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Abstract

Models developed to predict diseases associated with the
tomato leaf curl virus (TLCVD) in different countries of the
world. The research has been set to identify those
parameters that are maximally influenced by the infectious
weather variables. Therefore, the objectives of this
research were to forecast the TLCVD disease together with
its vector whitefly based on meteorological conditions and
to validate the two models. Sown in three replications
using RCBD over two seasons were the following varieties
of tomato genotypes: Big Beef, Sitara-TS-101, 014276,
Caldera, and Salma. Data on disease incidence and weather
variables were used to develop a disease-predictive model
for TLCVD by employing stepwise regression analysis. The
criterion of evaluation for this model was a comparison
between predicted and empirical observations. TLCVD
predictive model y= 0.532+ 0.053x: (°C) +0.97x2 (°C) -
0.081x3 (%) +0.15xs (mm) R2= 0.85 y= TLCV disease, while
whitefly predictive model y= -7.77+0.237x1 (°C) +0.223x2
(°C) -0.094x3 (%) +0.13x4 (°C) +0.085xs (m/s) R?= 0.91. All

weather parameters affected the incidence of the disease
in addition to the infestation with the whitefly. A revised
RMSE of 0.51 after exclusion of outliers demonstrated the
accuracy in a determined range among different cultivars.
Based on the current study findings, predictive models for
TLCV disease and in respect of whitefly would be developed
for different agroecological zones of Pakistan.
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1. Introduction

Tomato leaf curl virus, or TLCV, is a begomovirus from the
family Geminiviridae that affects tomato plants particularly
in conditions that are warm and comparatively less humid
(Li et al. 2022). TLCV causes the most damaging and yield
limiting tomato leaf curl disease (TLCD) worldwide (Yan et
al. 2021). Prevailing the conducive environment, disease
severity may be up to 80% causing a substantial yield loss
(El-Sappah et al. 2022). The badly affected tomato fields
result in 100% vyield loss, costing tens of millions of dollars
in the US alone (Kandhro 2020). More than 7 million
hectares of tomato crops are affected by different strains
of TLCV around the globe (Abbas et al. 2022). Whitefly
introduces the TLCV in the phloem of the tomato plant to
suck juice (Dhaliwal et al. 2020). The spread of viruses in
the host plant depends upon the feeding times of whitefly
(Legarrea et al. 2020). Epidemiological models that forecast
the possibility of disease outbreaks may provide significant
information for tomato growers enabling them to
implement a timely disease management strategy
(Hasanaliyeva et al. 2022). The practical benefit of disease
predictive models is to provide advance warning about the
disease. This advance warning allows for the determination
of possible disease outbreaks, saving of resources, sites for
cultivation, selection of cultivars, and the execution of a
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judicious control strategy (Saurabh et al. 2021). The
prediction may be taken into consideration to reduce the
number of insecticidal sprays under unfavorable conditions
for whitefly infestation thus minimizing the monetary costs
and environmental issues (Gao et al. 2025). The predictive
models infer those insecticidal sprays would only be
beneficial when the weather forecasts are in favor of
whitefly infestation (Dearlove et al. 2024). However, when
the predicted environmental conditions are not favoring
the insect population and subsequent viral transmission,
models would be used to reduce unnecessary insecticidal
applications, thus minimizing the input expenditures
(Razzag et al. 2023). Numerous models are being
developed to forecast the onset of the TLC disease
epidemic by considering previous and current observations
to predict the likelihood of epidemic onset (Ali et al. 2022).
These models provide the basis for developing decision
support systems (DSS) which predict the disease dynamics
for multiple locations and their cost-effective
management. The disease caused by the virus was
modeled on a plant population and its dynamics were
determined by a linked differential equation. The plant
population was categorized into disease free,
asymptomatic, and symptomatic before developing the
model (Nisar et al. 2024). A disease predictive model was
devised based on the vector population. The disease
outbreak was assessed by considering the most favoring
weather variables for insect infestation (Nguru and
Mwongera 2023). The complications in Holt model was
resolved by keeping the host and vector population
constant (Asghar et al. 2024). TLC disease was predicted by
using biological and epidemiological data because both
virus and vector shared a wider host range (Nguru and
Mwongera 2023). The biological data of the Holt model
inferred that the vector behavior and activity, especially
virus spread is a crucial aspect in the magnitude of TLCVD
epidemic development (Alhakami et al. 2022). The spatio-
temporal progress of the disease was mutually described
through attributes of the pathos system and weather
variables by the predictive model (Gurung et al. 2022; Zhao
et al. 2025). Under the field conditions, the correlation of
TLCV and insect vector was described in varied tomato
germplasm. In tomato fields, the relationship of B. tabaci
infestation virus transmission was directly proportional (Y
=-0.001x1+ 0.03x2 +1.06 and R? = 0.66) (Basha et al. 2024).
Temperature directly showed correlation whereas relative
humidity was inversely correlated with the whitefly
population (Saghafipour et al. 2020). Considering the
incidence of TLCVD in Pakistan, the development of a
predictive model through regression analysis that
describes the probable presence and absence of the
disease may be beneficial. In Latin America, huge
destruction to tomatoes was done by B. tabaci and TLCV
for (Walerius et al. 2023) which a Flora Map was used to
develop a prediction model for climate that destroyed
tomatoes in Latin America by B. tabaci and TLCV.A model
that can be used specifically for the prediction of whitefly
and TLCD has not been developed in Pakistan. A very few
predictive models have been developed for TLCD in the
world and weather conditions of Pakistan are different
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from those specific countries so those models may not be
useful for prediction in Pakistan. The objectives of this
experiment were to (i) determine if regional weather
conditions may be related to TLCV disease incidence and
whitefly (ii) determine the disease incidence could be
related to whitefly infestation (iii) validation of both
models.

