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Graphical abstract 

Abstract 

Models developed to predict diseases associated with the 
tomato leaf curl virus (TLCVD) in different countries of the 
world. The research has been set to identify those 
parameters that are maximally influenced by the infectious 
weather variables. Therefore, the objectives of this 
research were to forecast the TLCVD disease together with 
its vector whitefly based on meteorological conditions and 
to validate the two models. Sown in three replications 
using RCBD over two seasons were the following varieties 
of tomato genotypes: Big Beef, Sitara-TS-101, 014276, 
Caldera, and Salma. Data on disease incidence and weather 
variables were used to develop a disease-predictive model 
for TLCVD by employing stepwise regression analysis. The 
criterion of evaluation for this model was a comparison 
between predicted and empirical observations. TLCVD 
predictive model y= 0.532+ 0.053x1 (°C) +0.97x2 (°C) − 
0.081x3 (%) +0.15x4 (mm) R2= 0.85 y= TLCV disease, while 
whitefly predictive model y= -7.77+0.237x1 (°C) +0.223x2 

(°C) -0.094x3 (%) +0.13x4 (°C) +0.085x5 (m/s) R2= 0.91. All 

weather parameters affected the incidence of the disease 
in addition to the infestation with the whitefly. A revised 
RMSE of 0.51 after exclusion of outliers demonstrated the 
accuracy in a determined range among different cultivars. 
Based on the current study findings, predictive models for 
TLCV disease and in respect of whitefly would be developed 
for different agroecological zones of Pakistan. 

Keywords: Begomovirus, Whitefly, Empirical model, 
Epidemiology 

1. Introduction

Tomato leaf curl virus, or TLCV, is a begomovirus from the
family Geminiviridae that affects tomato plants particularly
in conditions that are warm and comparatively less humid
(Li et al. 2022). TLCV causes the most damaging and yield
limiting tomato leaf curl disease (TLCD) worldwide (Yan et 
al. 2021). Prevailing the conducive environment, disease
severity may be up to 80% causing a substantial yield loss
(El-Sappah et al. 2022). The badly affected tomato fields
result in 100% yield loss, costing tens of millions of dollars
in the US alone (Kandhro 2020). More than 7 million
hectares of tomato crops are affected by different strains
of TLCV around the globe (Abbas et al. 2022). Whitefly
introduces the TLCV in the phloem of the tomato plant to
suck juice (Dhaliwal et al. 2020). The spread of viruses in
the host plant depends upon the feeding times of whitefly
(Legarrea et al. 2020). Epidemiological models that forecast 
the possibility of disease outbreaks may provide significant
information for tomato growers enabling them to
implement a timely disease management strategy
(Hasanaliyeva et al. 2022). The practical benefit of disease
predictive models is to provide advance warning about the
disease. This advance warning allows for the determination
of possible disease outbreaks, saving of resources, sites for
cultivation, selection of cultivars, and the execution of a
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judicious control strategy (Saurabh et al. 2021). The 
prediction may be taken into consideration to reduce the 
number of insecticidal sprays under unfavorable conditions 
for whitefly infestation thus minimizing the monetary costs 
and environmental issues (Gao et al. 2025). The predictive 
models infer those insecticidal sprays would only be 
beneficial when the weather forecasts are in favor of 
whitefly infestation (Dearlove et al. 2024). However, when 
the predicted environmental conditions are not favoring 
the insect population and subsequent viral transmission, 
models would be used to reduce unnecessary insecticidal 
applications, thus minimizing the input expenditures 
(Razzaq et al. 2023). Numerous models are being 
developed to forecast the onset of the TLC disease 
epidemic by considering previous and current observations 
to predict the likelihood of epidemic onset (Ali et al. 2022). 
These models provide the basis for developing decision 
support systems (DSS) which predict the disease dynamics 
for multiple locations and their cost-effective 
management. The disease caused by the virus was 
modeled on a plant population and its dynamics were 
determined by a linked differential equation. The plant 
population was categorized into disease free, 
asymptomatic, and symptomatic before developing the 
model (Nisar et al. 2024). A disease predictive model was 
devised based on the vector population. The disease 
outbreak was assessed by considering the most favoring 
weather variables for insect infestation (Nguru and 
Mwongera 2023). The complications in Holt model was 
resolved by keeping the host and vector population 
constant (Asghar et al. 2024). TLC disease was predicted by 
using biological and epidemiological data because both 
virus and vector shared a wider host range (Nguru and 
Mwongera 2023). The biological data of the Holt model 
inferred that the vector behavior and activity, especially 
virus spread is a crucial aspect in the magnitude of TLCVD 
epidemic development (Alhakami et al. 2022). The spatio-
temporal progress of the disease was mutually described 
through attributes of the pathos system and weather 
variables by the predictive model (Gurung et al. 2022; Zhao 
et al. 2025). Under the field conditions, the correlation of 
TLCV and insect vector was described in varied tomato 
germplasm. In tomato fields, the relationship of B. tabaci 
infestation virus transmission was directly proportional (Y 
= - 0.001x1 + 0.03x2 + 1.06 and R2 = 0.66) (Basha et al. 2024). 
Temperature directly showed correlation whereas relative 
humidity was inversely correlated with the whitefly 
population (Saghafipour et al. 2020). Considering the 
incidence of TLCVD in Pakistan, the development of a 
predictive model through regression analysis that 
describes the probable presence and absence of the 
disease may be beneficial. In Latin America, huge 
destruction to tomatoes was done by B. tabaci and TLCV 
for (Walerius et al. 2023) which a Flora Map was used to 
develop a prediction model for climate that destroyed 
tomatoes in Latin America by B. tabaci and TLCV.A model 
that can be used specifically for the prediction of whitefly 
and TLCD has not been developed in Pakistan. A very few 
predictive models have been developed for TLCD in the 
world and weather conditions of Pakistan are different 

