
 

Global NEST Journal, Vol 28, No 2, 07789 
Copyright© 2026 Global NEST 

Printed in Greece. All rights reserved 

 

Hua Tang, Yue Liu, Jiayi Wang, Jiawen Liu, Wangfei Luo, Tianbai Wang (2026), CCER valuation under emission uncertainty: a dual 

framework of compliance optimization and regime-switching GBM, Global NEST Journal, 28(2), 07789. 

Copyright: © 2026 Global NEST. This article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution International (CC BY 4.0) license. 

CCER valuation under emission uncertainty: a dual framework of 
compliance optimization and regime-switching GBM 

Hua Tang1,2, Yue Liu3, Jiayi Wang3*, Jiawen Liu3, Wangfei Luo4, Tianbai Wang5 

1 School of Management, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China. 

2 Business School of Wenzhou University, Wenzhou City, 325035, Zhejiang, PR China; PR China 

3 School of Finance and Economics, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China 

4 School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China 

5 China School of Banking and Finance UIBE, University of International Business and Economics, Beijing,100029, PR China 

Supported by the grant from the Major Program of the National Social Science Fund of China (22&ZD136). 

Received: 25/06/2025, Accepted: 10/01/2026, Available online: 27/01/2026 

*to whom all correspondence should be addressed: e-mail: 15139253806@163.com 

https://doi.org/10.30955/gnj.07789 

Graphical abstract 

 

Abstract 

This paper develops an integrated framework to value 
China Certified Emission Reductions (CCER) in the context 
of the national emissions trading system. At the micro 
level, we refine the income approach by endogenizing 
firms' CCER purchase decisions under emission 
uncertainty, offset caps and residual value risk, deriving a 
closed-form marginal willingness-to-pay schedule linked 
to firm-specific emission distributions, allowance 
allocations and policy parameters. At the macro level, we 
model carbon prices with a three-regime switching 
geometric Brownian motion calibrated to Beijing carbon 
market and electricity data, and price CCER as a real-
option-like asset with state-dependent CEA-CCER spreads 
and guarantee-type payoffs. Comparing the two layers, 
we show how income-based benchmarks and regime-
switching option values differ yet can be aligned to inform 
CCER pricing, contract design and policy reform in China's 
carbon market. 

Keywords: CCER valuation; Carbon assets; Income 
approach; Regime-switching GBM; Real options. 

1. Introduction 

China's national carbon emission trading system 
incorporates the China Certified Emission Reduction 
(CCER) mechanism as a key supplementary instrument for 
achieving carbon peaking and neutrality targets at 
reduced costs. Regulated enterprises may substitute CCER 
for Carbon Emission Allowances (CEA) up to specified 
proportions when offsetting verified emissions, which 
should in theory lower aggregate abatement costs while 
channeling investment toward low-carbon projects. Yet 
CCER's actual economic value emerges from the interplay 
of multiple factors: firm-level emission uncertainty, quota 
allocation methodologies, caps on offsetting ratios, policy-
driven sunset clauses governing CCER eligibility, and 
carbon market prices that swing with macroeconomic 
cycles and regulatory shifts. These institutional and 
market features reveal that CCER functions neither as a 
riskless compliance instrument nor as a straightforward 
derivative of CEA prices; both enterprises and regulators 
require valuation frameworks capable of reconciling 
micro-level compliance incentives with macro-level price 
movements. 

Current CCER valuation practices display fragmentation 
across two dimensions. Income approach studies 
concentrate on the expected cost savings CCER delivers 
relative to CEA, yet these analyses commonly take CCER 
purchase volumes as given and overlook maturity and 
residual value risks, thereby constraining their capacity to 
represent firms' actual procurement decisions under 
uncertainty. Market approach studies deploy stochastic 
models for carbon prices but frequently treat CCER as a 
scaled replica of CEA, failing to explicitly embed 
compliance constraints, offset ratios, or policy validity 
windows. A disconnect has thus emerged between 
enterprise-centered analysis that proves intuitive but 
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static and market-centered modeling that remains 
dynamic yet weakly anchored to the compliance 
architecture. This paper seeks to close that gap by 
developing an integrated framework: it merges a micro-
level income approach grounded in firms' optimal CCER 
demand with a macro-level market approach that 
captures CEA and CCER price evolution via regime 
switching (Hussain et al. 2021) and geometric Brownian 
motion (Li, W. et al. 2021; Liu, Y. et al., 2023a; Liu, Y. et al. 
2023b), pricing CCER as a real-option-like asset. 

From this integrated perspective, the paper advances 
three principal innovations. First, at the micro level, it 
refines the income approach by endogenizing CCER 
purchase quantities as solutions to compliance cost 
minimization problems under stochastic emissions, 
regulatory ceilings, and uniform residual values. This 
yields a closed-form marginal willingness-to-pay curve 
that directly links firm-specific emission distributions, 
quota allocations, and policy parameters to CCER 
valuation. Second, at the macro level, the paper 
introduces a three-state regime-switching geometric 
Brownian motion model calibrated using Beijing carbon 
market data and electricity consumption growth patterns. 
It jointly models CEA and CCER prices under regime-
dependent drift rates, volatilities, and spread ratios, 
valuing CCER through discounted risk-neutral expectations 
based on guarantee-type payoffs that reflect compliance 
substitutability and residual value floors. Third, the paper 
juxtaposes micro- and macro-level findings, employing 
shared calibration inputs such as expected CEA settlement 
prices and CCER residual values to conduct a consistent 
cross-comparison of valuation outcomes. Results 
demonstrate that the income approach's benchmark 
value and regime-switching real option valuation together 
furnish a foundation for CCER pricing, contract design, and 
policy formulation. 

2. Literature review 

We take the literature review via two aspects, one is 
about carbon asset, another is about asset pricing 
especially for intangible assets. 

2.1. Review on the researches about carbon asset 

Recent work on carbon assets has started to connect 
climate policy, corporate decision-making, and financial 
market behavior, shedding light on both transition risks 
and emerging valuation challenges. Research at the 
sectoral and policy level shows that concentrated 
ownership of power-sector assets vulnerable to stranding 
creates vested interests capable of slowing or blocking 
ambitious climate measures, pointing to governance 
obstacles and distributional tensions in decarbonization 
pathways (Chevallier et al. 2021; von Dulong 2023). 
Analyses of corporate carbon footprints across complete 
value chains find that embedded emissions in listed firms 
vary dramatically between upstream and downstream 
operations, altering how investors assess risk exposure 
and meet disclosure obligations (Langley et al. 2021; 
Zhang et al. 2023). Firm-level data indicate that equity 
markets now price corporate carbon emissions more 

systematically, with valuations reflecting both total 
emissions and the perceived credibility of decarbonization 
plans (Zhang 2025; Chen and Lai 2025). On the asset-
pricing front, researchers increasingly model carbon 
allowances and credits as contingent claims: option 
frameworks price carbon assets and support digital tools 
for dynamic hedging and project evaluation (Liu et al. 
2022), while real-options techniques measure the 
economic value of operational choices such as continuing 
or shutting down emission-intensive power plants under 
tightening carbon limits (Liu et al. 2021). Where macro-
finance meets climate, carbon pricing emerges as a driver 
of structural change toward greener growth trajectories, 
redirecting capital flows from high-carbon sectors 
(Langley et al. 2021; Mengesha and Roy 2025), yet climate 
and policy uncertainty propagate forcefully across energy 
and carbon markets, with asymmetric causal connections 
running among economic policy uncertainty, oil price 
volatility, clean energy indices, carbon futures and green 
bonds (Wang X. et al. 2022; Siddique et al. 2023). 
Empirical studies further reveal pronounced spillovers 
linking fossil fuel, renewable and carbon markets during 
overlapping climate and energy shocks, implying that 
carbon assets sit within larger energy-finance networks 
rather than standing alone (Su et al. 2023; Dong and Yoon 
2023). Meanwhile, the relaunch of China's CCER market 
has spurred methodological and project-level advances: 
feasibility assessments of methane-reduction approaches 
in oil and gas production highlight a new category of 
carbon assets with substantial mitigation leverage (Wang 
et al. 2025), and integrated carbon asset management 
platforms and trading tactics seek to help listed 
enterprises revalue assets and pursue sustainable 
development goals (Chen and Lai 2025). Taken together, 
these studies suggest that carbon assets are shifting from 
a narrow compliance tool into a diverse financial and 
strategic asset class whose worth hinges on policy 
architecture, technology trajectories, cross-market 
linkages and firm-level organizational capacity (Chevallier 
et al. 2021; Liu et al. 2022; Mengesha and Roy 2025). 
Beyond energy and finance, valuation-relevant impacts of 
carbon-related assets and practices now extend into 
material-production industries including agriculture and 
chemicals, covering soil carbon sequestration, inorganic 
soil carbon behavior, and biochar-derived carbon 
materials (Nazir et al. 2023; Raza et al. 2024; Mahmood et 
al. 2025). 

2.2. Review on the researches about intangible asset 
pricing 

A growing body of research on intangible asset pricing 
examines how non-physical drivers such as information, 
expectations, environmental performance and intellectual 
capital increasingly shape asset values. At the 
measurement and reporting level, surveys and meta-
analyses point to persistent gaps between the economic 
significance of intangibles and their treatment in financial 
statements, documenting conceptual and empirical 
obstacles in valuing items such as R&D, data, and 
organizational capital (Van Criekingen et al. 2022; Jeny 
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and Moldovan 2022; Barker et al. 2022). Firm-level studies 
build on these observations to show that intangible 
resources can forecast future performance and ought to 
be priced by investors, with deep learning models 
extracting value-relevant signals from complex intangible 
asset profiles (Pechlivanidis et al. 2022). Related work 
broadens the concept of intangibles to include 
environmental attributes: carbon emissions and carbon 
risk enter asset pricing models as non-traditional factors, 
with mounting evidence that emissions and climate 
exposures affect stock returns and capital costs, especially 
in emerging markets (van Benthem et al. 2022; Wang H. et 
al. 2022; Bolton and Kacperczyk 2024). Time-varying 
investor preferences for green attributes and evolving 
policy signals further influence how environmental 
performance gets rewarded in asset prices, suggesting 
that such performance has itself become a priced 
intangible (Dutta 2022; Alessi et al. 2023). Where macro-
policy meets asset valuation, studies of risk-adjusted 
carbon prices and retrospective evaluations of carbon 
pricing schemes reveal that expectations about future 
regulation and abatement costs embed themselves into 
long-run asset values, effectively converting regulatory 
trajectories into a form of priced intangible risk (Van den 
Bremer and Van der Ploeg 2021; Green, 2021). On the 
methodological front, advances in behavioral and 
computational finance demonstrate that even nominal 
price illusions and data monetization practices introduce 
new intangible dimensions into pricing: behavioral biases 
in nominal valuation distort asset prices in ways 
traditional factors miss, while datasets themselves 
become tradable intangible assets whose prices can be 
learned via deep learning-based monetization frameworks 
(Yang and Yang, 2022; Hao et al., 2025). Taken together, 
this literature argues that modern asset pricing must 
systematically incorporate a wide spectrum of intangibles 
spanning accounting-based intellectual capital, 
proprietary data, environmental quality and policy 
expectations, deploying richer models and machine 
learning techniques to connect these largely off-balance-
sheet attributes to observed returns (Van Criekingen et 
al., 2022; Pechlivanidis et al., 2022; Alessi et al., 2023). 

