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Abstract

This paper develops an integrated framework to value
China Certified Emission Reductions (CCER) in the context
of the national emissions trading system. At the micro
level, we refine the income approach by endogenizing
firms' CCER purchase decisions under emission
uncertainty, offset caps and residual value risk, deriving a
closed-form marginal willingness-to-pay schedule linked
to firm-specific emission distributions, allowance
allocations and policy parameters. At the macro level, we
model carbon prices with a three-regime switching
geometric Brownian motion calibrated to Beijing carbon
market and electricity data, and price CCER as a real-
option-like asset with state-dependent CEA-CCER spreads
and guarantee-type payoffs. Comparing the two layers,
we show how income-based benchmarks and regime-
switching option values differ yet can be aligned to inform
CCER pricing, contract design and policy reform in China's
carbon market.

Keywords: CCER valuation; Carbon assets;
approach; Regime-switching GBM; Real options.
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1. Introduction

China's national carbon emission trading system
incorporates the China Certified Emission Reduction
(CCER) mechanism as a key supplementary instrument for
achieving carbon peaking and neutrality targets at
reduced costs. Regulated enterprises may substitute CCER
for Carbon Emission Allowances (CEA) up to specified
proportions when offsetting verified emissions, which
should in theory lower aggregate abatement costs while
channeling investment toward low-carbon projects. Yet
CCER's actual economic value emerges from the interplay
of multiple factors: firm-level emission uncertainty, quota
allocation methodologies, caps on offsetting ratios, policy-
driven sunset clauses governing CCER eligibility, and
carbon market prices that swing with macroeconomic
cycles and regulatory shifts. These institutional and
market features reveal that CCER functions neither as a
riskless compliance instrument nor as a straightforward
derivative of CEA prices; both enterprises and regulators
require valuation frameworks capable of reconciling
micro-level compliance incentives with macro-level price
movements.

Current CCER valuation practices display fragmentation
across two dimensions. Income approach studies
concentrate on the expected cost savings CCER delivers
relative to CEA, yet these analyses commonly take CCER
purchase volumes as given and overlook maturity and
residual value risks, thereby constraining their capacity to
represent firms' actual procurement decisions under
uncertainty. Market approach studies deploy stochastic
models for carbon prices but frequently treat CCER as a
scaled replica of CEA, failing to explicity embed
compliance constraints, offset ratios, or policy validity
windows. A disconnect has thus emerged between
enterprise-centered analysis that proves intuitive but
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2
static and market-centered modeling that remains
dynamic yet weakly anchored to the compliance

architecture. This paper seeks to close that gap by
developing an integrated framework: it merges a micro-
level income approach grounded in firms' optimal CCER
demand with a macro-level market approach that
captures CEA and CCER price evolution via regime
switching (Hussain et al. 2021) and geometric Brownian
motion (Li, W. et al. 2021; Liu, Y. et al., 2023a; Liu, Y. et al.
2023b), pricing CCER as a real-option-like asset.

From this integrated perspective, the paper advances
three principal innovations. First, at the micro level, it
refines the income approach by endogenizing CCER
purchase quantities as solutions to compliance cost
minimization problems under stochastic emissions,
regulatory ceilings, and uniform residual values. This
yields a closed-form marginal willingness-to-pay curve
that directly links firm-specific emission distributions,
quota allocations, and policy parameters to CCER
valuation. Second, at the macro level, the paper
introduces a three-state regime-switching geometric
Brownian motion model calibrated using Beijing carbon
market data and electricity consumption growth patterns.
It jointly models CEA and CCER prices under regime-
dependent drift rates, volatilities, and spread ratios,
valuing CCER through discounted risk-neutral expectations
based on guarantee-type payoffs that reflect compliance
substitutability and residual value floors. Third, the paper
juxtaposes micro- and macro-level findings, employing
shared calibration inputs such as expected CEA settlement
prices and CCER residual values to conduct a consistent
cross-comparison  of valuation outcomes. Results
demonstrate that the income approach's benchmark
value and regime-switching real option valuation together
furnish a foundation for CCER pricing, contract design, and
policy formulation.

2. Literature review

We take the literature review via two aspects, one is
about carbon asset, another is about asset pricing
especially for intangible assets.

2.1. Review on the researches about carbon asset

Recent work on carbon assets has started to connect
climate policy, corporate decision-making, and financial
market behavior, shedding light on both transition risks
and emerging valuation challenges. Research at the
sectoral and policy level shows that concentrated
ownership of power-sector assets vulnerable to stranding
creates vested interests capable of slowing or blocking
ambitious climate measures, pointing to governance
obstacles and distributional tensions in decarbonization
pathways (Chevallier et al. 2021; von Dulong 2023).
Analyses of corporate carbon footprints across complete
value chains find that embedded emissions in listed firms
vary dramatically between upstream and downstream
operations, altering how investors assess risk exposure
and meet disclosure obligations (Langley et al. 2021;
Zhang et al. 2023). Firm-level data indicate that equity
markets now price corporate carbon emissions more
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systematically, with valuations reflecting both total
emissions and the perceived credibility of decarbonization
plans (Zhang 2025; Chen and Lai 2025). On the asset-
pricing front, researchers increasingly model carbon
allowances and credits as contingent claims: option
frameworks price carbon assets and support digital tools
for dynamic hedging and project evaluation (Liu et al.
2022), while real-options techniques measure the
economic value of operational choices such as continuing
or shutting down emission-intensive power plants under
tightening carbon limits (Liu et al. 2021). Where macro-
finance meets climate, carbon pricing emerges as a driver
of structural change toward greener growth trajectories,
redirecting capital flows from high-carbon sectors
(Langley et al. 2021; Mengesha and Roy 2025), yet climate
and policy uncertainty propagate forcefully across energy
and carbon markets, with asymmetric causal connections
running among economic policy uncertainty, oil price
volatility, clean energy indices, carbon futures and green
bonds (Wang X. et al. 2022; Siddique et al. 2023).
Empirical studies further reveal pronounced spillovers
linking fossil fuel, renewable and carbon markets during
overlapping climate and energy shocks, implying that
carbon assets sit within larger energy-finance networks
rather than standing alone (Su et al. 2023; Dong and Yoon
2023). Meanwhile, the relaunch of China's CCER market
has spurred methodological and project-level advances:
feasibility assessments of methane-reduction approaches
in oil and gas production highlight a new category of
carbon assets with substantial mitigation leverage (Wang
et al. 2025), and integrated carbon asset management
platforms and trading tactics seek to help listed
enterprises revalue assets and pursue sustainable
development goals (Chen and Lai 2025). Taken together,
these studies suggest that carbon assets are shifting from
a narrow compliance tool into a diverse financial and
strategic asset class whose worth hinges on policy
architecture, technology trajectories, cross-market
linkages and firm-level organizational capacity (Chevallier
et al. 2021; Liu et al. 2022; Mengesha and Roy 2025).
Beyond energy and finance, valuation-relevant impacts of
carbon-related assets and practices now extend into
material-production industries including agriculture and
chemicals, covering soil carbon sequestration, inorganic
soil carbon behavior, and biochar-derived carbon
materials (Nazir et al. 2023; Raza et al. 2024; Mahmood et
al. 2025).

2.2. Review on the researches about intangible asset
pricing

A growing body of research on intangible asset pricing
examines how non-physical drivers such as information,
expectations, environmental performance and intellectual
capital increasingly shape asset values. At the
measurement and reporting level, surveys and meta-
analyses point to persistent gaps between the economic
significance of intangibles and their treatment in financial
statements, documenting conceptual and empirical
obstacles in valuing items such as R&D, data, and
organizational capital (Van Criekingen et al. 2022; Jeny
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and Moldovan 2022; Barker et al. 2022). Firm-level studies
build on these observations to show that intangible
resources can forecast future performance and ought to
be priced by investors, with deep learning models
extracting value-relevant signals from complex intangible
asset profiles (Pechlivanidis et al. 2022). Related work
broadens the concept of intangibles to include
environmental attributes: carbon emissions and carbon
risk enter asset pricing models as non-traditional factors,
with mounting evidence that emissions and climate
exposures affect stock returns and capital costs, especially
in emerging markets (van Benthem et al. 2022; Wang H. et
al. 2022; Bolton and Kacperczyk 2024). Time-varying
investor preferences for green attributes and evolving
policy signals further influence how environmental
performance gets rewarded in asset prices, suggesting
that such performance has itself become a priced
intangible (Dutta 2022; Alessi et al. 2023). Where macro-
policy meets asset valuation, studies of risk-adjusted
carbon prices and retrospective evaluations of carbon
pricing schemes reveal that expectations about future
regulation and abatement costs embed themselves into
long-run asset values, effectively converting regulatory
trajectories into a form of priced intangible risk (Van den
Bremer and Van der Ploeg 2021; Green, 2021). On the
methodological front, advances in behavioral and
computational finance demonstrate that even nominal
price illusions and data monetization practices introduce
new intangible dimensions into pricing: behavioral biases
in  nominal valuation distort asset prices in ways
traditional factors miss, while datasets themselves
become tradable intangible assets whose prices can be
learned via deep learning-based monetization frameworks
(Yang and Yang, 2022; Hao et al., 2025). Taken together,
this literature argues that modern asset pricing must
systematically incorporate a wide spectrum of intangibles
spanning accounting-based intellectual capital,
proprietary data, environmental quality and policy
expectations, deploying richer models and machine
learning techniques to connect these largely off-balance-
sheet attributes to observed returns (Van Criekingen et
al., 2022; Pechlivanidis et al., 2022; Alessi et al., 2023).

These studies collectively demonstrate that carbon assets
and other intangibles are increasingly priced through their
interactions with policy, firm behavior and market
expectations, yet existing research tends to separate
micro compliance analyses from macro market models.
Drawing on these insights, this paper treats CCER as a
carbon-related intangible asset and constructs an
integrated valuation framework that connects optimal
firm-level CCER demand under emission and policy
uncertainty with regime-switching GBM-based pricing of
CEA and CCER, bridging income-based and market-based
perspectives to inform CCER pricing, contract design and
policy.