from those specific countries so those models may not be 
useful for prediction in Pakistan. The objectives of this 
experiment were to (i) determine if regional weather 
conditions may be related to TLCV disease incidence and 
whitefly (ii) determine the disease incidence could be 
related to whitefly infestation (iii) validation of both 
models. 

2. Materials and Methods 

The meteorological data were acquired from the weather 
observatory set up at the University of Agriculture 
Faisalabad (UAF) Pakistan. Latitude: 31°-44' N Longitude: 
73°-06' E. Altitude: 184.4m. Disease incidence and whitefly 
infestation were assessed from data obtained over 5 
tomato genotypes cultivated on the experimental site at 
UAF. Complete information about weather instruments 
and methods utilized by Agromet is available at the website 
(www.uaf.edu.pk) and were complete for the entire study 
period, with no missing values in any meteorological 
parameters measured. 

2.1. Study Design Statement 

This study constituted an agronomic field experiment 
focused on plant disease modeling. The research did not 
involve human participants or animals, and therefore did 
not require formal ethical approval or registration in a 
clinical trials registry. 

2.2. Prediction of TLCV Disease and Whitefly Infestation 

The experiment for predictive models of TLC disease 
incidence and whitefly infestation was initiated by sowing 
five tomato genotypes (Big Beef, Sitara-TS-101, 014276, 
Caldera and Salma) at the research field of the Department 
of Plant Pathology, UAF for 2 years (2023 and 2024) under 
randomized complete block design (RCBD) with 3 
replications. The cultivars were planted at 30 cm plant to 
plant and 70 cm row to row distance, across 15 m long row. 
Data on TLC disease incidence and B. tabaci infestation was 
thus recorded weekly for all genotypes from BBCH growth 
stage 12 (two true leaves) until BBCH 89 (fully ripe fruit). 
The data of whiteflies were collected early in the morning 
being the ideal time point for its counting. Total 180 weekly 
observations come from five varieties × two years × roughly 
eighteen sampling dates. 

2.3. Analysis of Data 

Those data were analyzed with least significant difference 
(LSD at P<0.05) tests and thus could serve for ANOVA and 
comparison of the disease incidence under different 
environmental conditions. SAS 9.3 statistical software was 
used for data analyses. The correlation analysis was 
conducted to determine the effects of environmental 
factors viz. wind speed, rainfall, relative humidity, and low 
and high temperature on disease incidence and vector 
population (Calinski et al. 1981). Stepwise regression 
analysis was applied to the environmental variables which 
showed a positive relationship between TLC disease and 
whitefly (Cao et al. 2024; Hu et al. 2025). The weather 
variables which had a significantly positive influence on 
TLCV and whitefly were illustrated on graphs and favorable 
ranges for disease incidence and whitefly infestation were 
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described. All the predictions of the model and fitted values 
are presented on the original scale of the dependent 
variable (disease incidence) to simplify straight 
clarification. Normal distribution of residuals was Shapiro-
Wilk tests for validation of ordinary regression analysis. 

2.4. Analysis of residuals and correction of autocorrelation 

The model was subjected to Durbin-Watson analysis to find 
out the independence of residuals and upon the detection 
of positive autocorrelation it was further refitted for AR (1) 
analysis.  

2.5. Assessment of Disease and Vector Predictive Models  

The method devised was used for the evaluation of the 
regression model for TLC disease and whitefly (Lobin et al. 
2022; Shahbaz et al. 2023). 1) To compare disease 
incidence or vector infestation along with weather 
variables and the physical theory of the model. 2) To 
compare the recorded and estimated values. 3) To collect 
fresh data and evaluate predicted values. Formulae for 
calculating root mean square error (RMSE) and percentage 
error for evaluation of predictive methods read as follows 
(Wallach and Goffinet 1989): 

 RMSE   i  1 to n  Oi  Pi 2 / n 0.5     
 

 Error %  = Recorded data – Forecasted data/Recorded data×100  

The number of observations, n, while Oi are observed data 
points and Pi predicted data points. Root mean square 
error value ± 20 indicates that prediction assessment is 
good (Willmott 1982). Model accuracy was evaluated by 
RMSE and uncertainty for a single prediction was 
quantified using a 95% prediction interval which was 
calculated as:  

0.025, sqrt(1 0 (X X) 1 0T Ty t n p X X    
 

 Where y^ is the predicted TLCV or whitefly 

 t0.025, n-p is the critical t-value for 95% confidence 
with n-p degrees of freedom, 

 σ^ is the residual standard error from the model, 

 X is the model matrix from the training data, 

 x0 is the vector of predictor values for the new forecast 

Reliability of the model was validated by robustness tests 
using quantile regression and ordinary least squares (OLS) 
(Zeng et al., 2025). 