These studies collectively demonstrate that carbon assets 
and other intangibles are increasingly priced through their 
interactions with policy, firm behavior and market 
expectations, yet existing research tends to separate 
micro compliance analyses from macro market models. 
Drawing on these insights, this paper treats CCER as a 
carbon-related intangible asset and constructs an 
integrated valuation framework that connects optimal 
firm-level CCER demand under emission and policy 
uncertainty with regime-switching GBM-based pricing of 
CEA and CCER, bridging income-based and market-based 
perspectives to inform CCER pricing, contract design and 
policy. 

3. Micro-level CCER valuation:from the firms’ 
perspective 

3.1. Theoretical analysis and model construction 

This section constructs an improved CCER valuation model 
grounded in optimal enterprise purchasing decisions 
under emission uncertainties, regulatory constraints, and 
policy-induced invalidation risk. Unlike earlier discrete and 
continuous distribution models where CCER quantity 
enters exogenously and unit value represents average 
cost savings per ton, the present framework endogenizes 
purchased CCER quantity as the solution to a cost 
minimization problem and derives the associated 
willingness to pay as a theoretically grounded estimate of 
marginal value. This approach preserves the intuitive cost-
difference logic inherent in the income method while 
directly tying CCER value to firm-specific emission risk, 
incorporating residual value and the potential for excess 
CCER to lose validity after the compliance window, and 
permitting heterogeneous enterprise characteristics such 
as size, quota allocation and volatility to generate 
differentiated CCER valuations. 

We consider a representative compliance enterprise i 
facing uncertain annual carbon emissions in the target 
year (for instance, 2024). Let E denote its random annual 
emissions (tonnes of CO2 equivalent). Consistent with the 
empirical setting in the previous section, E is modeled 
from historical data (2017–2023) and is assumed to follow 

a continuous distribution with mean E and variance 2
E , 

with cumulative distribution function FE() well-defined;in 
applications a normal or lognormal specification can be 
used, or an empirically estimated non-parametric 
distribution. 

The enterprise holds or expects to receive an annual 
allocation of carbon emission allowances (CEA) denoted 
by A, and may purchase a quantity Q of CCER to offset 
emissions in the same compliance period. The maximum 
proportion of emissions that can be offset with CCER is 

capped at  (5% in the Chinese system), which implies an 

upper bound Q  Qmax, where Qmax can be set as E or, 

more conservatively, as (E+zE) for a chosen safety 
quantile z. Throughout the analysis we treat Q as a 
continuous decision variable in [0, Qmax]. 

At the beginning of the compliance period (or at an 
intermediate time before the deadline), the firm chooses 
Q and pays pcQ, where pc is the unit market price of CCER. 
We assume that the CEA price at the time of final 
compliance is stochastic but that the firm can form an 
expectation 

Ap  of the average marginal cost of acquiring 

additional CEA close to the settlement date, inferred from 
historical trading data or from a separate market-
approach model (e.g., GBM or LSTM). The regulatory 

frame-work typically stipulates a penalty F  per tonne of 
uncovered emissions; for analytic clarity we assume 

AF p , so that a rational firm will always purchase CEA to 

achieve full coverage before paying penalties, and 
compliance behavior can be summarized as ‘buy CEA until 
the emission shortfall is fully covered’. 

Given a realization of E, the firm’s compliance balance at 
the end of the period is A+Q. If E > A+Q , the firm must 
purchase additional CEA on the spot market to cover the 
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shortfall E–A–Q at expected marginal cost ( )Ap E A Q− − , 

ignoring second-order price feedback from individual 
trades. If instead E<A+Q, the firm ends the period with 
surplus compliance assets A Q E+ − . Because CCER 

eligibility in the Chinese national trading system is subject 
to strict temporal limitations (for example, credits 
registered before March 14, 2017 are usable only until 
December 31, 2024 and CCER trading effectively ceases 
after the compliance submission deadline), surplus CCER 
face significant expiration and liquidity risks, whereas 
surplus CEA generally remain valid and tradable in 
subsequent periods or can be sold back to the market. 

To capture these asymmetries while keeping the model 
tractable, we postulate that surplus compliance assets at 

the end of the period are valued at a residual price res
Cv . A 

more detailed specification could distinguish between 
surplus CEA and CCER, for example assigning CEA a 

residual value close to Ap  and CCER a value (1–)pc 

based on a survival probability (1–) and a resale discount 

factor  0,1 in voluntary markets. For parsimony, we 

aggregate these effects into a single effective residual 

value res
Cv , interpreted as the expected liquidation value 

per tonne of surplus compliance asset, net of policy 

invalidation and market illiquidity; typically A
res
Cv p  and, 

for CCER approaching their sunset date, it can be 
substantially lower. 

Under these assumptions, for a given CCER purchase 
quantity Q and a particular realization of emissions E, the 
firm’s random total cost of compliance can be written as 

( ) ( ) ( )TC ;  =   +  –  res
C CAQ E p Q E A Q v Q Ep A

+ +
− − + −

 
(3.1) 

where (x)+ = max{x, 0} Here Cp Q  is the certain upfront 

cost of purchasing Q tonnes of CCER, ( )Ap E A Q
+

− − is the 

cost of "filling the gap with CEA" when realized emissions 

exceed A+Q, and ( )res
Cv A Q E

+
− + −  reflects the residual 

value of surplus compliance assets when E<A+Q 

Given CCER purchase quantity Q, the firm’s expected 
total compliance cost is 

( ) ( )

( )res

  TC ;

,    

AC

C

Q E p Q E A Q

v A Q E

p
+

+

   = + − −   

 − + −
 

E E

E
 

(3.2) 

where the expectation is taken over ( )EE f e . The firm’s 

decision problem is 

( )
max

*

0
arg min TC ;

Q Q
Q Q E

 

 =  E , (3.3) 

which formalizes, within the income-approach framework, 
the strategic decision of ‘how many CCER to buy’ under 
emission and price uncertainty. 

To derive the first-order condition for an interior solution, 
differentiate (3.2) with respect to Q. Since TC(Q; E) 
depends on Q only through pcQ and the positive-part 
terms, and (E–A–Q)+, (A+Q–E)+ are almost everywhere 

differentiable in Q ,we have ( )   ++


−


  E – A – Q =  1 E A QQ

and 

( )  ++


+ − =


{ }1 E A QA Q E

Q
, where 1{} denotes the indicator 

function. Substituting and using linearity of expectation 
gives 

( )    CTC ; =p +E 1 1res
A CE A Q E A Q

d
Q E p v

dQ
 +  +

   − −   
E

( ) ( )Ap E>A+Q E<A+Q ,res
C Cp v= − −P P  

(3.4) 

where we used   ( ) +
  =  +
  

E P1 E A Q E A Q  and 

  ( ) +
  =  +
  

E P1 E A Q E A Q . The second term represents 

the expected marginal saving in CEA "gap-filling" cost, and 
the third term captures the change in expected residual 
value from buying one more tonne of CCER. 

Setting (3.4) equal to zero at Q* yields 

( ) ( )* *Q + .e
A

r s
C Cp E A v E Ap Q=  +  +P P

 
(3.5) 

For a continuous emission distribution we have 

( ) ( )*  +P    1E A Q E A Q  +  +P . 

Rearranging (3.5) gives the key pricing relation 




( *)

res

CCER unit priceat Q*
residual valuebencgmark(marginalwillingness-to-pay)
when CCER mainlyendas surplus

res

proabilityof an emissionshort all
compliance usepremiumafte
over pure residual value

C

C

P

p P E A Q

C

A





= +

 +

−


r buyingQ*tonnesof CCER


 

(3.6) 

The marginal willingness-to-pay at Q* is thus a weighted 
average of the expected marginal CEA cost Ap  and the 

residual value res
Cv , with the weight on Ap  given by the 

shortfall probability ( )*E A Q +P . When this probability is 

high, pc is close to Ap ; when it is low, pc moves toward 
res
Cv . 

To obtain an explicit pricing formula, assume 

( )2,E EE   N , with (E, E) estimated from historical firm-

level data. The shortfall probability can then be expressed 

via the standard normal CDF () as 

( )  1 Φ .E

E

A Q
E A Q





 + −
 + = −  

 
P

 

(3.7) 

Substituting (3.7) into (3.6) yields the central CCER price-
quantity relation 



*
C

A
C

P

p υ [1 ( )]

res
( )

firm-levelmarinal residual value
(willingness-to-payat Q) surplus states

res

incrementalvalueof CCER proabilityof ashortfall
asa complianceinstrument after buyingQtonnesof CC

C

A Q

Q

E

E







= +

+ −
−





ER



 

(3.8) 

For small Q such that EA Q +  , the standardized term 

( ) /E EA Q  + − is very negative, () is close to 0, and the 



CCER VALUATION UNDER EMISSION UNCERTAINTY: A DUAL FRAMEWORK OF COMPLIANCE OPTIMIZATION  5 

shortfall probability is close to 1, so ( )*   ACp Q p  and CCER 

are almost fully valued at the expected marginal CEA 

price; as Q increases and A+Q approaches or exceeds E, 

the shortfall probability declines and ( )*
Cp Q  decreases 

smoothly from   Ap toward res
Cv , reflecting the transition 

from ‘insurance against costly shortfalls’ to ‘potentially 
stranded surplus assets’.  

Thus, (3.8) can be interpreted as a firm-level demand 

curve for CCER: for each max0,Q Q 
  

, it gives the marginal 

price that leaves the firm indifferent between buying an 
additional tonne of CCER and relying instead on spot CEA 
purchases or accepting surplus risk. Coupled with (3.3), 
the most relevant income-based valuations at the firm 

level are ( )* *
Cp Q  (marginal value at the optimum) and

( )* max
Cp Q (marginal value when the regulatory offset 

ratio is fully used). Aggregating such firm-specific marginal 
values, for example via emission-weighted averages, 
yields a market-level theoretical CCER price range under 
the improved income-approach framework. 

In implementation: (1) For each firm, estimate (E, E) 
from historical emissions and determine its expected 
allowance allocation A under national ETS rules, then 

compute Qmax=E. (2) Specify   Ap  from observed or 

modeled CEA prices at compliance, and calibrate 
res

Cv  

using policy information on CCER validity and expected 

liquidity. (3) For each Q on a grid in 0, maxQ 
  

, compute 

( )E A Q +P  via (3.7) and then ( )*
Cp Q  via (3.8). (4) Solve 

(3.3) for Q*, obtain ( )* *
Cp Q  or ( )* max

Cp Q , and aggregate 

across firms to form a market reference price. 

3.2. Numerical implementation and discussion on the 
results  

The numerical implementation proceeds as follows (the 
Matlab implementation for the income-approach model is 
provided in Appendix B). The model first sets the key 
global parameters 0.05,  115 CNY/tand 30 CNY / tsA rep v = = = , 

where  is the maximum CCER offset ratio, Ap  is the 

expected marginal CEA settlement price, and res is the 
residual (floor) value of CCER. Historical daily CEA and 
CCER prices from the Word file are read into the program 
but are used only as background, while the pricing model 
itself is calibrated directly using the fixed values of Ap  

and res. 

Firm-level emission data are then imported separately for 
low-emission firms (Table 2) and normal-emission firms 
(Table 3). For each firm, the Appendix A provides 

, andupper mid lowerE E E  for annual emissions. The code sets 

E=Emid as the firm’s expected emissions and, assuming 
(Elower, Eupper) is roughly a 90% confidence interval, 
approximates the standard deviation by 

( ) ( )0.95/ 2E upper lowerE E z  − with z0.951.64, imposing 

E10–6 to avoid degeneracy. The allowance allocation is 

set equal to expected emissions, A=E, and the maximum 
CCER usage is max EQ = . 

