

1 Enhanced Bioremediation of Zinc and Cadmium from Oil-Contaminated 2 Sites Using Biochar-Amended Fungal Systems Involving *Aspergillus niveus* 3 and *Alternaria chlamydosporigena*.

Najwa Majrashi and Fuad Ameen*

7 *correspondence to: fuadameen@ksu.edu.sa

8 Abstract

9 Bioremediation of oil-contaminated sites, common in oil-producing regions, requires novel
10 solutions, such as the one suggested here: combining fungal and biochar treatments. Fungal
11 strains were isolated from metal and oil-polluted soils and evaluated for their resistance to zinc
12 (Zn) and cadmium (Cd). Two strains, *Aspergillus niveus* (GenBank accession: PQ463633) and
13 *Alternaria chlamydosporigena* (PQ463634), exhibited exceptional growth under metal stress,
14 demonstrating considerable metal resistance. These strains were chosen for further
15 bioremediation experiments. A substantial decrease of Zn and Cd concentrations was observed
16 after fungal incubation. The incorporation of biochar significantly improved the effectiveness
17 of the heavy metal removal, indicating a synergistic interaction between fungal biosorption and
18 biochar-facilitated immobilization. Fourier-transform infrared (FTIR) spectroscopy
19 demonstrated notable morphological and biochemical changes in the fungal biomass following
20 exposure to Zn and Cd, signifying active metal-binding interactions and uptake processes. The
21 equilibrium behavior of metal uptake was demonstrated with three isotherm models. The
22 Langmuir model showed the greatest fit ($R^2 > 0.98$), followed by the Freundlich model ($R^2 =$
23 0.92-0.95) and the Temkin model ($R^2 = 0.85-0.89$). A homogenous, monolayer-driven
24 biosorption of the metals is supported by the best fit of the Langmuir isotherm. Kinetic models
25 were utilized to examine the rate and mechanism of the biosorption process. A high correlation
26 coefficient ($R^2 = 0.98$) for the pseudo-second-order model suggests that chemisorption is the
27 primary mechanism for the uptake of Zn and Cd by biochar and fungi. It is concluded that the
28 combination of biochar and the fungi *A. niveus* and *A. chlamydosporigena* offers an economical
29 and environmentally sustainable remediation technique for soils contaminated with oil and
30 heavy metals. The discovery is significantly advancing the creation of sustainable
31 biotechnological approaches for environmental restoration in oil-contaminated material,
32 providing a feasible alternative to traditional physicochemical procedures.

33 **Keywords:** Biochar; Bioremediation; Fungi; Heavy metal; Soil petroleum.

35 **1. Introduction**

36 Soil polluted by petroleum hydrocarbons and heavy metals is a global environmental issue.
37 Over five million polluted sites covering ca. 500 million hectares were reported globally (Falih
38 *et al.*, 2024; Hou *et al.*, 2025). The financial impact of this contamination surpasses US\$10
39 billion each year, with considerable consequences for ecosystems and human health.
40 Petroleum-derived pollutants are of particular concern because they can migrate into aquatic
41 systems and groundwater, jeopardizing the unsaturated zone and drinking water supplies.
42 Petrogenic heavy metals, such as Pb, Zn, Ni, Mn, Cr, Fe, and Cd, exhibit enduring
43 environmental deposition, particularly in oil-producing areas (Nna, Orie en Kalu, 2024).

44 The region around the Arabian Gulf serves as a case study, where sixty years of oil extraction
45 and conflict-induced spills have resulted in severe metal contamination of coastal sediments
46 and terrestrial ecosystems. Due to the contamination, large areas of land are unsuitable for
47 agriculture, necessitating immediate remediation actions. Traditional methods for cleaning up
48 the contamination, such as soil vapor extraction and thermal remediation, are too expensive
49 and harmful to the environment, while bioremediation offers a more sustainable and cost-
50 effective solution (Liu *et al.*, 2024).

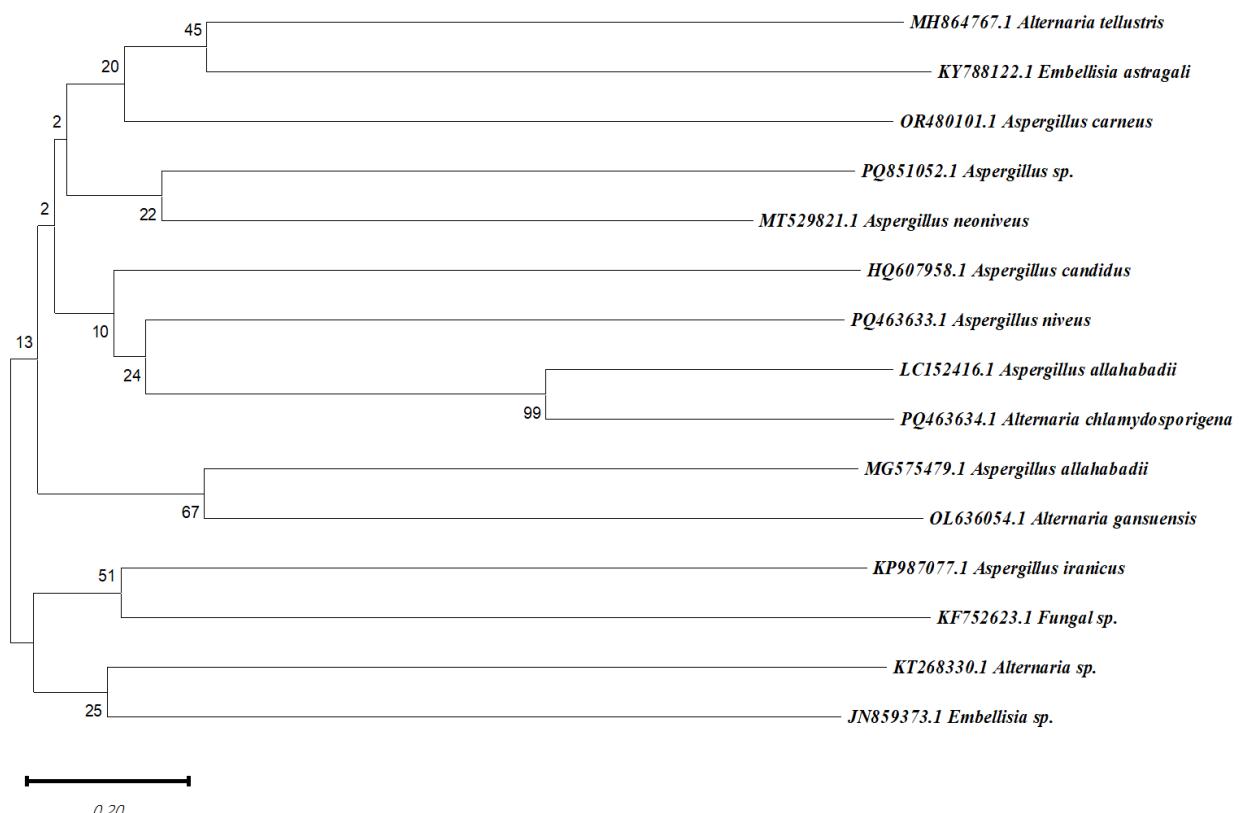
51 Bioremediation utilizing fungi has proven to be promising. Certain fungi such as *Aspergillus*,
52 *Penicillium*, and *Fusarium* remove efficiently metals from the environment because of their
53 ability to bind metals to their cell walls and store metals inside their cells (Dinakarkumar *et al.*,
54 2024). When combined with biochar, a type of carbon produced by heating organic material,
55 fungi can be even more efficient (W. Wang *et al.*, 2024; Xia *et al.*, 2025). In bioremediation *in*
56 *situ*, it is important to use local microbial isolates. In the Arabian Peninsula, information on
57 such indigenous isolates is scarce. A recent review lists bacteria and fungi isolated from
58 petroleum refinery effluents in India, Nigeria, Malaysia, South Africa, and Iraq. In Iraq, the
59 fungal species were *Penicillium* sp., *Aspergillus fumigatus*, *Aspergillus niger*, and *Aspergillus*
60 *flavus* (Almutairi 2024). In Saudi Arabia, we found only a mention about the fungus
61 *Scedosporium apiospermum* and the species of *Fusarium*, *Verticillium*, *Purpureocillium*, and
62 *Clavispora* that were shown to have potential bioremediation ability of heavy metal and oil-
63 polluted material (Ameen *et al.* 2024). In the area where oil pollution is the main source of
64 heavy metals, novel heavy metal-resistant isolates growing under oil pollution are needed. This