2.6. Criteria for selection of variables and modelling 

The models for vector and disease were developed by 
multiple regressions with stepwise variable selection. The 
significance levels for variable entry (SLENTRY) and 
retention (SLSTAY) were both set at α = 0.15. Weather 
variables i.e. maximum temperature, minimum 
temperature, relative humidity, rainfall, and wind speed 
were used in modeling. 

2.7. Justification of the model 

A linear regression model commonly known as linear 
probability model (LPM) was used to predict TLC disease 
incidence. Although LPM has limitations for a bounded 

outcome (0 and 1), it was selected for multiple reasons as 
stated below.  

(i) The coefficients provide a clear effect of each weather 
variable on disease incidence that is very valued for 
agriculturists. 

(ii) It has model parsimony and provides a linear equation 
to develop a simple and working prediction that can be 
used in field settings. 

(iii) This model was empirically fit as it did not predict 
beyond the 0-100% range and its assumptions are 
enough for interpretation of a linear regression. 

2.8. Management of multicollinearity  

The values of variance inflation factor (VIF) were calculated 
for quantification of multicollinearity in regression analysis. 
This was necessary to find out the extent of correlation 
between different predictors. VIF was calculated by 
following formula 

21/1VIF R   

Due to having a unique impact on disease development all 
the meteorological predictors have been retained in the 
model despite high multicollinearity (VIF > 12). Both stages 
of temperature (maximum and minimum) have a varied 
effect on virus replication in whitely infestation. Similarly, 
Rh and Rf have a distinct position in affecting weather 
conditions while wind speed has a role in whitefly 
movement. We have used ridge coefficients for 
stabilization of multicollinearity and to maintain the 
ecological validity of the model (Ma & AAppolloni 2025).  

3. Results 

3.1. B. tabaci Prediction by Using Weather Variables 

R2 measures, mean square error (MSE), and Cp value were 
used in the assessment of the model's predicting capability. 
The model with Cp=6.0 and MSE=0.35 was selected for the 
prediction of whitefly (B. tabaci). y = -7.77+0.237x1+0.232 
x2-0.094 x3+0.13 x4+0.085 x5 

Co-efficient of determination R2= 0.91 

All environmental variables affected the whitefly 
infestation on tomato genotypes. The model inferred 
about 0.237 units change in whitefly infestation due to a 
single modification of maximum temperature and 0.23 
units change in minimum temperature while a single unit 
change in relative humidity showed 0.094 units change in 
whitefly infestation. Whitefly infestation changed 0.13 and 
0.085 units due to a single unit change in rainfall and wind 
velocity, respectively (Table 3). 

3.2. Evaluation of Whitefly Predictive Model Based upon 
the Physical Theory 

The coefficient of determination was used to find the 
effectiveness of the model. In the current experiment, it 
was 0.92 which is very good for in-vivo studies because 
conditions are continuously changing. The standard error 
of the estimate is rather lower than most other estimates 
(1.3) (Table 1). The model depicted a significant value of F-
distribution at a 5% probability level (Table 2). The data on 
environmental conditions and the B. tabaci population 
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contributed significantly to the predictive model. The 
vector predictive model proved best for forecasting with 
reference to physical theory. 

The analysis was subjected to Durbin-Watson test which 
gave 0.84 value that is below 1.5 indicating positive 
autocorrelation hence model was further refitted 
autoregressive model of order 1 AR (1) analysis. In final 
analysis, it was inferred that a unit change in maximum 

temperature would result in 0.201 units change in whitefly 
infestation. The weather variables predicted whitefly 
population significantly except wind speed. All 
environmental variables except wind speed remained 
significant predictors. The value of Durbin-Watson after 
analysis of AR (1) was 1.92 that is very near to ideal value 
of 2 indicating that residuals are almost independent.  

 

Table 1. Statistical summary of whitefly predictive model AR (1) corrected model 

R2 0.94 0.93 

Adjusted R2 0.93 0.92 

MSE 0.37 0.39 

SE 1.36 1.41 

Durbin-Watson 0.84 1.92 

Entries 180 180 

*Sample size n =180 

Table 2. ANOVA for whitefly infestation during 2023 and 2024 

Source Degree of freedom SS MS F P 

Regression 6 728.204 139.321 413.82 0.0001** 

Error 173 59.423 0.337   

Total 179 800.642    

** = Significant @ 5% level of probability 

Table 3. Detailed overview of predictive model 

Factors Co-efficient SE Type II SS t statistics P 

Intercept -7.758 1.294 12.691 34.09 0.0001** 

Maximum 

temperature 
0.237 0.036 14.832 41.92 0.0001** 

Minimum 

temperature 
0.232 0.022 32.474 91.78 0.0001** 

Relative humidity -0.094 0.006 87.929 252.34 0.0001** 

Rainfall 0.13 0.031 4.311 12.18 0.0006** 

Wind speed 0.085 0.033 2.409 7.01 0.0091** 

Table 3a. Management of multicollinearity in predictive model 

Factors Ridge Coefficients VIF AR(1) Coefficients 

Intercept -0.048  −6.892 

Maximum temperature 0.082 3.71 0.201 

Minimum temperature 0.078 1.19 0.198 

Relative humidity -0.185 12.5 −0.082 

Rainfall 0.028 12.5 0.108 

Wind speed 0.015 12.5 0.071 

Model fitted with an AR(1) for autocorrelation (Durbin-Watson = 1.92). 

