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Abstract

Artificial  intelligence  (Al) promotes high-quality
development in agriculture while also introducing new
challenges for the management of pollutant emissions.
This study aims to explore the pathways and underlying
mechanisms through which Al influences agricultural
pollutant emissions. To achieve this, the study employs
data from Chinese publicly listed agricultural firms from
2010 to 2022 and conducts an empirical analysis using a
semi-parametric additive model. The results show that
artificial intelligence has a nonlinear effect on agricultural
pollutant emissions, initially inhibiting them and
subsequently promoting them. In the early stages of
digitalization, constrained = by limited resources, Al
investment reduces the scale of production, thereby
lowering pollutant emissions. However, as Al investment
intensifies, firms overcome resource constraints, and the
resulting productivity gains and scale expansion effects
lead to increased emissions. The mechanism analysis
further reveals that Al influences agricultural pollutant
emissions through two main channels: it first decreases
and then enhances firms’ operational efficiency, and it
initially boosts but later weakens their green innovation
capacity. These findings provide theoretical support and
practical guidance for promoting sustainable development
and intelligent transformation in the agricultural sector.

Keywords: Artificial intelligence; Agricultural pollutant
emissions; Nonlinear effect; Operational efficiency; Green
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1. Introduction

As a fundamental sector of the national economy,
agriculture plays a vital role in global food security, rural
development, and ecological management, making it
crucial to human livelihoods (Hou et al. 2024). With the
rapid advancement of agricultural modernization, activities
such as the use of chemical fertilizers and pesticides,
livestock farming, and agricultural mechanization have
increased  significantly. These developments make
agriculture one of the major sources of air and water
pollution (Kuttippurath et al. 2024; Elahi et al. 2024). As the
world’s largest agricultural country, China accounts for
nearly 30% of global nitrogen, phosphorus, and potassium
fertilizer use over the past five years. This extensive use not
only raises serious environmental pollution risks but also
exerts considerable influence on global ecosystems and
environmental governance. Therefore, investigating
pollutant emissions from Chinese agricultural enterprises
constitutes a critical component of global environmental
governance and climate action, while also offering practical
insights for developing countries undergoing rapid
agricultural modernization and industrialization. Against
the backdrop of the rapid development and widespread
application of artificial intelligence (Al), several critical
questions arise: Can Al effectively reduce pollutant
emissions from Chinese agricultural enterprises? What
specific patterns or characteristics does its impact on
agricultural pollutant emissions exhibit? Through which
mechanisms does Al exert its influence? Addressing these
questions not only deepens our understanding of the
relationship between Al and sustainable development, but
also provides theoretical support and policy implications

for promoting green transformation and intelligent
governance in agriculture.
Al, characterized by autonomous learning, dynamic

adaptation, and high-speed processing, is increasingly
applied to agricultural activities (Oliveira and Silva 2023).
Some studies employ Al technologies—such as machine
learning, deep learning, and image recognition—to analyze
and predict changes in pollutant emissions (Liu et al. 2025;
Rahaman et al. 2025; Senthil Rathi et al. 2025). Other
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research suggests that Al's capabilities for automatic
discovery and optimization offer new opportunities to
address global climate and environmental issues (Chen et
al. 2024; Zhou et al. 2024). First, Al enhances the efficiency
of resource allocation in agricultural economic activities
through its dynamic optimization capabilities, which
improves energy use efficiency and productivity and
thereby reduces pollutant emissions (Shen and Zhang
2023). Second, it reduces the barriers to knowledge
acquisition for agricultural firms, facilitates skill
complementarity among R&D personnel, and enhances
research efficiency and green innovation capacity.
According to Li et al. (2025), as firms strengthen their green
technological capabilities, their pollutant emissions during
the production process significantly decrease.

However, whether Al can effectively reduce pollutant
emissions from agricultural enterprises remains an open
guestion. On the one hand, the widespread application of
Alin agricultural production enhances productivity but may
also lead to the expansion of agricultural activities. This
expansion effect can result in increased pollutant
emissions. Overall, the environmental impact of Al
depends on its net effect (Zhu et al. 2023). On the other
hand, although Al lowers the barriers to acquiring
knowledge and information—thereby facilitating the
improvement of green innovation capacity in agricultural
firms—an excess of information may trap firms in an
“innovation trap,” ultimately weakening their green
innovation performance. Therefore, the impact of Al on
agricultural pollutant emissions remains uncertain.
Although some studies have acknowledged the possibility
of nonlinear effects of Al (Shen and Zhang 2023; Lee and
Yan 2024), few have examined the specific pathways
through which Al affects pollutant emissions in the
agricultural sector. Moreover, the underlying mechanisms
of such impacts have yet to be systematically analyzed.

To fill this research gap, this study uses data from Chinese
listed agricultural firms between 2010 and 2022 and
employs a semi-parametric  additive model to
systematically analyze the impact of Al on agricultural
pollutant emissions. Based on the findings, we propose
relevant policy recommendations. This study makes three
main contributions to the literature:

(1) Although  existing literature acknowledges a
correlation between Al and pollutant emissions, few
studies provide a detailed analysis of the underlying
impact _pathways and characteristics, particularly in
the context of China’s agricultural sector. In response,
this study applies a semi-parametric additive model—
a nonlinear analytical approach—to examine the
stage-dependent and nonlinear characteristics of Al’s
impact on pollutant emissions.

(2) This study explores the specific mechanisms through
which Al affects agricultural pollutant emissions. Given
the complexity of Al applications in agricultural
practices, we consider the dynamic and
heterogeneous effects of Al on firms’ operational
efficiency and green innovation capacity. This
approach facilitates a better identification and
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understanding of the internal mechanisms through
which Al influences pollution levels.