65 information is still lacking. In this study, novel indigenous fungal isolates were searched from
66 oil-polluted soil.

67 To understand how well biochar and fungi can remove Zn and Cd from polluted material, we
68 need to look at the biosorption equilibrium. Isotherm models are used to represent the
69 distribution of metal ions between the liquid and solid phases when the system is in equilibrium
70 (Mir en Rather, 2024; Sarangi en Rajkumar, 2024). The Langmuir, Freundlich, and Temkin
71 isotherm models are used to investigate the equilibrium biosorption behavior of the metals
72 (Dhaka *et al.*, 2024).

73 Our research aimed to present a sustainable bioremediation technique for heavy metal
74 contamination in oil-polluted material. To achieve this, the following objectives were stated.
75 First, potential heavy metal-resistant isolates were screened from contaminated soils, and the
76 best-performing were selected for a bioremediation experiment. Second, two fungi, *Aspergillus*
77 *niveus* and *Alternaria chlamydosporigena*, were tested to assess how well they can clean up Zn
78 and Cd pollution together with biochar in the bioremediation experiment. Third, to understand
79 the adsorption mechanisms of the heavy metals, kinetic and biosorption equilibrium studies
80 were carried out.

81 **2. Materials and methods**


82 **2.1 Sample Collection and Preparation**

83 Soil samples were collected systematically from the upper 20 cm at various contaminated sites
84 in *Al-Ahsa* and *Buqaiq*, located in Eastern Saudi Arabia (25°23'N 49°36'E). These sites are
85 known to exhibit heavy metal contamination due to petroleum operations. Pre-sterilized
86 stainless-steel augers were utilized to collect composite samples according to a randomized
87 sampling grid. The samples were homogenized and promptly stored in sterile polythene bags.
88 Samples were kept at 4°C during transport to the laboratory, utilizing insulated iceboxes to
89 ensure microbial longevity, along with avoiding chemical transformation.

90 **2.2 Fungal Isolation and Identification**

91 Filamentous fungi were extracted from the soil samples using serial dilution (from 10^{-1} to 10^{-7})
92 in sterile phosphate-buffered saline (pH 7.2). For the first step, 1 gram of mixed soil was placed
93 into 10 milliliters of clean distilled water and stirred at 220 rpm for 20 min. The suspension
94 was permitted to sediment for 30 minutes at room temperature (Asomadu *et al.*, 2024). Samples
95 of 100 μ L were spread out in three copies on Potato Dextrose Agar (*PDA*, *HiMedia*) with 50
96 mg/L added.

97 Fungal colonies were selected according to their morphological characteristics and
 98 subsequently subcultured onto fresh PDA plates using quadrant streaking. Pure isolates were
 99 stored on PDA slants at 4°C for short-term preservation and in 20% glycerol at -80°C for long-
 100 term storage. Chloramphenicol was added to inhibit bacterial growth. Plates were incubated at
 101 28±1°C for 5 to 7 days (C. Wang *et al.*, 2024). Two isolates were selected based on their superior
 102 growth performance in heavy metal-amended potato dextrose broth (200 mg/L Zn or Cd).
 103 Genomic DNA was isolated from fresh mycelia using the CTAB technique, followed by PCR
 104 amplification of the internal transcribed spacer (ITS) region employing the universal primers
 105 ITS1 (5'-TCCGTAGGTGAAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3')
 106 (Ali *et al.*, 2024). The amplified products were sequenced in both directions, and the resulting
 107 sequences were submitted to GenBank with accession numbers *PQ463633* and *PQ463634*,
 108 respectively. Phylogenetic analysis was conducted with MEGA X software by matching the
 109 ITS sequences with reference strains from NCBI. The maximum likelihood tree, created using
 110 1000 bootstrap repetitions, showed that isolate *PQ463633* is *A. niveus* (99.8% similar to strain
 111 CBS 115.57) and isolate *PQ463634* is *A. chlamydosporigena* (99.6% similar to strain CBS
 112 116148) (Figure 1).

113
 114

Figure 1. Phylogenetic tree of the fungal taxa obtained using the Neighbor-Joining method using the MEGA11 software

115 *2.2.1 Metal tolerance of fungi*

116 Following accepted procedures with adaptations, the heavy metal tolerance of *A. niveus*
117 (*PQ4636*) and *A. chlamydosporigena* (*PQ4636*) was assessed by dissolving analytical-grade
118 $\text{CdCl}_2 \cdot \text{H}_2\text{O}$ (Merck, 99.9%) and $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$ (Sigma-Aldrich, $\geq 99\%$) in ultrapure water
119 (Milli-Q, 18.2 M Ω %), followed by serial dilution in sterile 0.1 M phosphate buffer (pH 6.5)
120 (Amin, Nazir en Rather, 2024). Test concentrations ranged from 10–80 ppm. Five-mm
121 mycelial plugs taken from the actively developing margins of the 7-day-old PDA cultures were
122 inoculated onto metal-amended PDA plates ($n=3$ per concentration) together with metal-free
123 controls for every isolate. For 168 hours, the plates were incubated at $25 \pm 1^\circ\text{C}$ and 60 $\pm 5\%$
124 relative humidity. Digital calipers (Mitutoyo, ± 0.01 mm precision) and the tolerance index (Ti)
125 were used daily along two perpendicular axes to measure colony diameters; $\text{Ti} = (\text{R}_1/\text{R}_0) \times 100$
126 where R_1 is the mean radial growth in the metal-amended medium and R_0 is the mean radial
127 growth in the control.