2. Materials and Methods

The meteorological data were acquired from the weather
observatory set up at the University of Agriculture
Faisalabad (UAF) Pakistan. Latitude: 31°-44"' N Longitude:
73°-06' E. Altitude: 184.4m. Disease incidence and whitefly
infestation were assessed from data obtained over 5
tomato genotypes cultivated on the experimental site at
UAF. Complete information about weather instruments
and methods utilized by Agromet is available at the website
(www.uaf.edu.pk) and were complete for the entire study
period, with no missing values in any meteorological
parameters measured.

2.1. Study Design Statement

This study constituted an agronomic field experiment
focused on plant disease modeling. The research did not
involve human participants or animals, and therefore did
not require formal ethical approval or registration in a
clinical trials registry.

2.2. Prediction of TLCV Disease and Whitefly Infestation

The experiment for predictive models of TLC disease
incidence and whitefly infestation was initiated by sowing
five tomato genotypes (Big Beef, Sitara-TS-101, 014276,
Caldera and Salma) at the research field of the Department
of Plant Pathology, UAF for 2 years (2023 and 2024) under
randomized complete block design (RCBD) with 3
replications. The cultivars were planted at 30 cm plant to
plant and 70 cm row to row distance, across 15 m long row.
Data on TLC disease incidence and B. tabaci infestation was
thus recorded weekly for all genotypes from BBCH growth
stage 12 (two true leaves) until BBCH 89 (fully ripe fruit).
The data of whiteflies were collected early in the morning
being the ideal time point for its counting. Total 180 weekly
observations come from five varieties x two years x roughly
eighteen sampling dates.

2.3. Analysis of Data

Those data were analyzed with least significant difference
(LSD at P<0.05) tests and thus could serve for ANOVA and
comparison of the disease incidence under different
environmental conditions. SAS 9.3 statistical software was
used for data analyses. The correlation analysis was
conducted to determine the effects of environmental
factors viz. wind speed, rainfall, relative humidity, and low
and high temperature on disease incidence and vector
population (Calinski et al. 1981). Stepwise regression
analysis was applied to the environmental variables which
showed a positive relationship between TLC disease and
whitefly (Cao et al. 2024; Hu et al. 2025). The weather
variables which had a significantly positive influence on
TLCV and whitefly were illustrated on graphs and favorable
ranges for disease incidence and whitefly infestation were
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described. All the predictions of the model and fitted values
are presented on the original scale of the dependent
variable (disease incidence) to simplify straight
clarification. Normal distribution of residuals was Shapiro-
Wilk tests for validation of ordinary regression analysis.

2.4. Analysis of residuals and correction of autocorrelation

The model was subjected to Durbin-Watson analysis to find
out the independence of residuals and upon the detection
of positive autocorrelation it was further refitted for AR (1)
analysis.

2.5. Assessment of Disease and Vector Predictive Models

The method devised was used for the evaluation of the
regression model for TLC disease and whitefly (Lobin et al.
2022; Shahbaz et al. 2023). 1) To compare disease
incidence or vector infestation along with weather
variables and the physical theory of the model. 2) To
compare the recorded and estimated values. 3) To collect
fresh data and evaluate predicted values. Formulae for
calculating root mean square error (RMSE) and percentage
error for evaluation of predictive methods read as follows
(Wallach and Goffinet 1989):

RMSE = Y i =1ton = [(Oi - Pi)2/n]05

Error (%) = Recorded data — Forecasted data/Recorded datax100

The number of observations, n, while Oi are observed data
points and Pi predicted data points. Root mean square
error value + 20 indicates that prediction assessment is
good (Willmott 1982). Model accuracy was evaluated by
RMSE and uncertainty for a single prediction was
quantified using a 95% prediction interval ‘which was
calculated as:

y +10.025,n — pec”esqrt(L+ X 07 (X' X)=1X0

e  Where y" is the predicted TLCV or whitefly

e 10.025, n-p is the critical t-value for 95% confidence
with n-p degrees of freedom,

e o isthe residual standard error from the model,

e Xisthe model matrix from the training data,

e x0isthe vector of predictor values for the new forecast

Reliability of the model was validated by robustness tests
using quantile regression and ordinary least squares (OLS)
(zeng et al., 2025).