(3) Drawing on the empirical findings, we propose
concrete and feasible policy recommendations. In
doing so, this study contributes to the theory on Al’s
impact pathways and mechanisms in reducing
agricultural pollutant emissions, and provides practical
guidance for policymakers.

After the introduction, the remainder of the paper is

structured as follows: Sect. “Literature review” reviews the

relevant literature and identifies the existing gaps. Sect.

“Mechanism analysis and research hypotheses” analyzes

the direct effects of Al on pollutant emissions in agricultural

enterprises and investigates the underlying transmission
pathways. Sect. “Research design” presents the baseline
regression model and the mechanism analysis model, and
explains the variables and data sources. Sect. “Analysis on
the trend of pollutant emissions from listed agricultural
companies in China” analyzes the trends in pollutant
emissions, including both air and water pollutants, from
listed agricultural companies in China. Sect. “Empirical
results” reports the estimation results of the baseline and
mechanism models and provides relevant analysis. Sect.

“Conclusion and policy recommendations” summarizes the

main findings, offers policy suggestions, and outlines the

study’s limitations and directions for future research.

2. Literature review

This paper investigates the nonlinear effects of Al on pollutant
emissions in agriculture and explores the underlying
mechanisms through which Al influences agricultural
pollution. Accordingly, the upcoming literature review is
organized around two main themes: artificial intelligence and
pollutant emissions and pollutant emissions in agriculture.

2.1. Artificial intelligence and pollutant emissions

Al, as a new generation of general-purpose technology, is
profoundly reshaping the way economies operate. As a
double-edged sword, Al exhibits a dual effect on pollutant
emissions, with both emission-reducing and emission-
increasing potentials. Existing studies primarily examine
the emission-reducing role of Al from three perspectives:
optimizing input structures, enhancing resource allocation
efficiency, and fostering green innovation.

(1) Al contributes to the reduction of pollutant emissions
by optimizing the structure of factor inputs within
enterprises (Cheng et al. 2024). Al-driven smart
systems can replace inefficient manual operations,
reduce costs, and support investment in cleaner
technologies, thereby lowering emission intensity (Zhu
et al. 2023; Shang et al. 2024).

(2) Al enhances firms’ internal resource allocation
efficiency.  Algorithmic  optimization, real-time
monitoring, and data analytics improve the scheduling
of materials and energy, reduce redundant inputs, and
enhance process efficiency (Usman et al. 2024). This
ultimately reduces energy consumption and emissions
(Shen and Zhang 2023; Cheng et al. 2024).

(3) Al provides critical support for green technological
innovation in enterprises. Al complements skilled
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labor in green R&D, increases green patenting
efficiency, accelerates the development of clean
technologies, and improves the diffusion and matching
efficiency of green innovations, thus enhancing their
spillover effects (Wang et al. 2024; Liu et al. 2025;
Wang et al. 2025).

However, some studies argue that Al may also lead to
increased pollutant emissions under certain conditions. For
instance, Xu et al. (2025) suggest that while Al improves
firm productivity and alleviates financial constraints, it may
also drive the expansion of production scale, ultimately
resulting in higher pollutant emissions. In addition, some
studies suggest that when Al technologies are immature or
firms face adoption barriers, a mismatch between Al
systems and organizational structures may arise,
weakening their expected environmental benefits (Lee and
Yan 2024; Parra-Lépez et al. 2025).

These conflicting findings regarding Al's environmental
impact echo a broader insight from the literature on
environmental policy. Beyond technological factors, the
literature on environmental policy underscores that the
ultimate impact of external interventions—be it regulation
or technology—is contingent upon the micro-level
transmission mechanisms they activate. For instance,
environmental regulations can successfully promote
corporate green innovation by reshaping managerial
cognition (Zhang et al. 2025), yet they may also backfire by
imposing prohibitive compliance costs that crowd out
efficiency investments, particularly in certain types of firms
(Lei and Kocoglu 2025). This suggests that the net effect of
Al on emissions is not predetermined but hinges on
whether it primarily triggers efficiency-enhancing and
innovation-oriented pathways or conversely leads to cost
burdens and maladaptive responses.

2.2. Pollutant emissions in agriculture

Agricultural pollutant emissions exhibit significant non-
point source characteristics, such as nutrient runoff from
fertilizers and pesticides, livestock waste discharge, and
irrigation-related water pollution (Hou et al. 2024; Li and
Lei 2025). These emissions are spatially diffuse, temporally
variable, and influenced by climatic, hydrological, and soil
conditions, making conventional monitoring methods less
effective (Kuttippurath et al. 2024; He et al. 2025). As a
result, conventional monitoring methods—primarily based
on fixed-site measurements and manual surveys—face
substantial limitations in identifying pollution sources and
tracking their origins in agricultural contexts.

Al offers a novel pathway to address the challenges
associated with non-point source pollution in agriculture.
Integrated with remote sensing, drones, environmental
sensors, and image recognition, Al enables real-time and
precise monitoring of nutrient runoff, livestock discharge,
and water eutrophication (Usigbe et al. 2024; Ali et al.
2024). Furthermore, embedding Al into precision
agriculture—such as intelligent irrigation and variable-rate
fertilization—reduces excessive agrochemical use by
enabling demand-based input application (Oliveira and

Silva 2023; Ghazal et al. 2024; Wang et al. 2025; Khan et al.
2025).

On a broader level, Al influences agricultural pollutant
emissions by enhancing operational efficiency and
promoting the adoption of green technologies. For
instance, Al improves agricultural operations through crop
variety optimization, production process refinement,
precision resource allocation, and automated task
scheduling (Sheikh et al. 2024; Usigbe et al. 2024; Pandey
and Mishra 2024). These advancements contribute to more
efficient agricultural practices, which in turn affect
emission levels. Additionally, Al facilitates green
technology adoption, such as recommending eco-friendly
inputs and guiding ecological farming models, thereby
enabling more effective control of agricultural pollution
(Lin et al. 2024).

