the 
Implementation Plan for Changsha’s carbon peaking work, 
it emphasizes the regulation of the energy mix and the 
promotion of the application of new energy to change 
industrial structure in order to achieve environmental 
goals. 

(6) Clean development scenario (S6) 

Building on the baseline case, this one assigns a high rate 
of reduction to carbon emission intensity (M), and holds 
all else constant. It is prioritizing eco and environment 
safety and is enforcing strict dual constraints on total 
energy consumption and intensity of consumption, 
providing an all-around and systematic incentive for the 
improvement, usage of the high-efficient energy-saving 
facilities and tools and strengthening control on the 
emissions from industrial production as well as household 
activities. 

(7) Energy-saving development scenario (S7) 

The rate of change for energy intensity (T) is a high value 
but the rest are medium. Environmental protection has 
been strengthened in Changsha in recent years, its energy 
intensity is also showing an improvement trend in the past 
five years, and there is still great room for energy 
reduction. In this case, we make things even stricter about 
following energy rules, we step up our talks with other 
places about new tech, and we push ourselves to get 
better at using new tech, which makes it go down faster 
for us to use less energy, and that causes our emissions to 
go down too. 

 

Table 3. Scenario settings. 

Scenario 
Population 

Size (P) 
Per Capita 

GDP (A) 
Energy 

Intensity (T) 
Urbanization 

Rate (U) 
Industrial 

Structure(N) 

Carbon 
Emission 

Intensity(M) 

Low Carbon Scenario (S1) L L L L L L 

Baseline Scenario (S2) 
      

M M M M M M 

High Carbon Scenario 

(S3) 
H H H H H H 

Industrial Optimization 

Scenario (S4) 
M M M M H M 

Green Development 

Scenario (S5) 
M M H M M H 

Clean Development 

Scenario (S6) 
M M M M M H 

Energy-Saving 

Development Scenario 

(S7) 

M M H M M M 

Economic Slowdown 

Scenario (S8) 
M H M H M M 
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(8) Economic slowdown scenario (S8) 

The rates of change for GDP per capita (A) and the 
urbanization rate (U) are set to high values, while the 
other variables are set to medium values. This scenario 
represents Changsha’s emission trend under a binding 
national carbon peaking constraint, where low carbon 
development is prioritized over economic growth. The city 
moderates economic growth by implementing energy-
saving and carbon-reduction policies, which lower CO2 
emissions and bring the emissions peak forward. 

2.5. Data source 

Data for other indicators, including year-end resident 
population and gross domestic product, are drawn from 
the Changsha Statistical Yearbook, the Hunan Statistical 
Yearbook, and the China Energy Statistical Yearbook for 
the period 2011 to 2022. Carbon emission factors by fuel 
and standard coal conversion coefficients are obtained 
from data released by national authorities and the China 
Statistical Yearbook. 

3. Results and Discussion 

3.1. Analysis of Changsha carbon emission influencing 
factors 

Using equations (2) to (8), we calculate the effects of the 
carbon emissions coefficient, energy structure, energy 
intensity, economic development, and population size on 
Changsha’s CO₂ emissions for 2012-2022. The 
decomposition results and contribution rates for 2012-
2022 are presented in Figure 3 and Figure 4. 

 

Figure 3 Decomposition of the Drivers of CO₂ Emissions in 

Changsha. 

The LMDI decomposition indicates that changes in 
Changsha’s CO₂ emissions are shaped by several drivers. 
Among the factors that reduce emissions, optimization of 
the energy structure and declines in the energy carbon-
emission coefficient make the most consistent negative 
contributions. Their reducing effect is especially clear in 
2015–2017 and again after 2021, matching coal-to-gas 
switching, the rollout of distributed photovoltaics, and 
industrial energy-saving upgrades. By contrast, the 
energy-intensity effect has generally acted as a positive 
driver of emissions; however, in recent years it turned 
negative, suggesting that industrial restructuring, 
technological progress, and upgrades in traditional heavy 

industry have started to cut energy use per unit of output 
and thus restrain emissions. Overall, the population-scale 
effect remains a promoter of emissions: with continued 
economic expansion and rising urbanization, population 
growth has exerted upward pressure on CO₂. Finally, the 
economic-development effect is the core driver of 
emissions growth. The economic-development effect is 
the core driver of emissions growth. It is directly tied to 
Changsha’s expansion model, with average GDP growth 
above 8 percent. This pace has accelerated social 
development and encouraged industrial clustering, which 
in turn raises energy use and carbon emissions. 