3. Micro-level CCER valuation:from the

perspective

firms’

3.1. Theoretical analysis and model construction

This section constructs an improved CCER valuation model
grounded in optimal enterprise purchasing decisions
under emission uncertainties, regulatory constraints, and
policy-induced invalidation risk. Unlike earlier discrete and
continuous distribution models where CCER quantity
enters exogenously and unit value represents average
cost savings per ton, the present framework endogenizes
purchased CCER quantity as the solution to a cost
minimization problem and derives the associated
willingness to pay as a theoretically grounded estimate of
marginal value. This approach preserves the intuitive cost-
difference logic inherent in the income method while
directly tying CCER value to firm-specific emission risk,
incorporating residual value and the potential for excess
CCER to lose validity after the compliance window, and
permitting heterogeneous enterprise characteristics such
as size, quota allocation and volatility to generate
differentiated CCER valuations.

We consider a representative compliance enterprise i
facing uncertain annual carbon emissions in the target
year (for instance, 2024). Let E denote its random annual
emissions (tonnes of CO2 equivalent). Consistent with the
empirical setting in the previous section, E is modeled
from historical data (2017-2023) and is assumed to follow

a continuous distribution with mean ue and variance aé,

with cumulative distribution function Fg(-) well-defined;in
applications a normal or lognormal specification can be
used, or an empirically estimated non-parametric
distribution.

The enterprise holds or expects to receive an annual
allocation of carbon emission allowances (CEA) denoted
by A, and may purchase a quantity Q of CCER to offset
emissions in the same compliance period. The maximum
proportion of emissions that can be offset with CCER is
capped at a (5% in the Chinese system), which implies an
upper bound Q < Q™*, where Q™ can be set as aue or,
more conservatively, as a(us+zoe) for a chosen safety
quantile z. Throughout the analysis we treat Q as a
continuous decision variable in [0, Q™%].

At the beginning of the compliance period (or at an
intermediate time before the deadline), the firm chooses
Q and pays pcQ, where pc is the unit market price of CCER.
We assume that the CEA price at the time of final
compliance is stochastic but that the firm can form an
expectation p, of the average marginal cost of acquiring

additional CEA close to the settlement date, inferred from
historical trading data or from a separate market-
approach model (e.g., GBM or LSTM). The regulatory
frame-work typically stipulates a penalty F per tonne of
uncovered emissions; for analytic clarity we assume
F=>p,, so that a rational firm will always purchase CEA to
achieve full coverage before paying penalties, and
compliance behavior can be summarized as ‘buy CEA until
the emission shortfall is fully covered’.

Given a realization of E, the firm’s compliance balance at
the end of the period is A+Q. If E > A+Q , the firm must
purchase additional CEA on the spot market to cover the



shortfall E-A-Q at expected marginal cost p,(E-4-0),
ignoring second-order price feedback from individual
trades. If instead E<A+Q, the firm ends the period with
surplus compliance assets 4+Q-E . Because CCER
eligibility in the Chinese national trading system is subject
to strict temporal limitations (for example, credits
registered before March 14, 2017 are usable only until
December 31, 2024 and CCER trading effectively ceases
after the compliance submission deadline), surplus CCER
face significant expiration and liquidity risks, whereas
surplus CEA generally remain valid and tradable in
subsequent periods or can be sold back to the market.

To capture these asymmetries while keeping the model
tractable, we postulate that surplus compliance assets at
the end of the period are valued at a residual price v . A

more detailed specification could distinguish between
surplus CEA and CCER, for example assigning CEA a
residual value close to p, and CCER a value (1-6)Apc

based on a survival probability (1-6) and a resale discount
factor AE[O,I]in voluntary markets. For parsimony, we

aggregate these effects into a single effective residual
value v**, interpreted as the expected liquidation value
per tonne of surplus compliance asset, net of policy
invalidation and market illiquidity; typically v <p, and,
for CCER approaching their sunset date, it can be
substantially lower.

Under these assumptions, for a given CCER purchase
quantity Q and a particular realization of emissions E, the
firm’s random total cost of compliance can be written as

TC(Q:E) =pcQ +pa(E-A-0), —v* (4+0-E), (3.1)

where (x)+ = max{x, 0} Here p-0 is the certain upfront
cost of purchasing Q tonnes of CCER, ﬁA(E—A—Q)+ is the
cost of "filling the gap with CEA" when realized emissions
exceed A+Q, and —vEeS(A+Q—E)+ reflects the residual
value of surplus compliance assets when E<A+Q

Given CCER purchase quantity Q, the firm’s expected
total compliance cost is

E[TC(Q:E)|= pcO+E|p,(E-4-0).] 32

—E[V§S(A+Q—E)+],

where the expectation is taken over E~ fz(e). The firm’s

decision problem is

Q" =arg min E TC(Q;E)J , (3.3)
OSQSQFHBX
which formalizes, within the income-approach framework,
the strategic decision of ‘how many CCER to buy’ under
emission and price uncertainty.

To derive the first-order condition for an interior solution,
differentiate (3.2) with respect to Q. Since TC(Q; E)
depends on Q only through p.Q and the positive-part
terms, and (E-A-Q):, (A+Q-E)+ are almost everywhere
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. . . 0
differentiable in Q ,we have %(E—A—Q)+:—1{E>A+Q}and

%(A+Q—E)+:1(E<A+Q}, where 1¢; denotes the indicator

function. Substituting and using linearity of expectation
gives

d - res (3
@ E [TC(Q; E):| “Pc +E |:_pA 1{E>A+Q} e {E<A+Q}4:r
= pc —PAP (E>A+Q) — (P (E<AHQ),

where  we  used E[1{5>A+Q}}=P(E>A+Q) and

E[1{5<A+Q}]=P(E<A+Q). The second term represents

the expected marginal saving in CEA "gap-filling" cost, and
the third term captures the change in expected residual
value from buying one more tonne of CCER.

Setting (3.4) equal to zero at Q* yields

pczﬁAP<E>A+Q*)+vg“ (E<A+Q*). (3.5)
For a continuous emission distribution we have
P(E>a+0") +P(E<a+0) ~ 1.

Rearranging (3.5) gives the key pricing relation
rC = pres + (3.6)

C

) residual value bencgmark
when CCER mainly endas surplus

CCER unitpriceat Q*
(marginal willingness-to-pay
AU P(E > A+0¥)

c oo S
proability of an emissionshortall

. — .
compliance—use premiumfier byying Q* tonnes of CCER
over pure residual value

The marginal willingness-to-pay at Q* is thus a weighted
average of the expected marginal CEA cost p, and the

residual value v¢**, with the weight on p, given by the
shortfall probability P(E>A+Q*). When this probability is

high, pc is close to p,; when it is low, pc moves toward
v

To obtain an explicit pricing formula, assume

E~N (pE,a,%), with (&, or) estimated from historical firm-

level data. The shortfall probability can then be expressed
via the standard normal CDF ®(-) as

A+Q—ﬂ5) (3.7)

P(E>A+Q):1—G>(
Of

Substituting (3.7) into (3.6) yields the central CCER price-
guantity relation
res (3‘8)

@ -7
—
firm-level marinal residual value
(willingness-to-payatQ) surplus states

- A -
N oles - @(M)]
C oF

- - =
incremental valueof CCER  proability of ashortfall
asacomplianceinstrument  after buying Q tonnes of CCER

For small Q such that 4+Q0 4z, the standardized term

(4+0-ug)/ o is very negative, ®(-) is close to 0, and the
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shortfall probability is close to 1, so p*C(Q) ~p, and CCER

are almost fully valued at the expected marginal CEA
price; as Q increases and A+Q approaches or exceeds i,
the shortfall probability declines and p*C(Q) decreases

smoothly from p, toward v¢*, reflecting the transition

from ‘insurance against costly shortfalls’ to ‘potentially
stranded surplus assets’.

Thus, (3.8) can be interpreted as a firm-level demand
curve for CCER: for each Qe[O,Qmax}, it gives the marginal

price that leaves the firm indifferent between buying an
additional tonne of CCER and relying instead on spot CEA
purchases or accepting surplus risk. Coupled with (3.3),
the most relevant income-based valuations at the firm

level are p*C(Q*) (marginal value at the optimum) and

pZ(QmaX) (marginal value when the regulatory offset

ratio is fully used). Aggregating such firm-specific marginal
values, for example via emission-weighted averages,
yields a market-level theoretical CCER price range under
the improved income-approach framework.

In implementation: (1) For each firm, estimate (ue, o)
from historical emissions and determine its expected
allowance allocation A under national ETS rules, then
compute Q™*=ayk. (2) Specify p, from observed or

modeled CEA prices at compliance, and calibrate V.’

using policy information on CCER validity and expected
liquidity. (3) For each Q on a grid in [O,Q’"‘“}, compute

P(E>A4+0) via (3.7) and then pc(0) via (3.8). (4) Solve
(3.3) for Q*, obtain p*C(Q*) or p*C(Q’”‘”‘), and aggregate
across firms to form a market reference price.

3.2. Numerical implementation and discussion on the
results

The numerical implementation proceeds as follows (the
Matlab implementation for the income-approach model is
provided in Appendix B). The model first sets the key
global parameters «=0.05,p,=115 CNY/tand v,,, =30 CNY/t,

res
where o is the maximum CCER offset ratio, p, is the

expected marginal CEA settlement price, and vres is the
residual (floor) value of CCER. Historical daily CEA and
CCER prices from the Word file are read into the program
but are used only as background, while the pricing model
itself is calibrated directly using the fixed values of p,

and Vres.

Firm-level emission data are then imported separately for
low-emission firms (Table 2) and normal-emission firms
(Table 3). For each firm, the Appendix A provides

Eypper>Emia and Ej,, for annual emissions. The code sets

He=Emia as the firm’s expected emissions and, assuming
(Etower, Eupper) is roughly a 90% confidence interval,
approximates the standard deviation by

O'EZ(Eupper—Elower)/(zzo'gs) with  z095%1.64, imposing

0:>107° to avoid degeneracy. The allowance allocation is

set equal to expected emissions, A=pig, and the maximum
CCER usage is Q,,, =g -

Based on these inputs, the firm-specific marginal
willingness-to-pay function for CCER is implemented as

26 (0) s+ (Pt = Vyes ){1 - q)(wﬂ

Op

where ®(-) is the standard normal cumulative distribution
function. In the code this is written as a vectorized
anonymous function pc_fun using normcdf. For each firm,

the program evaluates p¢(Q)at0=0,0=0,p and 0=0" ,
where Q* is obtained by minimizing the expected total
compliance cost over Q&[0,0, |,

E[TC(Q:E)|=pc(Q)0+ P4E[(E-T), |- veE[(T-E), | T= 440,
with (x)+ =max {x,0}. Under the normality assumption for E,
the expectations E[(E—T)Jand]-:[(T—E)J have closed-

form expressions involving the standard normal pdf and
cdf, which are implemented in an auxiliary function
ETC single. The scalar optimization is carried out using
the Matlab routine fminbnd, yielding the optimal ¢" and

the associated marginal price p*C(Q*) for each firm.