Based on these inputs, the firm-specific marginal 
willingness-to-pay function for CCER is implemented as 

( ) ( )*   = +   1 Φ E
C res res

E
A

A Q
p Q v vp





  + −
− −  

   
 

where () is the standard normal cumulative distribution 
function. In the code this is written as a vectorized 
anonymous function pc_fun using normcdf. For each firm, 

the program evaluates ( )* *at 0, andC maxp Q Q Q Q Q Q= = = , 

where Q* is obtained by minimizing the expected total 

compliance cost over 0, maxQ Q   , 

( ) ( ) ( ) ( )*TC ; , ,  AC resQ E p Q Q E T Tp v T E A Q
+ +

     = + − − − = +     
E E E

with ( )  max ,0 .x x
+
= Under the normality assumption for E, 

the expectations ( ) ( )andE T T E
+ +

   − −
   

E E  have closed-

form expressions involving the standard normal pdf and 
cdf, which are implemented in an auxiliary function 

ETC_single.  The scalar optimization is carried out using 

the Matlab routine fminbnd, yielding the optimal *Q and 

the associated marginal price ( )* *
Cp Q  for each firm. 

Using this procedure, the program computes for all 46 

firms the mean emissions E, emission volatility E, 
maximum CCER use maxQ  and the model-implied marginal 

CCER prices at *0, and .maxQ Q Q Q Q= = =  The numerical 

results show that: (1) for all firms, the predicted marginal 
price at zero CCER usage is identical and equals 

( )* 0 72.50 CNY / t.Cp =  This is because at 0Q =  we have 

, so (0) 0.5ET A = =  = and 

( ) ( ) ( )( ) ( )* 0 1 Φ 0 30 115 30 0.5 72.5.C res A resp v p v= + − − = + −  = (2) 

When firms use CCER up to the policy cap ,max EQ = the 

marginal willingness-to-pay falls for all firms to 

approximately ( )* 47.52 CNY / t,C maxp Q   because additional 

CCERs raise the total compliance position T A Q= +  and 

reduce the probability that the firm ends up short and 

needs to settle at the higher CEA price   Ap . (3) The 

optimization results show that for every firm in the 

sample, the cost-minimizing choice is *=  maxQ Q , so

( ) ( )* * *  47.52 CNY / t.C C maxp Q p Q=    

The program also computes emission-weighted average 

theoretical CCER prices across all firms (using E as 

weights). The results are ( )CNY / t :Mean ( )* 0 72.50,Cp Q = =  

Mean ( )* 47.52,C maxp Q Q= =  Mean ( )* * 47.52.Cp Q Q= =  

Because all firms optimally choose *=  maxQ Q  , the average 

optimal marginal price coincides with the marginal price 
at the cap. The left graph in Figure 1 illustrates the 

marginal willingness-to-pay curve ( )*
Cp Q  for a 

representative firm, chosen in the code as the one whose 
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expected emissions are closest to the sample median, 
namely the firm with ticker 966, for which (t CO2) 

657,528, 40,093.29, 657,528,E E A = = =    = 32,876.40. maxQ The 

horizontal axis of the left graph in Figure 1 plots Q (in 
million tonnes CO2) from 0 to Qmax , and the vertical axis 

reports ( )*
Cp Q  in CNY/t. The curve starts at 

( )* 0 72.50 CNY / tCp =  and monotonically declines to 

( )* 47.52 CNY / tC maxp Q   as Q increases, with two horizontal 

reference lines at   115 CNY / tAp =  and 30CNY / t.resv =  The 

points Q=0, maxQ Q=  and *Q Q=  are highlighted on the 

curve; since for this firm *= = 32,876.40 t CO2maxQ Q , the last 

two coincide and ( ) ( )* * *  47.52 CNY / t.C C maxp Q p Q=   The 

right graph in Figure 1 summarizes the cross-sectional 

distribution of ( )* *  Cp Q  for all 46 firms. The horizontal 

axis is ( )* *  Cp Q (CNY/t) and the vertical axis is the 

number of firms. The descriptive statistics are: 

( ) ( )* * * *min 47.51 CNY / t, max 47.53 CNY / t,C Cp Q p Q= = mean 

= 47.52 CNY/t , median  =  47.52 CNY/t , std.dev. 0.00CNY / t,

indicating an extremely concentrated distribution. 

Overall, the numerical results yield three main 
conclusions. First, when firms hold allowances equal to 
their expected emissions, the initial marginal value of 
CCER at zero usage is exactly halfway between the 
residual CCER value and the expected CEA price, that is 

( ) ( )* 1
0   72.5 CNY / t.

2
C reA sp vp= + = Second, as firms increase 

CCER usage up to the regulatory cap, their marginal 
willingness-to-pay declines to about 47.52 CNY/t , but 

remains well above the residual value of 30 CNY/t, which 
supports a non-trivial economic value of CCER under the 
given market conditions. Third, under the current 

parameterization all firms optimally choose *= maxQ Q , so 

the cross-sectional dispersion of ( )* *  Cp Q  is negligible, as 

illustrated by the right graph in Figure 1. 

These findings highlight both the internal consistency and 
the limitations of the current calibration. The income-
approach model delivers a transparent relationship 
between the CEA price, the CCER residual value and firms’ 
optimal CCER demand, while the near-degeneracy of the 
cross-sectional distribution suggests that richer 
heterogeneity in allowance allocation rules, emission 
uncertainty and firm-specific constraints, or relaxing the 
assumption A =  E for all firms, would generate a wider 

and more realistic spread of ( )* *  Cp Q  than that shown in 

the right graph in Figure 1. 

4. Macro-level CCER valuation: from the market’s 
perspective 

In this section, we employ the market approach to model 
carbon prices through a regime-switching geometric 
Brownian motion (GBM). Compared to a single-regime 
GBM, this framework is capable of capturing structural 
shifts in economic activity, energy demand, and regulatory 

policies, thereby depicting the nonlinear, state-dependent 
dynamics of CEA and CCER. We treat CEA prices as the 
underlying asset in a risk-neutral regime-switching GBM 
and value CCER as a real option, while considering 
observable price boundaries, offset substitutability with 
CEA, and policy-mandated offset ratio constraints. 

Figure 1. Representative-firm marginal CCER pricing curve and 

cross-sectional distribution of optimal marginal CCER prices 

4.1. Theoretical analysis of the value-relevance of CCER 
and CEA 

For compliance enterprises, one unit of CCER can either 
offset one ton of verified emissions on the compliance 
date or be sold on the secondary market before its 
expiration, thus representing a flexible right. Holding CCER 
units with an expiration date of T at time zero grants the 
holder the right to choose between compliance use and 
market sale, with the higher benefit prevailing at or 

before time T. Let A
tP  and C

tP  be CEA and CCER prices at 

time t, and r the continuously compounded risk-free rate. 

Empirically C
tP  is usually below A

tP  and bounded below 

by a residual value res, so a basic restriction is 

0 .C A
res t tv P P    

We approximate the marginal compliance value of one 

CCER at T by an increasing function ( )ATf P of the 

settlement CEA price. Under full subtitutability and 
ignoring firm-specific constraints, we use 
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( )  min ,  ,A A
A
max

T T Af pP P=  where   x
A
ma
Ap  is an effective cap 

on the CEA settlement price. The time-zoo CCER value 

under the risk-neutral measure Q  is ( )0 ,C rT A
TV e f P−  =

  

QE  

which is constrained to satisfy 0 0 ,C A
resv V V   where 0

AV  is 

the risk-neutral value of one CEA unit. Calibration of f() is 

chosen so that the implied ratio /C A
t t tP P =  lies in the 

empirical band t    . 

In the Beijing CCER market, Table 1 indicates that t is 

typically between 0.56 and 1.08, with C A
t tP P  and a 

common range around 0.6 to 0.7. To reflect this structure, 

we specify a state-dependent pricing kernel ( ) ,C A
t t tP P =  

where t is an unobserved economic regime and ( )t   is 

the CCER-CEA price ratio in regime t. Given the regime-

switching process for A
tP , CCER prices are thus driven 

jointly by A
tP  and the regime index t. 

Regime uncertainty is modeled by a continuous-time 

finite-state Markov chain (t)t0 with state space 

 1 2, , , ,me e e= M  representing different macro or 

regulatory conditions. For more details of Markov chain's 
modelling and applications, we refer to (Zheng et al., 
2020; Ni et al., 2024; Xu et al., 2024). The "regime" can be 
understood as a combination of high, medium, and low 
levels of temperature and industrial activity, or more 
broadly as a state defined by temperature, coal prices, 
industrial added value growth rates, and regulatory policy 
dynamics. This Markov chain determines the drift rate, 

volatility, and spread ratio () of the CEA price process, 
and therefore transmits regime shifts into CCER valuation. 

4.2. Modeling CEA and CCER prices with regime-switching 
geometric Brownian motion 

We now specify a regime-switching geometric Brownian 

motion (GBM) for CEA and CCER prices. Let ( )
0t t

B


 be a 

standard Brownian motion and ( )
0t t




 a continuous-time 

Markov chain on  1, , me e= M  with generator 

( )
1 ,

ij
i j m

Q q
 

= , where    0ijq   for ij and .q qii ij

j i

= −



  The 

filtered probability space is ( )( )0
, , , ,t t

 F F P  with filtration 

generated by Bt and t. Under P , the CEA price ( )
0

A
t
t

P


 

follows 

( ) ( )d d d ,0 ,A A A
t A t t A t t tP P t P B t T   = +  

 
(4.1) 

with regime-specific drift A(i) and volatility A(i)>0. The 

solution is ( ) ( ) ( )
1 2exp .

0 2

0 0

T T

A AP P du dBA u u A u uT A
     

 
  

= − +  
  
 
 

   

To price under no arbitrage, we move to a risk-neutral 

measure Q  such that rt A
te P−  is a martingale. Let 

( )( ) ( )/t A t A tr    = −  and define 

2

0 0

d 1
exp .

d 2

T T

u u udB du 




= − − 


 

 
Q

P
 Then 

0

t

t t uB B du= +   is a -Q

Brownian motion and 

( )   ,     A A A
t t A t t tdP rP dt P dB = + 

 
(4.2) 

or equivalently ( ) ( )
1 2  .

0 2

0 0

T T

A AP P exp r du dBu A u uT A
   

 
  

= − +  
  
 
 

   We 

keep the generator Q unchanged under Q ,which is 

standard and sufficient for pricing here. 

To link CEA and CCER prices by regime, we introduce 

( ) , , 1, , ,i i m    = 
 

 calibrated from CCER/CEA price 

ratios. When t=ei, we set 

( ) ,C A
t t tP P =  (4.3) 

so that in regime i the CCER price is a fixed fraction (i) of 
the CEA price. Combining (4.2) and (4.3) and using Ito’s 
formula, for fixed regime i we obtain  

( ) ( ) ( ) ( ) d d d d , ,C A C C
t t t C t t C AP i P rP t i P B i i   = = + =

so ( )
0

C
t
t

P


 also follows a regime-switching GBM under Q : 

( )d d dC C C
t t C t t tP rP t P B = +  . 