The mechanisms through which external shocks influence
environmental performance extend beyond the
agricultural sector, offering valuable comparative insights.
Research on extreme climate events reveals that firms’
resilience is shaped by strategic investments in green
innovation and environmental governance, which can
offset physical damages (Lei 2025). Similarly, studies on
agricultural credit subsidies demonstrate how financial
interventions reduce carbon intensity by facilitating both
technological adoption and, notably, agricultural scale
expansion (Zhang et al. 2023). This latter point resonates
with the potential “scale effect” of Al, suggesting that the
interplay between technological advancement and
production scaling is a critical, yet underexplored,
mechanism determining the environmental outcomes in
agriculture.

2.3. Literature gaps

In summary, while the existing literature provides valuable
insights, several important research gaps remain. First,
although prior studies acknowledge that Al may
simultaneously exert both emission-reducing and
emission-increasing effects, most theoretical and empirical
analyses focus on the industrial sector. Systematic
investigations into the mechanisms through which Al
affects pollutant emissions in the agricultural sector are still
lacking, and empirical evidence remains scarce. Moreover,
although classic environmental economics theories—such
as the Environmental Kuznets Curve (EKC) (Grossman and
Krueger 1991; Kong et al. 2025) and the rebound effect
(Qian et al. 2025)—highlight the nonlinear environmental
impacts of technological progress, they have rarely been
applied to explain the stage-specific pollution effects of Al
in agriculture. Second, Al applications in agriculture are
widely regarded as crucial tools for promoting green
transformation and pollution reduction, with existing
studies affirming their roles in enhancing operational
efficiency and technological innovation. However,
potential unintended consequences—such as scale
expansion effects and diminishing marginal returns to
green innovation—have not been thoroughly examined in
the agricultural context. Therefore, this study uses data
from Chinese listed agricultural firms to explore the



nonlinear effects of Al on agricultural pollutant emissions
and uncover the underlying transmission mechanisms.

3. Mechanism analysis and research hypotheses

3.1. Direct effect of artificial intelligence on pollutant
emissions

The rapid development of Al profoundly transforms
agricultural production and management (Oliveira and
Silva 2023; Sheikh et al. 2024; Wang et al. 2025). Al
enhances agricultural productivity by promoting precision
agriculture. For example, in the pre-production stage, Al
analyzes soil and climate characteristics through
algorithms to plan optimal cropping schemes (Aghababaei
et al. 2025). During the production stage, Al enables
precision weeding and fertilization through image
recognition and data analysis (Khan et al. 2025). In
addition, Al-driven models such as random forests and
neural networks predict rainfall events and optimize
irrigation strategies, thereby improving water use
efficiency (Pandey and Mishra 2024; Sperandio et al. 2025).
While these practices reduce the excessive use of fertilizers
and pesticides to some extent, they also increase
agricultural productivity, which in turn leads to production
scale expansion. This expansion effect results in higher
pollutant emissions and intensifies environmental risks
(Zhu et al. 2023). Therefore, although Al improves
agricultural productivity, it also increases the intensity of
agricultural pollutant emissions through the scale
expansion effect.

However, as a general-purpose technology, Al faces
multiple constraints during its diffusion process—
particularly in the early stages—such as limitations in
funding, technology, and human resources. First, resource
constraints increase the risk of system failures during the
implementation of Al (Ghazal et al. 2024). Second, the lack
of standardized data protocols in agriculture, along with
the presence of bias in some machine learning algorithms,
leads to deviations in Al-generated predictions (Yang et al.
2024). Third, the high variability of agricultural production
environments and the limited skills of agricultural workers
reduce the adaptability of Al technologies (Parra-Lépez et
al. 2025). As a result, in the initial phase of Al adoption,
these internal and external constraints hinder its practical
effectiveness in agricultural systems, lowering both
production efficiency and output. Consequently, pollutant
emissions from agricultural activities decrease.

Taken together, the impact of Al on agricultural pollutant
emissions exhibits a stage-specific pattern. In the early
phase of Al application, internal and external constraints
limit the technology’s effectiveness in enhancing
agricultural productivity and scale. As agricultural output
declines, pollutant emissions are reduced. As Al adoption
deepens, these barriers are gradually alleviated, and the
adaptability of the technology improves. At this stage, Al
begins to generate productivity effects in agricultural
activities, which further lead to scale expansion and
increased pollutant emissions.

It is noteworthy that this stage-specificimpact is consistent
with established environmental economics theories. In the
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early stage, Al adoption is constrained by limited resources
and technical capacity, which suppresses agricultural
output and reduces emissions—mirroring the early-phase
decline in pollution emphasized in the EKC (Grossman and
Krueger 1991; Kong et al. 2025). As Al-induced efficiency
gains gradually materialize, expanded production leads to
higher pollutant emissions, aligning with the rebound
effect, which highlights that efficiency improvements may
induce increased resource use and environmental pressure
(Qian et al. 2025). Therefore, the nonlinear influence of Al
on agricultural pollution reflects the typical patterns
described by both the EKC framework and rebound effect
mechanisms. Based on this reasoning,  we propose
Hypothesis 1.

Hypothesis 1 Artificial intelligence exerts a stage-specific
impact on agricultural pollutant emissions, initially
suppressing and later promoting them.