Table 4. B. tabaci population predictive model 

Variables Number R2 CP F P 

Maximum temperature 1 0.73 414.75 504.04 0.001** 

Relative humidity 2 0.84 201.07 102.11 0.001** 

Minimum temperature 3 0.92 17.98 172.39 0.001** 

Rainfall 4 0.92 10.81 8.87 0.003** 

Wind speed 5 0.92 6.00 6.81 0.009** 

** = Significant at 5% probability level 

3.3. Evaluation of Model by the Homogeneity of Regression 

Developed predictive model of B. tabaci population by 
stepwise regression analyses, having significant variables 
(Table 4). B. tabaci population was significantly correlated 
with environmental variables. The important weather 
conditions in a predictive model would include minimum 
temperature, relative humidity, and maximum 
temperature. The effect of rainfall (Rf) and wind speed (Ws) 

appeared as non-significant. The regression model 
accounted for variability between 73% and 94%. The B. 
tabaci predictive model was found highly reliable by with 
high R2, low CP, and SE values. Normal probability plot of 
residuals and disease vs fit, best demonstrated the full 
model of the two years (2023 and 2024) (Figure 1). The 
likelihood design is usually recommended for a goodness 
fit of a hypothesized distribution and is a common way to 
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check the non-normality of the data (Backhaus et al. 2021). 
The conventional maximum likelihood method, while 
modeling a full 2-year model, showed the maximum 
number of data points clustered around a reference line, 
deviating on both lower and higher sides by a few data 
points, thus destroying the ordinary distribution of those 
points; hence causing error in the model. Residuals are 
calculated as differences between observed and predicted 
values. The following scatter plot may give an indication of 
how these residuals are distributed. It demonstrated that 
most data points were clustered pretty much evenly 
around the reference mark confirming very good fit of the 
regression model while some of the points on reference 
line were not distributed in such proximity causing errors 
in prediction. 

3.4. Assessment of Predictive Model by the Comparison of 
Observed and Predicted Values 

The predictions were considered as good if the value of 
percent error and RMSE is less than 20. In the current 
experiment, most predicted values acquired from 2 years 
model on 5 cultivars, gave an error (%) and RMSE below 20 
(Tables 5 and 6). In the development of whitefly infestation 
on 5 tomato cultivars, relative humidity, as well as lowest 
temperature, was epidemiologically important 
environmental variables. The significant weather variables 
were used in stepwise regression analysis to develop a 
single variable model. The predicted values by these single 

variety models for the B. tabaci population were in close 
compliance with recorded values in 5 tomato cultivars, 
lines such as Big Beef, Sitara-TS-101 along with Caldera, 
014276, and Salma. 

 

Figure 1. Model diagnostic plots. (Left) Quantile-Quantile (Q-Q) 

plot evaluating the normality of residuals. (Right) Plot of 

residuals against predicted values to evaluate homoscedasticity. 

The predicted (fitted) values are on the original scale of the 

dependent variable, representing the predicted proportion of 

disease incidence. (Shapiro-Wilk test: W = 0.985, p = 0.127). 

Sample size n =180; outliers were removed by percentage error 

3.5. Assessment of Model by the Comparison of Observed 
and Predicted Values 

Current suite of these experiments shows that for most 
predictions using 2-year model predictions over 5 cultivars, 
prediction accuracies are within ±20% with an overall mean 
RMSE across all predictions of less than ±20 (180) (Table 5). 

 

Table 5. The variety-wise regression equation for whitefly infestation & TLCVD 

Regression equations for whitefly infestation & TLCVD  % Error 

y = bo + b1x1 + b2x2 + b3x3 (WF) 
Observed Predicted 

Y = bo + b1 x1 + b2 x2 + b3 x3 (TLCV) 

Big Beef = -0.487+0.341x1 – 0.124x2 (WF)    

Big Beef = -0.26 + 0.27X1 – 0.085 x2 (TLCV)    

(x1=MinT, x2= Rh) (WF) 3.60 3.59 0.28 

TLCV 1.20 1.18 1.67 

(WF) 1.30 1.27 2.31 

TLCV 1.30 1.28 1.54 

(WF) 5.40 5.06 6.30 

TLCV 2.10 1.83 12.86 

(WF) 3.60 3.05 15.2 

TLCV 3.50 3.35 4.29 

Caldera = -0.412+0.342x1 – 0.122x2 (WF)    

Caldera = -0.22 + 0.19 x1 – 0.079 x2 (TLCV)    

(x1=MinT, x2= Rh) (WF) 1.40 1.39 0.71 

TLCV 1.50 1.45 3.33 

(WF) 3.90 3.83 1.79 

TLCV 1.60 1.47 9.38 

(WF) 5.60 5.21 6.96 

TLCV 3.60 3.45 4.17 

(WF) 3.80 3.26 14.21 

TLCV 2.30 1.63 29.13 

Sitara-TS-101 = 0.059+0.333x1 – 0.121x2 (WF)    

Sitara-TS-101 = -0.162 + 0.193x1 – 0.74x2 (TLCV)    

(x1=MinT, x2= Rh) WF 1.50 1.46 2.67 

TLCV 1.70 1.69 0.59 

WF 4.50 4.16 8.17 

TLCV 1.80 1.67 7.22 
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WF 5.90 5.43 7.97 