For valuation, let g() be the marginal compliance value of 

one CCER at maturity T as a function of   ATP . A simple 

specification with full substitutability and a floor is

( )  res effmax ,A A
T Tg P v P=  with eff ,   

 
. The time-zero 

value of a CCER unit is 

( )0 0 0 0  | , ,    C rT A A A
T iV e g P P p e−  = = =

 
QE

 
(4.4) 

where 0
AP  is the current CEA price and ie  the current 

regime. Due to regime switches, A
TP  is not lognormal and 

(4.4) has in general no closed form. Two standard 
numerical approaches are therefore used: a system of 
coupled PDEs, or Monte Carlo simulation (see Hu et al., 
2020; Liang et al., 2022 for more applications). 

For the PDE approach, define ( ),iv p t  as the value at time t 

of one CCER when A
tP p=  and , 1, , .t ie i m = =   Then 

( )1, , mv v v=   solves, on ( ) ( ) ), 0, 0,p t T      

( )
2

2 2

2

1

1
0

2

m

i i i
A i ij j

j

v v v
i p rp rv q v

t pp


=

  
+ + − + =

 
  

(4.5) 

with terminal condition ( ) ( ), .iv p T g p=  Numerical schemes 

such as finite differences can be used to obtain ( )0 ,0 ,A
iv p  

so that ( )0 0 ,0 .C A
iV v p= For Monte Carlo,one simulates N 

paths of ( ),At tP   under Q  on [0,T] using (4.2) and the 

Markov chain with generator Q. For each path k, record 
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( ),A k

TP  and compute 
( ),A k

Tg P
 
 
 

;  

then ( )
,ˆ ,1

0

1

N
A kC rTV e g P
TN

k

 −=  
 
 

=

 which converges to 0
CV as 

.N →  Alternatively, one may simulate C
tP  directly via 

(4.3) and use a payoff ( ) ,C
Th P  for instance 

( )   = max ,C C
T T C resh P P K v− with a strike KC and then 

compute ( )0 .C rT C
TV e h P−  =

  
 QE With suitable choices of g 

and h  consistent with (4.3), the two formulations are 
equivalent. 

Calibration proceeds in two steps. First, regimes are 
identified from exogenous variables such as daily 
temperature and industrial added value growth, 

for example by partitioning the ( ), -x y plane with

1 y x c= +  and 2y x c= +  and assigning each day to a 

regime.The transition rates q ij  are then estimated 
from empirical holding times and transition counts. 
Second, given regime labels, regime-specific drifts 

( )A i and volatilities ( )A i  are estimated from CEA 

log returns, and the spread parameters ( )i  from 

paired CEA-CCER prices,subject to ( ) .i     Once 

( ) ( ) ( ) 1{ , , , }mA A iQ i i i   =  and r  are calibrated, the 

regime-switching GBM fully specifies the joint 
dynamics of CEA and CCER prices under Q , and 

thus yields a CCER value 0
CV

 that reflects regime 

uncertainty, empirical spreads and the real options 
nature of CCER. 

4.3. Numerical implementation and discussion on the 
results 

This subsection uses the Matlab code (refer to Appendix 
C) to implement a three-regime Markov switching GBM 
for CEA and CCER and to price a guarantee-type payoff 

( )max ,TE CCER K 
   under the risk-neutral measure. Daily 

2023 CEA and CCER prices from Beijing Green Exchange 
are combined with monthly year-on-year electricity 
growth. The monthly growth rates are mapped to the 
daily grid; empirical quantiles of both electricity growth 
and CEA price define three regimes: regime 1 (low growth, 
low price), regime 3 (high growth, high price), and regime 
2 (intermediate). If any regime is too small, its days are 
merged into the middle regime. 

Within each regime  1, 2,3 ,s  the drift and volatility of 

daily CEA log returns are estimated as sample mean and 

standard deviation, giving ( )A s  and ( )A s . The Markov 

transition matrix P  is built from observed one-step regime 

switches. For CCER, an equilibrium relation C A
t s tS S  is 

assumed, where s is the average CCER/CEA ratio in 

regime s , truncated to [0.5,1.0]. In simulation, C A
t s tS S=  

times an idiosyncratic lognormal shock (Rasool et al., 2020; 
Shabbir et al., 2020; Zhang et al., 2020; Hussain et al., 
2021; Yan et al., 2022). The daily standard deviation of 

this CCER-specific noise is set at 0.10 Δt  with ( )0,1tZ N , 

which generates realistic short-run deviations between 
CCER and CEA while preserving long-run co-movement 

through s. 

Under the risk-neutral measure, CEA in regime s  follows 

a GBM with drift 21

2
sr −  and volatility s, with annual 

risk-free rate r=0.0435 and time step t=1/252. At each 
step, the regime is updated using P, then CEA is evolved 

by the corresponding GBM, and CCER is obtained as 
A

s tS  

times the idiosyncratic shock. The code simulates joint 
paths of CEA and CCER over Ttrade=80 trading days from 

end-2023 levels, with initial prices 0 111.38 CNYAS =  and 

0  = 72.00 CNYCS . The initial regime is the observed last-day 

regime. The guarantee level is 72.00 CNYK = . 

 

Figure 2. Simulated CEA (solid) and CCER (dashed) price paths 

over 80 trading days under a three-regime switching GBM, with 

background color bands indicating low, medium, and high 

demand-price regimes 

Figure 2 illustrates five simulated paths over 80 days. Solid 
lines are CEA, dashed lines CCER. The background bands 
show the simulated regimes: blue for regime 1, green for 
regime 2, red for regime 3. Regimes evolve endogenously 
according to P. CEA and CCER co-move at the regime 
scale, with higher growth of both prices and higher 
volatility in red bands, and flatter or downward behavior 

in blue bands. Regime-specific ( )A s  generates time-

varying volatility. The larger CCER idiosyncratic noise 

0.10 Δt  produces visible but transient deviations of CCER 

from A
s tS , consistent with CCER’s lower liquidity and 

project heterogeneity. The paths combine long-run co-
movement, regime-dependent risk and short-run spread 
fluctuations. 

On this joint dynamics, the value of a single-maturity 

payoff ( )max ,TCCER K  with T = 80  days is approximated 

by Monte Carlo: ( )PV max ,rT
Te CCER K−  =  

QE  with 20,000 

paths. The output is PV 80.4027 CNY  per unit CCER, 

compared with spot 0  = 72.00 CNYCS  and  =  72.00 CNYK . 

Since ( )max ,TCCER K  equals one CCER plus a European call 

with strike K, the excess 0PV 8.4 CNYCS−   reflects option 

value from regime-driven upside and the floor at K. 

To illustrate how the guarantee value varies with initial 

CEA 0
AS  and maturity T, a grid is set with 0

AS  from 80.00 



CCER VALUATION UNDER EMISSION UNCERTAINTY: A DUAL FRAMEWORK OF COMPLIANCE OPTIMIZATION  9 

to 160.00 CNY (25 points) and T from 10 to 80 trading 

days (step 10). At each grid point ( )0 , ,AS T  15,000 paths of 

the joint process are simulated, the payoff ( )2max ,TCCER K  

is computed and discounted. The guarantee level is 

( )CEA
2 follow mid 0 0 ,A

baseK K S S = + − where 

72.00 CNY, 0.6257base midK = =  is the middle-regime ratio,
CEA
0 111.38 CNYS =  is the current CEA price, and 

follow   = 0.30 . Thus only 30 percent of deviations of 0
AS  

from 0
CEAS  feed into the floor, which weakens the almost 

linear dependence that would occur under 2 mid 0 .AK S=  

 

Figure 3. Discounted expected value surface 

( )2max ,TE CCER K 
   per unit CCER under the regime-switching 

GBM, as a function of initial CEA price and maturity, with the 

guarantee level defined as a baseline plus a partially adjusting 

component 

Figure 3 reports the discounted expectation 

( )2max , rT
TCCER K e− 

 EQ  on this grid (with simple 

interpolation). Along the T direction, holding 0
AS  fixed, 

values increase with maturity because the process has 
more chances to enter high-demand regimes and the time 
value of the floor-contract outweighs discounting. Along 

0
AS , each maturity slice is upward-sloping but nonlinear: 

with ( )CEA
2 mid 0 00.30  ,A

baseK K S S= + −  the floor adjusts 

slower than the expected terminal CCER level as 0
AS  rises, 

so the marginal impact of 0
AS  gradually declines at high 

initial prices. In the low 0
AS  region, values remain clearly 

above kbase even at short horizons, indicating a nontrivial 
probability of regime-driven recovery before maturity. A 
slice at T     40  days (black curve) highlights this 

nonlineaeity: near 0
CEAS the slope in 0

AS  is steep, then 

flattens at higher 0
AS ,confirming the dampened pass-

through of initial price into guarantee value under the 
partial-follow rule. 

5. Comparison and summary 

5.1. Comparing micro-level and macro-level CCER 
valuation results 

This subsection compares the micro-benefit approach in 
Section 3 with the macro-regime switching GBM approach 
in Section 4. By examining the implied marginal or fair 
CCER price (unit: yuan/ton) of the model and aligning key 
calibration items (such as expected CEA settlement prices, 
CCER residual values, and observed CEA and CCER spot 
prices), the two methods are made comparable. 

On the micro side, Section 3 studies a representative 
compliance enterprise minimizing expected total 
compliance cost under uncertain emissions, regulatory 
caps and residual value risk. The firm faces random annual 

emissions E with mean E and variance 2
E , allowance 

allocation A, maximum CCER usage max ,EQ =  expected 

marginal CEA settlement price Ap , and residual value resv

. Total cost equals upfront CCER spending plus expected 
CEA gap-filling cost minus expected residual liquidation 

value. Treating 0, maxQ Q   as continuous, the first-order 

condition yields a marginal willingness-to-pay 

( ) ( ) ( )( )res res 1 Φ / ,C A E Ep Q v v A Qp   = + − − + −
 

ε interpreted 

as a weighted average of Ap  and resv , with the weight on 

Ap  given by the emission shortfall probability after 

purchasing Q. 

Under the baseline calibration with offset ratio 
0.05, 115 CNY / t,Ap = =  30 CNY / tresv = , allocation ,EA =  

and approximately normal emissions, the model is applied 
to 46 low- and normal-emission firms. For each, E , E  , 

maxQ  and ( )0Cp
ε , ( ) ( ),C max Cp Q p Qε ε ε  are computed. All 

firms obtain ,maxQ Q=ε  that is optimal usage at the cap.At 

Q = 0 , the shortfall probability equals 1/2 so 

( ) ( )
1

0 72.50 CNY / t.
2

C resAp vp= + =ε At Qmax the shortfall 

probability is much lower and the marginal value drops to 
about 47.52 CNY/t . The emission-weighted distribution of 

( )Cp Qε ε  is thus very concentrated around 47.52 CNY/t . 

On the macro side, Section 4 models CEA and CCER via a 
three-regime switching GBM calibrated to 2023 Beijing 
data and electricity growth, with regimes capturing low, 
medium and high demand-price environments through a 
finite-state Markov chain. Within each regime, CEA 
follows a risk-neutral GBM; CCER equals a regime-
dependent fraction of CEA times an idiosyncratic 

lognormal shock with daily standard deviation 0.10 Δt ,

representing CCER-specific noise. CCER is then valued as a 
real-option-like asset whose payoff reflects its compliance 
substitutability and residual value. 