 

Figure 4. Contribution Rates of Drivers to Changsha’s CO2 

Emissions 

3.2. STIRPAT model  

3.2.1. Multicollinearity test 

In multiple regression analysis, multicollinearity among 
independent variables can distort the estimated 
coefficients (Yang et al. 2023). To address this issue, we 
used SPSS to test for multicollinearity among the 
regressors. Several pairs exhibit correlation coefficients as 
high as 0.9. The detailed results are shown in Figure 5. On 
this basis, assessed multicollinearity using the variance 
inflation factor (VIF); all variables had VIF values greater 
than 10 (Table 4), indicating a serious multicollinearity 
problem. Therefore, multicollinearity among the 
explanatory variables should be eliminated to obtain valid 
results. 

 

Figure 5. Test results of Spearman correlation coefficient for 

variables 
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3.2.2. Analyses of model fitting 

To prevent distorted model evaluation, the constructed 
model is estimated with ridge regression to mitigate 
multicollinearity in the independent variables. As shown 
in Figure 6 and Figure 6, when K = 0.03, the regression 

coefficients for the influencing factors become stable. The 
detailed results of the ridge regression analysis are 
presented in Table 5. 

 

Table 4. The results of the multicollinearity test. 

Variable t Value Standard Error Sig Value VIF 

c -10.939 0.483 0.000  

lnP 13.668 0.074 0.000 44.162 

lnA 10.067 1.131 0.000 347.811 

lnT -1.713 0.030 0.147 60.211 

lnU -0.289 0.124 0.784 52.861 

lnN -1.379 0.084 0.226 19.202 

lnM 11.698 0.104 0.000 562.013 

Table 5. Results of ridge regression analysis for each variable 

 B SE(B) Beta R2 Adj R2 F 

Constant 0.07 0.207 0.000 0.996 0.993 F=67.01,P=0.003, 

Sig F=0.00007       

lnP 0.224 0.277 0.243    

lnA 0.177 0.366 0.230    

lnT 0.152 0.536 0.161    

lnU 0.123 0.122 0.123    

lnN 0.119 0.118 0.119    

lnM 0.194 0.194 0.206    

 

 

Figure 6. Ridge trace of various influencing variables 

 

Figure 6. The ridge trace map of the R2 value and k value 

Based on the ridge regression diagnostics (Table 5), R2 and 
the adjusted R2 are above 0.99, the F value was 67.01, and 
the F statistic also passed the significance level test of 
0.1%, indicating that the regression equation is significant 

and the fit is satisfactory. The STIRPAT model relating 
Changsha’s CO₂ emissions to the explanatory variables is: 

lnI=0.07+0.224lnP+0.177lnA+0.152lnT

+0.123lnU+0.119lnN+0.194lnM  

(12) 

Equation (12) indicates that a 1 percent change in 
population size, per capita GDP, energy intensity, 
urbanization rate, industrial structure, and carbon 
intensity corresponds to changes in CO2 emissions of 
0.224 percent, 0.177 percent, 0.152 percent, 0.123 
percent, 0.119 percent, and 0.194 percent, respectively. 
Accordingly, the relative contribution ranking is: 
population size (P) > carbon intensity (M) > per capita GDP 
(A) > energy intensity (T) > urbanization rate (U) > 
industrial structure (N). 