2.6. Criteria for selection of variables and modelling

The models for vector and disease were developed by
multiple regressions with stepwise variable selection. The
significance levels for variable entry (SLENTRY) and
retention (SLSTAY) were both set at a = 0.15. Weather
variables i.e. maximum temperature, minimum
temperature, relative humidity, rainfall, and wind speed
were used in modeling.

2.7. Justification of the model

A linear regression model commonly known as linear
probability model (LPM) was used to predict TLC disease
incidence. Although LPM has limitations for a bounded

outcome (0 and 1), it was selected for multiple reasons as
stated below.

(i) The coefficients provide a clear effect of each weather
variable on disease incidence that is very valued for
agriculturists.

(ii) It has model parsimony and provides a linear equation
to develop a simple and working prediction that can be
used in field settings.

(iii) This model was empirically fit as it did not predict
beyond the 0-100% range and its assumptions are
enough for interpretation of a linear regression.

2.8. Management of multicollinearity

The values of variance inflation factor (VIF) were calculated
for quantification of multicollinearity in regression analysis.
This was necessary to find out the extent of correlation
between different predictors. ‘VIF was calculated by
following formula

VIF =1/1-R?

Due to having a unique impact on disease development all
the meteorological predictors have been retained in the
model despite high multicollinearity (VIF > 12). Both stages
of temperature (maximum and minimum) have a varied
effect on virus replication in whitely infestation. Similarly,
Rh and Rf have a distinct position in affecting weather
conditions while wind speed has a role in whitefly
movement. We have wused ridge coefficients for
stabilization of multicollinearity and to maintain the
ecological validity of the model (Ma & AAppolloni 2025).

3. Results

3.1. B. tabaci Prediction by Using Weather Variables

R2 measures, mean square error (MSE), and Cp value were
used in the assessment of the model's predicting capability.
The model with Cp=6.0 and MSE=0.35 was selected for the
prediction of whitefly (B. tabaci). y = -7.77+0.237x1+0.232
x2-0.094 x3+0.13 x4+0.085 xs

Co-efficient of determination R?= 0.91

All environmental variables affected the whitefly
infestation on tomato genotypes. The model inferred
about 0.237 units change in whitefly infestation due to a
single modification of maximum temperature and 0.23
units change in minimum temperature while a single unit
change in relative humidity showed 0.094 units change in
whitefly infestation. Whitefly infestation changed 0.13 and
0.085 units due to a single unit change in rainfall and wind
velocity, respectively (Table 3).

3.2. Evaluation of Whitefly Predictive Model Based upon
the Physical Theory

The coefficient of determination was used to find the
effectiveness of the model. In the current experiment, it
was 0.92 which is very good for in-vivo studies because
conditions are continuously changing. The standard error
of the estimate is rather lower than most other estimates
(1.3) (Table 1). The model depicted a significant value of F-
distribution at a 5% probability level (Table 2). The data on
environmental conditions and the B. tabaci population



contributed significantly to the predictive model. The
vector predictive model proved best for forecasting with
reference to physical theory.

The analysis was subjected to Durbin-Watson test which
gave 0.84 value that is below 1.5 indicating positive
autocorrelation hence model was further refitted
autoregressive model of order 1 AR (1) analysis. In final
analysis, it was inferred that a unit change in maximum
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temperature would result in 0.201 units change in whitefly
infestation. The weather variables predicted whitefly
population significantly —except wind speed. All
environmental variables except wind speed remained
significant predictors. The value of Durbin-Watson after
analysis of AR (1) was 1.92 that is very near to ideal value
of 2 indicating that residuals are almost independent.

Table 1. Statistical summary of whitefly predictive model AR (1) corrected model

R2 0.94 0.93
Adjusted R?2 0.93 0.92
MSE 0.37 0.39

SE 1.36 141
Durbin-Watson 0.84 1.92
Entries 180 180

*Sample size n =180
Table 2. ANOVA for whitefly infestation during 2023 and 2024

Source Degree of freedom SS MsS F P
Regression 6 728.204 139.321 413.82 0.0001**
Error 173 59.423 0.337
Total 179 800.642
** = Significant @ 5% level of probability
Table 3. Detailed overview of predictive model
Factors Co-efficient SE Type 11 SS t statistics P
Intercept -7.758 1.294 12.691 34.09 0.0001**
Maximum
0.237 0.036 14.832 41.92 0.0001**
temperature
Minimum
0.232 0.022 32.474 91.78 0.0001**
temperature
Relative humidity -0.094 0.006 87.929 252.34 0.0001**
Rainfall 0.13 0.031 4.311 12.18 0.0006**
Wind speed 0.085 0.033 2.409 7.01 0.0091**
Table 3a. Management of multicollinearity in predictive model
Factors Ridge Coefficients VIF AR(1) Coefficients
Intercept -0.048 -6.892
Maximum temperature 0.082 3.71 0.201
Minimum temperature 0.078 1.19 0.198
Relative humidity -0.185 12.5 -0.082
Rainfall 0.028 12.5 0.108
Wind speed 0.015 12.5 0.071
Model fitted with an AR(1) for autocorrelation (Durbin-Watson = 1.92).
Table 4. B. tabaci population predictive model
Variables Number R? cp F P
Maximum temperature 1 0.73 414.75 504.04 0.001%**
Relative humidity 2 0.84 201.07 102.11 0.001%**
Minimum temperature 3 0.92 17.98 172.39 0.001%**
Rainfall 4 0.92 10.81 8.87 0.003**
Wind speed 5 0.92 6.00 6.81 0.009**
** = Significant at 5% probability level
3.3. Evaluation of Model by the Homogeneity of Regression appeared as non-significant. The regression model