For a single-maturity payoff ( )max ,TCCER K  with 

T  =  80  days,  K  =  72  CNY,  r=0.0435, and starting prices 

0 111.38 CNYAS = , 0 72.00 CNY,CS = Monte Carlo with 20000 

paths gives PV 80.40 CNY / t.  The excess over spot is the 

value of the embedded call on CCER under regime 

uncertainty. Extending to a grid over 0
AS  and T  with a 

guarantee 2K  anchored at 72 CNY and partially following 

0
AS  yields a surface ( )2max , rT

TCCER K e− 
 

QE that increases 
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with T and displays nonlinear dependence on 0
AS . As follows, Table 1 summarizes representative outcomes. 

 

Table 1. Comparison between micro-level and macro-level CCER valuation results 

 
Micro-level income approach (firm 

perspective) 
Macro-level market approach (regime-

switching GBM) 

Modeling focus representative firm or firm sample 

Risk-neutral pricing of CCER as a real 

option-like asset under state-dependent 

price dynamics 

Main uncertainty source 
Firm-level emission risk (E, E) with prices 

and residual value exogenous 

Stochastic CEA and CCER prices driven by a 

three-regime switching GBM 

Decision variable or contract type 
CCER purchase quantity max0,Q Q    

chosen once per period 

Holding CCER and possibly a guarantee-

type contract max(CCERT, K) or max(CCERT, 

K2) 

Representative price ( )0 72.50Cp =ε ; PV80.40 at T=80 days 

levels (CNY/t) ( )max 47.52Cp Q ε ; ( ) 47.52Cp Q ε ε   and K=72; CCER spot at t=0:72.00 

Treatment of residual or floor value Constant residual value res at period end 
Floor K or K2 at maturity under regime 

uncertainty 

Time structure One-period static compliance decision 
Multi-period stochastic evolution over up 

to 80 trading days 

 

The micro model produces CCER values between res and 

Ap  , with precise levels driven by shortfall probabilities. 

Under the condition of homogeneous parameters and 

A=E, the marginal value converges around 47.52 CNY/t at 
the upper limit and is 72.50 CNY/t at zero usage, which 
can serve as a conservative benchmark from a static 
performance perspective. When applied to contracts with 
clear lower limits, macro models typically yield higher 
valuations as they price the upside potential and time 
value of flexibility in favorable regimes; the guaranteed 
rights with an exercise price of K=72 CNY reach 
approximately 80.40 CNY/t, which is higher than the spot 
price and the micro-level marginal value. 

This difference reflects different economic roles. In the 
micro-scenario, CCER hedges the specific emission risks of 
enterprises within a single compliance cycle; once the 
enterprise comfortably meets the compliance 
requirements, the valuation of additional CCER 

approaches res. In the macro-scenario, CCER is a tradable 
asset exposed to macro-regime shifts, with valuation 
using the complete risk-neutral distribution of future 
prices, and the right-tail state is amplified due to the 
lower bound. Therefore, earnings-based valuation is 
suitable for internal compliance analysis and conservative 
reference pricing, while regime-switching GBM is more 
suitable for pricing structured CCER products and 
evaluating the risk-return characteristics of CCER positions. 

5.2. Summary and future research 

This article constructs a comprehensive CCER valuation 
framework that combines the micro-level income 
approach with the macro-level regime-switching GBM, 
linking compliance behavior with market price dynamics. 

At the micro level, a representative enterprise with 
uncertain emissions, fixed allowances and a binding CCER 
cap chooses CCER purchase quantity Q to minimize 
expected total compliance cost, decomposed into CCER 

expenditure, contingent CEA gap-filling cost and residual 
value of surplus assets. Under a continuous emission 

distribution, an explicit marginal willingness-to-pay ( )Cp Qε  

is derived as a convex combination of expected CEA price 
and residual value, with weights given by shortfall 
probabilities. Calibration to firm data under a baseline 

with A=E and homogeneous parameters show optimal 
use at the cap and marginal values clustering near 

47.52 CNY/t , with ( )0 72.50 CNY / t.Cp =ε  

At the macro level, CEA and CCER follow a three-regime 
switching GBM calibrated to 2023 Beijing data and 
electricity growth. Regimes imply state-dependent drift- s 
and volatilities; CCER is a regime-dependent fraction of 
CEA with idiosyncratic noise. CCER is valued as a real-

option-like asset. For ( )max ,TCCER K with T = 80 days 

and K equal to spot, Monte Carlo yields about 80.40 CNY/t , 

above spot and micro-level marginal values. A grid over 
initial CEA prices and maturities with K2 defined as a 
baseline plus partial adjustment generates a value surface 

that increases with T and responds nonlinearly to 0
AS , 

highlighting the interaction between regimes, price risk 
and contract design. 

The two layers achieve the following objectives together: 
(1) they connect firm-specific emission risk and regulatory 
parameters to CCER valuations and optimal purchase 
quantities; (2) they embed CCER pricing within a regime-
sensitive risk-neutral framework that captures empirical 
features including regime-dependent volatility and CEA-
CCER spreads; (3) they demonstrate how guarantee-type 
structures alter CCER value and link compliance 
instruments with CCER-based financial products. 

Future research could relax the micro-model assumptions 
on allocation, offset ratios and residual values to 
accommodate richer heterogeneity, and expand the 
macro model by incorporating time-varying transition 
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intensities, jump processes or stochastic volatility, 
alongside a more granular CEA-CCER spread process. A 
particularly promising direction involves tighter coupling 
of the two layers, where macro price dynamics generate 
endogenous inputs for the micro model while firm-level 
CCER demand feeds back into the market model, thereby 
enabling analysis of the feedback mechanisms among 
compliance behavior, policy design and price formation in 
support of carbon peaking and neutrality objectives. 
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Appendix A 

Table 2. Annual carbon emission data for low-emission enterprises (tons). 

Ticker symbol 1im  
2im  

3im  Ticker symbol 1im  
2im  

3im  

603388 5969 5427 4884 603778 5469 4972 4475 

002431 14559 13236 11912 300008 27852 25320 22788 

300536 20967 19061 17155 600072 26117 23743 21368 

000037 7867 7152 6437 603717 20927 19025 17122 

000993 8405 7641 6876 000711 18504 16822 15140 

Source: CSMAR Database 

Table 3. Annual carbon emission data for normal-emission enterprises (tons). 

Ticker 
symb

ol 

1jm  2jm  3jm  Ticker 
symb

ol 

1jm  2jm  3jm  Ticker 
symb

ol 

1jm  2jm  3jm  

60001

1 

9076451 8251319 7426187 60002

5 

839682 763347 687012 60382

8 

109891 99901 89911 

60079

5 

3927170 3570155 3213139 00095

9 

6749599 6135999 5522399 00254

2 

530198 481998 433799 

60199

1 

5552 

259 

5047508 4542757 00076

1 

4723905 4294459 3865013 00256

4 

716273 651157 586042 

60002

7 

6756622 6142383 5528145 60012

6 

1990390 1809445 1628501 00262

8 

138814 126195 113575 

60002

3 

3795945 3450859 3105773 00077

8 

196041 178219 160397 00266

3 

68298 62089 55880 

00053

9 

2368211 2152919 1937627 60030

7 

1431482 1301347 1171213 00276

1 

1051959

0 

9563263 8606937 

60002 1540961 1400873 1260786 60078 4447745 4043405 3639064 00277 72117 65561 59005 
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1 2 5 

00002

7 

2276119 2069199 1862279 00070

9 

3706154 3369231 3032308 00214

0 

498744 453404 408063 

00260

8 

2132345 1938495 1744646 60056

9 

2818325 2562113 2305902 30005

5 

65169 59245 53320 

60057

8 

1708917 1553561 1398205 60028

2 

4746223 4314748 3883274 30023

7 

52063 47330 42597 

60057

5 

1445654 1314231 1182808 60100

5 

1693446 1539496 1385546 30051

7 

95146 86496 77847 

60015

7 

1533348 1393952 1254557 00082

5 

3723184 3384713 3046241 00086

2 

62357 56688 51019 

00054

3 

1126340 1023946 921551 60011

7 

557233 506575 455918 30064

9 

104958 95417 85875 

60064

2 

2127118 1933743 1740369 00071

7 

2052221 1865655 1679090 30071

2 

95242 86584 77925 

60086

3 

584866 531697 478527 60001

9 

2152377

5 

1956706

8 

1761036

1 

60003

9 

7472533 6793212 6113891 

00060

0 

534253 485685 437116 00093

2 

5453736 4957942 4462148 00211

6 

500880 455345 409811 

00076

7 

1034726 940660 846594 60050

7 

1269384 1153986 1038587 60013

3 

799036 726396 653757 

00096

6 

723281 657528 591775 00089

8 

5667263 5152057 4636852 60017

0 

1417100

7 

1288273

3 

1159446

0 

00189

6 

782009 710918 639826 60001

0 

3162971 2875428 2587885 60024

8 

1542399

0 

1402180

9 

1261962

8 

60078

0 

425868 387153 348437 60002

2 

4586444 4169495 3752545 60028

4 

1135404 1032186 928967 

60050

9 

583520 530472 477425 60023

1 

1027681 934255 840830 60046

3 

61704 56094 50485 

00069

0 

452755 411595 370436 60100

3 

4383901 3985365 3586828 60049

1 

114836 104396 93956 

60074

4 

691180 628346 565511 60080

8 

3801689 3456081 3110473 60050

2 

5764712 5240647 4716582 

00089

9 

170012 154556 139101 60029

5 

1641085 1491896 1342706 60051

2 

526711 478828 430946 

00053

1 

238187 216534 194881 00065

5 

137061 124601 112141 60060

6 

2934138

4 

2667398

5 

2400658

7 

60039

6 

249379 226708 204037 60058

1 

1509440 1372218 1234997 60066

7 

1620650 1473318 1325987 

00289

3 

82005 74550 67095 00062

9 

484185 440168 396152 60082

0 

6238700 5671545 5104391 

60096

9 

204230 185664 167098 60387

8 

161881 147165 132448 60084

6 

431993 392721 353449 

00079

1 

95916 87197 78477 00092

3 

190663 173330 155997 60085

3 

753134 684667 616201 

00060

1 

317822 288929 260036 00070

8 

8055406 7323096 6590786 60097

0 

2317066 2106424 1895782 

60048

3 

885339 804853 724368 60196

9 

47961 43601 39241 60111

7 

7972458 7247689 6522920 

00088

3 

1542108 1401917 1261725 00211

0 

4542493 4129539 3716585 60118

6 

7055279

0 

6413890

0 

5772501

0 

60090

0 

1554752 1413411 1272070 00207

5 

355375 323068 290761 60139

0 

3751074

9 

3410068

1 

3069061

3 

60198

5 

3887484 3534076 3180668 60047

7 

483255 439323 395391 60161

1 

3506691 3187901 2869111 

60088

6 

1218380 1107618 996856 60049

6 

1036042 941856 847670 60161

8 

3338595

3 

3035086

7 

2731578

0 

60166

9 

2612518

3 

2375016

7 

2137515

0 

60196

8 

462657 420597 378537 60166

8 

1223158

35 

1111962

13 

1000765

92 

60082 158991 144538 130084 00275 377439 343127 308814 60166 2612518 2375016 2137515
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1 6 9 3 7 0 