Using this procedure, the program computes for all 46
firms the mean emissions ue emission volatility o,
maximum CCER use Q,,,. and the model-implied marginal
CCER prices at 0=0,0=0,ux andQ:Q*. The numerical

results show that: (1) for all firms, the predicted marginal
price at zero CCER wusage is identical and equals
p*c(0)=72.50CNY/t. This is because at 9=0 we have
T=A=ug, so®0)=0.5 and
PC(0)=Vyes +(D4 —yes ) (1-©(0)) =30+ (115-30)x0.5 =725, (2)
When firms use CCER up to the policy cap Q,,,, = au, the
marginal willingness-to-pay falls for all firms to
approximately p*C(QmM)z47.52CNY/t, because additional
CCERs raise the total compliance position 7=4+9Q and
reduce the probability that the firm ends up short and
needs to settle at the higher CEA price p,. (3) The

optimization results show that for every firm in the
sample, the cost-minimizing choice is 0'=Q,u , SO

£ s *
pc(Q ): PC (Opax ) ®47.52CNY /1.

The program also computes emission-weighted average
theoretical CCER prices across all firms (using ue as
weights). The results are (CNY/t):Mean p*C(Q=0)=72.50,

Mean p¢(0=0p)=47.52, Mean p*C(Q:Q*):M.Sz.

Because all firms optimally choose 0°=0,,,. , the average

optimal marginal price coincides with the marginal price

at the cap. The left graph in Figure 1 illustrates the
marginal  willingness-to-pay curve pz (Q) for a

representative firm, chosen in the code as the one whose



expected emissions are closest to the sample median,
namely the firm with ticker 966, for which (t CO2)
1 =657,528,0 5 =40,093.29, 4= 657,528, QO = 32,876.40. The
horizontal axis of the left graph in Figure 1 plots Q (in
million tonnes CO2) from 0 to Qmax , and the vertical axis
pc(Q) in CNY/t. The

pc(0)=7250CNY/t  and

reports curve starts at

monotonically declines to

p*C(QmM)z47.52 CNY/t as Q increases, with two horizontal

reference lines at p,=115CNY/t and v, =30CNY/t. The

res

points Q=0, 0=9Q,,,, and 0=0" are highlighted on the
curve; since for this firm 0°=0,,,,=32,876.40tCO2 , the last
two coincide and p*C(Q*)=p*C(Q,,m)z47.52CNY/t. The

right graph in Figure 1 summarizes the cross-sectional
distribution of p*C(Q*) for all 46 firms. The horizontal

axis is p*C(Q*)(CNY/t) and the vertical axis is the

number of firms. The descriptive statistics are:

minpg: (Q*) =47.51 CNY /t, maxpg: (Q*) =47.53 CNY /4, mean

=47.52 CNY/t , median = 47.52CNY/t , std.dev.~0.00CNY /t,
indicating an extremely concentrated distribution.

Overall, the numerical results vyield three main
conclusions. First, when firms hold allowances equal to
their expected emissions, the initial marginal value of
CCER at zero usage is exactly halfway between the
residual CCER value and the expected CEA price, that is

1, ) .
pz(O):E(pA +V,45)=72.5 CNY /1. Second, as firms increase

CCER usage up to the regulatory cap, their marginal
willingness-to-pay declines to about 47.52CcNyst , but
remains well above the residual value of 30 CNY/t, which
supports a non-trivial economic value of CCER under the
given market conditions. Third, under the current

parameterization all firms optimally choose 0'=0,,,,, SO
the cross-sectional dispersion of pZ(Q*) is negligible, as
illustrated by the right graph in Figure 1.

These findings highlight both the internal consistency and
the limitations of the current calibration. The income-
approach model delivers a transparent relationship
between the CEA price, the CCER residual value and firms’
optimal CCER demand, while the near-degeneracy of the
cross-sectional  distribution  suggests that richer
heterogeneity in allowance allocation rules, emission
uncertainty and firm-specific constraints, or relaxing the
assumption A=y for all firms, would generate a wider

and more realistic spread of p*C(Q*) than that shown in
the right graph in Figure 1.

4. Macro-level CCER valuation: from the market’s

perspective

In this section, we employ the market approach to model
carbon prices through a regime-switching geometric
Brownian motion (GBM). Compared to a single-regime
GBM, this framework is capable of capturing structural
shifts in economic activity, energy demand, and regulatory
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policies, thereby depicting the nonlinear, state-dependent
dynamics of CEA and CCER. We treat CEA prices as the
underlying asset in a risk-neutral regime-switching GBM
and value CCER as a real option, while considering
observable price boundaries, offset substitutability with
CEA, and policy-mandated offset ratio constraints.

Representative Firm (Ticker=0966) (>}
140 —_— i)
¥ Ll
100 .
m—
®
1 —
: ®  dslad
F om
= =0
@ m
S
i
5 o=
L= .
30
1,00 " 005 0.0 ou0es no3
Q (million t SO0

Distribution of Firm-Level Opémal CCER Marginal Prices

[

Humbar of firms

— —
4T 51 §7.514 47.518 AT.502 i7.526 4753

P[0 ) (CHYH)

Figure 1. Representative-firm marginal CCER pricing curve and
cross-sectional distribution of optimal marginal CCER prices

4.1. Theoretical analysis of the value-relevance of CCER
and CEA

For compliance enterprises, one unit of CCER can either
offset one ton of verified emissions on the compliance
date or be sold on the secondary market before its
expiration, thus representing a flexible right. Holding CCER
units with an expiration date of T at time zero grants the
holder the right to choose between compliance use and
market sale, with the higher benefit prevailing at or
before time T. Let »* and PC be CEA and CCER prices at
time t, and r the continuously compounded risk-free rate.
Empirically 2C is usually below 24 and bounded below

by a residual value wvres, so a basic restriction is

0< vy <BC <R
We approximate the marginal compliance value of one

CCER at T by an increasing function f(PTA) of the

settlement CEA price.
ignoring firm-specific

Under full subtitutability and
constraints, we use
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f(Pf‘):min{Pf‘,ﬁAm“x}, where 7,"* is an effective cap
on the CEA settlement price. The time-zoo CCER value

under the risk-neutral measure Q is VOC:e‘rTEQ [f(Pf’)},

which is constrained to satisfy v, <V <V§!, where r4! is
the risk-neutral value of one CEA unit. Calibration of f(-) is
chosen so that the implied ratio 6, =2 /P lies in the
empirical band 9<¢,<6 .

In the Beijing CCER market, Table 1 indicates that & is
typically between 0.56 and 1.08, with 2 <p? and a
common range around 0.6 to 0.7. To reflect this structure,
we specify a state-dependent pricing kernel £C =6(a;) B,
where o is an unobserved economic regime and () is

the CCER-CEA price ratio in regime ot Given the regime-
switching process for p4, CCER prices are thus driven

jointly by P4 and the regime index a.

Regime uncertainty is modeled by a continuous-time
finite-state Markov chain (out)e=o with state space
M ={ej,ey,....,ep}, representing different macro or
regulatory conditions. For more details of Markov chain's
modelling and applications, we refer to (Zheng et al.,
2020; Ni et al., 2024; Xu et al., 2024). The "regime" can be
understood as a combination of high, medium, and low
levels of temperature and industrial activity, or more
broadly as a state defined by temperature, coal prices,
industrial added value growth rates, and regulatory policy
dynamics. This Markov chain determines the drift rate,
volatility, and spread ratio 6(-) of the CEA price process,
and therefore transmits regime shifts into CCER valuation.

4.2. Modeling CEA and CCER prices with regime-switching
geometric Brownian motion

We now specify a regime-switching geometric Brownian

motion (GBM) for CEA and CCER prices. Let (Bt)tZO be a

standard Brownian motion and («) _, a continuous-time

=0
Markov chain  on M ={e,....e,} with generator
Qz(qf/)m,jm , Where ¢; > 0 for i#j and ¢;=-) ¢;. The
J#EI

filtered probability space is (Q,F ’(F’)tZO’P)’ with filtration
generated by B: and o Under P, the CEA price (P,A) .
1>

follows

dP* =y, (a,)Bdt + o4 (e, ) B*dB,,0 <1 <T, (4.1)

with regime-specific drift ua(i) and volatility oa(i)>0. The

T T
luti P A _ pA 1 2
solution is P =Flexp ;tA(aM)—EUA(aU) du+ | o 4(ey )dBy
0 0
To price under no arbitrage, we move to a risk-neutral

measure Q such that ¢’’P? is a martingale. Let

ﬂ.,=(,uA(at)—r)/0'A(at) and define

T T t
%=exp —J.ﬂwd u—%jﬁﬁdu . Then §t=Bt+J./1udu is a Q-
0 0 0

Brownian motion and

dp" =rP'dt+o ,(c,)P'dB,, (4.2)
T T
or equivalently p/! = plex J[zlféai(au)]du+'[JA(au)déu .We
0 0

keep the generator Q unchanged under Q ,which is
standard and sufficient for pricing here.

To link CEA and CCER prices by regime, we introduce
e(i)e[g,ﬂ,i:l,...,m, calibrated from CCER/CEA price

ratios. When at=e;, we set

B =0(a) B, (4.3)

so that in regime i the CCER price is a fixed fraction 0(i) of
the CEA price. Combining (4.2) and (4.3) and using Ito’s
formula, for fixed regime i we obtain

dpC =0(i)dR" =rP dt+ o (i)P dB,, 0. (i) = 0, (i),
SO (P,C) . also follows a regime-switching GBM under Q :
1>

dp¢ =rPCdt+o¢ (o, ) BCdB, .

For valuation, let g(-) be the marginal compliance value of
one CCER at maturity T as a function of P#. A simple
specification with full substitutability and a floor is
g(Pf‘):max{vms,ecffPf‘} with . e[g,é] . The time-zero

value of a CCER unit is

Voc:e—rTEQ[g(PTA)m)A:péq’aozei} (4.4)

where A;' is the current CEA price and €; the current

regime. Due to regime switches, P# is not lognormal and

(4.4) has in general no closed form. Two standard
numerical approaches are therefore used: a system of
coupled PDEs, or Monte Carlo simulation (see Hu et al.,
2020; Liang et al., 2022 for more applications).