128 **2.3 Bioremediation experiment**

129 Controlled liquid culture experiments were carried out. To acquire actively proliferating
130 mycelia, fungal isolates were initially cultivated on potato dextrose agar (PDA) plates for 7
131 days at $25 \pm 2^\circ\text{C}$. The experiments were carried out in 250 mL Erlenmeyer flasks that contained
132 100 mL of potato dextrose broth (PDB) as three replicates. The flasks were supplemented with
133 filter-sterilized aqueous solutions of $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$ and $\text{CdCl}_2 \cdot \text{H}_2\text{O}$ so that the final metal
134 concentrations were 10, 20, 40, 60, and 80 mg/L. Biochar derived from rice husk (pH 8.2,
135 surface area 230 m 2 /g) was obtained from a certified agricultural supplier. Biochar was
136 sterilized through autoclaving and 1.0 g was added to the flasks aseptically. Three 5-mm
137 mycelial discs from the 7-day-old cultures were aseptically introduced into the flasks. The
138 cultures were maintained at $25 \pm 1^\circ\text{C}$ with constant agitation (150 rpm) for 7 days. After the
139 incubation, the fungal biomass and biochar were separated via vacuum filtration using a 0.45
140 μm cellulose membrane, and the filtrate was preserved for residual metal analysis. The fungal
141 biomass was dried in the oven at 60 $^\circ\text{C}$ until a constant weight was achieved. The filtrate was
142 acidified with 2% HNO_3 and analyzed using flame atomic absorption spectrophotometry (AAS;
143 *PerkinElmer PinAAcle 900T*) with detection limits of 0.01 ppm for both metals. Metal removal
144 % was calculated. The treatments were as follows. PDB without amendments (Control), fungal
145 inoculation with either of the two isolates, and fungal isolation with biochar.

146 **2.4 Fourier transform infrared spectroscopy (FTIR) analyses**

147 The functional groups of the fungal biomass were analyzed using a Fourier transform infrared
148 spectrometer (*Agilent system Cary 630 FTIR model*). To evaluate the transmittance spectra
149 recorded between 3000-400 cm^{-1} , pressed potassium bromide (KBr) pellets were used as
150 depicted in **Figure 2**.

151 **2.5 Kinetic studies and Adsorption isotherm studies.**

152 Lagergren linear pseudo-first-order rate equation found was;

$$153 \quad \text{Log}(q_e - q_t) = \text{log} q_e - \frac{K_1 t}{2.303} \quad (i)$$

154 In this context, 'qe' (mg/g) represents the equilibrium adsorption of metal ions, while 'qt' (mg/g)
155 denotes the adsorption at a specific time 't' (min). The rate constant for the pseudo-first-order
156 biosorption process is represented as K_1 (min $^{-1}$). The results for ' K_1 ' and 'qe' are presented in **Figure 3**
157 displayed on a graph of $\text{log}(q_e - q_t)$ versus time (t) in minutes.

158 This formulation is utilised to denote the pseudo-second-order model that has been developed.

$$159 \quad \frac{t}{q_t} = \frac{1}{(K_2 q_e 2)} + \frac{t}{q_e} \quad (ii)$$

160 K_2 represents the pseudo-second-order equilibrium rate constant measured in g/mg min, while 'qe'
161 denotes the quantity of biosorption at equilibrium.

162

163 The Langmuir hypothesis posits that sorption takes place at distinct, uniform sites throughout
164 the sorbent material. It is also feasible to articulate non-linear forms of this paradigm.

$$165 \quad q_e = \frac{q_m K_l C_e}{1 + K_l C_e} \quad (iii)$$

166 In this context, 'qm' denotes the monolayer sorption efficiency of the material (mg/g), while 'Ce'
167 indicates the equilibrium metal ion concentration in the solution (mg/L). The term 'KL' refers to the
168 Langmuir adsorption constant (mg/L), which is associated with the free energy of sorption, and 'qe'
169 represents the equilibrium metal ion content of the sorbent (mg/g).

170 The Freundlich model suggests that the sorption surface exhibits a variety of characteristics.

171 The Freundlich model is

$$172 \quad q_e = K_f C_e^{1/n} \quad (iv)$$

173 In this context, 'Kf' represents a constant that characterizes the biosorption capacity, while '1/n' serves
174 as an observational variable. This outlines the degree of biosorption, which varies based on the
175 differences in the material used. The values of 'Kf' and '1/n' were determined through nonlinear
176 regression analysis. (**Figure 4**) presents the graphs of the non-linear Freundlich isotherm. The values
177 of '1/n' ranging from '0' to '1' suggest that the biosorption was effective under the examined conditions

178 **2.6 Statistical Analysis**

179 One-way ANOVAs were carried out using SPSS version 20. Mann Whitney test was used to
180 compare the concentration treatments to the control. The p-value less than 0.05 was assessed
181 as a statistically significant difference.

182 **3. Results**

183 **3.1. Fungal heavy metal tolerance**

184 *Alternaria chlamydosporigena* showed that its growth was affected by the amount of both
185 metals, with Zn causing a noticeable reduction in its growth at all tested levels (10–80 ppm; p
186 = 0.050) (**Table 1**). The tolerance indices (Ti) for Zn dropped steadily from 80.9% at 10 ppm
187 to 28.6% at 80 ppm, showing a 64.6% decrease in growth ability. Similarly, exposure to Cd
188 caused a growth reduction, but Ti was higher (82.1% at 10 ppm to 52.3% at 80 ppm), showing
189 that the fungus was more resistant to Cd. One-way ANOVA established the inverse correlation
190 between the metal content and fungal vitality. The rate of growth inhibition was much greater
191 for Zn (slope = -0.65% per ppm) compared to Cd (slope = -0.37% per ppm).

192 **Table 1:** *A. chlamydosporigena* fungal growth and tolerance index in increasing Zn and Cd
193 concentrations. * refers to the significant difference to control.

194

Zn concentration, mg/L	Growth, mm	Tolerance Index
0, Control	7.68±0.07	
10	6.30±0.05	82.10%*
20	5.88±0.16	76.6%*
40	5.45±0.11	70.96%*
60	5.02±0.09	66.23%*
80	4.03±0.08	52.30%*
Cd concentration mg/l.		
0, control	7.68±0.07	
10	6.23±0.03	80.90%*
20	5.49±0.06	71.50%*
40	3.73±0.03	48.00%*
60	3.18±0.24	41.60%*
80	2.18±0.16	28.60%*

206

207 The growth of *A. niveus* was significantly lower at 10, 20, 40, 60, and 80 ppm than in
208 the control. The tolerance indices for concentrations of 10, 20, 40, 60, and 80 ppm were

209 87.50%, 68.80%, 48.90%, 41.30%, and 39.80%, respectively. The growth was significantly
210 reduced at 10, 20, 40, 60, and 80 ppm Cd in comparison to the control. In the Cd concentrations
211 40 mg/L and higher, no growth was observed. The tolerance indices measured at 10, 20, 40,
212 60, and 80 ppm were 48.20%, 27.50%, 0%, 0%, and 0%, respectively (**Table 2**).

213 **Table 2:** *A. niveus* fungal growth and tolerance index in increasing Zn and Cd concentrations.
214 * refers to the significant difference from control.

215
216

Zn concentration, mg/L	Sample	Tolerance Index
0, Control	6.55±0.05	
10	5.72±0.03	87.50%*
20	4.50±0.01	68.80%*
40	3.20±0.05	48.90%*
60	2.72±0.03	41.30%*
80	2.55±0.05	39.80%*

Cd concentration mg/l.		
0, Control	6.55±0.05	--
20	1.77±0.25	27.50%*
40	0	0*
60	0	0*
80	0	0*

217
218

219 **3.2 Heavy metal removal by fungi and biochar**

220 *A. chlamydosporigena* reduced all experimental Zn concentrations significantly. The combined
221 use of *A. chlamydosporigena* and biochar reduced the metals more than the fungus alone. The
222 reduction was 35–55% ($p = 0.050$), being highest at the medium concentrations (40–60 ppm).
223 Significant differences between the treatments ($F = 8.34$, $p < 0.05$) were observed for all
224 concentrations.

225 **Table 3:** Concentrations of Zinc (Zn) and Cadmium (Cd) in treatments involving *Aspergillus*
226 *chlamydosporigena* (fungi) and a combination of fungi with biochar under varying Zn
227 concentrations in the culturing medium. * refers to the significant difference from control.