60045

2 

97359 88508 79657 20076

1 

3740889 3400808 3060727 60178

9 

945971 859974 773977 

60099

5 

124867 113515 102164 90093

6 

1575137 1431943 1288748 60180

0 

2955559

3 

2686872

1 

2418184

9 

60011

6 

1005080 913709 822338 00213

2 

64877 58979 53081 60331

6 

101724 92477 83229 

60050

5 

37156 33779 30401 00213

5 

328280 298436 268593 60363

7 

102229 92935 83642 

00069

2 

192555 175050 157545 00231

8 

280555 255050 229545 60309

8 

233934 212667 191400 

60064

4 

149033 135484 121936 00244

3  

287503 261366 235229 60384

3 

680770 618882 556994 

00004

0 

108142 98311 88480 00247

8 

162868 148062 133255 60395

5 

46973 42703 38432 

00053

7 

299017 271833 244650 00254

1 

1520498 1382271 1244044 60395

9 

92167 83788 75409 

60016

7    

98361 89419 80477 00062

9 

484185 440168 396152 00003

2 

1708014 1552740 1397466 

60098

2 

712794 647995 583195 00070

8 

3270983 2973621 2676259 60392

9 

101247 92043 82838 

60023

6 

274713 249739 224765 00070

9 

3706154 3369231 3032308 00204

7 

166202 151093 135983 

60010

1 

84140 76490 68841 00071

7 

2052221 1865655 1679090 00208

1 

449608 408735 367861 

00203

9 

36605 33277 29949 00096

1 

9579035 8708214 7837393 00216

3 

196604 178730 160857 

60016

3 

183816 167106 150395 60002

2 

4586444 4169495 3752545 00232

5 

149391 135810 122229 

60067

4 

50586 45988 41389 60089

4 

433825 394386 354948 00237

5 

585633 532393 479154 

60161

9 

60570 55064 49557 00274

3 

318579 289617 260656 00248

2 

56893 51721 46549 

00087

5 

755307 686642 617978 00092

8 

1605125 1459205 1313284 00262

0 

129069 117335 105602 

00247

9 

524052 476411 428770 00062

8 

691222 628383 565545 00271

3 

285503 259548 233594 

60009

8 

2634239 2394763 2155286 60093

9 

3477904 3161731 2845558 00278

9 

101022 91838 82654 

00225

6 

681601 619637 557673 00001

0 

247465 224968 202471 00281

1 

86688 78807 70926 

00201

5 

1129772 1027065 924359 00006

5 

1761791 1601628 1441466 00282

2 

645172 586520 527868 

60101

6 

232664 211513 190362 00009

0 

2343598 2130543 1917489 00283

0 

83769 76153 68538 

60014

9 

36910 33555 30199 00049

8 

5430569 4936881 4443193 00285

6 

71940 65400 58860 

00072

2 

31110 28282 25454 00230

7 

997813 907102 816392 30011

7 

70924 64476 58028 

00059

1 

303997 276361 248725 00205

1 

113708 103371 93034 30062

1 

755394 686722 618050 

30033

5 

63694 57904 52114 00206

0 

949279 862981 776683 60019

3 

94218 85652 77087 

00015

5 

231426 210387 189348 00206

1 

3041286 2764805 2488325 60188

6 

1443949 1312681 1181413 

60097

9 

85830 78027 70224 00206

2 

940424 854931 769438 60303

0 

131737 119761 107785 

Source: CSMAR Database 
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Appendix B 

% ================================================================ 

%  Income–Approach CCER Valuation (LaTeX-based, Word-data only) 

% ================================================================ 

clear; clc; close all; 

  

%% 1. Global parameters 

  

alpha  = 0.05;     % Max CCER offset ratio 

pA_bar = 115;      % Expected marginal CEA settlement price (CNY/t) 

v_res  = 30;       % Residual value of CCER (CNY/t), must be < pA_bar 

  

% Historical daily prices from Word data (for reference only, not used later) 

aprice = [ ... 

  138.00 110.40 90.00 72.00 59.00 51.47 61.80 74.20 74.20 74.20 ... 

  89.00 74.00 106.80 86.00 102.00 115.64 138.50 111.00 92.22 73.80 75.00 ... 

  88.77 106.60 125.00 149.64 144.30 131.75 134.00 124.00 100.90 121.00 ... 

  130.12 139.00 127.00 127.00 121.77 142.00 121.88 127.00 120.00 130.00 ... 

  127.00 130.00 132.53 122.50 133.50 128.00 128.00 123.03 124.00 127.50 ... 

  119.18 123.57 123.77 121.28 123.00 130.29 121.35 115.13 125.25 124.94 ... 

  124.17 127.93 125.17 121.38 117.72 126.25 123.03 116.89 105.28 120.71 ... 

  118.88 118.44 121.37 124.41 113.92 119.90 115.96 119.96 113.01 109.92 ... 

  118.49 109.91 108.16 121.72 116.00 103.32 100.00 110.00 109.00 110.00 ... 

  114.34 95.00 85.06 102.00 107.00 115.00 116.00 112.00 111.38]'; 

  

cprice = [ ... 

  95.00 95.00 95.00 109.00 88.00 80.00 90.00 90.89 47.00 78.00 ... 

  80.00 80.00 56.40 90.00 80.00 82.00 80.00 80.00 80.00 80.34 80.00 75.00 ... 

  80.00 80.00 86.96 80.00 80.01 84.81 88.00 65.64 80.00 69.70 81.40 80.00 ... 

  69.38 70.50 80.44 83.90 78.23 86.00 86.99 80.00 80.00 74.77 77.63 74.50 ... 

  75.00 80.10 85.40 80.00 74.00 70.42 78.00 79.51 79.14 85.00 80.00 75.00 ... 

  65.00 65.00 74.60 65.01 70.00 90.00 70.00 72.00 72.00 72.00]'; 

  

%% 2. Firm-level emission data from Word (appendix tables) 

  

% 2.1 Low-emission firms (Table 2) 

% Columns: [Ticker, E_upper, E_mid, E_lower] 

low_tab = [ ... 

  603388 5969 5427 4884; ... 

  2431   14559 13236 11912; ...  % keep numeric consistency for leading zero tickers 

  300536 20967 19061 17155; ... 

  37     7867 7152 6437; ... 

  993    8405 7641 6876; ... 

  603778 5469 4972 4475; ... 

  300008 27852 25320 22788; ... 
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  600072 26117 23743 21368; ... 

  603717 20927 19025 17122; ... 

  711    18504 16822 15140]; 

  

ticker_low = low_tab(:,1); 

E_up_low   = low_tab(:,2); 

E_mid_low  = low_tab(:,3); 

E_lo_low   = low_tab(:,4); 

  

zband       = 1.64;                         % ~90% CI 

muE_low     = E_mid_low;                    % mean emissions 

sigmaE_low  = (E_up_low - E_lo_low) / (2*zband); 

sigmaE_low(sigmaE_low <= 0) = 1e-6; 

  

A_low    = muE_low;                         % allowance = mean emissions 

Qmax_low = alpha * muE_low;                 % max CCER usage 

  

% 2.2 Normal-emission firms (Table 3) 

% Columns: [Ticker, E_upper, E_mid, E_lower] 

norm_tab = [ ... 

  600011 9076451 8251319 7426187; ... 

  600795 3927170 3570155 3213139; ... 

  601991 5552259 5047508 4542757; ... 

  600027 6756622 6142383 5528145; ... 

  600023 3795945 3450859 3105773; ... 

  539    2368211 2152919 1937627; ... 

  600021 1540961 1400873 1260786; ... 

  27     2276119 2069199 1862279; ... 

  2608   2132345 1938495 1744646; ... 

  600578 1708917 1553561 1398205; ... 

  600575 1445654 1314231 1182808; ... 

  600157 1533348 1393952 1254557; ... 

  543    1126340 1023946 921551; ... 

  600642 2127118 1933743 1740369; ... 

  600863 584866 531697 478527; ... 

  600    534253 485685 437116; ... 

  767    1034726 940660 846594; ... 

  966    723281 657528 591775; ... 

  1896   782009 710918 639826; ... 

  600780 425868 387153 348437; ... 

  600509 583520 530472 477425; ... 

  690    452755 411595 370436; ... 

  600744 691180 628346 565511; ... 

  899    170012 154556 139101; ... 

  531    238187 216534 194881; ... 
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  600396 249379 226708 204037; ... 

  2893   82005 74550 67095; ... 

  600969 204230 185664 167098; ... 

  791    95916 87197 78477; ... 

  601    317822 288929 260036; ... 

  600483 885339 804853 724368; ... 

  883    1542108 1401917 1261725; ... 

  600900 1554752 1413411 1272070; ... 

  601985 3887484 3534076 3180668; ... 

  600886 1218380 1107618 996856; ... 

  601669 26125183 23750167 21375150]; 

  

ticker_norm = norm_tab(:,1); 

E_up_norm   = norm_tab(:,2); 

E_mid_norm  = norm_tab(:,3); 

E_lo_norm   = norm_tab(:,4); 

  

muE_norm    = E_mid_norm; 

sigmaE_norm = (E_up_norm - E_lo_norm) / (2*zband); 

sigmaE_norm(sigmaE_norm <= 0) = 1e-6; 

  

A_norm    = muE_norm; 

Qmax_norm = alpha * muE_norm; 

  

%% 3. CCER marginal willingness-to-pay function (LaTeX-based) 

  

pc_fun = @(Q, muE, sigmaE, A) ... 

    v_res + (pA_bar - v_res) .* (1 - normcdf( (A + Q - muE) ./ sigmaE )); 

  

phi = @(x) exp(-0.5*x.^2) ./ sqrt(2*pi); 

  

%% 4. Merge samples and compute firm-level results 

  

ticker_all = [ticker_low; ticker_norm]; 

muE_all    = [muE_low;  muE_norm]; 

sigma_all  = [sigmaE_low; sigmaE_norm]; 

A_all      = [A_low; A_norm]; 

Qmax_all   = [Qmax_low; Qmax_norm]; 

  

Nfirm        = numel(ticker_all); 

Qstar_all    = zeros(Nfirm,1); 

pC_Q0_all    = zeros(Nfirm,1); 

pC_Qmax_all  = zeros(Nfirm,1); 

pC_Qstar_all = zeros(Nfirm,1); 
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% Representative firm: median mu_E 

[~,idx_med] = min(abs(muE_all - median(muE_all))); 

idx_rep     = idx_med; 

  

nQgrid    = 50; 

Qgrid_rep = linspace(0, Qmax_all(idx_rep), nQgrid); 

pc_rep    = pc_fun(Qgrid_rep, muE_all(idx_rep), sigma_all(idx_rep), A_all(idx_rep)); 

  

fprintf('================ CCER Valuation (Firm-Level) ================\n'); 

fprintf('Global parameters:\n'); 

fprintf('  alpha      = %.4f (max CCER offset ratio)\n', alpha); 

fprintf('  pA_bar     = %.2f CNY/t (expected marginal CEA settlement price)\n', pA_bar); 

fprintf('  v_res      = %.2f CNY/t (residual value of CCER)\n\n', v_res); 

  

fprintf('Firm-level parameters and key prices:\n'); 

fprintf('%-10s %-14s %-14s %-14s %-14s %-14s %-14s\n', ... 