 

Figure 8. Comparison of CO₂ emission simulation values and 

actual values 
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To further validate the extended STIRPAT model after 
ridge regression, we compare the CO₂ emission simulated 
values with the actual values. As shown in Figure 8, the 
average annual error between the simulated values and 
the actual values for Changsha is 6 percent, indicating a 
satisfactory goodness of fit. The model is therefore 
suitable for projecting future CO₂ emissions in Changsha. 

 

3.2.3. Carbon emission prediction analysis 

Based on the extended STIRPAT model, this study 
forecasts Changsha’s CO₂ emission trends for 2023-2060. 
The results are shown in Figure 9 and  

Figure 10. 

 

Figure 9. Eight scenarios of CO2 Emission trends in Changsha 

from 2023 to 2060 

 

 

 

 

Figure 10. Predictions of carbon emissions and carbon emissions 

intensity in Changsha from 2023 to 2060 under 8 scenarios 

Based on various scenarios of the change of Changsha 
city’s CO2 emission from 2023 to 2060, and the actual 
situation and policy orientation of the development of the 
city, the main conclusions are as follows. The timing of 
Changsha’s carbon peak varies significantly across 
different development paths, ranging from as early as 
2030 (S1) to as late as 2050 (S3), as summarized in Table 
6. The maximum value of CO2 emissions is 20.37-21.91 
Mt, as can be seen from Table 6, which further 
demonstrates that the regulatory impact can be seen in 
policy, a large amount of the use of new technology is the 
result of emission. Implementation point of view, among 
all, S1 (low-carbon) becomes the key approach to 
achieving carbon peak in 2030. And it also stresses on 
optimizing the energy mix and the more that we can have 
renewables, which is very aligned to what Changsha is 
doing in terms of green industrial transition, their goal is 
to grow more off photovoltaics, grow more energy 
storage. On the contrary, the delayed peaks shown in the 
high carbon and economic slowdown scenarios are due to 
the bad impacts of still depending on traditional energy 
intensive industries, slow economic speed, and slow 
adoption of green technology, all of which cause the 
peaking process to be postponed. In short, the above 
forecast can provide a certain amount of evidence for the 
differentiated policies of Changsha. In terms of keeping 
economic growth and clean energy substitution and 
improving energy efficiency to achieve an earlier and 
lower peak of CO2 emissions. 

Table 6. Peak year and peak CO2 emissions in Changsha under different scenario Combinations 

 S1 S2 S3 S4 S5 S6 S7 S8 

Timing of peak 

CO₂ emissions 

2030 2040 2050 2040 2040 2040 2040 2040 

Peak CO₂ (Mt) 20.37 20.95 21.91 20.99 21.19 20.95 20.67 21.37 

 

4. Conclusions and Policy Implications 

4.1. Conclusions 

(1) Employ the LMDI method to discover what determines 
the CO2 emissions of Changsha. Use an extended STIRPAT 
model, link emissions to some driving factors, and then 
calculate what the projected emission levels and their 
peak years will be in different situations. 

(2) And the LMDI decomposition indicates that the energy 
structure (ES) is the main restriction for the CO2 emission 

growth, and economic development (A) is the main 
reason for the emission increase in Changsha. 

(3) Among the 8 scenarios, the time when the carbon 
peak occurs differs, and the carbon peaks in 2040 in the 
baseline (S2), industrial optimization (S4), green 
development (S5), energy-saving development (S7), and 
clean development (S6) scenarios; the high-carbon 
scenario (S3) peaks in 2050. Only the low carbon scenario 
S1 achieves its peak by 2030, satisfying the 2030 peaking 
goal. 
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(4) Comparison of S1 shows that the low-carbon scenario 
represents the optimal low-carbon path for Changsha. It 
can ensure that the city’s economy can continue to 
develop, and at the same time achieve a relatively low 
peak in CO2 emissions. 

(5) When we built this carbon emission model, there is a 
sort of subjectivity that will prevent us from taking all of 
the factors that affect the emissions. Future studies will 
try more scientific and thorough way and add more 
driving factors to improve the accuracy and authenticity of 
the model. 