TLCV 3.80 3.61 5.00 

WF 4.20 3.58 14.76 

TLCV 2.50 1.83 26.81 

014276 = -9.056+0.272x1+0.225x2-0.091x3 (WF)    

014276 = 0.18 + 0.21 x1– 0.089 x2 (TLCV)    

(x1= MaxT, x2= MinT, x3= Rh) WF 6.80 6.75 0.74 

TLCV 4.10 4.02 1.95 

WF 5.90 5.51 7.07 

TLCV 4.20 4.08 2.86 

WF 1.90 1.73 8.95 

TLCV 1.90 1.73 8.95 

WF 4.30 3.77 12.33 

TLCV 2.60 2.06 20.77 

Salma = 0.722+0.308x1-0.111x2 WF    

Salma = 0.26+ 0.22 x1- 0.094x2 (TLCV)    

(x1= MinT, x2= Rh) WF 2.20 2.15 2.73 

TLCV 4.30 4.21 2.09 

WF 7.00 6.92 1.14 

TLCV 1.90 1.76 7.37 

WF 6.00 5.77 3.83 

TLCV 2.20 1.95 11.36 

WF 5.20 4.68 11.11 

TLCV 2.80 2.18 22.14 

Table 5a. 95% Prediction Intervals for Whitefly infestation Forecasts 

Time Period Predicted whitefly Prediction interval 95% Lower Prediction interval 95% Upper 

Early season 1.4 0.7 2.1 

Mid Season 3.2 2.5 3.9 

Late Season 7.5 6.8 8.2 

High Pressure 5.8 5.1 6.5 

Predicted WF ± 0.675 (t-value × residual SE); represents range for future observations with 95% confidence 

Table 5b. 95% Prediction Intervals for TLCV Disease Forecasts 

Time Period Predicted TLCD Prediction interval 95% Lower Prediction interval 95% Upper 

Early season 0.4 0.1 0.7 

Mid Season 2.3 1.8 2.8 

Late Season 3.2 2.7 3.7 

High Pressure 4.1 3.6 4.6 

Predicted TLCV ± 0.845 (t-value × residual SE); represents range for future observations with 95% confidence 

 

The variables with significant influence were used to 
develop the B. tabaci predictive model for two years in five 
tomato genotypes (Table 6). The high temperature, low 
temperature along with relative humidity played an 
important role in stepwise regression analysis for B. tabaci 
prediction in case of Caldera variety. The maximum 
temperatures, rainfalls, and wind speeds drastically 
affected the five different genotypes. The above-
mentioned model explains more than 80 percent variability 
in whitefly infestation in all genotypes. The model, 
consisting of the three environmental parameters, was 
able to predict the population of B. tabaci with a 
reasonable R2 and equally low C (p) and RMSE values 
obtained. Model robustness was described after the 
exclusion of outliers of more than 25% errors and a revised 
RMSE was calculated. The 95% prediction intervals 
quantified uncertainty for forecasts of whitefly in such a 
way that a mid-season prediction of 3.2 whiteflies has a 
95% prediction interval of 2.5 to 3.9 for future. Similarly for 

TLCD, a prediction value of 2.3 represent 95% interval of 
1.8 to 2.8 for future (Table 5a & 5b). The model predictions 
for disease and vector fall in biologically probable ranges 
(0-100% disease incidence and ≥0 whiteflies per plant, 
respectively), indicating that model does not produce 
unrealistic outputs. 

Revised RMSE values calculated after excluding outliers 
with prediction errors >25%. Original RMSE values shown 
for transparency. Outliers were identified in cultivars 
Caldera, Sitara-TS-101, and 014276 during early to mid-
season measurements. 

3.6. Development of TLC Disease Predictive Model 

Using 2 years of TLC disease incidence data and weather 
variables in stepwise regression analysis, the predictive 
model was developed. The predictive model y = 0.532+ 
0.053 x1 + 0.97x2-0.081x3+0.15x4 was used to predict 
possible TLC disease development under weather 
conditions. In this equation, y = TLC disease incidence, x1= 
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MaxT, x2= MinT, x3= Rh and x4= Rf. According to the 
analysis, single unit variation in MaxT should mean a 
change of 0.053 units in TLCVD. In case of minimum 
temperature, it would be an amount of 0.97 units and, with 
single unit rise in Rh, there would be a decrease of 0.081 in 
TLCVD incidence. With a one-unit change in rainfall, the 
disease would experience an effect of 0.15 units. The 2 

years predictive model accounted 85% variability 
associated with TLCVD incidence (Table 7). The stepwise 
regression analysis considered a few important factors like 
environmental variables, minimum temperature, rainfall, 
maximum temperature, and relative humidity. The model 
including all these variables accounted for the variability in 
disease development by 65 to 85%. 