For the PDE approach, define v;(p,z) as the value at time t
of one CCER when BY=p and o =¢.i=1...m Then
v=(v,...,v,) solves, on (p,t)e(0,%)x[0,7)

. (4.5)

2 m
1 2,5 20% ov;
—L+—oyq(i)p 2’+rpa—p’—rvi+ E q;;v; =0
J=1

o 2 op

with terminal condition v;(p,7)=g(p). Numerical schemes
such as finite differences can be used to obtain vi(pg‘,o),
so that V0C=v1-(p()4,0). For Monte Carlo,one simulates N
paths of (PtA,at) under Q on [0,7T] using (4.2) and the

Markov chain with generator Q. For each path k, record
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A,(k) d A,(k) .
P an compute gl P ;
= k
then ﬁ&:e"‘T%Zg(Pf’( )], which converges to ¥{ as
=1

N > . Alternatively, one may simulate ¢ directly via
(43) and use a payoff h(PTC), for instance
h(P;g):max{PyngC,vrgs} with a strike Kc and then
compute 7§ =eTERQ [h(PTC)}With suitable choices of g
and h consistent with (4.3), the two formulations are

equivalent.

Calibration proceeds in two steps. First, regimes are
identified from exogenous variables such as daily
temperature and industrial added value growth,
for example by partitioning the (x,y)-plane with
y=x+¢ and y=x+c; and assigning each day to a
regime.The transition rates gi; are then estimated
from empirical holding times and transition counts.
Second, given regime labels, regime-specific drifts
u4(i) and volatilities o4(i) are estimated from CEA

log returns, and the spread parameters 6(i) from
paired CEA-CCER prices,subject to #<6(i)<6. Once
O.14(i)04(i),0(p% and 1 are

regime-switching GBM fully specifies the joint
dynamics of CEA and CCER prices under Q, and

calibrated, the

thus yields a CCER value ¥{ that reflects regime

uncertainty, empirical spreads and the real options
nature of CCER.

4.3. Numerical implementation and discussion on the
results

This subsection uses the Matlab code (refer to Appendix
C) to implement a three-regime Markov switching GBM
for CEA and CCER and to price a guarantee-type payoff

E[max(CCERT,K)] under the risk-neutral measure. Daily

2023 CEA and CCER prices from Beijing Green Exchange
are combined with monthly year-on-year electricity
growth. The monthly growth rates are mapped to the
daily grid; empirical quantiles of both electricity growth
and CEA price define three regimes: regime 1 (low growth,
low price), regime 3 (high growth, high price), and regime
2 (intermediate). If any regime is too small, its days are
merged into the middle regime.

Within each regime se{1,2,3}, the drift and volatility of
daily CEA log returns are estimated as sample mean and
standard deviation, giving s4(s) and o4(s). The Markov
transition matrix P is built from observed one-step regime
switches. For CCER, an equilibrium relation s¢ ~g,5/ is
assumed, where & is the average CCER/CEA ratio in
regime s, truncated to [0.5,1.0]. In simulation, S,C =6‘SS,A

times an idiosyncratic lognormal shock (Rasool et al., 2020;
Shabbir et al., 2020; Zhang et al., 2020; Hussain et al.,
2021; Yan et al., 2022). The daily standard deviation of

TANG et al.

this CCER-specific noise is set at 0.10J/At with Z, ~N(0,1),

which generates realistic short-run deviations between
CCER and CEA while preserving long-run co-movement
through 6.

Under the risk-neutral measure, CEA in regime s follows

a GBM with drift rféasz and volatility os, with annual
risk-free rate r=0.0435 and time step At=1/252. At each
step, the regime is updated using P, then CEA is evolved
by the corresponding GBM, and CCER is obtained as (9SSIA

times the idiosyncratic shock. The code simulates joint
paths of CEA and CCER over Ttade=80 trading days from
end-2023 levels, with initial prices sgl=111.38 CNY and
S§ =72.00 CNY . The initial regime is the observed last-day
regime. The guarantee level is K =72.00CNY .

Sample paths of CEA (solid) and CCER (dashed) under regime-switching GBM

GEA paths

= = = -CCER paths
1200 ———

Price (CNY)

Trading day

Figure 2. Simulated CEA (solid) and CCER (dashed) price paths
over 80 trading days under a three-regime switching GBM, with
background color bands indicating low, medium, and high
demand-price regimes

Figure 2 illustrates five simulated paths over 80 days. Solid
lines are CEA, dashed lines CCER. The background bands
show the simulated regimes: blue for regime 1, green for
regime 2, red for regime 3. Regimes evolve endogenously
according to P. CEA and CCER co-move at the regime
scale, with higher growth of both prices and higher
volatility in red bands, and flatter or downward behavior
in blue bands. Regime-specific o,(s) generates time-
varying volatility. The larger CCER idiosyncratic noise
0.10/At produces visible but transient deviations of CCER
from 6,5/, consistent with CCER’s lower liquidity and
project heterogeneity. The paths combine long-run co-
movement, regime-dependent risk and short-run spread
fluctuations.

On this joint dynamics, the value of a single-maturity
payoff max(CCERy,K) with T =80 days is approximated

by Monte Carlo: PV =¢""E?[max(CCERy,K)| with 20,000
paths. The output is PVx804027CNY per unit CCER,
compared with spot S§:72‘00 CNY and K = 72.00 CNY .
Since max(CCERy,K) equals one CCER plus a European call
with strike K, the excess PV-5S§ ~84CNY reflects option
value from regime-driven upside and the floor at K.

To illustrate how the guarantee value varies with initial
CEA sg' and maturity T, a grid is set with sg' from 80.00
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to 160.00 CNY (25 points) and T from 10 to 80 trading
days (step 10). At each grid point (sgl,r), 15,000 paths of
the joint process are simulated, the payoff max(CCERy,K;)
is computed and discounted. The guarantee level is
K3 = Kpase + UfollowOmid (561 -56 EA),

Kpase =72.00 CNY, 6,7 =0.6257 is the middle-regime ratio,

where

S§EA =111.38CcNY is the current CEA price, and

polow =0-30. Thus only 30 percent of deviations of S’
from s§F4 feed into the floor, which weakens the almost

linear dependence that would occur under &, =6,,,45¢".

CCER value surface under regime-switching GBM: discounted E[max(CCER, K,)]

15

2
2
8

Discounted E[ max(CCER. K,) ] (CNY)
8

Initial CEA price S} (CNY)

Maturity T (trading days)

Figure 3. Discounted expected value surface
E[max(CCERT,Kz)] per unit CCER under the regime-switching
GBM, as a function of initial CEA price and maturity, with the

guarantee level defined as a baseline plus a partially adjusting
component

Figure 3 reports the discounted expectation
EQ[max(CCERT,Kz)}e”T on this grid (with simple
interpolation). Along the T direction, holding sg fixed,

values increase with maturity because the process has
more chances to enter high-demand regimes and the time
value of the floor-contract outweighs discounting. Along
s¢', each maturity slice is upward-sloping but nonlinear:

with K, = K, +0.30 am‘-d(sg‘fsocEA), the floor adjusts

slower than the expected terminal CCER level as sg' rises,
so the marginal impact of s§' gradually declines at high
initial prices. In the low s§' region, values remain clearly
above knase even at short horizons, indicating a nontrivial
probability of regime-driven recovery before maturity. A
slice at T ~ 40 days (black curve) highlights this

nonlineaeity: near s{% the slope in s§' is steep, then

flattens at higher sg' ,confirming the dampened pass-
through of initial price into guarantee value under the
partial-follow rule.

5. Comparison and summary

5.1. Comparing micro-level and macro-level CCER

valuation results

This subsection compares the micro-benefit approach in
Section 3 with the macro-regime switching GBM approach
in Section 4. By examining the implied marginal or fair
CCER price (unit: yuan/ton) of the model and aligning key
calibration items (such as expected CEA settlement prices,
CCER residual values, and observed CEA and CCER spot
prices), the two methods are made comparable.

On the micro side, Section 3 studies a representative
compliance enterprise minimizing expected total
compliance cost under uncertain emissions, regulatory
caps and residual value risk. The firm faces random annual
emissions £ with mean e and variance o%, allowance
allocation A, maximum CCER usage Q... =aug, expected
marginal CEA settlement price p,, and residual value v,
. Total cost equals upfront CCER spending plus expected
CEA gap-filling cost minus expected residual liquidation
value. Treating 0<[0,0,,, |as continuous, the first-order

condition  yields a marginal  willingness-to-pay

pf'j(Q)=vreS+(]_7A—Vres)|:1—CD((A+Q—/JE)/O'E):|, interpreted
as a weighted average of 5, and v, , with the weight on
p4 given by the emission shortfall probability after
purchasing Q.

Under the baseline calibration with offset ratio
a=0.05p,=115CNY/t, v, =30CNY/t, allocation A=y,
and approximately normal emissions, the model is applied
to 46 low- and normal-emission firms. For each, uz, of ,

Opax aNd pE(0) , pé(Qmax),pé(QE) are computed. All

firms obtain 0° =0,,,,, that is optimal usage at the cap.At

Q=0 , the shortfall probability equals 1/2 so

pé(O):%(ﬁA+vres):72.50CNY/t. At Qmax the shortfall

probability is much lower and the marginal value drops to
about 47.52 CNY/t . The emission-weighted distribution of

pg(Qs) is thus very concentrated around 47.52 CNY/t .

On the macro side, Section 4 models CEA and CCER via a
three-regime switching GBM calibrated to 2023 Beijing
data and electricity growth, with regimes capturing low,
medium and high demand-price environments through a
finite-state Markov chain. Within each regime, CEA
follows a risk-neutral GBM; CCER equals a regime-
dependent fraction of CEA times an idiosyncratic
lognormal shock with daily standard deviation 0.104J/At,
representing CCER-specific noise. CCER is then valued as a
real-option-like asset whose payoff reflects its compliance
substitutability and residual value.