228
229
230
231

Zn concentration, mg/L		
Culturing medium	Fungi	Fungi+biochar
0, Control	0.00±0.00	0.00±0.00
10	4.90±0.26	2.03±0.25*
20	9.37±0.57	5.23±0.42*
40	17.20±0.89	10.08±1.07*
60	24.41±0.71	16.40±0.60*
80	38.63±1.18	22.63±0.65*
Cd concentration mg/l.		
Culturing medium	Fungi	Fungi+biochar
0, control	0.00±0.00	0.00±0.00
10	4.40±0.78	2.03±0.25*
20	13.34±0.67	5.23±0.42*
40	24.54±0.67	10.08±1.07*
60	37.87±1.13	16.40±0.60*
80	53.55±0.45	22.63±0.65*

232

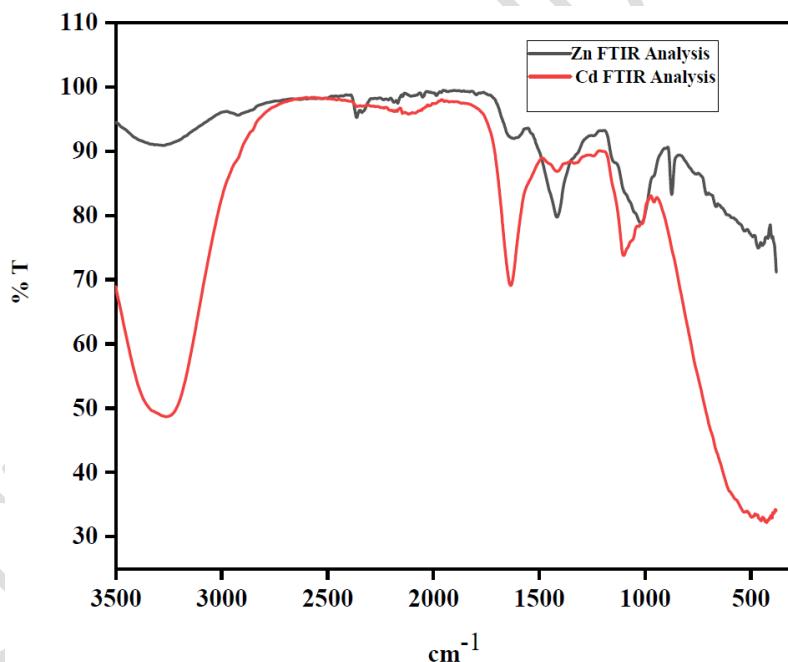
233

234 The adsorption of zinc and cadmium with *A. niveus* was greatly improved by the
 235 addition of biochar at all doses. For zinc, the combination of fungi and biochar consistently
 236 showed lower leftover amounts compared to fungi alone, being statistically significant at all
 237 tested levels ($p = 0.050$ at 10/40/60/80 ppm; $p = 0.046$ at 20 ppm) (Table 3). For cadmium, a
 238 similar trend was observed, where the combination of fungi and biochar significantly lowered
 239 soluble Cd levels ($p = 0.050$) at all concentrations compared to the treatment with only fungi.

240 **Table 4:** Zinc (Zn) and Cadmium (Cd) concentrations in treatments with *A. niveus* (fungi) and fungi
 241 combined with biochar under increasing Zn concentrations in the culturing medium. * refers to the
 242 significant difference from control.

243

Zn concentration, mg/L		
Zn concentration mg/l	Fungi+Zn	Fungi+Zn+biochar
0, Control	0.00±0.00	0.00±0.00
10	1.85±0.44	0.18±0.07*
20	3.93±0.96	0.42±0.03*
40	8.53±0.61	5.10±0.6*
60	24.08±1.03	8.77±0.25*
80	23.37±3.73	12.07±0.21*
Cd concentration mg/l		
Cd concentration mg/l	Fungi+Cd	Fungi+Cd+biochar
0, Control	0.00±0.00	0.00±0.00
10	1.85±0.44	0.18±0.07*
20	3.93±0.96	0.42±0.03*
40	8.53±0.61	5.10±0.6*