3.2. Transmission mechanism of artificial intelligence to
pollutant emissions

The operational efficiency of agricultural enterprises
influences pollutant emissions by shaping agricultural
production _activities. When operational efficiency
improves, the resulting increase in unit output tends to
boost total agricultural production (Kumar et al. 2024). This
expansion leads to greater use of agricultural inputs such
as fertilizers, pesticides, and machinery, thereby
intensifying environmental pollution (Aziz and Chowdhury
2023). In contrast, when operational efficiency declines,
reduced production intensity lowers the level of
agricultural pollutant emissions.

Moreover, Al exerts a dual effect on the operational
efficiency of agricultural enterprises. On one hand, in the
early stages of Al diffusion and application, deficiencies
such as limited data accuracy and system instability hinder
performance (Jin and Han 2024). These limitations pose
challenges for enterprises in adapting to new technologies.
On the other hand, agriculture is a non-technology-
intensive sector with a large share of low-skilled labor
(Menéndez Gonzalez et al. 2023). Due to path dependence
and cognitive burdens, low-skilled workers generally
exhibit low willingness to adopt new technologies and face
higher learning costs (Clay et al. 2024). Therefore,
constrained by limited technological adaptability and
learning barriers among low-skilled workers, Al adoption in
the early stages tends to hinder rather than enhance
operational efficiency. This mismatch between Al systems
and firm’s capacity to absorb new technologies reduces
operational efficiency. Consequently, the resulting scale
contraction effect leads to lower levels of agricultural
pollutant emissions.

As Al adoption deepens, intelligent technologies drive
continuous transformation in agricultural production
activities (Usigbe et al. 2024). This results in an increase in
the technological adaptability of agricultural enterprises.
At this point, with the deployment of Al systems, the
operational efficiency of agricultural enterprises improves
(Balcioglu et al. 2024; Pandey and Mishra 2024). The
improvement in operational efficiency drives the
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expansion of production scale, which, in turn, increases
agricultural pollutant emissions.

Thus, Al affects pollutant emissions by influencing the
operational efficiency of agricultural enterprises. In the
early stages of Al application, due to the limited learning
capacity of unskilled labor and the low adaptability to new
technologies, the operational efficiency of agricultural
enterprises decreases, leading to a reduction in pollutant
emissions. In the later stages of Al implementation, as
firms’  technological adaptability improves, their
operational efficiency increases, which in turn drives the
expansion of agricultural production activities, resulting in
increased pollutant emissions. Based on this, we propose
Hypothesis 2.

Hypothesis 2 Artificial intelligence initially reduces, then
increases agricultural firms’ operational efficiency, thereby
exerting a suppressive-then-promoting effect on
agricultural pollutant emissions.

Green innovation refers to the use of green materials and
the design of ecological products to achieve energy
conservation and reduction of pollutant emissions (Lin et
al. 2024; Li et al. 2025). According to this definition,
agricultural enterprises can effectively reduce pollutant
emissions through the implementation of green
innovation.

Al is considered a significant factor influencing corporate
green innovation. First, according to innovation diffusion
theory, the application of Al technology increases the
demand for skilled labor, prompting enterprises to increase
investment in research and development (Wang et al.
2024; Liu et al. 2025). Second, Al technology accelerates
the dissemination of green knowledge and reduces the
failure probability of green innovation processes through
data mining and algorithm optimization (Luo and Feng
2024; Zhang 2024). Given that high-skilled labor, such as
R&D personnel, has stronger learning capabilities, Al
technology in its early stages of application can enhance
green technological innovation capability of agricultural
enterprises by complementing skills and reallocating
resources. This leads to a reduction in pollutant emissions
from agricultural enterprises.

However, as enterprises increasingly leverage Al, they may
gradually shift internal resources and attention away from
green innovation toward other operational priorities.
When attention and resources are redirected, green
innovation efforts tend to decline (Yang et al. 2024).
Consequently, in the later stages of Al application, the
reallocation of internal resources and managerial focus
reduces the innovation capacity of agricultural enterprises,
which in turn leads to increased pollutant emissions. Based
on this reasoning, we propose Hypothesis 3.

Hypothesis 3 Artificial intelligence first enhances and then
reduces the green innovation capability of agricultural
enterprises, thereby exerting a stage-based effect on
agricultural pollutant emissions—initially inhibiting them
and subsequently promoting them.

To synthesize the dual-path mechanisms described above,
Figure 1 presents the conceptual framework that

delineates how Al influences agricultural pollutant
emissions through the nonlinear channels of operational
efficiency and green innovation.

Figure 1. Conceptual framework of Al’s nonlinear effects on
agricultural pollutant emissions.

4. Research design

4.1. Model construction

Based on the theoretical analysis above, Al exhibits a
nonlinear effect on pollutant emissions of agricultural
enterprises. Following the approach of Miller (2025), we
construct a semi-parametric additive model as shown in
Equation (1) for empirical analysis. The model effectively
captures nonlinear relationships, enhances estimation
efficiency, and alleviates dimensionality issues. It also
detects potential threshold effects in Al's impact on
emissions, offering nuanced insights into stage-specific
mechanisms and supporting evidence-based, targeted
policy  formulation  for  sustainable agricultural
transformation.

Pollu;, = g(Al;; )+ B Fixed; + B,TMTPay;, + (1)
BsSize, + falevy + SsInsty, + Sy + o + &

In Equation (1), i denotes the individual firm, and t
represents the time period. Polluit is the dependent
variable, indicating the level of pollutant emissions of firm
iin period t. Alit is the core explanatory variable, measuring
the degree of Al adoption in firm i at time t. Fixedit,
TMTPayit, Sizeit, Levit, Instit are the selected control
variables, whose selection rationale and measurement are
elaborated in Section 4.3.3. B0 is the intercept term. ai
captures the individual fixed effects, and &it represents the
random error term.