For a single-maturity payoff max(CCERr,K) with
T = 80 days, K = 72 CNY, r=0.0435, and starting prices
Sgt=111.38CNY , S§ =72.00CNY, Monte Carlo with 20000
paths gives PV ~80.40CNY/t. The excess over spot is the
value of the embedded call on CCER under regime
uncertainty. Extending to a grid over sg and T with a

guarantee K, anchored at 72 CNY and partially following

sg' yields a surface EQ [ max (CCERy,K;) |e”'" that increases
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with T and displays nonlinear dependence on S§ .
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As follows, Table 1 summarizes representative outcomes.

Table 1. Comparison between micro-level and macro-level CCER valuation results

Micro-level income approach (firm
perspective)

Macro-level market approach (regime-
switching GBM)

Modeling focus

representative firm or firm sample

Risk-neutral pricing of CCER as a real
option-like asset under state-dependent
price dynamics

Main uncertainty source

and residual value exogenous

Firm-level emission risk (L, o¢) with prices

Stochastic CEA and CCER prices driven by a
three-regime switching GBM

Decision variable or contract type

CCER purchase quantity Q€[ 0,Opx |

Holding CCER and possibly a guarantee-
type contract max(CCERy, K) or max(CCERy,

chosen once per period K>)

Representative price

pe&(0)=72.50;

PV~80.40 at T=80 days

levels (CNY/t)

P8 (Oua ) 247,52 ; pg(gﬁ)zm.sz

and K=72; CCER spot at t=0:72.00

Treatment of residual or floor value

Floor K or K, at maturity under regime
uncertainty

Constant residual value vy at period end

Time structure

Multi-period stochastic evolution over up
to 80 trading days

One-period static compliance decision

The micro model produces CCER values between vres and
p4 » With precise levels driven by shortfall probabilities.

Under the condition of homogeneous parameters and
A=y, the marginal value converges around 47.52 CNY/t at
the upper limit and is 72.50 CNY/t at zero usage, which
can serve as a conservative benchmark from a static
performance perspective. When applied to contracts with
clear lower limits, macro models typically yield higher
valuations as they price the upside potential and time
value of flexibility in favorable regimes; the guaranteed
rights with an exercise price of K=72 CNY reach
approximately 80.40 CNY/t, which is higher than the spot
price and the micro-level marginal value.

This difference reflects different economic roles. In the
micro-scenario, CCER hedges the specific emission risks of
enterprises within a single compliance cycle; once the
enterprise  comfortably meets the compliance
requirements, the valuation of additional CCER
approaches Vvres. In the macro-scenario, CCER is a tradable
asset exposed to macro-regime shifts, with valuation
using the complete risk-neutral distribution of future
prices, and the right-tail state is amplified due to the
lower bound. Therefore, earnings-based valuation is
suitable for internal compliance analysis and conservative
reference pricing, while regime-switching GBM is more
suitable for pricing structured CCER products and

evaluating the risk-return characteristics of CCER positions.

5.2. Summary and future research

This article constructs a comprehensive CCER valuation
framework that combines the micro-level income
approach with the macro-level regime-switching GBM,
linking compliance behavior with market price dynamics.

At the micro level, a representative enterprise with
uncertain emissions, fixed allowances and a binding CCER
cap chooses CCER purchase quantity Q to minimize
expected total compliance cost, decomposed into CCER

expenditure, contingent CEA gap-filling cost and residual
value of surplus assets. Under a continuous emission
distribution, an explicit marginal willingness-to-pay p¢(Q)
is derived as a convex combination of expected CEA price
and residual value, with weights given by shortfall
probabilities. Calibration to firm data under a baseline
with A=ze and homogeneous parameters show optimal
use at the cap and marginal values clustering near
47.52 CNY/t , With p¢(0)=72.50 CNY /1.

At the macro level, CEA and CCER follow a three-regime
switching GBM calibrated to 2023 Beijing data and
electricity growth. Regimes imply state-dependent drift- s
and volatilities; CCER is a regime-dependent fraction of
CEA with idiosyncratic noise. CCER is valued as a real-
option-like asset. For max(CCERr,K) with T = 80 days

and K equal to spot, Monte Carlo yields about 80.40 CNY/t,
above spot and micro-level marginal values. A grid over
initial CEA prices and maturities with K, defined as a
baseline plus partial adjustment generates a value surface

that increases with T and responds nonlinearly to S64,

highlighting the interaction between regimes, price risk
and contract design.

The two layers achieve the following objectives together:
(1) they connect firm-specific emission risk and regulatory
parameters to CCER valuations and optimal purchase
quantities; (2) they embed CCER pricing within a regime-
sensitive risk-neutral framework that captures empirical
features including regime-dependent volatility and CEA-
CCER spreads; (3) they demonstrate how guarantee-type
structures alter CCER value and link compliance
instruments with CCER-based financial products.

Future research could relax the micro-model assumptions
on allocation, offset ratios and residual values to
accommodate richer heterogeneity, and expand the
macro model by incorporating time-varying transition
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intensities, jump processes or stochastic volatility,
alongside a more granular CEA-CCER spread process. A
particularly promising direction involves tighter coupling
of the two layers, where macro price dynamics generate
endogenous inputs for the micro model while firm-level
CCER demand feeds back into the market model, thereby
enabling analysis of the feedback mechanisms among
compliance behavior, policy design and price formation in
support of carbon peaking and neutrality objectives.
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Table 2. Annual carbon emission data for low-emission enterprises (tons).

Ticker symbol m, m,, m, Ticker symbol m, m, s
603388 5969 5427 4884 603778 5469 4972 4475
002431 14559 13236 11912 300008 27852 25320 22788
300536 20967 19061 17155 600072 26117 23743 21368
000037 7867 7152 6437 603717 20927 19025 17122
000993 8405 7641 6876 000711 18504 16822 15140

Source: CSMAR Database

Table 3. Annual carbon emission data for normal-emission enterprises (tons).

Ticker m, m, m Ticker m, m, m Ticker m, m;, m,

symb symb symb
ol ol ol

60001 9076451 8251319 7426187 60002 839682 763347 687012 60382 109891 99901 89911
1 5 8

60079 3927170 3570155 3213139 00095 6749599 6135999 5522399 00254 530198 481998 433799
5 9 2

60199 5552 5047508 4542757 00076 4723905 4294459 3865013 00256 716273 651157 586042
1 259 1 4

60002 6756622 6142383 5528145 60012 1990390 1809445 1628501 00262 138814 126195 113575
7 6 8

60002 3795945 3450859 3105773 00077 196041 178219 160397 00266 68298 62089 55880
3 8 3

00053 2368211 2152919 1937627 60030 1431482 1301347 1171213 00276 1051959 9563263 8606937
9 7 1 0

60002 1540961 1400873 1260786 60078 4447745 4043405 3639064 00277 72117 65561 59005
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1 2 5

00002 2276119 2069199 1862279 00070 3706154 3369231 3032308 00214 498744 453404 408063
7 9 0

00260 2132345 1938495 1744646 60056 2818325 2562113 2305902 30005 65169 59245 53320
8 9 5

60057 1708917 1553561 1398205 60028 4746223 4314748 3883274 30023 52063 47330 42597
8 2 7

60057 1445654 1314231 1182808 60100 1693446 1539496 1385546 30051 95146 86496 77847
5 5 7

60015 1533348 1393952 1254557 00082 3723184 3384713 3046241 00086 62357 56688 51019
7 5 2

00054 1126340 1023946 921551 60011 557233 506575 455918 30064 104958 95417 85875
3 7 9

60064 2127118 1933743 1740369 00071 2052221 1865655 1679090 30071 95242 86584 77925
2 7 2

60086 584866 531697 478527 60001 2152377 1956706 1761036 60003 7472533 6793212 6113891
3 9 5 8 1 9

00060 534253 485685 437116 00093 5453736 4957942 4462148 00211 500880 455345 409811
0 2 6

00076 1034726 940660 846594 60050 1269384 1153986 1038587 60013 799036 726396 653757
7 7 3

00096 723281 657528 591775 00089 5667263 5152057 4636852 60017 1417100 1288273 1159446
6 8 0 7 3 0

00189 782009 710918 639826 60001 3162971 2875428 2587885 60024 1542399 1402180 1261962
6 0 8 0 9 8

60078 425868 387153 348437 60002 4586444 4169495 3752545 60028 1135404 1032186 928967
0 2 4

60050 583520 530472 477425 60023 1027681 934255 840830 60046 61704 56094 50485
9 1 3

00069 452755 411595 370436 60100 4383901 3985365 3586828 60049 114836 104396 93956
0 3 1

60074 691180 628346 565511 60080 3801689 3456081 3110473 60050 5764712 5240647 4716582
4 8 2

00089 170012 154556 139101 60029 1641085 1491896 1342706 60051 526711 478828 430946
9 5 2

00053 238187 216534 194881 00065 137061 124601 112141 60060 2934138 2667398 2400658
1 5 6 4 5 7

60039 249379 226708 204037 60058 1509440 1372218 1234997 60066 1620650 1473318 1325987
6 1 7

00289 82005 74550 67095 00062 484185 440168 396152 60082 6238700 5671545 5104391
3 9 0

60096 204230 185664 167098 60387 161881 147165 132448 60084 431993 392721 353449
9 8 6

00079 95916 87197 78477 00092 190663 173330 155997 60085 753134 684667 616201
1 3 3

00060 317822 288929 260036 00070 8055406 7323096 6590786 60097 2317066 2106424 1895782
1 8 0

60048 885339 804853 724368 60196 47961 43601 39241 60111 7972458 7247689 6522920
3 9 7

00088 1542108 1401917 1261725 00211 4542493 4129539 3716585 60118 7055279 6413890 5772501
3 0 6 0 0 0

60090 1554752 1413411 1272070 00207 355375 323068 290761 60139 3751074 3410068 3069061
0 5 0 9 1 3

60198 3887484 3534076 3180668 60047 483255 439323 395391 60161 3506691 3187901 2869111
5 7 1

60088 1218380 1107618 996856 60049 1036042 941856 847670 60161 3338595 3035086 2731578
6 6 8 3 7 0

60166 2612518 2375016 2137515 60196 462657 420597 378537 60166 1223158 1111962 1000765
9 3 7 0 8 8 35 13 92

60082 158991 144538 130084 00275 377439 343127 308814 60166 2612518 2375016 2137515
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1 6 9 3 7 0
60045 97359 88508 79657 20076 3740889 3400808 3060727 60178 945971 859974 773977
2 1 9