Table 6. Variety wise B. tabaci and TLCVD predictive model 

Environmental 
parameters 

R2 Adjusted -R2 CP RMSE Revised RMSE Pr> F 

Big Beef (WF) 0.94 0.93 1.537 0.64 0.49  

TLCV 0.93 0.91 0.139 0.51 0.41  

MinT      0.0195* 

Rh (%)      0.0453* 

Caldera (WF) 0.93 0.92 2.099 0.65 0.52  

TLCV 0.89 0.87 0.204 0.61 0.49  

MinT      0.0155* 

      0.009* 

Rh (%)      0.0034* 

      0.00* 

Sitara-TS-101 

(WF) 
0.91 0.89 3.049 0.71 0.53  

TLCV 0.86 0.83 0.240 0.67 0.51  

MinT      0.0152* 

      0.002* 

Rh (%)      0.0366* 

      0.001* 

014276 (WF) 0.94 0.91 3.429 0.63 0.51  

TLCV 0.92 0.91 0.083 0.55 0.44  

MaxT      0.2341 

MinT      0.0045* 

      0.003* 

Rh (%)      0.0334* 

      0.001* 

Salma (WF) 0.90 0.88 2.661 0.71 0.53  

TLCV 0.93 0.92 0.096 0.53 0.42  

MinT      0.0035* 

      0.001* 

Rh (%)      0.0292* 

      0.001* 

*= Significant at 0.05 Above values are for WF; Values given below are indicating TLCV 

Table 7. TLCVD predictive model 

Variables No. in model R2 CP F P 

Rh (%) 1 0.65 228.27 319.11 0.001* 

MinT (°C) 2 0.82 28.54 169.65 0.001* 

Rf (mm) 3 0.85 4.18 26.23 0.001* 

MaxT (°C) 4 0.85 4.09 4.58 0.004* 

*Significant at 5% probability 

*Sample size n =180 

 

The linear model described a major portion of the variance 
in TLC disease incidence (R² = 0.85). The coefficient (0.97) 
for MinT is indicating that average 1°C increase will 
enhance disease incidence by 0.97% while other variables 
will be constant. The model depicts the average effect on 
observed data range and is used for specific weather 
conditions of this study where predictions remain in 
possible limits. 

The standardized coefficients (β) depicted the weightage of 
each predictor among which Rh was the most influential on 
disease incidence having β value of -0.261, showing one 
standard deviation increase in Rh cause a highest decrease 
in disease. Rh was followed by Rf, MinT and MaxT with β 
values 0.166, 0.097 and 0.026, respectively. The analysis 
indicated that Rh and Rf have more influence in disease 
prediction than temperature in this region.  
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3.7. Comparison of TLC Disease and Regression Coefficients 
with Physical Theory 

The R2 value for TLCVD predictive model was 0.86 (Table. 
8). Standard error of the estimate was low (0.29) while the 
F value was significant at a 5% probability level. There was 

a vital impact which has been shown by the TLCVD 
predictive model with low standard error <1 value. TLC 
disease predictive model is considered as best based upon 
regression co-efficient. 

 

Table 8. Summary of TLC disease predictive model AR (1) Corrected model 

R2 0.86 0.83 

Adjusted R2 0.85 0.83 

MSE 0.28 0.32 

SE 0.29 0.57 

Durbin Watson 1.24 1.87 

Assessment 180  

Table 9. Analysis of variance for TLC disease regression analysis 

Sources Df Ss ms F P 

Model 4 289.68 72.42 244.91 0.001* 

Error 175 51.75 0.29   

Total 179 341.42    

*Significant at 5% probability level 

Table 10. Overview of the predictive model 

Factors Coefficients St. Coefficients (β) SE Type II SS t stat P 

Intercept 0.53  1.18 0.07 0.22 0.001* 

MaxT (°C) 0.053 0.026 0.033 1.74 4.63 0.004* 

MinT (°C) 0.097 0.097 0.018 7.13 24.14 0.001* 

Rh (%) -0.081 -0.261 0.006 74.05 250.44 0.001* 

Rf (mm) 0.15 0.166 0.028 8.78 29.67 0.001* 

*Significant at 5% probability level 

Table 10a. Management of multicollinearity in predictive model 

Factors Ridge Coefficients VIF AR(1) Coefficients 

Intercept -0.048  0.841 

Maximum temperature 0.082 6.66 0.042 

Minimum temperature 0.078 5.56 0.083 

Relative humidity -0.185 2.86 -0.069 

Rainfall 0.028 6.66 0.121 

 

The Durbin-Watson value was 1.24, hence the model was 
subjected to AR (1) and value was 1.87 that indicates 
almost independent variables (Tables 9 and 10). 

3.8. Variety-wise Model for TLC Disease Prediction 

Five genotypes were directly affected by relative humidity 
(Rh) and minimum temperature (MinT) in the development 
of TLC disease. Single-variety models were created through 
stepwise regression analysis based on these conditions, 
and the TLCVD values predicted by those variety-wise 
models were found compliant with experimental values 
recorded on five genotypes. These models thus developed 
through stepwise regression helped derive statistically 
significant components on five tomato cultivars for 
incidence of TLC disease prediction over a period of 2 years. 
(Table 6). Among those critical weather variables indicated 
in the resultant models are relative humidity (Rh) and 
minimum temperature (MinT). The above varieties/lines, 
including Big Beef, Caldera, Sitara-TS-101, 014276, and 
Salma, showed a minimal effect of temperature, wind 
speed, and rainfall. More than 85% of the variability in TLC 
disease incidence among all genotypes was accounted for 
by this model, in which these components are included. 
The observed and expected points follow a nearly normal 

distribution, showing closeness to the reference line. Thus, 
the model is fit (Figure 2). 