Developed predictive model of B. tabaci population by
stepwise regression analyses, having significant variables
(Table 4). B. tabaci population was significantly correlated
with environmental variables. The important weather
conditions in a predictive model would include minimum
temperature, relative  humidity, and  maximum
temperature. The effect of rainfall (Rf) and wind speed (Ws)

accounted for variability between 73% and 94%. The B.
tabaci predictive model was found highly reliable by with
high R2, low CP, and SE values. Normal probability plot of
residuals and disease vs fit, best demonstrated the full
model of the two years (2023 and 2024) (Figure 1). The
likelihood design is usually recommended for a goodness
fit of a hypothesized distribution and is a common way to
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check the non-normality of the data (Backhaus et al. 2021).
The conventional maximum likelihood method, while
modeling a full 2-year model, showed the maximum
number of data points clustered around a reference line,
deviating on both lower and higher sides by a few data
points, thus destroying the ordinary distribution of those
points; hence causing error in the model. Residuals are
calculated as differences between observed and predicted
values. The following scatter plot may give an indication of
how these residuals are distributed. It demonstrated that
most data points were clustered pretty much evenly
around the reference mark confirming very good fit of the
regression model while some of the points on reference
line were not distributed in such proximity causing errors
in prediction.

3.4. Assessment of Predictive Model by the Comparison of
Observed and Predicted Values

The predictions were considered as good if the value of
percent error and RMSE is less than 20. In the current
experiment, most predicted values acquired from 2 years
model on 5 cultivars, gave an error (%) and RMSE below 20
(Tables 5 and 6). In the development of whitefly infestation
on 5 tomato cultivars, relative humidity, as well as lowest
temperature, was epidemiologically important
environmental variables. The significant weather variables
were used in stepwise regression analysis to develop a
single variable model. The predicted values by these single

variety models for the B. tabaci population were in close
compliance with recorded values in 5 tomato cultivars,
lines such as Big Beef, Sitara-TS-101 along with Caldera,
014276, and Salma.

Residual
o
wf

Quantile Predicted Value

Figure 1. Model diagnostic plots. (Left) Quantile-Quantile (Q-Q)
plot evaluating the normality of residuals. (Right) Plot of
residuals against predicted values to evaluate homoscedasticity.
The predicted (fitted) values are on the original scale of the
dependent variable, representing the predicted proportion of
disease incidence. (Shapiro-Wilk test: W = 0.985, p = 0.127).
Sample size n =180; outliers were removed by percentage error

3.5. Assessment of Model by the Comparison of Observed
and Predicted Values

Current suite of these experiments shows that for most
predictions using 2-year model predictions over 5 cultivars,
prediction accuracies are within £20% with an overall mean
RMSE across all predictions of less than £20 (180) (Table 5).

Table 5. The variety-wise regression equation for whitefly infestation & TLCVD

Regression equations for whitefly infestation & TLCVD % Error
¥ = Bo + buxa + baxa + baxs (WF) Observed Predicted
Y = b, + b1 X1 + bz X2 + b3 x3 (TLCV)
Big Beef = -0.487+0.341x; — 0.124x, (WF)
Big Beef = -0.26 + 0.27X; — 0.085 x, (TLCV)
(x1=MinT, x2= Rh) (WF) 3.60 3.59 0.28
TLCV. 1.20 1.18 1.67
(WF) 1.30 1.27 2.31
TLCV 1.30 1.28 1.54
(WF) 5.40 5.06 6.30
TLCV 2.10 1.83 12.86
(WF) 3.60 3.05 15.2
TLCV 3.50 3.35 4.29
Caldera=-0.412+0.342x; — 0.122x, (WF)
Caldera = -0.22 + 0.19 x; — 0.079 x, (TLCV)
(x1=MinT, x,= Rh) (WF) 1.40 1.39 0.71
TLCV 1.50 1.45 3.33
(WF) 3.90 3.83 1.79
TLCV 1.60 1.47 9.38
(WF) 5.60 5.21 6.96
TLCV 3.60 3.45 4.17
(WF) 3.80 3.26 14.21
TLCV 2.30 1.63 29.13
Sitara-TS-101 = 0.059+0.333x; — 0.121x;, (WF)
Sitara-TS-101 = -0.162 + 0.193x; — 0.74x, (TLCV)
(x1=MinT, xo= Rh) WF 1.50 1.46 2.67
TLCV 1.70 1.69 0.59
WF 4.50 4.16 8.17
TLCV 1.80 1.67 7.22
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WF 5.90 5.43 7.97
TLCV 3.80 3.61 5.00
WEF 4.20 3.58 14.76
TLCV 2.50 1.83 26.81
014276 = -9.056+0.272x1+0.225x,-0.091x3 (WF)
014276 =0.18 + 0.21 x;— 0.089 x, (TLCV)
(x2= MaxT, x2= MinT, x3= Rh) WF 6.80 6.75 0.74
TLCV 4.10 4.02 1.95
WF 5.90 5.51 7.07
TLCV 4.20 4.08 2.86
WF 1.90 1.73 8.95
TLCV 1.90 1.73 8.95
WEF 4.30 3.77 12.33
TLCV 2.60 2.06 20.77
Salma = 0.722+0.308x;-0.111x, WF
Salma = 0.26+ 0.22 x;- 0.094x; (TLCV)
(x1= MinT, x,= Rh) WF 2.20 2.15 2.73
TLCV 4.30 4.21 2.09
WF 7.00 6.92 1.14
TLCV 1.90 1.76 7.37
WF 6.00 5.77 3.83
TLCV 2.20 1.95 11.36
WF 5.20 4.68 11.11
TLCV 2.80 2.18 22.14