60099 124867 113515 102164 90093 1575137 1431943 1288748 60180 2955559 2686872 2418184
5 6 0 3 1 9

60011 1005080 913709 822338 00213 64877 58979 53081 60331 101724 92477 83229
6 2 6

60050 37156 33779 30401 00213 328280 298436 268593 60363 102229 92935 83642
5 5 7

00069 192555 175050 157545 00231 280555 255050 229545 60309 233934 212667 191400
2 8 8

60064 149033 135484 121936 00244 287503 261366 235229 60384 680770 618882 556994
4 3 3

00004 108142 98311 88480 00247 162868 148062 133255 60395 46973 42703 38432
0 8 5

00053 299017 271833 244650 00254 1520498 1382271 1244044 60395 92167 83788 75409
7 1 9

60016 98361 89419 80477 00062 484185 440168 396152 00003 1708014 1552740 1397466
7 9 2

60098 712794 647995 583195 00070 3270983 2973621 2676259 60392 101247 92043 82838
2 8 9

60023 274713 249739 224765 00070 3706154 3369231 3032308 00204 166202 151093 135983
6 9 7

60010 84140 76490 68841 00071 2052221 1865655 1679090 00208 449608 408735 367861
1 7 1

00203 36605 33277 29949 00096 9579035 8708214 7837393 00216 196604 178730 160857
9 1 3

60016 183816 167106 150395 60002 4586444 4169495 3752545 00232 149391 135810 122229
3 2 5

60067 50586 45988 41389 60089 433825 394386 354948 00237 585633 532393 479154
4 4 5

60161 60570 55064 49557 00274 318579 289617 260656 00248 56893 51721 46549
9 3 2

00087 755307 686642 617978 00092 1605125 1459205 1313284 00262 129069 117335 105602
5 8 0

00247 524052 476411 428770 00062 691222 628383 565545 00271 285503 259548 233594
9 8 3

60009 2634239 2394763 2155286 60093 3477904 3161731 2845558 00278 101022 91838 82654
8 9 9

00225 681601 619637 557673 00001 247465 224968 202471 00281 86688 78807 70926
6 0 1

00201 1129772 1027065 924359 00006 1761791 1601628 1441466 00282 645172 586520 527868
5 5 2

60101 232664 211513 190362 00009 2343598 2130543 1917489 00283 83769 76153 68538
6 0 0

60014 36910 33555 30199 00049 5430569 4936881 4443193 00285 71940 65400 58860
9 8 6

00072 31110 28282 25454 00230 997813 907102 816392 30011 70924 64476 58028
2 7 7

00059 303997 276361 248725 00205 113708 103371 93034 30062 755394 686722 618050
1 1 1

30033 63694 57904 52114 00206 949279 862981 776683 60019 94218 85652 77087
5 0 3

00015 231426 210387 189348 00206 3041286 2764805 2488325 60188 1443949 1312681 1181413
5 1 6

60097 85830 78027 70224 00206 940424 854931 769438 60303 131737 119761 107785
9 2 0

Source: CSMAR Database
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Appendix B

%
% Income—Approach CCER Valuation (LaTeX-based, Word-data only)
%

clear; clc; close all;

%% 1. Global parameters

alpha =0.05; % Max CCER offset ratio
pA_bar=115; % Expected marginal CEA settlement price (CNY/t)
v_res =30; % Residual value of CCER (CNY/t), must be < pA_bar

% Historical daily prices from Word data (for reference only, not used later)
aprice = [ ...
138.00 110.40 90.00 72.00 59.00 51.47 61.80 74.20 74.20 74.20 ...
89.00 74.00 106.80 86.00 102.00 115.64 138.50 111.00 92.22 73.80 75.00 ...
88.77 106.60 125.00 149.64 144.30 131.75 134.00 124.00 100.90 121.00 ...
130.12 139.00 127.00 127.00 121.77 142.00 121.88 127.00 120.00 130.00 ...
127.00 130.00 132.53 122.50 133.50 128.00 128.00 123.03 124.00 127.50 ...
119.18 123.57 123.77 121.28 123.00 130.29 121.35 115.13 125.25124.94 ...
124.17 127.93 125.17 121.38 117.72 126.25 123.03 116.89 105.28 120.71 ...
118.88 118.44121.37 124.41 113.92 119.90 115.96 119.96 113.01 109.92 ...
118.49109.91 108.16 121.72 116.00 103.32 100.00 110.00 109.00 110.00 ...
114.34 95.00 85.06 102.00 107.00 115.00 116.00 112.00 111.38]";

cprice=1...
95.00 95.00 95.00 109.00 88.00 80.00 90.00 90.89 47.00 78.00 ...
80.00 80.00 56.40 90.00 80.00 82.00 80.00 80.00 80.00 80.34 80.00 75.00 ...
80.00 80.00 86.96 80.00 80.01 84.81 88.00 65.64 80.00 69.70 81.40 80.00 ...
69.38 70.50 80.44 83.90 78.23 86.00 86.99 80.00 80.00 74.77 77.63 74.50 ...
75.00 80.10 85.40 80.00 74.00 70.42 78.00 79.51 79.14 85.00 80.00 75.00 ...
65.00 65.00 74.60 65.01 70.00 90.00 70.00 72.00 72.00 72.00]";

%% 2. Firm-level emission data from Word (appendix tables)

% 2.1 Low-emission firms (Table 2)
% Columns: [Ticker, E_upper, E_mid, E_lower]
low_tab=T1...
603388 5969 5427 4884; ...
2431 14559 13236 11912; ... % keep numeric consistency for leading zero tickers
300536 20967 19061 17155; ...
37 7867 7152 6437; ...
993 8405 7641 6876; ...
603778 5469 4972 4475; ...
300008 27852 25320 22788; ...
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600072 26117 23743 21368; ...
603717 20927 19025 17122; ...
711 18504 16822 15140];

ticker_low = low_tab(:,1);
E_up_low =low_tab(:,2);
E_mid_low =low_tab(:,3);

E_lo_low =low_tab(:,4);

zband =1.64; % ~90% ClI
muE_low =E_mid_low; % mean emissions
sigmaE_low = (E_up_low - E_lo_low) / (2*zband);

sigmak_low(sigmaE_low <=0) = 1e-6;

A_low =muE_low; % allowance = mean emissions

Qmax_low = alpha * muE_low; % max CCER usage

% 2.2 Normal-emission firms (Table 3)
% Columns: [Ticker, E_upper, E_mid, E_lower]
norm_tab =1 ...
600011 9076451 8251319 7426187; ...
600795 3927170 3570155 3213139; ...
601991 5552259 5047508 4542757; ...
600027 6756622 6142383 5528145; ...
600023 3795945 3450859 3105773; ...
539 2368211 2152919 1937627; ...
600021 1540961 1400873 126078E6; ...
27 2276119 2069199 1862279; ...
2608 2132345 1938495 1744646; ...
600578 1708917 1553561 1398205; ...
600575 1445654 1314231 1182808; ...
600157 1533348 1393952 1254557; ...
543 1126340 1023946 921551; ...
600642 2127118 1933743 1740369; ...
600863 584866 531697 478527; ...
600 534253485685 437116; ...
767 1034726 940660 846594; ...
966 723281657528 591775; ...
1896 782009 710918 639826; ...
600780 425868 387153 348437; ...
600509 583520 530472 477425; ...
690 452755 411595 370436; ...
600744 691180 628346 565511 ...
899 170012 154556 139101; ...
531 238187216534 194881 ...
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600396 249379 226708 204037; ...
2893 82005 74550 670095; ...

600969 204230 185664 167098; ...
791 95916 87197 78477; ...

601 317822 288929 260036; ...
600483 885339 804853 724368; ...
883 1542108 1401917 1261725; ...
600900 1554752 1413411 1272070; ...
601985 3887484 3534076 3180668; ...
600886 1218380 1107618 996856; ...
601669 26125183 23750167 21375150];

ticker_norm = norm_tab(:,1);
E_up_norm =norm_tab(:,2);
E_mid_norm = norm_tab(:,3);

E_lo_norm =norm_tab(:4);
muE_norm =E_mid_norm;
sigmaE_norm = (E_up_norm - E_lo_norm) / (2*zband);

sigmaE_norm(sigmaE_norm <=0) = 1le-6;

A_norm =muE_norm;

Qmax_norm = alpha * muE_norm;

%% 3. CCER marginal willingness-to-pay function (LaTeX-based)

pc_fun = @(Q, muE, sigmatk, A) ...
v_res + (pA_bar - v_res) .* (1 - normcdf( (A + Q - muE) ./ sigmak ));

phi = @(x) exp(-0.5*x.12) ./ sqrt(2*pi);

%% 4. Merge samples and compute firm-level results

ticker_all = [ticker_low; ticker_norm];

muE_all =[muE_low; muE_norm];

sigma_all = [sigmaE_low; sigmaE_norm];

A_all  =[A_low; A_norm];

Qmax_all =[Qmax_low; Qmax_norm];
Nfirm = numel(ticker_all);

Qstar_all = zeros(Nfirm,1);

pC_QO0_all =zeros(Nfirm,1);
pC_Qmax_all =zeros(Nfirm,1);

pC_Qstar_all = zeros(Nfirm,1);

17
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% Representative firm: median mu_E
[~,idx_med] = min(abs(muE_all - median(muk_all)));

idx_rep =idx_med;

nQgrid =50;
Qgrid_rep = linspace(0, Qmax_all(idx_rep), nQgrid);
pc_rep =pc_fun(Qgrid_rep, muE_all(idx_rep), sigma_all(idx_rep), A_all(idx_rep));

fprintf(’ CCER Valuation (Firm-Level) \n');
fprintf('Global parameters:\n');

fprintf(' alpha = %.4f (max CCER offset ratio)\n', alpha);

fprintf(' pA_bar =%.2f CNY/t (expected marginal CEA settlement price)\n', pA_bar);
fprintf(' v_res = %.2f CNY/t (residual value of CCER)\n\n', v_res);

fprintf('Firm-level parameters and key prices:\n');
fprintf('%-10s %-14s %-14s %-14s %-14s %-14s %-14s\n', ...
'Ticker','mu_E','sigma_E','"Qmax’,'pC(Q=0)','pC(Qmax)’,'pC(Q*)");

fori=1:Nfirm
muE_i = muE_all(i);
sig_i =sigma_all(i);
AP =A_all(i);