60	24.08±1.03	8.77±0.25*
80	23.37±3.73	12.07±0.21*

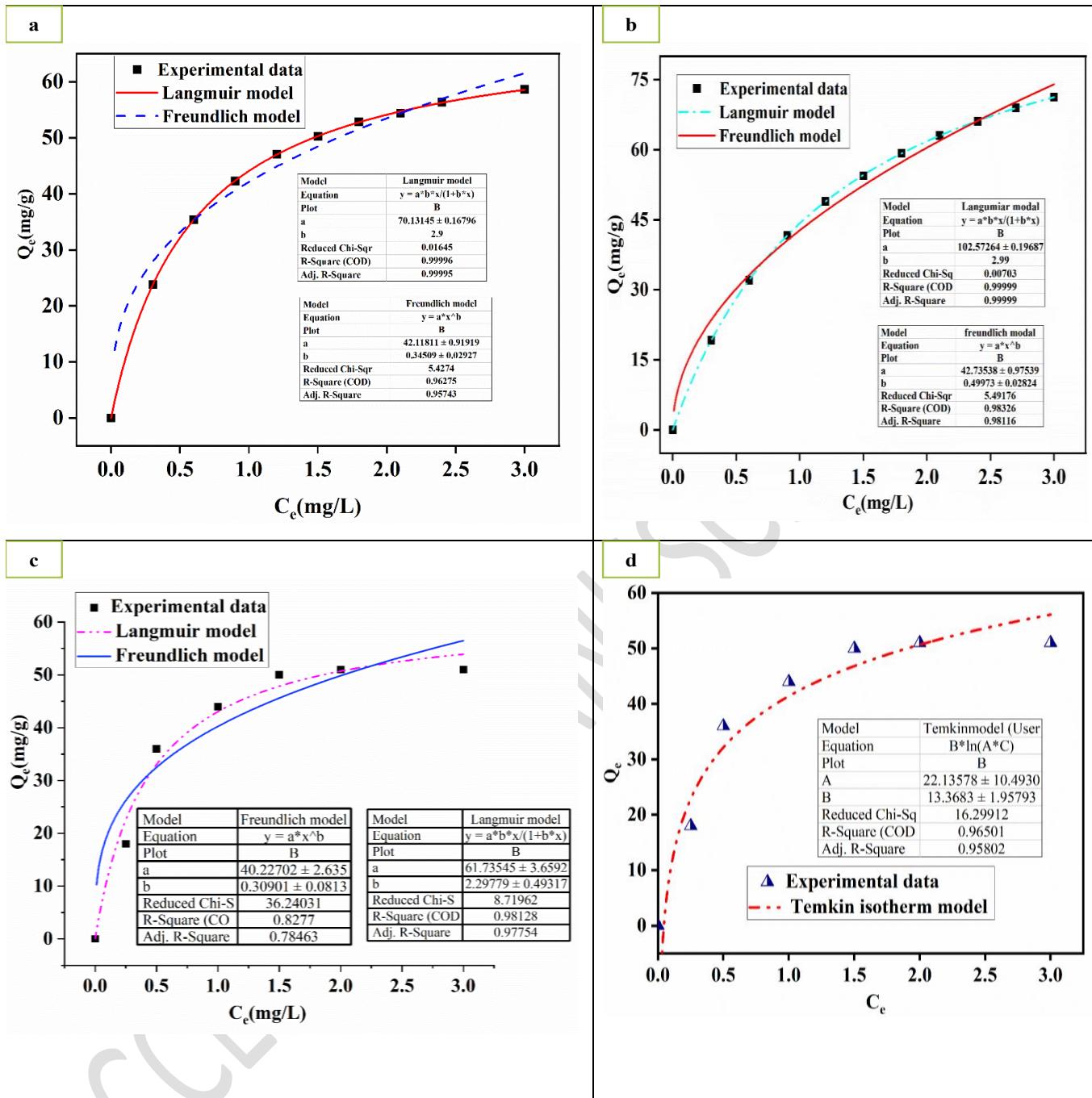
244

245 **3.3 FTIR Analysis**

246 The biggest changes were seen in the range of 1800-1200 cm^{-1} , where carboxylate groups
 247 (COO^-) shifted down in frequency by 1822 cm^{-1} during their symmetric stretching vibrations
 248 (from 1420 to 1398 cm^{-1} for Zn and from 1420 to 1402 cm^{-1} for Cd) in (Figure 2). The
 249 decrease (34%) in the peak intensity of carbonyl (C=O) at 1720 cm^{-1} was observed. Protein
 250 components showed 12-15% widening in the amide I (1650 cm^{-1}) and amide II (1540 cm^{-1})
 251 bands. Shoulders appeared around 1580-1560 cm^{-1} , which is indicative of metal-nitrogen
 252 bonding. Stronger phosphoryl (P=O) signals at 1220 cm^{-1} and stronger vibrations from
 253 polysaccharides at 1050 cm^{-1} were observed. Zn-O vibration at 620 cm^{-1} and Cd-S at 550 cm^{-1}
 254 were observed in Zn and Cd treatments, respectively.

255

256


257

258 **Figure 2.** FTIR Study analysis259 **3.4 Kinetic Studies**

260 The pseudo-first-order model assumes that each metal ion attaches to one specific spot on the

261 **Figure 3.** Kinetic study analysis. (a) pseudo first order, (b) pseudo second order, (c) Intra particular diffusion,
 262 (d)Elovich model

263 order reaction, is represented by the linear formulation provided above.

264

265 3.5 Biosorption Isotherm Models

266 The Langmuir model demonstrated the greatest fit to the experimental data ($R^2 > 0.98$),
 267 followed by the Freundlich model ($R^2 = 0.92-0.95$) and the Temkin model ($R^2 = 0.85-0.89$).
 268 The Langmuir analysis showed the maximum adsorption capacities (q_{mas}) for Zn (II) and for
 269 Cd (II). Furthermore, the affinity constants (K_l) were high. Dimensionless separation factors
 270 (R_l) ranged from 0.02 to 0.35. The Freundlich model exhibited a somewhat weaker correlation,
 271 with its heterogeneity value ($1/n = 0.42-0.58 < 1$). According to the Temkin model, moderate
 272 adsorption heats were observed ($b_2 = 120-180 \text{ J/mol}$).

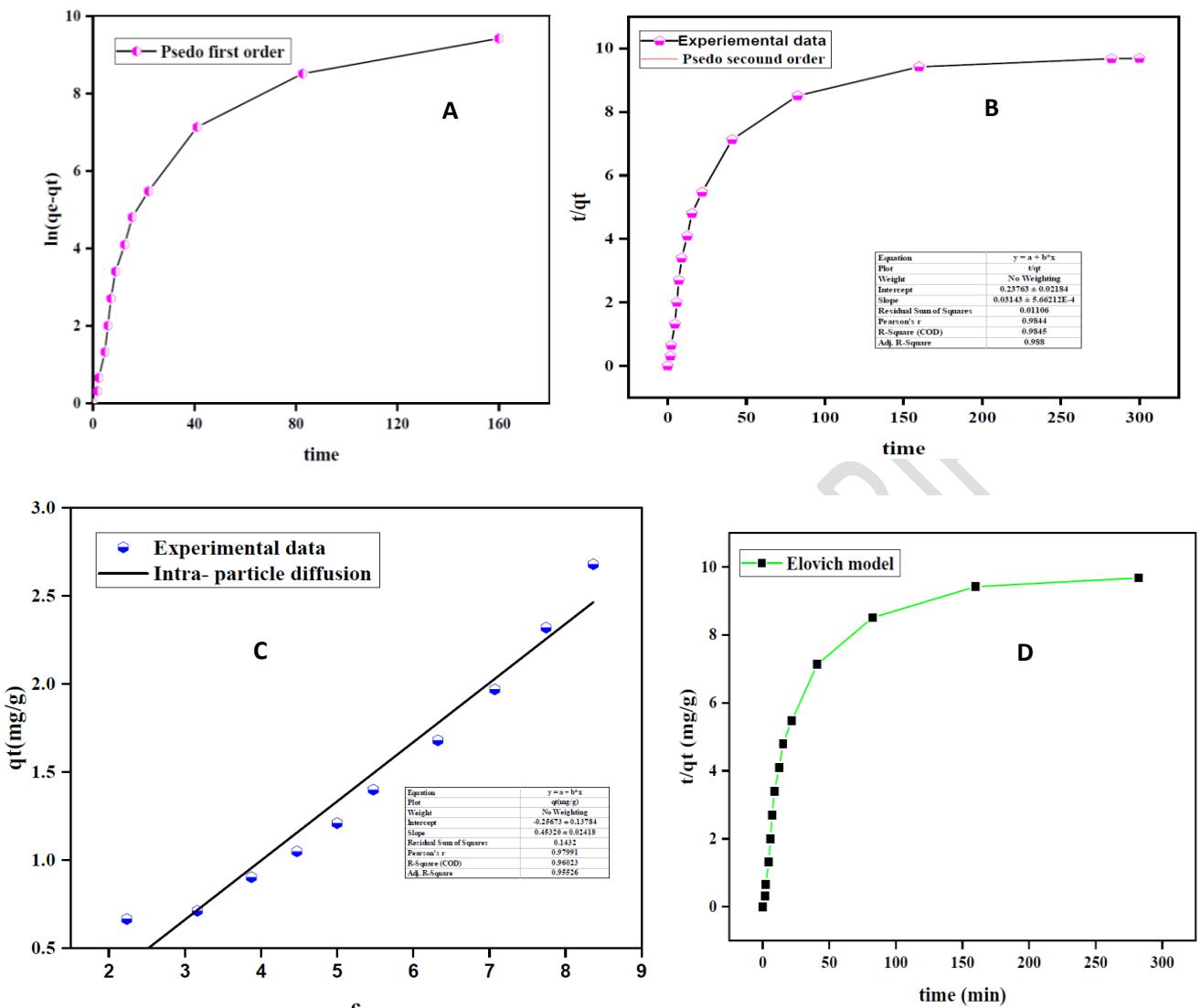


Fig. 4. Biosorption study analysis. Langmuir: Freundlich: Temkin models

273

274

275

276

277

278

279 3.6 Discussion

280 The two native fungal isolates were efficient in reducing Zn and Cd concentrations. However,
 281 the leftover metal concentrations were still too high when either of the fungi was incubated.
 282 This showed that the natural ability of the fungi to remove metals was limited. It is known that
 283 certain species can adsorb heavy metals. These fungi have often been isolated from heavy
 284 metal-polluted sites such as *A. terreus* and *A. hiratsukae* in Oman (Palanivel, Pracejus en Novo,

285 2023) Moreover, other pollution seems to induce the stress-resistance of fungi. Several
286 *Aspergillus* species have shown to adsorb Cr, Zn, Cu, Cd, and Ni efficiently (Vašinková,
287 Dlabaja en Kučová, 2021; Narolkar, Jain en Mishra, 2022). The heavy metal-resistant strain of
288 *A. flavus* was isolated from an oil-polluted soil (Al-Dhabaan, 2022). It has also been found that
289 the combined pollution of heavy metals and oil generates resistant fungal strains. The efficiency
290 of these fungi to adsorb pollutants is due to the secreted extracellular enzymes and other
291 metabolites (Li, Liu en Gadd, 2020).