Table 5a. 95% Prediction Intervals for Whitefly infestation Forecasts

Time Period Predicted whitefly Prediction interval 95% Lower Prediction interval 95% Upper
Early season 1.4 0.7 2.1

Mid Season 3.2 2.5 3.9

Late Season 7.5 6.8 8.2
High Pressure 5.8 5.1 6.5

Predicted WF + 0.675 (t-value x residual SE); represents range for future observations with 95% confidence

Table 5b. 95% Prediction Intervals for TLCV Disease Forecasts

Time Period Predicted TLCD Prediction interval 95% Lower Prediction interval 95% Upper
Early season 0.4 0.1 0.7

Mid Season 2.3 1.8 2.8

Late Season 3.2 2.7 3.7
High Pressure 4.1 3.6 4.6

Predicted TLCV * 0.845 (t-value x residual SE); represents range for future observations with 95% confidence

The variables with ‘significant influence were used to
develop the B. tabaci predictive model for two years in five
tomato genotypes (Table 6). The high temperature, low
temperature along with relative humidity played an
important role in stepwise regression analysis for B. tabaci
prediction in case of Caldera variety. The maximum
temperatures, rainfalls, and wind speeds drastically
affected the five different genotypes. The above-
mentioned model explains more than 80 percent variability
in whitefly infestation in all genotypes. The model,
consisting of the three environmental parameters, was
able to predict the population of B. tabaci with a
reasonable R? and equally low C (p) and RMSE values
obtained. Model robustness was described after the
exclusion of outliers of more than 25% errors and a revised
RMSE was calculated. The 95% prediction intervals
quantified uncertainty for forecasts of whitefly in such a
way that a mid-season prediction of 3.2 whiteflies has a
95% prediction interval of 2.5 to 3.9 for future. Similarly for

TLCD, a prediction value of 2.3 represent 95% interval of
1.8 to 2.8 for future (Table 5a & 5b). The model predictions
for disease and vector fall in biologically probable ranges
(0-100% disease incidence and >0 whiteflies per plant,
respectively), indicating that model does not produce
unrealistic outputs.

Revised RMSE values calculated after excluding outliers
with prediction errors >25%. Original RMSE values shown
for transparency. Outliers were identified in cultivars
Caldera, Sitara-TS-101, and 014276 during early to mid-
season measurements.

3.6. Development of TLC Disease Predictive Model

Using 2 years of TLC disease incidence data and weather
variables in stepwise regression analysis, the predictive
model was developed. The predictive model y = 0.532+
0.053 x1 + 0.97x2-0.081x3+0.15xs was used to predict
possible TLC disease development under weather
conditions. In this equation, y = TLC disease incidence, x1=
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MaxT, x2= MinT, xs= Rh and xs= Rf. According to the
analysis, single unit variation in MaxT should mean a
change of 0.053 units in TLCVD. In case of minimum
temperature, it would be an amount of 0.97 units and, with
single unit rise in Rh, there would be a decrease of 0.081 in
TLCVD incidence. With a one-unit change in rainfall, the
disease would experience an effect of 0.15 units. The 2

Table 6. Variety wise B. tabaci and TLCVD predictive model

years predictive model accounted 85% variability
associated with TLCVD incidence (Table 7). The stepwise
regression analysis considered a few important factors like
environmental variables, minimum temperature, rainfall,
maximum temperature, and relative humidity. The model
including all these variables accounted for the variability in
disease development by 65 to 85%.