Qmax_i = Qmax_all(i);

% Marginal prices at Q=0 and Q=Qmax
pC_QO_all(i) =pc_fun(0, muE_i,sig_i, A_i);
pC_Qmax_all(i) = pc_fun(Qmax_i, muE_i, sig_i, A_i);

% Optimal Q* by minimizing expected total cost
obj = @(q) ETC_single(q, muE_i, sig_i, A_i, pA_bar, v_res, phi, @normcdf);
[Qstar_i, ~] = fminbnd(obj, 0, Qmax_i);

Qstar_all(i) =Qstar_i;
pC_Qstar_all(i) = pc_fun(Qstar_i, muE_i, sig_i, A_i);

fprintf('%-10d %-14.2f %-14.2f %-14.2f %-14.2f %-14.2f %-14.2f\n', ...
ticker_all(i), muE_i, sig_i, Qmax_i, ...
pC_QO_all(i), pC_Qmax_all(i), pC_Qstar_all(i));

end
%% 5. Weighted average theoretical CCER prices (mu_E weights)
weight = mukE_all / sum(muk_all);

avg pC_Q0 =sum(weight.* pC_QO0_all);

avg_pC_Qmax =sum(weight .* pC_Qmax_all);
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avg_pC_Qstar =sum(weight .* pC_Qstar_all);

fprintf("\nWeighted-average theoretical CCER prices (weights = mu_E):\n');

fprintf(' Mean p_CA*(Q=0) =%.2f CNY/t\n', avg_pC_Q0);

fprintf(' Mean p_C**(Q=Qmax) = %.2f CNY/t\n', avg_pC_Qmax);
fprintf(' Mean p_CA*(Q=Q*) = %.2f CNY/t\n\n', avg_pC_Qstar);

%% 6. Explicit description of Figure 1 (representative firm)

rep_ticker = ticker_all(idx_rep);
rep_muE = muE_all(idx_rep);
rep_sigmaE  =sigma_all(idx_rep);
rep_A = A_all(idx_rep);
rep_Qmax = Qmax_all(idx_rep);
rep_QO0 =0;

rep_Qstar = Qstar_all(idx_rep);
rep_pC_Q0 =pC_QO_all(idx_rep);
rep_pC_Qmax =pC_Qmax_all(idx_rep);
rep_pC_Qstar =pC_Qstar_all(idx_rep);

fprintf('Figure 1 (Representative firm p_C**(Q) curve):\n');

fprintf(' Representative firm ticker : %d\n', rep_ticker);
fprintf(' Representative firm mu_E :%.2f t CO2\n', rep_muk);
fprintf(' Representative firm sigma_E 1 %.2f t CO2\n', rep_sigmak);

fprintf(' Representative firm allowance A : %.2f t CO2\n', rep_A);

fprintf(' Representative firm Qmax 1 %.2f t CO2\n', rep_Qmax);

fprintf(' Horizontal axis: Q in million t CO2 from %.2f to %.2f\n’, ...
rep_QO0/1e6, rep_Qmax/1e6);

fprintf(' Vertical axis: p_C**(Q) in CNY/t\n');

fprintf(' Curve: p_C**(Q) for Q in [0, Qmax]\n');

fprintf(' Horizontal reference line: p_A_bar = %.2f CNY/t\n', pA_bar);

fprintf(' Horizontal reference line: v_res = %.2f CNY/t\n', v_res);

fprintf(' Marked pointat Q=0 :Q=%.2f, p_CA*(0) =%.2f CNY/t\n', ...
rep_QO, rep_pC_QO0);

fprintf(' Marked point at Q=Qmax :Q=%.2f, p_C**(Qmax) = %.2f CNY/t\n', ...
rep_Qmax, rep_pC_Qmax);

fprintf(' Marked point at Q=Q* :Q* = %.2f, p_C**(Q*) =%.2f CNY/t\n\n', ...
rep_Qstar, rep_pC_Qstar);

%% 7. Explicit description of Figure 2 (distribution of p_CA*(Q*))

pC_min = min(pC_Qstar_all);
pC_max = max(pC_Qstar_all);
pC_mean = mean(pC_Qstar_all);

pC_median = median(pC_Qstar_all);
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pC_std = std(pC_Qstar_all);

fprintf('Figure 2 (Distribution of firm-level optimal marginal CCER prices p_CA*(Q*)):\n');
fprintf(' Sample size (humber of firms) : %d\n', Nfirm);
fprintf(' Horizontal axis: p_C**(Q*) in CNY/t\n');

fprintf(' Vertical axis: number of firms (histogram counts)\n');

fprintf(' Range of p_CA*(Q*) : [%.2f, %.2f] CNY/t\n', pC_min, pC_max);
fprintf(' Mean of p_CA*(Q*) : %.2f CNY/t\n', pC_mean);

fprintf(' Median of p_C**(Q*) : %.2f CNY/t\n', pC_median);

fprintf(' Std. deviation of p_CA*(Q*) : %.2f CNY/t\n\n', pC_std);

%% 8. Figures (two figures only)

% Figure 1: Representative firm p_C**(Q) curve

figure;

plot(Qgrid_rep/1e6, pc_rep, 'b-', 'LineWidth', 2); hold on;
yline(pA_bar,'r--','LineWidth',1.5);

yline(v_res,'k-.",'LineWidth',1.5);

xlabel('Q (million t CO_2)');

ylabel('p_C**(Q) (CNY/t)');

title(sprintf('Representative Firm (Ticker=%d): p_C**(Q)', rep_ticker));
legend('p_C7*(Q)','p_Abar},'v_{res},'Location’,'best');

grid on;

plot(rep_Q0/1e6, rep_pC_QQO,'ko','MarkerFaceColor','k');
text(rep_QO0/1e6, rep_pC_QO, ' Q=0','VerticalAlignment','bottom’);

plot(rep_Qmax/1e6, rep_pC_Qmayx, 'ko','MarkerFaceColor','k'");
text(rep_Qmax/1e6, rep_pC_Qmax, ' Q=Q_{max},'VerticalAlignment','top');

plot(rep_Qstar/1e6, rep_pC_Qstar, 'ro','MarkerFaceColor','r');
text(rep_Qstar/1e6, rep_pC_Qstar, ' Q=Q"*','VerticalAlignment','bottom');

% Figure 2: Distribution of optimal marginal CCER prices p_CA*(Q*)
figure;

histogram(pC_Qstar_all, 'FaceColor',[0.2 0.6 0.8]);
xlabel("p_CA*(Q"*) (CNY/t)');

ylabel('Number of firms');

title('Distribution of Firm-Level Optimal CCER Marginal Prices');

grid on;

%% 9. Auxiliary function: expected total cost for a single firm

function ETC = ETC_single(Q, muE, sigmaE, A, pA_bar, v_res, phi, normcdf_handle)
T =A+Q;
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a =(T-mukE)./sigmakE;
Phi_a = normcdf_handle(a);

phi_a = phi(a);

E_gap_pos =sigmaE .* (phi_a-a.* (1-Phi_a)); % E[(E-T)_+]
E_surplus_pos = sigmaE .* (phi_a+a .*Phi_a); % E[(T-E)_+]

pC_star =v_res + (pA_bar - v_res) .* (1 - Phi_a);

ETC = pC_star .* Q + pA_bar .* E_gap_pos - v_res .* E_surplus_pos;

end

Appendix C

function main_regime_switching_CCER_smooth_v2

clc; clear; close all;

CEA_2023 =] ...
138.00 110.40 90.00 72.00 59.00 51.47 61.80 74.20 74.20 74.20 ...

89.00 74.00 106.80 86.00 102.00 115.64 138.50 111.00 92.22 73.80 75.00 ...
88.77 106.60 125.00 149.64 144.30 131.75 134.00 124.00 100.90 121.00 ...

130.12 139.00 127.00 127.00 121.77 142.00 121.88 127.00 120.00 130.00 ...
127.00 130.00 132.53 122.50 133.50 128.00 128.00 123.03 124.00 127.50 ...
119.18 123.57 123.77 121.28 123.00 130.29 121.35 115.13 125.25 124.94 ...
124.17 127.93 125.17 121.38 117.72 126.25 123.03 116.89 105.28 120.71 ...
118.88 118.44 121.37 124.41 113.92 119.90 115.96 119.96 113.01 109.92 ...
118.49109.91 108.16 121.72 116.00 103.32 100.00 110.00 109.00 110.00 ...

114.34 95.00 85.06 102.00 107.00 115.00 116.00 112.00 111.38]";

CCER_2023=]...
95.00 95.00 95.00 109.00 88.00 80.00 90.00 90.89 47.00 78.00 ...

80.00 80.00 56.40 90.00 80.00 82.00 80.00 80.00 80.00 80.34 80.00 75.00 ...
80.00 80.00 86.96 80.00 80.01 84.81 88.00 65.64 80.00 69.70 81.40 80.00 ...
69.38 70.50 80.44 83.90 78.23 86.00 86.99 80.00 80.00 74.77 77.63 74.50 ...
75.00 80.10 85.40 80.00 74.00 70.42 78.00 79.51 79.14 85.00 80.00 75.00 ...