4. Discussion 

As plant diseases force the world to face social, economic, 
and environmental issues, it would be beneficial to 
determine the progress of diseases by developing 
statistical models for efficient disease control (Morris et al. 
2022). The spatio-temporal plant disease dynamics are 
described by predictive models formulated by integrating 
the host-pathogen interaction and meteorological 
variables (Gurung et al. 2022). Disease predictive models 
find the mathematical association of a dependent in 
addition to various predictor or independent variables to 
measure the future values of the dependent variable (Lee 
and Yun 2023). The major aspects of this research were to 
describe the influence of weather variables on TLCV 
disease in Faisalabad (Pakistan) by using regression analysis 
for two years. The overall analysis of the model showed 
that all five environmental variables were relevant to 
disease development. The model inferred that 
temperature and relative humidity have more influence on 
disease development than other variables. TLCVD 
predictive model is designed to forecast the possible 
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outbreak of disease based upon weather variables in 5 
tomato genotypes. Five varieties/lines have no difference 
in disease incidence values. In the findings, the 
temperature did not affect the tomato leaf curl disease 
epidemic development contrary to the current study 
(Saghafipour et al. 2020). Low rainfall and high 
temperature are good predictors of TLCV disease in the 
climate probability model (Walerius et al. 2023) and a 
similar trend was observed for disease development in the 
present study. The most common predictive models used 
regression and empirical approaches where disease 
measurement data (prevalence, incidence, and severity) is 
integrated with environmental variables (Shoaib et al. 
2023). At different temperature ranges, temperature 
significantly influences disease resistance to viruses and 
affects host-pathogen interactions (Singh et al. 2023). 
Findings showed that TLCV disease incidence in plants 
increased with high temperature or humidity, and also 
showed adverse infection at 25ºC temperature and 79.73% 
relative humidity (Li et al. 2022). Positive correlations of 
temperature and relative humidity with tomato leaf curl 
incidence were also observed by scientists (Avedi et al. 
2022). High temperature and low rainfall also have a 
positive correlation, they increase tomato leaf curl disease 
incidence (Kahsay and Makinde 2023). Wind speed was not 
significantly correlated with tomato leaf curl disease 
incidence. The following result verifies the study (Avedi et 
al. 2022) which reported a non-significant correlation 
between wind speed and disease incidence and that wind 
speed only helps in the spread of the vector whitefly. 
Whitefly infestation was predicted based on weather 
conditions that showed more than 90% variation in 2 
consecutive growing seasons. The comparison of predictive 
models gave accurate results for forecasting whitefly and 
virus transmission. The major advantage of this predictive 
model for application in Faisalabad (Pakistan) would be to 
provide the farmers an awareness of the possible 
onslaught of Tomato leaf curl disease and enable them to 
the timely applicant of insecticide to minimize the whitefly 
population. The relationship between phloem contacts and 
transmission efficiency was positively significant (Legarrea 
et al. 2020). Whitefly population as well as relative 
humidity showed negatively substantial relationship with 
each other (Y= −0.0291X2 +3.997X – 162.71 and R2 = 0.71) 
(Basha et al. 2024). Whitefly infestation was predicted 
based on environmental variables with a 65% coefficient of 
determination (Parola-Contreras et al. 2022). Disease 
prediction modeling techniques were developed to 
forecast probable outbreaks of plant viruses vectored by 
insects (Lee et al. 2022). Weather variables were used to 
develop a model for TLCD prediction and concluded that 
resistant germplasm along with new chemistry insecticides 
is the best disease control tactic (Gurung et al. 2022). After 
the stepwise regression analysis, it was found that the 
population of B. tabaci was significantly impacted by high 
temperature and low temperatures, relative humidity, 
wind speed, and rainfall. The findings are in accordance 
with Anco et al. (2020) who after the stepwise regression 
analysis determined favorable weather conditions for 
yellow mosaic virus and B. tabaci infestation. If the model 

predicts the probability of TLCVD development and 
whitefly infestation, then a management schedule may be 
deployed. More research is needed on the prediction of 
TLCVD and its vector for making precise decisions. Model 
verification was done by associating a real system with the 
model’s structure it characterizes (Yağ and Altan 2022). The 
model should simulate the framework of the real system to 
pass the structure authentication process (Zhang et al. 
2020). The verification sites were under natural infection 
and the variety used was the same in each site throughout 
the cropping season. Tomato leaf curl disease incidence (%) 
recorded every two weeks from transplanting from April to 
July 2018 served as the observed disease progress that was 
compared to the disease progress simulated by the Phil 
Curl model. It is a pre-requisite to consider the time of the 
year while making predictions through weather variables. 
Weather data in each month has a different influence on 
the vector, host, and virus. This model presents a reliable 
prediction about the major growing season of tomatoes in 
(Faisalabad) Pakistan. Among five weather variables, 
temperature and relative humidity are affecting the vector 
and virus more than the rest. The major tomato crop is 
transplanted in late march or early April in Pakistan and 
thus it remains safe from the harmful effects of frost and 
heat at the seedling stages. Rain, that contains free 
moisture, might well create unfavorable circumstances for 
whitefly activity and, as a result, for TLCVD. Whitefly 
infestation is more under low relative humidity and high 
temperatures which cause more severe TLCV disease. The 
vector predictive models assume that the abundance of 
whitefly will result in more transmission of TLCV 
transmission. These assumptions work well in Faisalabad 
conditions where weather is favorable for whitefly 
infestation. These findings give valuable information in 
deciding protective measurements against vectors and 
using defense-stimulating treatments against the virus. 