4.2. Policy implications 

(1) A low-growth path centered on structural optimization 
and efficiency gains 

Projection results indicate that low-carbon deployment is 
the main lever for realizing an earlier and lower peak in 
the low-carbon scenario. Well if we had an easier mix of 
energies, if we could just use the energy that we have, 
better if you will, then it would be like kind of a big deal. 
So, the policy of Changsha is to go from expanding the 
amount of increase to improving the carbon efficiency of 
each dollar of GDP. In real life, energy-intensive industries 
must go through technical renovations to transition from 
crude production with high value to refined production 
with high value, and should not increase in quantity. Given 
the deceleration of urbanization, effort should focus on 
making the best out of the existing urban space and 
upgrading the efficiency of the energy system. That is to 
say, directing a limited amount of public resources toward 
structural upgrades and technological innovation, so as to 
steer the economy and society towards higher quality, 
lower consumption endogenous growth even within a 
slower growth context. 

(2) Deepen industrial structure optimization and develop 
green industries 

Changsha gets an important chance to make things ready 
for deep decarbonization during the slower-growth part 
of the low-carbon situation. The city has to make up these 
deficiencies in infrastructure and management during this 
period. Important priorities are optimizing industrial 
structure for high-quality, sustainable progress, releasing 
more energy-saving possibilities, and making energy 
efficiency better. As for carbon-intensive projects, 
advanced efficiency techniques must be adopted to make 
thorough modernization for traditional manufacturing. At 
the same time, improve fiscal incentives and support 
green industry policies to promote the use of low carbon 
and clean production technologies. Development of green 
industrial parks, cultivation of clustering effects, it would 
be conducive to form robust low-carbon clusters. 

(3) Improve basics and do long-term planning during low-
growth period 

According to the scenario projection, Changsha’s carbon 
peak time and quantity differ greatly among different 
development paths. Low-carbon scenario (S1) emissions 
hit a peak sooner and lower. In contrast to this is the high 
carbon scenario S3, and the other pathways all delay the 

peak and have more emissions. In this way, Changsha 
should apply different emission reduction stage to each 
scenario. In a low carbon world, we would want to push 
energy transition. During times of economic slowdown, 
policies should focus more on promoting green 
technologies and innovations so that there would be 
lesser effect on CO2 emissions due to lesser growth. 

To create a changing adjustment mechanism to make the 
reaching-peak process safe and controlling 

Changsha must build a regulatory system if it wants to 
make the carbon peak work, we cannot ignore energy 
structure or number of people. Specific measure is to 
implement frequent monitoring of the rate of reduction of 
the structure of energy-saving in key areas and the rate of 
increase in carbon emissions due to population; establish 
specific warning threshold values for these indicators 
according to the results of the model’s sensitivity analysis; 
and immediately trigger the corresponding tiered 
response measures whenever the threshold values are 
reached. It forms a loop of management: “watching-
worrying-handling-updating”. It points the limited policy 
resources to the most important risk factors with 
precision, so as to protect the peak emission path in a 
systematic way. 

5. Discussion 

This research will be using the LMDI method and the 
STIRPAT model to do a projection of Changsha’s future 
CO2 emissions under several different scenarios and it 
would give out the peak year and the amount of emission 
that year is at. Prediction will become the reference 
points of regulating Changsha’s future carbon emissions in 
the future. Among the 8 scenarios, only the low-carbon 
scenario (S1) can allow Changsha to achieve carbon 
peaking in 2030. The way we go, requires regulation on 
how much we burn for energy, structural modifications on 
the structures that use energy, very slow rate of GDP 
(growing economy). This goes hand-in-hand with what the 
city has going on presently with their sustainable efforts in 
greener industries such as photovoltaics and storage. It 
seems as if the 2030 carbon peaking is likely to be 
achievable if the current policy can be preserved and 
strengthened. The high carbon scenario (S3) is quite 
different as there is a notable delay in reaching its peak 
because continuous consumption of traditional energy 
consumes results in more emission and postpones the 
decarbonization process. 