    'Ticker','mu_E','sigma_E','Qmax','pC(Q=0)','pC(Qmax)','pC(Q*)'); 

  

for i = 1:Nfirm 

    muE_i  = muE_all(i); 

    sig_i  = sigma_all(i); 

    A_i    = A_all(i); 

    Qmax_i = Qmax_all(i); 

  

    % Marginal prices at Q=0 and Q=Qmax 

    pC_Q0_all(i)    = pc_fun(0,      muE_i, sig_i, A_i); 

    pC_Qmax_all(i)  = pc_fun(Qmax_i, muE_i, sig_i, A_i); 

  

    % Optimal Q* by minimizing expected total cost 

    obj = @(q) ETC_single(q, muE_i, sig_i, A_i, pA_bar, v_res, phi, @normcdf); 

    [Qstar_i, ~] = fminbnd(obj, 0, Qmax_i); 

  

    Qstar_all(i)    = Qstar_i; 

    pC_Qstar_all(i) = pc_fun(Qstar_i, muE_i, sig_i, A_i); 

  

    fprintf('%-10d %-14.2f %-14.2f %-14.2f %-14.2f %-14.2f %-14.2f\n', ... 

        ticker_all(i), muE_i, sig_i, Qmax_i, ... 

        pC_Q0_all(i), pC_Qmax_all(i), pC_Qstar_all(i)); 

end 

  

%% 5. Weighted average theoretical CCER prices (mu_E weights) 

  

weight        = muE_all / sum(muE_all); 

avg_pC_Q0     = sum(weight .* pC_Q0_all); 

avg_pC_Qmax   = sum(weight .* pC_Qmax_all); 



CCER VALUATION UNDER EMISSION UNCERTAINTY: A DUAL FRAMEWORK OF COMPLIANCE OPTIMIZATION  19 

avg_pC_Qstar  = sum(weight .* pC_Qstar_all); 

  

fprintf('\nWeighted-average theoretical CCER prices (weights = mu_E):\n'); 

fprintf('  Mean p_C^*(Q=0)    = %.2f CNY/t\n', avg_pC_Q0); 

fprintf('  Mean p_C^*(Q=Qmax) = %.2f CNY/t\n', avg_pC_Qmax); 

fprintf('  Mean p_C^*(Q=Q*)   = %.2f CNY/t\n\n', avg_pC_Qstar); 

  

%% 6. Explicit description of Figure 1 (representative firm) 

  

rep_ticker      = ticker_all(idx_rep); 

rep_muE         = muE_all(idx_rep); 

rep_sigmaE      = sigma_all(idx_rep); 

rep_A           = A_all(idx_rep); 

rep_Qmax        = Qmax_all(idx_rep); 

rep_Q0          = 0; 

rep_Qstar       = Qstar_all(idx_rep); 

rep_pC_Q0       = pC_Q0_all(idx_rep); 

rep_pC_Qmax     = pC_Qmax_all(idx_rep); 

rep_pC_Qstar    = pC_Qstar_all(idx_rep); 

  

fprintf('Figure 1 (Representative firm p_C^*(Q) curve):\n'); 

fprintf('  Representative firm ticker            : %d\n', rep_ticker); 

fprintf('  Representative firm mu_E              : %.2f t CO2\n', rep_muE); 

fprintf('  Representative firm sigma_E           : %.2f t CO2\n', rep_sigmaE); 

fprintf('  Representative firm allowance A       : %.2f t CO2\n', rep_A); 

fprintf('  Representative firm Qmax              : %.2f t CO2\n', rep_Qmax); 

fprintf('  Horizontal axis: Q in million t CO2 from %.2f to %.2f\n', ... 

        rep_Q0/1e6, rep_Qmax/1e6); 

fprintf('  Vertical axis: p_C^*(Q) in CNY/t\n'); 

fprintf('  Curve: p_C^*(Q) for Q in [0, Qmax]\n'); 

fprintf('  Horizontal reference line: p_A_bar  = %.2f CNY/t\n', pA_bar); 

fprintf('  Horizontal reference line: v_res    = %.2f CNY/t\n', v_res); 

fprintf('  Marked point at Q=0      : Q = %.2f,   p_C^*(0)    = %.2f CNY/t\n', ... 

        rep_Q0, rep_pC_Q0); 

fprintf('  Marked point at Q=Qmax   : Q = %.2f,   p_C^*(Qmax) = %.2f CNY/t\n', ... 

        rep_Qmax, rep_pC_Qmax); 

fprintf('  Marked point at Q=Q*     : Q* = %.2f,  p_C^*(Q*)   = %.2f CNY/t\n\n', ... 

        rep_Qstar, rep_pC_Qstar); 

  

%% 7. Explicit description of Figure 2 (distribution of p_C^*(Q*)) 

  

pC_min = min(pC_Qstar_all); 

pC_max = max(pC_Qstar_all); 

pC_mean = mean(pC_Qstar_all); 

pC_median = median(pC_Qstar_all); 



20  TANG et al. 

pC_std = std(pC_Qstar_all); 

  

fprintf('Figure 2 (Distribution of firm-level optimal marginal CCER prices p_C^*(Q*)):\n'); 

fprintf('  Sample size (number of firms)        : %d\n', Nfirm); 

fprintf('  Horizontal axis: p_C^*(Q*) in CNY/t\n'); 

fprintf('  Vertical axis: number of firms (histogram counts)\n'); 

fprintf('  Range of p_C^*(Q*)                   : [%.2f, %.2f] CNY/t\n', pC_min, pC_max); 

fprintf('  Mean   of p_C^*(Q*)                  : %.2f CNY/t\n', pC_mean); 

fprintf('  Median of p_C^*(Q*)                  : %.2f CNY/t\n', pC_median); 

fprintf('  Std. deviation of p_C^*(Q*)          : %.2f CNY/t\n\n', pC_std); 

  

%% 8. Figures (two figures only) 

  

% Figure 1: Representative firm p_C^*(Q) curve 

figure; 

plot(Qgrid_rep/1e6, pc_rep, 'b-', 'LineWidth', 2); hold on; 

yline(pA_bar,'r--','LineWidth',1.5); 

yline(v_res,'k-.','LineWidth',1.5); 

xlabel('Q (million t CO_2)'); 

ylabel('p_C^*(Q) (CNY/t)'); 

title(sprintf('Representative Firm (Ticker=%d): p_C^*(Q)', rep_ticker)); 

legend('p_C^*(Q)','p_A^{bar}','v_{res}','Location','best'); 

grid on; 

  

plot(rep_Q0/1e6, rep_pC_Q0,'ko','MarkerFaceColor','k'); 

text(rep_Q0/1e6, rep_pC_Q0, '  Q=0','VerticalAlignment','bottom'); 

  

plot(rep_Qmax/1e6, rep_pC_Qmax, 'ko','MarkerFaceColor','k'); 

text(rep_Qmax/1e6, rep_pC_Qmax, '  Q=Q_{max}','VerticalAlignment','top'); 

  

plot(rep_Qstar/1e6, rep_pC_Qstar, 'ro','MarkerFaceColor','r'); 

text(rep_Qstar/1e6, rep_pC_Qstar, '  Q=Q^*','VerticalAlignment','bottom'); 

  

% Figure 2: Distribution of optimal marginal CCER prices p_C^*(Q*) 

figure; 

histogram(pC_Qstar_all, 'FaceColor',[0.2 0.6 0.8]); 

xlabel('p_C^*(Q^*) (CNY/t)'); 

ylabel('Number of firms'); 

title('Distribution of Firm-Level Optimal CCER Marginal Prices'); 

grid on; 

  

%% 9. Auxiliary function: expected total cost for a single firm 

  

function ETC = ETC_single(Q, muE, sigmaE, A, pA_bar, v_res, phi, normcdf_handle) 

    T     = A + Q; 
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    a     = (T - muE) ./ sigmaE; 

    Phi_a = normcdf_handle(a); 

    phi_a = phi(a); 

  

    E_gap_pos     = sigmaE .* (phi_a - a .* (1 - Phi_a)); % E[(E - T)_+] 

    E_surplus_pos = sigmaE .* (phi_a + a .* Phi_a);       % E[(T - E)_+] 

  

    pC_star = v_res + (pA_bar - v_res) .* (1 - Phi_a); 

  

    ETC = pC_star .* Q + pA_bar .* E_gap_pos - v_res .* E_surplus_pos; 

end 

 

Appendix C 

function main_regime_switching_CCER_smooth_v2 

clc; clear; close all; 

  

CEA_2023 = [ ... 

138.00 110.40 90.00 72.00 59.00 51.47 61.80 74.20 74.20 74.20 ... 

89.00 74.00 106.80 86.00 102.00 115.64 138.50 111.00 92.22 73.80 75.00 ... 

88.77 106.60 125.00 149.64 144.30 131.75 134.00 124.00 100.90 121.00 ... 

130.12 139.00 127.00 127.00 121.77 142.00 121.88 127.00 120.00 130.00 ... 

127.00 130.00 132.53 122.50 133.50 128.00 128.00 123.03 124.00 127.50 ... 

119.18 123.57 123.77 121.28 123.00 130.29 121.35 115.13 125.25 124.94 ... 

124.17 127.93 125.17 121.38 117.72 126.25 123.03 116.89 105.28 120.71 ... 

118.88 118.44 121.37 124.41 113.92 119.90 115.96 119.96 113.01 109.92 ... 

118.49 109.91 108.16 121.72 116.00 103.32 100.00 110.00 109.00 110.00 ... 

114.34 95.00 85.06 102.00 107.00 115.00 116.00 112.00 111.38]'; 

  

CCER_2023 = [ ... 

95.00 95.00 95.00 109.00 88.00 80.00 90.00 90.89 47.00 78.00 ... 

80.00 80.00 56.40 90.00 80.00 82.00 80.00 80.00 80.00 80.34 80.00 75.00 ... 

80.00 80.00 86.96 80.00 80.01 84.81 88.00 65.64 80.00 69.70 81.40 80.00 ... 

69.38 70.50 80.44 83.90 78.23 86.00 86.99 80.00 80.00 74.77 77.63 74.50 ... 

75.00 80.10 85.40 80.00 74.00 70.42 78.00 79.51 79.14 85.00 80.00 75.00 ... 

65.00 65.00 74.60 65.01 70.00 90.00 70.00 72.00 72.00 72.00]'; 

  

n_days = length(CEA_2023); 

  

g_yoy = [ ... 