292 The efficiency of metal reduction was increased remarkably when rice husk biochar was added
293 together with the fungi. The system exhibited its highest efficiency at the concentration of 40
294 ppm, removing 86.5% Zn and 89.2% Cd. We interpret that *A. chlamydosporigena* alone is not
295 enough efficient to reduce the metal concentrations, but together with biochar, the remediation
296 process is highly efficient. This is due to the three benefits that biochar provides: (i)
297 supplementary binding sites, (ii) toxicity buffering for fungal cells, and (iii) pH stabilization
298 with the final pH of 6.8 (Chen *et al.*, 2022).

299 Based on the consistent patterns observed, it can be inferred that biochar contributes
300 through various mechanisms (Gorovtsov *et al.*, 2020). Firstly, it offers additional adsorption
301 sites through its porous matrix. Secondly, it alters the metal speciation by elevating the pH
302 level. Lastly, biochar has the potential to protect fungal biomass from the harmful effects of
303 metals. In our study, the ability of biochar to improve fungal cleanup was shown to be effective
304 at all concentrations, with the most effective at 20 ppm Zn. Specifically, in moderately Zn-
305 contaminated systems (20–60 ppm), biochar increased metal immobilization by 38–52%
306 compared to fungal treatment alone. Our findings established that rice husk biochar was an
307 efficient amendment for *A. niveus*-based bioremediation.

308 FTIR provided molecular-level evidence of the mechanisms that underlie heavy metal
309 biosorption in the fungal-biochar systems (Racić *et al.*, 2023; Nandasana, Thongmee en Ghosh,
310 2024). After comparing the spectral profiles of biomass exposed to metals and those that were
311 not, it was found that important functional groups changed. Carboxylate (COO⁻) and carbonyl
312 (C=O) groups shifted down in frequency. These alterations provide further evidence that
313 carboxyl groups play an essential part in the coordination of metals through intramolecular
314 interactions. Protein components showed important changes in structure, shown by a 12-15%
315 widening of the bands of amides. Moreover, metal-nitrogen bonding was observed. Spectral
316 fingerprints that were unique to the fungal-biochar composites were observed previously (Zhao

317 *et al.*, 2024). These unique signals included stronger phosphoryl and polysaccharides signals
318 indicating the creation of ternary complexes between the fungal cell walls, metals, and biochar
319 surfaces. The metal-specific signatures were particularly noteworthy. The exposure to zinc
320 resulted in the generation of a distinct Zn-O vibration at 620 cm⁻¹. The treatment with cadmium
321 resulted in the production of a Cd-S stretching band at 550 cm⁻¹. This suggests that Zn has a
322 preference for oxygen-dominated coordination, whereas Cd was involved in sulfur
323 participation (Nandasana, Thongmee, and Ghosh, 2024). The spectroscopic evidence as a
324 whole demonstrates that biochar improves the process of metal sequestration in fungi by the
325 following mechanisms: (i) protecting essential fungal binding sites from the toxicity of metals;
326 (ii) introducing additional oxygen-containing functional groups; and (iii) facilitating the
327 formation of stable ternary complexes. These molecular-scale interactions provide an
328 explanation for the reported 35-55% boost in metal removal efficiency that occurs when
329 biochar amendment is combined with fungal therapy.

330 Kinetic studies are crucial for clarifying the reaction mechanisms and rates of solute absorption
331 in biosorption processes. This is especially true in bioremediation systems that are aimed to
332 reduce heavy metals such as Zn and Cd (Karnwal, 2024; Mir en Rather, 2024). The findings
333 from these studies provide important information about how metal ions interact with
334 biosorbents like biochar or fungal biomass at the surface where solid and liquid meet. These
335 dynamics have a direct impact on the effectiveness of contaminant removal. In the framework
336 of this investigation, pseudo-first-order and pseudo-second-order models were utilized to
337 assess the biosorption kinetics of Zn and Cd by biochar and fungi (Xie, 2024). The pseudo-
338 first-order model assumes that each metal ion attaches to one specific spot on the surface of the
339 biosorbent (Al-Homaidan *et al.*, 2018). On the other hand, the pseudo-second-order model
340 proposes the existence of chemisorption mechanisms, in which adsorption is characterized by
341 the presence of shared active sites or contacts that are influenced by electrostatic forces,
342 chemical bonding, or ion exchanges. The pseudo-second-order model is typically more suitable
343 for estimating bioremediation kinetics. This advantage is due to the fact that heavy metal
344 biosorption frequently follows chemisorption, which is a process of the second order (P. Wang
345 *et al.*, 2024).

346 Comprehending the kinetics of metal biosorption is crucial for enhancing bioremediation
347 strategies in oil-contaminated environments, as it offers vital information regarding the
348 efficiency, mechanism, and scalability of the process. Kinetic parameters, including K_1 , K_2 , and
349 q_e , are essential for quantifying the rate and extent of metal removal. This quantification

350 facilitates the design of efficient large-scale remediation systems. A high correlation coefficient
351 (R^2) for the pseudo-second-order model, aligning with findings from analogous studies on Cu,
352 suggests that chemisorption is the primary mechanism for the uptake of Zn and Cd by biochar
353 and fungi. The involvement of functional groups, such as carboxyl and hydroxyl, found in
354 fungal cell walls and biochar surfaces supports this process by facilitating metal binding
355 through chemical interactions. Kinetic data also establish the necessary residence time for both
356 batch and continuous-flow systems, facilitating effective and efficient implementation in
357 oilfield remediation.

358 Isotherm models help us understand how the biosorbents attract and hold onto metals,
359 their surface features, and how much metal they can absorb at most (Mir en Rather, 2024;
360 Sarangi en Rajkumar, 2024). The results showed that monolayer adsorption was the
361 predominant mode of action in the biosorption process. The Langmuir analysis showed the
362 maximum adsorption capacities. Furthermore, the affinity constants were high, which indicated
363 that there were significant interactions between the metal and the biosorbent. Further
364 confirmation of the favorable adsorption conditions was provided by dimensionless separation
365 factors. Despite the fact that the Freundlich model exhibited a somewhat weaker correlation,
366 its heterogeneity value indicated a certain degree of multilayer adsorption and surface
367 heterogeneity. This is most likely due to the porous structure of biochar and the different
368 functional groups that are present on fungal biomass (Medina-Armijo *et al.*, 2024). According
369 to the Temkin model, moderate adsorption heats were observed, which suggests that
370 electrostatic interactions play a role in the binding mechanism.