Second, the use of many scenarios here has very good 
methodological worth and practical policy references. 
Compared with the low-carbon scenario (S1) and the high-
carbon scenario (S3), as well as the economic slowdown 
scenario (S8), the analysis finds the best way out as well as 
imagining the risks caused by policy failure or unexpected 
disaster. It will promote some caution from policymakers, 
making them more sensitive to risk in that sense. For 
example, the delayed carbon peak in economic slowdown 
scenario (S8), which shows that we cannot sacrifice 
sustainable economic growth for the low carbon 
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transition. A solid economy gives the important base for 
progress in energy tech and infra renewal. 

There are some restrictions to this study because of data 
accessibility, the picked drivers might not include all the 
complex and different causes affecting CO2 emissions. 
With more comprehensive and correct data, it is expected 
that the research in the future will be more extensive and 
rigorous. And Changsha is treated as an isolated system in 
this study, which does not take the interaction with other 
areas into account. Future work can improve the focus of 
a single city to the level of the urban agglomeration in 
order to more accurately reflect the regional CO2 
emissions. Although with limitations, the key findings and 
policy suggestions of this study are still reference 
materials. And it recognizes those limitations form the 
basis for where I should put my energy for research in the 
future. 
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Appendix 1 

Table 1. Changes in the indicators during the study period 2 

Year 
Population size (P) (104 

person) 
Economic 

development(A)(104 CNY) 
Energy intensity (T)(t*(104 

CNY)-1) 
Urbanization rate (U) (%) Industrial structure (N)(%) 

Carbon emission intensity 
(M) 

2011 740.36 7.39697 0.30385 68.62 46.7 0.39381 

2012 766.18 8.08941 0.28744 68.99 49.7 0.35473 

2013 787.46 8.76523 0.27619 70.55 52.1 0.32735 

2014 813.11 9.26649 0.27834 72.45 52.7 0.29064 

2015 828.27 10.26549 0.25622 75.44 54.2 0.25361 

2016 859.03 10.67064 0.26361 77.56 55.6 0.23492 

2017 902.94 11.13053 0.22499 79.86 57.2 0.21418 

2018 928 11.21297 0.22653 81.93 57.6 0.21135 

2019 963.56 11.98963 0.19818 82.46 57.7 0.19002 

2020 1006.08 12.06914 0.18436 82.6 57.5 0.18218 

2021 1023.93 12.96056 0.17235 83.16 57.2 0.17225 

2022 1042.06 13.40241 0.15488 83.27 56.8 0.15687 

Table 2. Sensitivity of carbon emission changes to the rate of various factors 3 

The change 
rate of 

population 

(P) /% 

Rate of 
change in 

carbon 
emissions/% 

Per capita 
GDP change 

rate (A) /% 

Rate of 
change in 

carbon 
emissions/% 

Energy 
intensity 

change rate 
(T)/% 

Rate of 
change in 

carbon 
emissions/% 

Rate of 
change of 

urbanization 
rate(U)/% 

Rate of 
change in 

carbon 
emissions/% 

Industry 
structure 
changing 
rate(N)/% 

Rate of 
change in 

carbon 
emissions/% 

The change 
rate of carbon 

emission 
intensity(M)/% 

Rate of 
change in 

carbon 
emissions/% 

0.2 0.04477 1.8 0.31627 -0.5 -0.07616 0.25 0.03072 0.2 0.02378 -4.5 -0.88927 

1.7 0.37831 4.8 0.83329 -2 -0.30661 0.4 0.04911 0.5 0.05937 -4.2 -0.82895 

3.2 0.70807 7.8 1.33828 -3.5 -0.54007 0.55 0.06749 0.8 0.09487 -3.9 -0.76878 

Table 3. Decomposition of the Drivers of CO2 Emissions in Changsha 4 

Year CIΔI  ESΔI  TΔI  AΔI  PΔI  

2012 1.24568 -0.30266 0.48789 0.18691 -1.51281 

2013 0.27089 -0.31474 0.63286 0.21608 -0.58964 

2014 -0.88117 -0.0701 -0.50342 -0.29016 2.02806 

2015 -0.60527 0.36198 -0.44744 -0.08073 0.83889 

2016 -0.03011 -0.01099 -0.01494 -0.01408 0.07064 

2017 -0.00292 0.01694 -0.00451 -0.00533 -0.00414 

2018 0.98595 0.04121 0.04476 0.16606 -1.10789 

2019 -0.02947 0.06872 -0.03443 -0.01933 0.01544 

2020 0.34078 -0.15811 0.01445 0.09444 -0.27485 
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2021 -1.32174 -0.64249 0.67973 0.16776 1.42955 