4.2. Mechanism test model

To examine the mechanism through which Al affects
pollutant emissions in agricultural enterprises, we follow
the framework of Yang et al. (2024) and construct a
regression model as shown in Equation (2).

M; =g (Al it)JrﬁlFixedit + B, TMTPay;, + (2)
BsSize; + palevy + SsInsty, + Sy + o5 + &,

In Equation (2), Mit represents the mediating variables,
specifically operational efficiency (OperEffic) and green



innovation capability (Greeninno). The definitions of the
other variables are consistent with those in Equation (1).

4.3. Variables
4.3.1. Dependent variable

Enterprise pollutant emissions (Pollu) include water
pollutant emissions (Water_Pollu) and air pollutant
emissions (Air_Pollu). According to Wang et al. (2023),
major agricultural water pollutants include chemical
oxygen demand (COD), ammonia nitrogen (NH3-N), total
nitrogen (TN), and total phosphorus (TP). Based on the
analyses of Kuttippurath et al. (2024) and Mousavi et al.
(2023), major agricultural air pollutants include sulfur
dioxide (502), nitrogen oxides (NO), and smoke.

To measure enterprise pollutant emissions (Pollu), we first
collect data on emissions of each water and air pollutant
from agricultural enterprises. Second, we refer to the
Administrative Measures for the Collection Standards of
Pollution Discharge Fees to identify the pollution
equivalent value for each pollutant. Then, all emissions are
converted into standardized pollution equivalents,
summed, and transformed by taking the natural logarithm
of the total plus one. The resulting value reflects the overall
level of pollutant emissions from agricultural enterprises.

4.3.2. Independent variable

According to Choi (2024), software and hardware are
essential components of digital systems. Following the
approach of Song et al. (2024), this study focuses on
enterprise investments in software and hardware related
to Al. We measure the level of Al in agricultural enterprises
by the intensity of their Al-related software and hardware
investments. Specifically, we calculate the sum of Al
software and hardware investment amounts, take the
natural logarithm of this total, and use the result as an
indicator of the enterprise’s Al level (Al).

4.3.3. Control variables

To control for potential omitted variable bias, drawing on
relevant studies (Cheng et al. 2024; Xu et al. 2025), we select
the following variables as controls to suit the context of this
study: (1) the share of fixed assets (Fixed), measured by the
ratio of fixed assets to total assets. A higher proportion
indicates a more capital-intensive firm structure, which,
particularly  in agriculture, reflects greater reliance on
machinery and infrastructure associated with increased
resource consumption and emissions. Therefore, a positive
association with pollutant emissions is expected (Xu et al.
2025). (2) top management team compensation (TMTPay),
measured by the natural logarithm of the compensation of the
top three executives. As executive compensation is often
linked to short-term performance targets, it may incentivize
profit-driven  strategies that neglect environmental
externalities, potentially leading to higher emissions (Kong et
al. 2024). (3) firm size (Size), measured by the natural
logarithm of total assets at the end of the year. Larger
agricultural firms typically operate on a greater scale and
consume more energy, resulting in higher levels of pollution
(Xu et al. 2025). (4) leverage (Lev), measured by the ratio of
total liabilities to total assets at year-end. Firms with higher
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leverage are subject to tighter financial constraints, reducing
their operational resilience (Foulon and Marsat 2023). As a
result, they may adopt more conservative strategies, such as
downsizing or investing in cleaner technologies, to mitigate
environmental and regulatory risks. Hence, leverage is
expected to be negatively associated with pollutant emissions.
(5) institutional ownership (Inst), measured by the proportion
of shares held by institutional investors relative to total shares
outstanding. Firms with higher institutional ownership are
subject to stronger governance pressure and collaborative
incentives from common investors, making them more likely
to take proactive environmental actions and thus exhibit
lower levels of pollutant emissions (Qiang et al. 2025).

4.3.4. Mechanism variables

This study also incorporates two mechanism "variables:
operational efficiency (OperEffic) and green innovation
capability (Greeninno).

Inventory turnover reflects the enterprise’s management
capacity in terms of production, logistics, capital flow, and
market responsiveness. Therefore, we use inventory
turnover as a proxy for operational efficiency.

In addition, drawing on the methodologies of Xiang and
Geng (2024) and Wang et al. (2025), we construct a green
innovation capability indicator based on the number of
green invention patents and green utility model patents.
Specifically, we sum the number of independently filed
green invention patents and green utility model patents by
each agricultural enterprise in a given year, add one to
avoid logarithmic transformation of zero, and take the
natural logarithm. This value serves as a proxy for the firm’s
green innovation capability.

4.4. Sample selection and data source

The dependent variable of this study, firm pollutant
emissions, is based on raw data obtained from corporate
annual reports, government sustainability reports, and
disclosures by environmental protection authorities.
Python software is used to batch-scrape these reports and
extract the required pollutant emission data. The original
data for the core explanatory variable, control variables,
and mechanism variables are obtained from the CSMAR
Database and the Chinese Patent Database. After matching
the samples and variables, we select listed firms in the
agricultural sector from 2010 to 2022 as the analysis
sample.

This sample period is chosen based on a combination of
policy relevance and data availability. On the one hand,
2010 marks a significant starting point in China’s
agricultural informatization and intelligent transformation.
In that year, five key government ministries—including the
Ministry of Industry and Information Technology, the
Ministry of Agriculture, and the Ministry of Science and
Technology, among others—jointly issued the Action Plan
for Agricultural and Rural Informatization (2010-2012).
This initiative officially launched the country’s digital
agriculture agenda and laid the groundwork for the
application of Al technologies in the agricultural sector. On
the other hand, 2022 represents the latest year for which
complete and reliable data are available for all key
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variables. Due to the lag in environmental and financial
disclosures by listed companies, some pollutant emission
data for agricultural firms remain incomplete or of
inconsistent quality beyond 2022. Thus, setting 2022 as the
endpoint of the sample period ensures data integrity and
Table 1. Descriptive statistics of main variables

analytical robustness. In sum, the 2010-2022 period is both
policy-relevant and empirically justified for investigating
the relationship between Al and agricultural pollutant
emissions.