371 These data collectively show that chemisorption is the major adsorption mechanism
372 and that it occurs through mechanisms such as ion exchange and surface complexation.
373 However, it is important to note that there is some variation in the binding site energies because
374 of these discoveries. This validates the creation of a homogeneous monolayer of metal ions on
375 the biosorbent surfaces, which is essential for forecasting and optimizing remediation
376 effectiveness in field applications. The superior fit of the Langmuir model has important
377 practical consequences since it confirms the formation of this monolayer. This biochar-fungal
378 system has a strong potential for effective heavy metal removal from contaminated oil sites, as
379 demonstrated by the high q_{mas} values that were obtained. Additionally, the secondary Freundlich
380 characteristics indicate that there are opportunities for further enhancement through
381 modification of surface properties in order to take advantage of multilayer adsorption. These
382 findings highlight the significance of isotherm analysis for gaining knowledge and improving

383 contaminant removal processes, offering substantial insights that can be utilized in developing
384 effective bioremediation strategies (Meena *et al.*, 2018). A homogenous, monolayer-driven
385 biosorption of the metals is highlighted by the best-fit state of the Langmuir isotherm. On the
386 other hand, the Freundlich and Temkin models offer supplementary insights into surface
387 heterogeneity and interaction energies.

388 It has been shown that fungi and biochar have synergistic effects in the remediation of
389 different pollutants. The combination was efficient to remediate the combined pollution of
390 organic pollutants and heavy metals (Xia *et al.*, 2025). Elsewhere, biochar and bacteria were
391 shown to be efficient in the remediation of oil-contaminated soil (Li *et al.*, 2025). Moreover,
392 biochar and fungi were efficient in remediating various pollutants (Pai *et al.*, 2024). Our results
393 support the previous findings that biochar-fungal systems are effective for the removal of heavy
394 metals, and thus, we can provide recommendations for the development of future strategies.

395 When used with fungal biomass, biochar's large surface area ($230\text{ m}^2/\text{g}$) and ability to exchange
396 cations (24.5 cmol+/kg) led to more metal being absorbed. This was accomplished through
397 both physical binding and chemical interactions (Awasthi *et al.*, 2021). In subsequent research,
398 it is recommended to explore the long-term metal stability and field-scale performance of this
399 consortium consisting of biochar and plants.

400 **3.7 Conclusion and Recommendations**

401 The findings of this study show that the local fungi *A. niveus* (PQ463633) and *A.*
402 *chlamydosporigena* (PQ463634) could effectively clean up soils contaminated with zinc and
403 cadmium in eastern Saudi Arabia. Adsorption isotherm analysis confirmed Langmuir
404 monolayer adsorption as the major mechanism, with the Freundlich and Temkin models
405 indicating additional heterogeneous binding interactions. The isolates displayed remarkable
406 metal resistance and biosorption capacity. Kinetic studies showed that the metals were taken
407 up quickly, and Fourier transform infrared spectroscopy revealed that the metals were actively
408 bound through interactions with functional groups. A promising combined approach for real-
409 world use is shown by the improved cleanup effectiveness gained by adding biochar. The
410 selected fungal strains were able to remove significant amounts of heavy metals by
411 simultaneously utilizing a combination of biosorption and bioaccumulation mechanisms, and
412 the addition of biochar resulted in a considerable improvement in the efficacy of the
413 remediation process by increasing the immobilization of metals. The balance of the data was

414 best explained by the Langmuir isotherm model, showing that chemisorption was the main
415 process at work.

416 Furthermore, the genetic and proteomic investigations may elucidate the molecular
417 resistance mechanisms of these fungal species. The study's results establish a foundation for
418 environmentally friendly, nature-based remediation technologies that may supplant energy-
419 intensive methods in oil-contaminated regions. Subsequent research should investigate the
420 scalability of this strategy and evaluate the regulatory frameworks necessary for its
421 implementation.

422 **Author Contributions:** The final draft of the work has been reviewed and approved by all au-
423 thors.

424 **Conflict of interest:** The authors declare that they have no conflicts of interest.

425 **Acknowledgments**

426 The authors extend their appreciation to the ongoing research funding program (ORF-2025-
427 364), King Saud University, Riyadh, Saudi Arabia.

428

429 **References**

430 Al-Dhabaan, F.A. (2022) “Characterization of Cadmium and Lead Heavy Metals Resistant
431 Fungal Isolates from Ghawar oil field, Saudi Arabia”, *Biosciences Biotechnology Research
432 Asia*, 19(3), bll 625–633. Available at: <https://doi.org/10.13005/bbra/3015>.

433 Al-Homaidan, A.A. *et al.* (2018) “Potential use of green algae as a biosorbent for hexavalent
434 chromium removal from aqueous solutions”, *Saudi Journal of Biological Sciences*, 25(8), bll
435 1733–1738. Available at: <https://doi.org/10.1016/j.sjbs.2018.07.011>.

436 Ali, S.A. *et al.* (2024) “the Endophytic Fungus Epicoccum Nigrum: Isolation, Molecular
437 Identification and Study Its Antifungal Activity Against Phytopathogenic Fungus Fusarium
438 Solani”, *Journal of Microbiology, Biotechnology and Food Sciences*, 13(5), bll 10093– 10093.
439 Available at: <https://doi.org/10.55251/jmbfs.10093>.

440 Almutairi, H. (2024). Microbial communities in petroleum refinery effluents and their complex
441 functions. *Saudi Journal of Biological Sciences*. <https://doi.org/10.1016/j.sjbs.2024.104008>.

442 Ameen, F., Alsarraf, M., Abalkhail, T. Stephenson, S. (2024). Evaluation of resistance patterns
443 and bioremoval efficiency of hydrocarbons and heavy metals by the mycobiome of petroleum
444 refining wastewater in Jazan with assessment of molecular typing and cytotoxicity of
445 *Scedosporium apiospermum* JAZ-20. *Heliyon*. <https://doi.org/10.1016/j.heliyon.2024.e32954>.

446 Amin, I., Nazir, R. en Rather, M.A. (2024) “Evaluation of multi-heavy metal tolerance traits
447 of soil-borne fungi for simultaneous removal of hazardous metals”, *World Journal of
448 Microbiology and Biotechnology*, 40(6), bl 175. Available at: <https://doi.org/10.1007/s11274-024-03987-z>.

450 Asomadu, R.O. *et al.* (2024) “Exploring the antioxidant potential of endophytic fungi: a review
451 on methods for extraction and quantification of total antioxidant capacity (TAC)”, *3 Biotech*,
452 bl 127. Available at: <https://doi.org/10.1007/s13205-024-03970-3>.

453 Awasthi, S.K. *et al.* (2021) “Sequential presence of heavy metal resistant fungal communities
454 influenced by biochar amendment in the poultry manure composting process”, *Journal of
455 Cleaner Production*, 291, bl 125947. Available at:
456 <https://doi.org/10.1016/j.jclepro.2021.125947>.

457 Chen, L. *et al.* (2022) “Removal of heavy-metal pollutants by white rot fungi: Mechanisms,
458 achievements, and perspectives”, *Journal of Cleaner Production*, 354, bl 131681. Available at:
459 <https://doi.org/10.1016/j.jclepro.2022.131681>.

460 Dhaka, R. *et al.* (2024) “Biosorption of lead (II) ions by lead-tolerant fungal biomass isolated
461 from electroplating industry effluent”, *International Journal of Environmental Science and
462 Technology*, 22(5), bll 2955–2966. Available at: <https://doi.org/10.1007/s13762-024-05796-1>.

463 Dinakarkumar, Y. *et al.* (2024) “Fungal bioremediation: An overview of the mechanisms,
464 applications and future perspectives”, *Environmental Chemistry and Ecotoxicology*, 6, bll 293–
465 302. Available at: <https://doi.org/10.1016/j.enceco.2024.07.002>.