65.00 65.00 74.60 65.01 70.00 90.00 70.00 72.00 72.00 72.00]";

n_days = length(CEA_2023);

g_yoy=[...
2.0 ;
5.8 ;
5.9 ;
8.3 ;
7.4 ;
6.4 ;
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6.5 ;
7.6 ;
6.8 ;
5.2 ;
116;
8.0 ];
g_yoy = g_yoy / 100;

month_id = zeros(n_days,1);

edges = round(linspace(1, n_days+1, 13));

form=1:12
month_id(edges(m):edges(m+1)-1) = m;

end

elec_yoy_daily = g_yoy(month_id);

g_elec =quantile(elec_yoy_daily, [0.33 0.66]);
g_price = quantile(CEA_2023,  [0.33 0.66]);
elec_low =q_elec(1);

elec_high = q_elec(2);

p_low =q_price(1);

p_high =q_price(2);

state = zeros(n_days,1);

fort=1:n_days

e = elec_yoy_daily(t);

p = CEA_2023(t);

if (e <= elec_low && p <=p_low)
state(t) = 1;

elseif (e >= elec_high && p >=p_high)
state(t) = 3;

else
state(t) = 2;

end

end

fors=1:3

if sum(state==s) <5

warning('State %d has too few observations, merging to middle state.', s);

state(state==s) = 2;
end

end

log_ret CEA = diff(log(CEA_2023));

state_ret =state(2:end);
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n_state =3;
mu_A = zeros(n_state,1);

sig A =zeros(n_state,1);

for s = 1:n_state
idx = (state_ret ==s);
rs =log_ret_CEA(idx);
if isempty(rs)

rs = log_ret_CEA;

end
mu_A(s) = mean(rs);
sig_A(s) = std(rs);

end

theta_daily = CCER_2023 ./ CEA_2023(1:length(CCER_2023));
state_theta = state(1:length(theta_daily));

theta_state = zeros(n_state,1);
for s = 1:n_state

idx = (state_theta ==s);

ths = theta_daily(idx);

if isempty(ths)

ths = theta_daily;

end

theta_state(s) = mean(ths);
end
theta_state = max(theta_state, 0.5);
theta_state = min(theta_state, 1.0);

P = zeros(n_state);
for s = 1:n_state
idx = find(state(1:end-1) ==s);
if isempty(idx)
P(s,:) = 1/n_state;
else
next_s = state(idx+1);
for j=1:n_state
P(s,j) = sum(next_s ==j);
end
P(s,:) = P(s,:) / sum(P(s,:));
end

end

A_pi=[(P'-eye(n_state)); ones(1,n_state) ;
b_pi=[zeros(n_state,1); 1];
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pi_stationary = A_pi \ b_pi; %#ok<NASGU>

r_annual = 0.0435;
T_trade = 80;
dt  =1/252;

r_dt =r_annual * dt;

SO_CEA =CEA_2023(end);
SO_CCER = CCER_2023(end);
K  =SO_CCER;

n_paths = 20000;

n_plot =5;

CEA_path_plot =zeros(T_trade+1, n_plot);
CCER_path_plot =zeros(T_trade+1, n_plot);
Regime_path_plot = zeros(T_trade+1, n_plot);

payoff = zeros(n_paths,1);

rng(1234);

for pidx = 1:n_paths
cur_s = state(end);
S_ A =S0_CEA;
S_C =S0_CCER;

if pidx <= n_plot
CEA_path_plot(1,pidx) =S_A;
CCER_path_plot(1,pidx) =S_C;
Regime_path_plot(1,pidx) =cur_s;

end

fort=1:T_trade
cur_s = draw_next_state(cur_s, P);
sig =sig_A(cur_s);
dW =sqgrt(dt)*randn;
mu_rn =r_annual - 0.5%sig"2;
S_A =S_A*exp(mu_rn*dt + sig*dW);
theta = theta_state(cur_s);
eps_c = 0.10*sqrt(dt)*randn;
S C =theta*S_A * exp(eps_c);

if pidx <= n_plot
CEA_path_plot(t+1,pidx) =S_A;
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CCER_path_plot(t+1,pidx) =S_C;
Regime_path_plot(t+1,pidx) = cur_s;
end
end
payoff(pidx) = max(S_C, K);

end

PV_CCER_value = exp(-r_dt*T_trade) * mean(payoff);

time_vec = 0:T_trade;

figure('Name','Regime-switching GBM: CEA/CCER sample paths','Color','w','Position',[100 100 900 420]);

hold on;

fori=1:n_plot
plot(time_vec, CEA_path_plot(:,i), '-','LineWidth',1.4,'Color',[0 0.447 0.741]);
plot(time_vec, CCER_path_plot(:,i),'--','LineWidth',1.4,'Color',[0.85 0.325 0.098]);

end

ymax_all = max( [CEA_path_plot(:); CCER_path_plot(:)] );
ymin_all = min( [CEA_path_plot(:); CCER_path_plot(:)] );
ylim([ymin_all*0.98, ymax_all*1.02]);

reg_path = Regime_path_plot(:,1);

colors =[0.9 0.95 1.0;
0.91.00.9;
1.00.90.9];

fort=1:T_trade
s =reg_path(t);
x_rect = [t-0.5, t+0.5, t+0.5, t-0.5];
y_rect = [ymin_all*0.98, ymin_all*0.98, ymax_all*1.02, ymax_all*1.02];
patch(x_rect, y_rect, colors(s,:), 'EdgeColor','none’,'FaceAlpha’,0.18);

end

fori=1:n_plot
plot(time_vec, CEA_path_plot(:,i), '-','LineWidth',1.4,'Color',[0 0.447 0.741]);
plot(time_vec, CCER_path_plot(:,i),'--','LineWidth',1.4,'Color',[0.85 0.325 0.098]);

end

xlabel('Trading day');
ylabel('Price (CNY)');
title('Sample paths of CEA (solid) and CCER (dashed) under regime-switching GBM');

grid on;
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xlim([0 T_trade]);
legend({'CEA paths','CCER paths'},'Location’,'northwest');

hold off;

SO_grid = linspace(80, 160, 25);
T_grid =10:10:80;

nS = length(S0_grid);

nT = length(T_grid);

n_path_small = 15000;

K_base =CCER_2023(end);
theta_mid =theta_state(2);
alpha_follow =0.3;

rng(5678);

S_samples = zeros(nS*nT,1);
T_samples = zeros(nS*nT,1);
P_samples = zeros(nS*nT,1);

idx_sample = 0;

foriT=1:nT
TT =T_grid(iT);
disc = exp(-r_dt*TT);
foriS=1:nS

idx_sample = idx_sample + 1;

SOa = S0_grid(iS);

K2 =K_base + alpha_follow * theta_mid * (SOa - SO_CEA);
payoff2 = zeros(n_path_small,1);

for pidx = 1:n_path_small

cur_s = state(end);

Sa =S0g;
Sc =theta_state(cur_s) * Sa;
fort=1:TT

cur_s = draw_next_state(cur_s, P);
sig =sig_A(cur_s);

dW =sqgrt(dt)*randn;

mu_rn =r_annual - 0.5%sig"2;

Sa =Sa* exp(mu_rn*dt + sig*dW);
theta = theta_state(cur_s);

eps_c2 = 0.10*sqrt(dt)*randn;

Sc =theta * Sa * exp(eps_c2);

end
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ScT = Sc;

payoff2(pidx) = max(ScT, K2);
end
price_ij = disc * mean(payoff2);
S_samples(idx_sample) = SOa;
T_samples(idx_sample) = TT;
P_samples(idx_sample) = price_ij;

end

end

[SG_orig, TG_orig] = meshgrid(SO_grid, T_grid);

Price_surface = griddata(S_samples, T_samples, P_samples, SG_orig, TG_orig, 'linear");

figure('Name','CCER value surface: discounted E[max(CCER_T, K2)] (no extra smoothing)',...
'Color','w','Position',[150 150 900 620]);

surf(SG_orig, TG_orig, Price_surface);

xlabel('Initial CEA price S_0”A (CNY)','FontSize',11);

ylabel('"Maturity T (trading days)','FontSize',11);

zlabel('Discounted E[ max(CCER_T, K_2) ] (CNY)','FontSize',11);

title('CCER value surface under regime-switching GBM: discounted E[max(CCER_T, K_2)]','FontSize',12);
shading interp;

colormap(parula);

colorbar;

grid on;

view(135, 30);

hold on;

[~, idx_T40] = min(abs(T_grid - 40));

plot3(SO_grid, T_grid(idx_T40)*ones(1,nS), Price_surface(idx_T40,:), ...
'k-','LineWidth',2);

text(SO_grid(end), T_grid(idx_T40), Price_surface(idx_T40,end), ...
' Slice at T \approx 40','Color','k','FontSize',10);

hold off;

fprintf(' Regime-Switching CCER Valuation (E[max(CCER_T, K)]) \n'");
fprintf('Risk-free annual rate r  : %.4f\n', r_annual);

fprintf('Simulation horizon (T_trade): %d trading days\n', T_trade);

fprintf('Time step dt (in years) :1/252\n\n');

fprintf('--- Figure 1: Sample paths under regime-switching GBM ---\n');

fprintf('Initial CEA price SOMA  : %.2f CNY\n', SO_CEA);

fprintf('Initial CCER price SOAC  : %.2f CNY\n', SO_CCER);

fprintf('Regimes (1=low, 2=mid, 3=high) are inferred from 2023 data.\n');

fprintf('The figure shows %d simulated CEA (solid) and CCER (dashed) paths,\n', n_plot);
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fprintf(‘with colored background bands indicating regime switches over time.\n');
fprintf('These paths illustrate how CCER prices co-move with CEA prices\n');
fprintf(‘and how different regimes (low/medium/high demand and price) affect\n');

fprintf('the joint evolution of the two carbon assets.\n\n');

fprintf('--- Single-maturity CCER value at T = %d trading days ---\n', T_trade);
fprintf('Guarantee level K (per unit CCER) : %.2f CNY\n', K);

fprintf('Number of Monte Carlo paths (T=%d) :%d\n', T_trade, n_paths);
fprintf('Discounted E[ max(CCER_T, K) ] (per unit) : %.4f CNY\n\n', PV_CCER_value);

fprintf('--- Figure 2: CCER value surface on the original (SO*A, T) grid ---\n');

fprintf('Grid of initial CEA prices SOMA : from %.2f to %.2f CNY (%d points)\n', ...
min(SO_grid), max(S0_grid), nS);
fprintf('Grid of maturities T : from %d to %d trading days (%d points)\n', ...

min(T_grid), max(T_grid), nT);
fprintf('Monte Carlo paths per (SO*A, T) grid point: %d\n', n_path_small);
fprintf('K2 is defined as K_base + alpha_follow * theta_mid * (SO*A - SO_CEA),\n");
fprintf('where K_base = %.2f, alpha_follow = %.2f, theta_mid = %.4f.\n’, ...
K_base, alpha_follow, theta_mid);
fprintf('This breaks the nearly linear dependence on SO*A while preserving\n');
fprintf('the overall guarantee-contract structure E[max(CCER_T, K2)].\n');
fprintf('The 3D surface is plotted directly on this original grid without\n');
fprintf(‘any additional smoothing beyond the basic griddata interpolation.\n');
fprintf(’ \n');

end

function next_s = draw_next_state(cur_s, P)
prob = P(cur_s,:);
u =rand;
cumprob = cumsum(prob);
next_s = find(u <= cumprob, 1, 'first');
if isempty(next_s)
next_s = cur_s;
end

end
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