Variable Observations Mean Standard deviation Min Max
LnTotalPollu 189 0.143 0.005 0.132 0.152
Al 189 11.946 5.601 0.000 18.563
Fixed 189 0.214 0.128 0.000 0.643
TMTPay 188 13.934 0.811 9.68 16.101
Size 189 21.756 1.047 18.946 23.829
Lev 189 0.421 0.218 0.030 0.937
Inst 189 0.435 0.209 0.012 0.838

=]

Number of Firms
T

o4
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 2. Annual number of agricultural firms investing in Al
during 2010 to 2022. Note: A firm is counted in a given year only
if it has non-zero Al investment in that year. Hence, although 19

firms adopted Al at least once during the sample period, the

number of adopting firms varied year by year.

The final unbalanced panel includes 22 listed agricultural
firms, yielding a total of 189 firm-year ‘observations.
Descriptive statistics for the main variables used in the
baseline analysis are reported in Table 1. Among these, 19
firms are identified as having adopted Al in at least one year
during the sample period. To further clarify the timeframe
during which Al has been applied by agricultural firms, we
present in Figure 2 the annual number of companies
reporting non-zero Al investment from 2010 to 2022. In our
study, firm-level Al application is proxied by annual Al-
related investment, as recorded in the CSMAR database. As
shown in Figure 2, agricultural firms began investing in Al
as early as 2010, with 11 firms reporting such investment
in that year. Throughout the sample period, the number of
Al-investing firms per year ranged from 10 to 15, indicating
a steady—albeit uneven—uptake of Al technologies in the
sector. This pattern offers a concrete temporal basis for
analyzing the environmental effects of Al adoption.

In light of this, we retain firm-year observations in which Al
investment was zero, including years prior to the initial Al
adoption by each firm and firms that never adopted Al
during the entire sample period. This approach is
methodologically justified for several reasons. First,
including pre-Al years enables a more comprehensive
within-firm comparison of emission outcomes before and
after Al adoption. Second, maintaining non-Al firms in the
sample helps establish a valid counterfactual,
strengthening the identification of Al’s effects. Lastly, given

that 2010 marked the launch of China’s national
agricultural digitalization strategy, retaining data from this
year onward is consistent with the broader policy context
and allows us to capture the early diffusion of Al
technologies in agriculture.

5. Analysis on the trend of pollutant emissions from
listed agricultural companies in China

5.1. Analysis on the trend of water pollutant discharge

We aggregate the water pollutant emissions (Water_Pollu)
of all listed agricultural firms in China from 2010 to 2022.
Specifically, we sum the emissions of chemical oxygen
demand (COD), ammonia nitrogen (NH3-N), total nitrogen
(TN), and total phosphorus (TP) for all listed agricultural
firms. The trends of each type of water pollutant are then
plotted, as shown in Figure 3.
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Figure 3. Trends in the total water pollutant emissions from

listed agricultural companies in China. Note: Marked points

indicate years in which the emissions of the corresponding
pollutant decreased relative to the previous year.

According to Figure 3, the total water pollutant emissions
of listed agricultural firms in China show an overall upward
trend from 2010 to 2022. Specifically, this trend can be
divided into four distinct phases.

The first phase (from 2010 to 2014): During this period, the
total emissions of chemical oxygen demand (COD),
ammonia nitrogen (NH3-N), total nitrogen (TN), and total
phosphorus (TP) from China’s listed agricultural firms
increase at a relatively moderate pace. This phase coincides
with the initial stage of the introduction and refinement of
agricultural environmental policies in China, during which
policy enforcement and infrastructure development still
lag behind. In addition, the degree of agricultural scale



expansion remains relatively low, and the intensity of
fertilization and livestock production per unit of land tends
to stabilize, resulting in a controllable rate of increase in
total emissions.

The second phase (from 2014 to 2018): The emissions of
COD, NH3-N, TN, and TP rise sharply. This trend is closely
related to the accelerated expansion and modernization of
the agricultural sector. At the same time, with the gradual
improvement of the environmental information disclosure
system, the coverage and transparency of environmental
data disclosure by listed firms also improve, possibly
broadening the statistical scope of emission data and thus
contributing to a noticeable increase in reported emissions.

The third phase (from 2018 to 2020): The growth rate of all
water pollutant emissions slows down. This change is
associated with the strengthening of environmental
governance policies at the national level. The
implementation of relevant agricultural environmental
regulations strengthens supervision intensity. Meanwhile,
green production practices, such as soil testing and
formulated fertilization, organic fertilizer substitution, and
integrated crop-livestock systems, gain increasing
attention. Some highly polluting livestock projects are also
restricted or shut down, which effectively alleviates the
water pollution burden.
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Figure 4. Trends in total air pollutant emissions from listed
agricultural companies in China. Note: Marked points indicate
years in which the emissions of the corresponding pollutant
decreased relative to the previous year.

The fourth phase (from 2020 to 2022): The emissions of
NH3-N, TN, and TP increase rapidly, while COD emissions
decrease. This divergence may be explained by two main
factors. First, the expansion of agricultural production and
the improper application of certain green technologies
(such as the excessive use of nitrogen fertilizers) lead to
increased emissions of nitrogen and phosphorus
pollutants. Second, as COD reflects organic matter
pollution, its reduction may be attributed to improvements
in wastewater treatment capacity or enhanced recycling of
livestock waste. In addition, more mature standards and
regulatory measures for COD emissions at the policy level
also play a role in curbing such emissions.