466 Falih, K.T. *et al.* (2024) “Assessment of petroleum contamination in soil, water, and
467 atmosphere: a comprehensive review”, *International Journal of Environmental Science and
468 Technology*, 21(13), bll 8803–8832. Available at: <https://doi.org/10.1007/s13762-024-05622-8>.

470 Gorovtsov, A. V. *et al.* (2020) “The mechanisms of biochar interactions with microorganisms

471 in soil”, *Environmental Geochemistry and Health*, 42(8), bl 2495–2518. Available at:
472 <https://doi.org/10.1007/s10653-019-00412-5>.

473 Hou, D. *et al.* (2025) “Global soil pollution by toxic metals threatens agriculture and human
474 health”, *Science (New York, N.Y.)*, 388(6744), bl 316–321. Available at:
475 <https://doi.org/10.1126/science.adr5214>.

476 Karnwal, A. (2024) “Unveiling the promise of biosorption for heavy metal removal from water
477 sources”, *Desalination and Water Treatment*, 319, bl 100523. Available at:
478 <https://doi.org/10.1016/j.dwt.2024.100523>.

479 Li, Q., Liu, J. en Gadd, G.M. (2020) “Fungal bioremediation of soil co-contaminated with
480 petroleum hydrocarbons and toxic metals”, *Applied Microbiology and Biotechnology*, 104(21),
481 bl 8999–9008. Available at: <https://doi.org/10.1007/s00253-020-10854-y>.

482 Li, X. *et al.* (2025) “Synergistic biochar-microbe interactions enhance petroleum contaminant
483 removal and microbial community succession”, *Environmental Technology and Innovation*,
484 40, bl 104465. Available at: <https://doi.org/10.1016/j.eti.2025.104465>.

485 Liu, X. *et al.* (2024) “Frontiers in Environmental Cleanup: Recent Advances in Remediation
486 of Emerging Pollutants from Soil and Water”, *Journal of Hazardous Materials Advances*, bl
487 100461. Available at: <https://linkinghub.elsevier.com/retrieve/pii/S2772416624000627>.

488 Medina-Armijo, C. *et al.* (2024) “The Metallotolerance and Biosorption of As(V) and Cr(VI)
489 by Black Fungi”, *Journal of Fungi*, 10(1), bl 47. Available at:
490 <https://doi.org/10.3390/jof10010047>.

491 Meena, R.A.A. *et al.* (2018) “Heavy metal pollution in immobile and mobile components of
492 lentic ecosystems—a review”, *Environmental Science and Pollution Research*, 25(5), bl
493 4134–4148. Available at: <https://doi.org/10.1007/s11356-017-0966-2>.

494 Mir, D.H. en Rather, M.A. (2024) “Kinetic and thermodynamic investigations of copper (II)
495 biosorption by green algae Chara vulgaris obtained from the waters of Dal Lake in Srinagar
496 (India)”, *Journal of Water Process Engineering*, 58, bl 104850. Available at:
497 <https://doi.org/10.1016/j.jwpe.2024.104850>.

498 Nandasana, M., Thongmee, S. en Ghosh, S. (2024) “Microbial Biochar Based Sustainable
499 Waste Management Approach”, in *Environmental Science and Engineering*. Cham: Springer
500 International Publishing, bl 121–145. Available at: https://doi.org/10.1007/978-3-031-62898-6_6.

502 Narolkar, S., Jain, N. en Mishra, A. (2022) “Biosorption of Chromium by Fungal Strains
503 Isolated from Industrial Effluent Contaminated Area”, *Pollution*, 8(1), bl 159–168. Available
504 at: <https://doi.org/10.22059/POLL.2021.326818.1132>.

505 Nna, P.J., Orie, K.J. en Kalu, N.A.S. (2024) “Source Apportionment and Health Risk of Some
506 Organic Contaminants in Water and Suspended Particulate Matter from Imo River, Nigeria”,
507 *Journal of Applied Sciences and Environmental Management*, 28(2), bl 291–303. Available
508 at: <https://doi.org/10.4314/jasem.v28i2.1>.

509 Pai, S. *et al.* (2024) “Synergistic interactions of fungi and biochar for various environmental
510 applications”, in *Bioprospecting of Multi-tasking Fungi for a Sustainable Environment: Volume I*. Singapore: Springer Nature Singapore, bl 219–247. Available at:
512 https://doi.org/10.1007/978-981-97-4113-7_10.

513 Palanivel, T.M., Pracejus, B. en Novo, L.A.B. (2023) “Bioremediation of copper using

514 indigenous fungi *Aspergillus* species isolated from an abandoned copper mine soil”,
515 *Chemosphere*, 314, bl 137688. Available at:
516 <https://doi.org/10.1016/j.chemosphere.2022.137688>.

517 Racić, G. *et al.* (2023) “Screening of Native *Trichoderma* Species for Nickel and Copper
518 Bioremediation Potential Determined by FTIR and XRF”, *Microorganisms*, 11(3), bl 815.
519 Available at: <https://doi.org/10.3390/microorganisms11030815>.

520 Sarangi, N.V. en Rajkumar, R. (2024) “Biosorption potential of *Stoechospermum marginatum*
521 for removal of heavy metals from aqueous solution: Equilibrium, kinetic and thermodynamic
522 study”, *Chemical Engineering Research and Design*, 203, bll 207–218. Available at:
523 <https://doi.org/10.1016/j.cherd.2024.01.020>.

524 Vašinková, M., Dlabaja, M. en Kučová, K. (2021) “Bioaccumulation of toxic metals by fungi
525 of the genus *Aspergillus* isolated from the contaminated area of Ostramo Lagoons”, *IOP
526 Conference Series: Earth and Environmental Science*, 900(1), bl 12048. Available at:
527 <https://doi.org/10.1088/1755-1315/900/1/012048>.

528 Wang, C. *et al.* (2024) “Isolation and Identification of Pear Ring Rot Fungus and Resistance
529 Evaluation of Different Pear Varieties”, *Horticulturae*, 10(11). Available at:
530 <https://doi.org/10.3390/horticulturae10111152>.

531 Wang, P. *et al.* (2024) “Bio-sorption capacity of cadmium and zinc by *Pseudomonas monteili*
532 with heavy-metal resistance isolated from the compost of pig manure”, *Bioresource
533 Technology*, 399, bl 130589. Available at: <https://doi.org/10.1016/j.biortech.2024.130589>.

534 Wang, W. *et al.* (2024) “Biochar remediates cadmium and lead contaminated soil by
535 stimulating beneficial fungus *Aspergillus* spp.”, *Environmental Pollution*, 359, bl 124601.
536 Available at: <https://doi.org/10.1016/j.envpol.2024.124601>.

537 Xia, Y. *et al.* (2025) “An efficient fungi-biochar-based system for advancing sustainable
538 management of combined pollution”, *Environmental Pollution*, 367, bl 125649. Available at:
539 <https://doi.org/10.1016/j.envpol.2025.125649>.

540 Xie, S. (2024) “Biosorption of heavy metal ions from contaminated wastewater: an eco-
541 friendly approach”, *Green Chemistry Letters and Reviews*, 17(1), bl 2357213. Available at:
542 <https://doi.org/10.1080/17518253.2024.2357213>.

543 Zhao, Z. *et al.* (2024) “Combined microbe-plant remediation of cadmium in saline-alkali soil
544 assisted by fungal mycelium-derived biochar”, *Environmental Research*, 240, bl 117424.
545 Available at: <https://doi.org/10.1016/j.envres.2023.117424>.

546