Environmental

R2 Adjusted -R? cp RMSE Revised RMSE Pr>F
parameters
Big Beef (WF) 0.94 0.93 1.537 0.64 0.49
TLCV 0.93 0.91 0.139 0.51 0.41
MinT 0.0195*
Rh (%) 0.0453*
Caldera (WF) 0.93 0.92 2.099 0.65 0.52
TLCV 0.89 0.87 0.204 0.61 0.49
MinT 0.0155*
0.009*
Rh (%) 0.0034*
0.00*
Sitara-TS-101
0.91 0.89 3.049 0.71 0.53
(WF)
TLCV 0.86 0.83 0.240 0.67 0.51
MinT 0.0152*
0.002*
Rh (%) 0.0366*
0.001*
014276 (WF) 0.94 0.91 3.429 0.63 0.51
TLCV 0.92 0.91 0.083 0.55 0.44
MaxT 0.2341
MinT 0.0045*
0.003*
Rh (%) 0.0334*
0.001*
Salma (WF) 0.90 0.88 2.661 0.71 0.53
TLCV 0.93 0.92 0.096 0.53 0.42
MinT 0.0035*
0.001*
Rh (%) 0.0292*
0.001*
*= Significant at 0.05 Above values are for WF; Values given below are indicating TLCV
Table 7. TLCVD predictive model
Variables No. in model R? cpP F P
Rh (%) 1 0.65 228.27 319.11 0.001*
MinT (°C) 2 0.82 28.54 169.65 0.001*
Rf (mm) 3 0.85 4.18 26.23 0.001*
MaxT (°C) 4 0.85 4.09 4.58 0.004*

*Significant at 5% probability
*Sample size n =180

The linear model described a major portion of the variance
in TLC disease incidence (R? = 0.85). The coefficient (0.97)
for MinT is indicating that average 1°C increase will
enhance disease incidence by 0.97% while other variables
will be constant. The model depicts the average effect on
observed data range and is used for specific weather
conditions of this study where predictions remain in
possible limits.

The standardized coefficients (B) depicted the weightage of
each predictor among which Rh was the most influential on
disease incidence having B value of -0.261, showing one
standard deviation increase in Rh cause a highest decrease
in disease. Rh was followed by Rf, MinT and MaxT with
values 0.166, 0.097 and 0.026, respectively. The analysis
indicated that Rh and Rf have more influence in disease
prediction than temperature in this region.



3.7. Comparison of TLC Disease and Regression Coefficients
with Physical Theory

The R? value for TLCVD predictive model was 0.86 (Table.
8). Standard error of the estimate was low (0.29) while the
F value was significant at a 5% probability level. There was
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a vital impact which has been shown by the TLCVD
predictive model with low standard error <1 value. TLC
disease predictive model is considered as best based upon
regression co-efficient.

Table 8. Summary of TLC disease predictive model AR (1) Corrected model

R? 0.86 0.83
Adjusted R? 0.85 0.83
MSE 0.28 0.32
SE 0.29 0.57
Durbin Watson 1.24 1.87
Assessment 180
Table 9. Analysis of variance for TLC disease regression analysis
Sources Df Ss ms F P
Model 4 289.68 72.42 24491 0.001*
Error 175 51.75 0.29
Total 179 341.42
*Significant at 5% probability level
Table 10. Overview of the predictive model
Factors Coefficients St. Coefficients () SE Type 11 SS tstat P
Intercept 0.53 1.18 0.07 0.22 0.001*
MaxT (°C) 0.053 0.026 0.033 1.74 4.63 0.004*
MinT (°C) 0.097 0.097 0.018 7.13 24.14 0.001*
Rh (%) -0.081 -0.261 0.006 74.05 250.44 0.001*
Rf (mm) 0.15 0.166 0.028 8.78 29.67 0.001*
*Significant at 5% probability level
Table 10a. Management of multicollinearity in predictive model
Factors Ridge Coefficients VIF AR(1) Coefficients
Intercept -0.048 0.841
Maximum temperature 0.082 6.66 0.042
Minimum temperature 0.078 5.56 0.083
Relative humidity -0.185 2.86 -0.069
Rainfall 0.028 6.66 0.121

The Durbin-Watson value was 1.24, hence the model was
subjected to AR (1) and value was 1.87 that indicates
almost independent variables (Tables 9 and 10).

3.8. Variety-wise Model for TLC Disease Prediction

Five genotypes were directly affected by relative humidity
(Rh) and minimum temperature (MinT) in the development
of TLC disease. Single-variety models were created through
stepwise regression analysis based on these conditions,
and the TLCVD values predicted by those variety-wise
models were found compliant with experimental values
recorded on five genotypes. These models thus developed
through stepwise regression helped derive statistically
significant components on five tomato cultivars for
incidence of TLC disease prediction over a period of 2 years.
(Table 6). Among those critical weather variables indicated
in the resultant models are relative humidity (Rh) and
minimum temperature (MinT). The above varieties/lines,
including Big Beef, Caldera, Sitara-TS-101, 014276, and
Salma, showed a minimal effect of temperature, wind
speed, and rainfall. More than 85% of the variability in TLC
disease incidence among all genotypes was accounted for
by this model, in which these components are included.
The observed and expected points follow a nearly normal

distribution, showing closeness to the reference line. Thus,
the model is fit (Figure 2).