2.0  ;   

5.8  ;   

5.9  ;   

8.3  ;   

7.4  ;   

6.4  ;   
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6.5  ;   

7.6  ;   

6.8  ;   

5.2  ;   

11.6 ;   

8.0  ]; 

g_yoy = g_yoy / 100; 

  

month_id = zeros(n_days,1); 

edges = round(linspace(1, n_days+1, 13)); 

for m = 1:12 

    month_id(edges(m):edges(m+1)-1) = m; 

end 

elec_yoy_daily = g_yoy(month_id); 

  

q_elec  = quantile(elec_yoy_daily, [0.33 0.66]); 

q_price = quantile(CEA_2023,       [0.33 0.66]); 

elec_low  = q_elec(1); 

elec_high = q_elec(2); 

p_low     = q_price(1); 

p_high    = q_price(2); 

  

state = zeros(n_days,1); 

  

for t = 1:n_days 

    e = elec_yoy_daily(t); 

    p = CEA_2023(t); 

    if (e <= elec_low && p <= p_low) 

        state(t) = 1; 

    elseif (e >= elec_high && p >= p_high) 

        state(t) = 3; 

    else 

        state(t) = 2; 

    end 

end 

  

for s = 1:3 

    if sum(state==s) < 5 

        warning('State %d has too few observations, merging to middle state.', s); 

        state(state==s) = 2; 

    end 

end 

  

log_ret_CEA = diff(log(CEA_2023)); 

state_ret   = state(2:end); 
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n_state     = 3; 

mu_A        = zeros(n_state,1); 

sig_A       = zeros(n_state,1); 

  

for s = 1:n_state 

    idx = (state_ret == s); 

    rs  = log_ret_CEA(idx); 

    if isempty(rs) 

        rs = log_ret_CEA; 

    end 

    mu_A(s)  = mean(rs); 

    sig_A(s) = std(rs); 

end 

  

theta_daily = CCER_2023 ./ CEA_2023(1:length(CCER_2023)); 

state_theta = state(1:length(theta_daily)); 

  

theta_state = zeros(n_state,1); 

for s = 1:n_state 

    idx = (state_theta == s); 

    ths = theta_daily(idx); 

    if isempty(ths) 

        ths = theta_daily; 

    end 

    theta_state(s) = mean(ths); 

end 

theta_state = max(theta_state, 0.5); 

theta_state = min(theta_state, 1.0); 

  

P = zeros(n_state); 

for s = 1:n_state 

    idx = find(state(1:end-1) == s); 

    if isempty(idx) 

        P(s,:) = 1/n_state; 

    else 

        next_s = state(idx+1); 

        for j = 1:n_state 

            P(s,j) = sum(next_s == j); 

        end 

        P(s,:) = P(s,:) / sum(P(s,:)); 

    end 

end 

  

A_pi = [ (P' - eye(n_state)); ones(1,n_state) ]; 

b_pi = [ zeros(n_state,1); 1 ]; 
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pi_stationary = A_pi \ b_pi; %#ok<NASGU> 

  

r_annual = 0.0435; 

T_trade  = 80; 

dt       = 1/252; 

r_dt     = r_annual * dt; 

  

S0_CEA  = CEA_2023(end); 

S0_CCER = CCER_2023(end); 

K       = S0_CCER; 

  

n_paths = 20000; 

  

n_plot = 5; 

CEA_path_plot    = zeros(T_trade+1, n_plot); 

CCER_path_plot   = zeros(T_trade+1, n_plot); 

Regime_path_plot = zeros(T_trade+1, n_plot); 

  

payoff = zeros(n_paths,1); 

  

rng(1234); 

  

for pidx = 1:n_paths 

    cur_s = state(end); 

    S_A   = S0_CEA; 

    S_C   = S0_CCER; 

     

    if pidx <= n_plot 

        CEA_path_plot(1,pidx)      = S_A; 

        CCER_path_plot(1,pidx)     = S_C; 

        Regime_path_plot(1,pidx)   = cur_s; 

    end 

     

    for t = 1:T_trade 

        cur_s = draw_next_state(cur_s, P); 

        sig   = sig_A(cur_s); 

        dW    = sqrt(dt)*randn; 

        mu_rn = r_annual - 0.5*sig^2; 

        S_A   = S_A * exp(mu_rn*dt + sig*dW); 

        theta = theta_state(cur_s); 

        eps_c = 0.10*sqrt(dt)*randn; 

        S_C   = theta * S_A * exp(eps_c); 

         

        if pidx <= n_plot 

            CEA_path_plot(t+1,pidx)    = S_A; 
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            CCER_path_plot(t+1,pidx)   = S_C; 

            Regime_path_plot(t+1,pidx) = cur_s; 

        end 

    end 

    payoff(pidx) = max(S_C, K); 

end 

  

PV_CCER_value = exp(-r_dt*T_trade) * mean(payoff); 

  

time_vec = 0:T_trade; 

  

figure('Name','Regime-switching GBM: CEA/CCER sample paths','Color','w','Position',[100 100 900 420]); 

hold on; 

  

for i = 1:n_plot 

    plot(time_vec, CEA_path_plot(:,i), '-','LineWidth',1.4,'Color',[0 0.447 0.741]); 

    plot(time_vec, CCER_path_plot(:,i),'--','LineWidth',1.4,'Color',[0.85 0.325 0.098]); 

end 

  

ymax_all = max( [CEA_path_plot(:); CCER_path_plot(:)] ); 

ymin_all = min( [CEA_path_plot(:); CCER_path_plot(:)] ); 

ylim([ymin_all*0.98, ymax_all*1.02]); 

  

reg_path = Regime_path_plot(:,1); 

  

colors = [0.9 0.95 1.0; 

          0.9 1.0 0.9; 

          1.0 0.9 0.9]; 

  

for t = 1:T_trade 

    s = reg_path(t); 

    x_rect = [t-0.5, t+0.5, t+0.5, t-0.5]; 

    y_rect = [ymin_all*0.98, ymin_all*0.98, ymax_all*1.02, ymax_all*1.02]; 

    patch(x_rect, y_rect, colors(s,:), 'EdgeColor','none','FaceAlpha',0.18); 

end 

  

for i = 1:n_plot 

    plot(time_vec, CEA_path_plot(:,i), '-','LineWidth',1.4,'Color',[0 0.447 0.741]); 

    plot(time_vec, CCER_path_plot(:,i),'--','LineWidth',1.4,'Color',[0.85 0.325 0.098]); 

end 

  

xlabel('Trading day'); 

ylabel('Price (CNY)'); 

title('Sample paths of CEA (solid) and CCER (dashed) under regime-switching GBM'); 

grid on; 
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xlim([0 T_trade]); 

legend({'CEA paths','CCER paths'},'Location','northwest'); 

  

hold off; 

  

S0_grid = linspace(80, 160, 25); 

T_grid  = 10:10:80; 

nS = length(S0_grid); 

nT = length(T_grid); 

  

n_path_small = 15000; 

  

K_base      = CCER_2023(end); 

theta_mid   = theta_state(2); 

alpha_follow = 0.3; 

  

rng(5678); 

  

S_samples = zeros(nS*nT,1); 

T_samples = zeros(nS*nT,1); 

P_samples = zeros(nS*nT,1); 

idx_sample = 0; 

  

for iT = 1:nT 

    TT   = T_grid(iT); 

    disc = exp(-r_dt*TT); 

    for iS = 1:nS 

        idx_sample = idx_sample + 1; 

        S0a = S0_grid(iS); 

        K2  = K_base + alpha_follow * theta_mid * (S0a - S0_CEA); 

        payoff2 = zeros(n_path_small,1); 

        for pidx = 1:n_path_small 

            cur_s = state(end); 

            Sa    = S0a; 

            Sc    = theta_state(cur_s) * Sa; 

            for t = 1:TT 

                cur_s = draw_next_state(cur_s, P); 

                sig   = sig_A(cur_s); 

                dW    = sqrt(dt)*randn; 

                mu_rn = r_annual - 0.5*sig^2; 

                Sa    = Sa * exp(mu_rn*dt + sig*dW); 

                theta = theta_state(cur_s); 

                eps_c2 = 0.10*sqrt(dt)*randn; 

                Sc     = theta * Sa * exp(eps_c2); 

            end 
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            ScT = Sc; 

            payoff2(pidx) = max(ScT, K2); 

        end 

        price_ij = disc * mean(payoff2); 

        S_samples(idx_sample) = S0a; 

        T_samples(idx_sample) = TT; 

        P_samples(idx_sample) = price_ij; 

    end 

end 

  

[SG_orig, TG_orig] = meshgrid(S0_grid, T_grid); 

Price_surface = griddata(S_samples, T_samples, P_samples, SG_orig, TG_orig, 'linear'); 

  

figure('Name','CCER value surface: discounted E[max(CCER_T, K2)] (no extra smoothing)',... 

       'Color','w','Position',[150 150 900 620]); 

  

surf(SG_orig, TG_orig, Price_surface); 

xlabel('Initial CEA price S_0^A (CNY)','FontSize',11); 

ylabel('Maturity T (trading days)','FontSize',11); 

zlabel('Discounted E[ max(CCER_T, K_2) ] (CNY)','FontSize',11); 

title('CCER value surface under regime-switching GBM: discounted E[max(CCER_T, K_2)]','FontSize',12); 

shading interp; 

colormap(parula); 

colorbar; 

grid on; 

view(135, 30); 

  

hold on; 

[~, idx_T40] = min(abs(T_grid - 40)); 

plot3(S0_grid, T_grid(idx_T40)*ones(1,nS), Price_surface(idx_T40,:), ... 

      'k-','LineWidth',2); 

text(S0_grid(end), T_grid(idx_T40), Price_surface(idx_T40,end), ... 

     '  Slice at T \approx 40','Color','k','FontSize',10); 

hold off; 

  

fprintf('================ Regime-Switching CCER Valuation (E[max(CCER_T, K)]) ================\n'); 

fprintf('Risk-free annual rate r     : %.4f\n', r_annual); 

fprintf('Simulation horizon (T_trade): %d trading days\n', T_trade); 

fprintf('Time step dt (in years)     : 1/252\n\n'); 

  

fprintf('--- Figure 1: Sample paths under regime-switching GBM ---\n'); 

fprintf('Initial CEA price S0^A      : %.2f CNY\n', S0_CEA); 

fprintf('Initial CCER price S0^C     : %.2f CNY\n', S0_CCER); 

fprintf('Regimes (1=low, 2=mid, 3=high) are inferred from 2023 data.\n'); 

fprintf('The figure shows %d simulated CEA (solid) and CCER (dashed) paths,\n', n_plot); 
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fprintf('with colored background bands indicating regime switches over time.\n'); 

fprintf('These paths illustrate how CCER prices co-move with CEA prices\n'); 

fprintf('and how different regimes (low/medium/high demand and price) affect\n'); 

fprintf('the joint evolution of the two carbon assets.\n\n'); 

  

fprintf('--- Single-maturity CCER value at T = %d trading days ---\n', T_trade); 

fprintf('Guarantee level K (per unit CCER)         : %.2f CNY\n', K); 

fprintf('Number of Monte Carlo paths (T = %d)      : %d\n', T_trade, n_paths); 

fprintf('Discounted E[ max(CCER_T, K) ] (per unit) : %.4f CNY\n\n', PV_CCER_value); 

  

fprintf('--- Figure 2: CCER value surface on the original (S0^A, T) grid ---\n'); 

fprintf('Grid of initial CEA prices S0^A           : from %.2f to %.2f CNY (%d points)\n', ... 

        min(S0_grid), max(S0_grid), nS); 

fprintf('Grid of maturities T                      : from %d to %d trading days (%d points)\n', ... 

        min(T_grid), max(T_grid), nT); 

fprintf('Monte Carlo paths per (S0^A, T) grid point: %d\n', n_path_small); 

fprintf('K2 is defined as K_base + alpha_follow * theta_mid * (S0^A - S0_CEA),\n'); 

fprintf('where K_base = %.2f, alpha_follow = %.2f, theta_mid = %.4f.\n', ... 

        K_base, alpha_follow, theta_mid); 

fprintf('This breaks the nearly linear dependence on S0^A while preserving\n'); 

fprintf('the overall guarantee-contract structure E[max(CCER_T, K2)].\n'); 

fprintf('The 3D surface is plotted directly on this original grid without\n'); 

fprintf('any additional smoothing beyond the basic griddata interpolation.\n'); 

fprintf('===============================================================================\n'); 

  

end 

  

function next_s = draw_next_state(cur_s, P) 

prob = P(cur_s,:); 

u = rand; 

cumprob = cumsum(prob); 

next_s = find(u <= cumprob, 1, 'first'); 

if isempty(next_s) 

    next_s = cur_s; 

end 

end 

 