5.2. Analysis of changing trends in air pollutant emissions

We also aggregate the air pollutant emissions (Air_Pollu)
for all listed agricultural firms in China. Specifically, we sum
the emissions of sulfur dioxide (S0O2), nitrogen oxides (NO),
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and smoke for all listed agricultural firms. We then plot the
trends for each type of air pollutant, as shown in Figure 4.

According to Figure 4, total air pollutant emissions from
listed agricultural firms in China show an overall upward
trend from 2010 to 2022. Specifically, the changes can be
divided into four distinct stages.

The first stage covers the years 2010 to 2013. During this
period, the combined emissions of sulfur dioxide (SO),
nitrogen oxides (NO) and smoke from listed agricultural
firms exhibit a slow upward trend. This suggests that
China’s agricultural modernization remains at an early
stage, with relatively limited mechanization and scale,
resulting in relatively moderate growth in air pollution
emissions.

The second stage spans from 2013 to 2016. During this
period, the total emissions of SO2, NO and smoke continue
to rise, and the growth rate significantly accelerates. This
trend is closely related to the rapid advancement of
agricultural modernization and the continuous expansion
of agricultural production in China.

The third stage covers the years 2016 to 2020. In this
period, the growth of SOz emissions slows significantly and
even begins to decline, while the growth rate of NO
emissions also decreases. However, smoke emissions
continue the rapid upward trend observed in the previous
stage. This divergence may be closely related to
environmental protection policies and the development of
green technologies. Pollution control initiatives promote
the substitution of coal, the application of clean energy,
and the widespread adoption of desulfurization and
denitrification technologies, thereby curbing the growth of
S0O2 and NO emissions. In contrast, smoke control remains
technically challenging, especially in agriculture, such as
straw burning, open-air processing, and waste disposal
from livestock. The slow improvement in technology and
difficulties in enforcement contribute to the continued rise
in smoke emissions.

The fourth stage spans from 2020 to 2022. In this stage, the
total emissions of all three air pollutants increase sharply
again, with the fastest growth observed across all periods.
This may be due to, first, the rapid post-pandemic recovery
and expansion of agricultural production, which
substantially raises energy demand and the use of
agricultural machinery. Second, the gradual improvement
in emissions disclosure systems leads to more complete
enterprise reporting, which may broaden the statistical
coverage and result in an apparent surge in total emissions.

6. Empirical results

6.1. Baseline regression

The estimation results of the baseline model are shown in
Column (1) of Table 2. In addition, the marginal effect
diagram of the core independent variable Al on corporate
pollutant emissions is shown in Figure 5.

According to Figure 5, the marginal effect of Al investment
intensity on pollutant emissions in agricultural firms first
decreases and then increases. The value of the marginal
effect is initially negative and later becomes positive. This
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indicates that the use of Al in agricultural firms follows a
pattern of initially reducing and then increasing pollutant
emissions, which supports Hypothesis 1 of this study. The
impact of Al on agricultural pollution exhibits a two-stage
characteristic. At low levels of Al adoption, resource

Table 2. Estimation results of semiparametric additive model

constraints reduce production efficiency and output. As a
result, pollutant emissions decline. At high levels of Al
adoption, Al enables firms to expand production scale. This
expansion leads to an increase in agricultural pollutant
emissions.

Variable (1) Baseline regression results (2) Robustness test | (3) Robustness test Il
Al See Figure 5 See Figure 6™ See Figure 7"
(Intercept) 0.044(0.020) 0.041" (0.023) 0.057"**(0.021)
Fixed 0.001 (0.005) 0.000 (0.006) 0.003 (0.006)
TMTPay 0.004***(0.001) 0.004"* (0.001) 0.004™** (0.001)
Size 0.002"* (0.001) 0.002"" (0.001) 0.002"* (0:001)
Lev -0.008"* (0.003) -0.009"** (0.003) -0.008™* (0.003)
Inst -0.021*** (0.003) -0.020"** (0.004) -0.021"**(0.004)

Note: *, ** ***indjcate significant at the 10%, 5%, and 1% significance levels, respectively. The standard error is in brackets.
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Figure 5. The marginal effect of Al in agricultural enterprises on
pollutant emissions

Specifically, when the logarithm of Al investment in
agricultural firms is less than approximately 7, Al has a
suppressive effect on pollutant emissions, and this effect
becomes increasingly stronger. This suggests that at this
stage, agricultural firms face significant internal and
external resource constraints. Issues such as failure risks
and poor technological compatibility are prominent,
limiting productivity improvements and scale expansion. As
firms reduce production scale, pollutant emissions decline
more rapidly.

When the logarithm of Al investment ranges between 7
and 14, Al still reduces pollutant emissions, but the
suppressive effect gradually weakens. This indicates that
firms begin to seek ways to overcome resource constraints
and reverse the decline in productivity. The problems of
failure risk and technological mismatch become less
severe. The decline in production scale and output slows,
leading to a smaller reduction in pollutant emissions.

However, when the logarithm of Al investment exceeds 14,
Al begins to promote pollutant emissions, and this effect
intensifies. This implies that firms have overcome resource
limitations, and issues related to failure risk and
compatibility are effectively resolved. Agricultural firms
can leverage Al to enhance productivity and expand
production scale. As production and operational activities
increase, the intensity of pollutant emissions also rises
continuously.

6.2. Robustness test

To test the robustness of our estimation results, we follow
the approaches of Ma et al. (2024) and Ling et al. (2024),
and conduct robustness checks using three methods:
replacing the explained variable, changing the model
estimation method, andadding control variables.