4. Discussion

As plant diseases force the world to face social, economic,
and environmental issues, it would be beneficial to
determine the progress of diseases by developing
statistical models for efficient disease control (Morris et al.
2022). The spatio-temporal plant disease dynamics are
described by predictive models formulated by integrating
the host-pathogen interaction and meteorological
variables (Gurung et al. 2022). Disease predictive models
find the mathematical association of a dependent in
addition to various predictor or independent variables to
measure the future values of the dependent variable (Lee
and Yun 2023). The major aspects of this research were to
describe the influence of weather variables on TLCV
disease in Faisalabad (Pakistan) by using regression analysis
for two years. The overall analysis of the model showed
that all five environmental variables were relevant to
disease development. The model inferred that
temperature and relative humidity have more influence on
disease development than other variables. TLCVD
predictive model is designed to forecast the possible
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outbreak of disease based upon weather variables in 5
tomato genotypes. Five varieties/lines have no difference
in disease incidence values. In the findings, the
temperature did not affect the tomato leaf curl disease
epidemic development contrary to the current study
(Saghafipour et al. 2020). Low rainfall and high
temperature are good predictors of TLCV disease in the
climate probability model (Walerius et al. 2023) and a
similar trend was observed for disease development in the
present study. The most common predictive models used
regression and empirical approaches where disease
measurement data (prevalence, incidence, and severity) is
integrated with environmental variables (Shoaib et al.
2023). At different temperature ranges, temperature
significantly influences disease resistance to viruses and
affects host-pathogen interactions (Singh et al. 2023).
Findings showed that TLCV disease incidence in plants
increased with high temperature or humidity, and also
showed adverse infection at 252C temperature and 79.73%
relative humidity (Li et al. 2022). Positive correlations of
temperature and relative humidity with tomato leaf curl
incidence were also observed by scientists (Avedi et al.
2022). High temperature and low rainfall also have a
positive correlation, they increase tomato leaf curl disease
incidence (Kahsay and Makinde 2023). Wind speed was not
significantly correlated with tomato leaf curl disease
incidence. The following result verifies the study (Avedi et
al. 2022) which reported a non-significant correlation
between wind speed and disease incidence and that wind
speed only helps in the spread of the vector whitefly.
Whitefly infestation was predicted based on weather
conditions that showed more than 90% variation in 2
consecutive growing seasons. The comparison of predictive
models gave accurate results for forecasting whitefly and
virus transmission. The major advantage of this predictive
model for application in Faisalabad (Pakistan) would be to
provide the farmers an awareness of the possible
onslaught of Tomato leaf curl disease and enable them to
the timely applicant of insecticide to minimize the whitefly
population. The relationship between phloem contacts and
transmission efficiency was positively significant (Legarrea
et al. 2020). Whitefly population as well as relative
humidity showed negatively substantial relationship with
each other (Y= -0.0291X; +3.997X — 162.71 and R? = 0.71)
(Basha et_al. 2024). Whitefly infestation was predicted
based on environmental variables with a 65% coefficient of
determination (Parola-Contreras et al. 2022). Disease
prediction  modeling techniques were developed to
forecast probable outbreaks of plant viruses vectored by
insects (Lee et al. 2022). Weather variables were used to
develop a model for TLCD prediction and concluded that
resistant germplasm along with new chemistry insecticides
is the best disease control tactic (Gurung et al. 2022). After
the stepwise regression analysis, it was found that the
population of B. tabaci was significantly impacted by high
temperature and low temperatures, relative humidity,
wind speed, and rainfall. The findings are in accordance
with Anco et al. (2020) who after the stepwise regression
analysis determined favorable weather conditions for
yellow mosaic virus and B. tabaci infestation. If the model

predicts the probability of TLCVD development and
whitefly infestation, then a management schedule may be
deployed. More research is needed on the prediction of
TLCVD and its vector for making precise decisions. Model
verification was done by associating a real system with the
model’s structure it characterizes (Yag and Altan 2022). The
model should simulate the framework of the real system to
pass the structure authentication process (Zhang et al.
2020). The verification sites were under natural infection
and the variety used was the same in each site throughout
the cropping season. Tomato leaf curl disease incidence (%)
recorded every two weeks from transplanting from April to
July 2018 served as the observed disease progress that was
compared to the disease progress simulated by the Phil
Curl model. It is a pre-requisite to consider the time of the
year while making predictions through weather variables.
Weather data in each month has a different influence on
the vector, host, and virus. This' model presents a reliable
prediction about the major growing season of tomatoes in
(Faisalabad) Pakistan. Among five weather variables,
temperature and relative humidity are affecting the vector
and virus more than the rest. The major tomato crop is
transplanted in late march or early April in Pakistan and
thus it remains safe from the harmful effects of frost and
heat at the seedling stages. Rain, that contains free
moisture, might well create unfavorable circumstances for
whitefly activity and, as a result, for TLCVD. Whitefly
infestation is more under low relative humidity and high
temperatures which cause more severe TLCV disease. The
vector predictive models assume that the abundance of
whitefly will result in more transmission of TLCV
transmission. These assumptions work well in Faisalabad
conditions where weather is favorable for whitefly
infestation. These findings give valuable information in
deciding protective measurements against vectors and
using defense-stimulating treatments against the virus.
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Figure 2. Model diagnostic plots. (Left) Quantile-Quantile (Q-Q)
plot evaluating the normality of residuals. (Right) Plot of
residuals against predicted values to evaluate homoscedasticity.
The predicted (fitted) values are on the original scale of the
dependent variable, representing the predicted proportion of
disease incidence. (Shapiro-Wilk test: W =0.991, p = 0.453).
Sample size n =180; outliers were removed by percentage error