2022 -1.25781 1.31972 -0.41395 -0.21672 1.09254 

Table 4. Contribution Rates of Drivers to Changsha’s CO2 Emissions 5 

Year CRCI CRES CRT CRA CRP 

2012 1186.26742 -288.229 464.62373 177.99108 -1440.65324 

2013 125.72613 -146.07515 293.72374 100.28682 -273.66154 

2014 -311.13817 -24.75216 -177.75512 -102.45497 716.10042 

2015 -897.57067 536.78936 -663.51974 -119.7176 1244.01864 

2016 -5674.73439 -2070.52581 -2816.58006 -2653.31278 13315.15304 

2017 -7156.02484 41571.99577 -11073.93977 -13083.51117 -10158.51999 

2018 757.88549 31.67584 34.40833 127.64935 -851.61902 

2019 -3185.04794 7427.94807 -3721.60531 -2089.59506 1668.30024 

2020 2039.62261 -946.32124 86.50834 565.22183 -1645.03154 

2021 -422.53119 -205.38849 217.29451 53.6278 456.99737 

2022 -240.13759 251.95761 -79.0294 -41.37573 208.5851 

Table 5. Spearman examines the original data 6 

Year lnI lnP lnA lnT lnU lnN lnM 

2011 3.07114 6.60714 11.23622 -1.19123 -0.37659 -0.76096 -0.9319 

2012 3.0904 6.64142 11.3179 -1.24674 -0.37121 -0.69877 -1.0364 

2013 3.11772 6.66881 11.39474 -1.28665 -0.34885 -0.65128 -1.11672 

2014 3.08643 6.70087 11.45263 -1.2789 -0.32227 -0.64026 -1.23567 

2015 3.071 6.71934 11.54832 -1.36173 -0.28183 -0.61337 -1.37196 

2016 3.06963 6.7558 11.59591 -1.33328 -0.25412 -0.5873 -1.4485 

2017 3.06924 6.80566 11.64464 -1.49168 -0.2249 -0.55893 -1.54093 

2018 3.09069 6.83303 11.641 -1.48489 -0.1993 -0.55112 -1.55424 

2019 3.08889 6.87063 11.71301 -1.61856 -0.19286 -0.55037 -1.66062 

2020 3.09653 6.91382 11.72235 -1.69085 -0.19116 -0.55369 -1.70277 

2021 3.12932 6.9314 11.781 -1.75821 -0.1844 -0.55822 -1.75882 

2022 3.08691 6.94895 11.81451 -1.86509 -0.18308 -0.56658 -1.85231 

Table 6. Comparison of CO₂ emission simulation values and actual values 7 

Year Simulation value Actual value 

2011 21.56646 20.90692 

2012 21.98585 20.93799 

2013 22.59471 21.07437 

2014 21.89876 21.07665 

2015 21.56345 20.87151 
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2016 21.53384 21.13568 