 

Figure 2. Model diagnostic plots. (Left) Quantile-Quantile (Q-Q) 

plot evaluating the normality of residuals. (Right) Plot of 

residuals against predicted values to evaluate homoscedasticity. 

The predicted (fitted) values are on the original scale of the 

dependent variable, representing the predicted proportion of 

disease incidence. (Shapiro-Wilk test: W = 0.991, p = 0.453). 

Sample size n =180; outliers were removed by percentage error 

The decision to retain all meteorological variables despite 
statistical collinearity was grounded in plant pathological 
theory. TLCV dynamics are driven by the independent—
though sometimes correlated—effects of temperature on 
pathogen development, humidity on vector survival, 
rainfall on physical disruption, and wind on dispersal. A 
simplified model that omitted any of these components 



UNCORRECTED PROOFS

10  ISMAIL et al. 

would fail to capture the complex epidemiology of this 
whitefly-vectored disease. 

It was noted that minimum temperature and relative 
humidity were key prediction components in both models 
of disease and vector. The issue of multicollinearity in these 
variables was solved by using ridge regression indicating 
the stability of the parameters. 

4.1. Policy and climate disturbance in predictive models 

Environmental sustainability and digital innovations could 
be linked through capacity building of human resource by 
training and technical education. The effectiveness of a 
particular policy depends upon the access of regional 
market and availability of resource (Lei and Zhang 2026). 

According to (Lei and He 2025) abrupt changes in weather 
conditions have significant impact on the agricultural 
system by affecting the spread of pests and diseases. They 
stressed the integration of climate change with disease 
predictive models keeping in view its striking effects on 
biological and economic resilience as the algorithmic 
approaches need human input for their sustainability.  

Lei and Xu (2024) stated that extreme weather anomalies 
like typhoons accelerate the loss of resilience in agricultural 
settings necessitate the need for integration of climate 
change with predictive models. Metropolitan climate 
regulator increases commercial environmental concern, 
display the effect of policy and human factors on climate 
based predictive models in agriculture (Lei and Xu 2025). 

4.2. Limitations 

Although the model in current study has sound prediction 
capacity for the specific conditions, it is vital to admit its 
limitations. The basic limitation is regarding data collection 
from a single site during two years. This means the model 
may capture living and non-living parameters at the 
selected site, while its performance may vary in years with 
atypical weather patterns. The generalized effectiveness of 
the model may be compromised due to non-validation of 
with different years and environmental factors. There is a 
precaution to apply this model for long term predictions in 
other regions without further validation.  

The present model was developed based upon two years 
data from tomato growing seasons. Under the scenario of 
climate change the genetic resistance of the germplasm 
may be compromised due to mutation in pathogen that 
may affect the accuracy of the model with the passage of 
time. The model drift is a vital point to be considered for 
deploying the agricultural decision support. 

Despite having good fitness for the observed data because 
of high R2 values, the model has very limited capacity to the 
non-linear relationships between disease and weather 
variables. A linear relation is unable to describe the specific 
effect of temperature on vector population and disease 
incidence. In future, models should be focused to use non-
linear modeling techniques i.e. machine learning algorithms 
such as random forests, support vector machines (SVM), or 
neural networks for improved predictions. 

There was a limitation in preliminary analysis that it was 
not subjected to autocorrelation. However, after finding 

Durbin-Watson values the model was refitted to 
autoregressive (AR1) for validation of regression in time 
series analyses of whitefly and TLC disease. In future 
studies related to predictive modelling these analyses 
should be incorporated. 

The values with more than 25% prediction error have been 
removed in revised RMSE calculation for 3 cultivars. These 
outliers might be appeared due to low disease incidence or 
during the periods of disease progression where weather 
variables could not be properly influencing the model.  

4.3. Future Work 

Consequently, later on researches should be focused on 
collection of data from multiple environments for external 
validation and to enhance the model's parameters for 
wider application. The process of removing outliers would 
be beneficial in future calculation of observed and 
predicted values particularly for the mentioned. 

The reliability of the model can be enhanced by opting 
advanced AI-optimization hybrid frameworks. Application 
of whale optimization algorithm (WOA) with artificial 
neural networks (ANNs), have increased the model 
generalization (doi:10.1007/s11540-024-09819-9) that can 
also be used for TLCV and whitefly predictive models.  

4.4. Specific Recommendations & Practical Considerations 

For future validation studies of these predictive models, 
the data should be recorded from more than 30 sites in all 
the agro-ecological regions of Pakistan for at-least 4 years 
in all tomato growing seasons. The data of weather 
variables should be collected on daily basis while weekly 
data of TLCV and whitefly infestation is necessary so that 
multiple conditions can be added in the model. The data of 
multiple variables from varied locations and at different 
time intervals would be helpful in generalization of the 
models in all regions and seasons.   

These predictive equations can guide the farmers and 
extension workers about the need for treatment 
interventions as the adult whitefly exceeds 3 per leaf and 
disease incidence recorded 10%. Exceeding the threshold 
beyond these limits would suggest for application of 
insecticides following weekly monitoring.  

The predictions based upon weather variables give a lead 
time of 1-2 weeks before symptom appearance depending 
upon the availability of favourable conditions for the 
whitefly infestation and subsequent TLCV transmission. 
The lead time window is very critical for the growers to 
implement management tactics before waiting for the 
severe disease outbreak.  
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