The decision to retain all meteorological variables despite
statistical collinearity was grounded in plant pathological
theory. TLCV dynamics are driven by the independent—
though sometimes correlated—effects of temperature on
pathogen development, humidity on vector survival,
rainfall on physical disruption, and wind on dispersal. A
simplified model that omitted any of these components
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would fail to capture the complex epidemiology of this
whitefly-vectored disease.

It was noted that minimum temperature and relative
humidity were key prediction components in both models
of disease and vector. The issue of multicollinearity in these
variables was solved by using ridge regression indicating
the stability of the parameters.

4.1. Policy and climate disturbance in predictive models

Environmental sustainability and digital innovations could
be linked through capacity building of human resource by
training and technical education. The effectiveness of a
particular policy depends upon the access of regional
market and availability of resource (Lei and Zhang 2026).

According to (Lei and He 2025) abrupt changes in weather
conditions have significant impact on the agricultural
system by affecting the spread of pests and diseases. They
stressed the integration of climate change with disease
predictive models keeping in view its striking effects on
biological and economic resilience as the algorithmic
approaches need human input for their sustainability.

Lei and Xu (2024) stated that extreme weather anomalies
like typhoons accelerate the loss of resilience in agricultural
settings necessitate the need for integration of climate
change with predictive models. Metropolitan climate
regulator increases commercial environmental concern,
display the effect of policy and human factors on climate
based predictive models in agriculture (Lei and Xu 2025).

4.2. Limitations

Although the model in current study has sound prediction
capacity for the specific conditions, it is vital to admit its
limitations. The basic limitation is regarding data collection
from a single site during two years. This means the model
may capture living and non-living parameters at the
selected site, while its performance may vary in years with
atypical weather patterns. The generalized effectiveness of
the model may be compromised due to non-validation of
with different years and environmental factors. There is a
precaution to apply this model for long term predictions in
other regions without further validation.

The present model was developed based upon two years
data from tomato growing seasons. Under the scenario of
climate change the genetic resistance of the germplasm
may be compromised due to mutation in pathogen that
may affect the accuracy of the model with the passage of
time. The model drift is a vital point to be considered for
deploying the agricultural decision support.

Despite having good fitness for the observed data because
of high R? values, the model has very limited capacity to the
non-linear relationships between disease and weather
variables. A linear relation is unable to describe the specific
effect of temperature on vector population and disease
incidence. In future, models should be focused to use non-
linear modeling techniques i.e. machine learning algorithms
such as random forests, support vector machines (SVM), or
neural networks for improved predictions.

There was a limitation in preliminary analysis that it was
not subjected to autocorrelation. However, after finding
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Durbin-Watson values the model was refitted to
autoregressive (AR1) for validation of regression in time
series analyses of whitefly and TLC disease. In future
studies related to predictive modelling these analyses
should be incorporated.

The values with more than 25% prediction error have been
removed in revised RMSE calculation for 3 cultivars. These
outliers might be appeared due to low disease incidence or
during the periods of disease progression where weather
variables could not be properly influencing the model.

4.3. Future Work

Consequently, later on researches should be focused on
collection of data from multiple environments for external
validation and to enhance the model's parameters for
wider application. The process of removing outliers would
be beneficial in future calculation of observed and
predicted values particularly for the mentioned.

The reliability of the model can be enhanced by opting
advanced Al-optimization hybrid frameworks. Application
of whale optimization algorithm (WOA) with artificial
neural networks (ANNSs), have increased the model
generalization (doi:10.1007/s11540-024-09819-9) that can
also be used for TLCV and whitefly predictive models.

4.4. Specific Recommendations & Practical Considerations

For future validation studies of these predictive models,
the data should be recorded from more than 30 sites in all
the agro-ecological regions of Pakistan for at-least 4 years
in all tomato growing seasons. The data of weather
variables should be collected on daily basis while weekly
data of TLCV and whitefly infestation is necessary so that
multiple conditions can be added in the model. The data of
multiple variables from varied locations and at different
time intervals would be helpful in generalization of the
models in all regions and seasons.

These predictive equations can guide the farmers and
extension workers about the need for treatment
interventions as the adult whitefly exceeds 3 per leaf and
disease incidence recorded 10%. Exceeding the threshold
beyond these limits would suggest for application of
insecticides following weekly monitoring.

The predictions based upon weather variables give a lead
time of 1-2 weeks before symptom appearance depending
upon the availability of favourable conditions for the
whitefly infestation and subsequent TLCV transmission.
The lead time window is very critical for the growers to
implement management tactics before waiting for the
severe disease outbreak.
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