2017 21.52564 20.81589 

2018 21.99226 20.98343 

2019 21.95272 20.59049 

2020 22.12108 20.42587 

2021 22.85854 20.29356 

2022 21.90917 19.78551 

Table 7. Eight scenarios of CO2 Emission trends in Changsha from 2023 to 2060 8 

Year S1 S2 S3 S4 S5 S6 S7 S8 

2023 19.89544 19.93074 19.96552 19.93309 19.93826 19.91869 19.92761 19.96486 

2024 20.00597 20.07703 20.14716 20.08177 20.09219 20.05276 20.07073 20.14584 

2025 20.11712 20.22439 20.33046 20.23156 20.24731 20.18774 20.21488 20.32846 

2026 20.16817 20.30398 20.45935 20.31358 20.34327 20.26187 20.28874 20.43923 

2027 20.21935 20.38388 20.58906 20.39592 20.43969 20.33627 20.36286 20.55061 

2028 20.27066 20.46409 20.7196 20.4786 20.53656 20.41094 20.43726 20.66259 

2029 20.32209 20.54462 20.85096 20.56162 20.63389 20.48588 20.51193 20.77519 

2030 20.37366 20.62546 20.98315 20.64497 20.73168 20.5611 20.58687 20.8884 

2031 20.36796 20.65354 21.05791 20.67553 20.77229 20.59516 20.59047 20.93105 

2032 20.36227 20.7044 21.13293 20.72889 20.83589 20.65198 20.61674 20.99687 

2033 20.35657 20.75538 21.20821 20.78239 20.89967 20.70895 20.64304 21.06289 

2034 20.35088 20.78363 21.28377 20.81314 20.94061 20.74325 20.64666 21.10591 

2035 20.34519 20.81193 21.3596 20.84395 20.98163 20.77761 20.65028 21.149 

2036 20.3395 20.84027 21.43569 20.8748 21.02273 20.81203 20.65389 21.19219 

2037 20.33381 20.86864 21.51206 20.9057 21.06392 20.8465 20.65751 21.23547 

2038 20.32812 20.89706 21.5887 20.93664 21.10518 20.88104 20.66113 21.27883 

2039 20.31011 20.92551 21.66561 20.96762 21.14652 20.91562 20.66475 21.32228 

2040 20.29212 20.954 21.74279 20.99866 21.18795 20.95027 20.66838 21.36582 

2041 20.22887 20.9285 21.75944 20.97559 21.17012 20.94251 20.59987 21.3364 

2042 20.16582 20.90303 21.7761 20.95254 21.15232 20.93476 20.53158 21.30702 

2043 20.10297 20.87759 21.79277 20.92952 21.13452 20.927 20.46353 21.27768 

2044 20.04031 20.85218 21.80946 20.90653 21.11675 20.91925 20.39569 21.24838 

2045 19.97785 20.8268 21.82616 20.88356 21.09898 20.9115 20.32809 21.21912 

2046 19.91558 20.80146 21.84287 20.86061 21.08124 20.90376 20.26071 21.18991 

2047 19.85351 20.77614 21.85959 20.83769 21.0635 20.89602 20.19355 21.16073 

2048 19.79163 20.75086 21.87633 20.8148 21.04579 20.88828 20.12661 21.13159 

2049 19.72994 20.7256 21.89308 20.79193 21.02808 20.88054 20.0599 21.10249 

2050 19.66844 20.70038 21.90984 20.76909 21.0104 20.87281 19.9934 21.07343 
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2051 19.56235 20.6217 21.8649 20.69261 20.93348 20.82253 19.85712 20.97211 

2052 19.45684 20.54333 21.82006 20.61641 20.85684 20.77748 19.7266 20.87128 

2053 19.35189 20.46525 21.77531 20.54049 20.78049 20.72743 19.59213 20.77093 

2054 19.24751 20.38747 21.73065 20.46485 20.70441 20.67751 19.45858 20.67106 

2055 19.14369 20.30999 21.68608 20.38949 20.62861 20.6277 19.32594 20.57167 

2056 19.03937 20.2328 21.6416 20.3144 20.55309 20.57802 19.1942 20.47276 

2057 18.93668 20.1559 21.59721 20.2396 20.47785 20.52845 19.06337 20.37433 

2058 18.83454 20.0793 21.55292 20.16507 20.40288 20.479 18.93342 20.27637 

2059 18.73294 20.00298 21.50871 20.09081 20.32819 20.42968 18.80436 20.17888 

2060 18.6319 19.92696 21.4646 20.01682 20.25377 20.38047 18.67618 20.08186 
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