6.2.1. Replace the explained variable

We replace the original dependent variable—total
pollutant - emissions (Pollu) —with water pollutant
emissions (Water_Pollu) and air pollutant emissions
(Air_Pollu), respectively, to re-estimate the model for
robustness testing. At the same time, this approach allows
us to analyze the separate effects of Al on firms’ water and
air pollutant emissions. The robustness test results are
shown in Column (2) “Robustness test 1” and Column (3)
“Robustness test II” of Table 2.
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Figure 6. The marginal effect of Al in agricultural enterprises on
water pollutant emissions

According to Figure 6 and Figure 7, after replacing the
dependent variable with water pollutant emissions
(Water_Pollu) and air pollutant emissions (Air_Pollu),
respectively, the overall marginal effect trend of Al remains
unchanged. The marginal effects of Al investment intensity
on water and air pollutant emissions both show a trend of
first decreasing and then increasing. Moreover, the
marginal effects are initially negative and later become
positive. This indicates that the use of Al in agricultural
enterprises first suppresses and then promotes water and
air pollutant emissions, thereby reaffirming Hypothesis 1 of
this paper. The impact of Al on agricultural pollution
exhibits a stage-specific pattern, characterized by initial
suppression followed by promotion. In addition, the
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directions of the control variables’ effects remain
consistent, with only differences in magnitude and
statistical significance. This confirms the robustness of the
estimation results.
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Figure 7. The marginal effect of Al in agricultural enterprises on
air pollutant emissions

A comparison of Figures 5, 6, and 7 reveals that the impact
pattern of Al investment on total pollutant emissions

Table 3. Robustness test model estimation results
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closely mirrors that on air pollutant emissions, while the
effect on water pollutants exhibits slight deviations.
Notably, when the logarithm of Al investment exceeds 14,
the intensity of water pollutant emissions exhibits a
fluctuating upward trend—rising, then falling, and rising
again. This indicates that in the initial phase of production
expansion, agricultural enterprises primarily contribute to
the sharp increase in air pollutant emissions.

6.2.2. Changing the model estimation method

When estimating the semi-parametric additive model, we
change the type and degrees of freedom of the smoothing
function compared with the baseline model, and re-
estimate the model to conduct robustness  checks.
Specifically, we replace the default “Thin Plate Regression
Spline” with the “Cubic Regression Spline” and the “Natural
Cubic Spline,” respectively. At the same time, we modify
the degrees of freedom. The estimation results are shown
in Column (1) “Robustness test Il and Column (2)
“Robustness test IV of Table 3.

Variable (1) Robustness test Il

(2) Robustness test IV (3) Robustness test V

Al See Figure 8"

See Figure 9™ See Figure 10"

(Intercept) 0.057"*" (0.021) 0.057"*" (0.021) 0.034™" (0.014)
Cap 0.001"** (0.000)
DER -0.017** (0.007)
EM 0.017"* (0.007)
BM -0.010"** (0.003)

Fixed 0.003 (0.006) 0.003 (0.006) -0.001 (0.006)
TMTPay 0.004™* (0.001) 0.004™* (0.001) 0.004"** (0.001)
Size 0.002** (0.001) 0.002"* (0.001) 0.002"* (0.001)
Lev -0.008"* (0.003) -0.008™** (0.003) -0.008™* (0.004)
Inst -0.021" (0.004) -0.021** (0.004) -0.022™** (0.003)

Note: *, ** *** indicate significant at the 10%, 5%, and 1% significance levels, respectively. The standard error is in brackets.

According to Figures 8 and 9, after changing the smoothing
function and degrees of freedom, the overall trend of the
marginal effect of Al on agricultural firms’ pollutant
emissions remains unchanged, with only differences in the
degree of fluctuation. The coefficient directions of the
control variables also remain consistent with those in the
baseline model. This further confirms the robustness of the
estimation results.

6.2.3. Adding control variables

Drawing on the study by Ma et al. (2024), we add additional
control variables to the baseline model to account for
potential confounding factors and implement stricter
controls. We then re-estimate the model to conduct a
robustness check.

Specifically, the additional control variables include: capital
intensity (Cap), measured by the ratio of total assets to
operating revenue; debt-to-equity ratio (DER), measured
by the ratio of total liabilities to shareholders’ equity at the
end of the year; equity multiplier (EM), measured by the
ratio of total assets to shareholders’ equity at year-end;
and book-to-market ratio (BM), measured by the ratio of
book value to market value. The estimation results are
reported in Column (3) of Table 3 under Robustness test V.
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Figure 8. The marginal effect of Al on pollutant emissions after
changing the model estimation method

S(Al)

0.010+
0.0051

0.0001

Marginal Effect

-0.0051

! L1 1 e luug
0 5 10 15
Al

Figure 9. The marginal effect of Al on pollutant emissions after
changing the model estimation method
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Figure 10. The marginal effect of Al on pollutant emissions after
adding control variables

According to Figure 10, after incorporating additional
control variables, the marginal effect of Al on agricultural
firms’ pollutant emissions remains consistent with the
baseline model. Specifically, at a low level of Al usage, it
exerts a suppressive effect on pollutant emissions. As the

Table 4. Estimation results of the mechanism test models

level of Al usage increases, it gradually exhibits a promoting
effect on emissions, and this promoting effect continues to
intensify. These findings further confirm the robustness of
the conclusions in this study.

6.3. Mechanism analysis

Theoretical analysis and empirical results presented earlier
show that the level of Al investment in agricultural firms
exerts a direct effect on their pollutant emissions, which
first suppresses and then promotes emissions. To further
explore the underlying mechanism of this effect, we follow
the approach of Yang et al. (2024) and estimate the
specified Model (2).

6.3.1. Operational efficiency

The estimation results of the mechanism model based on
operational efficiency are shown in Column (1) of Table 4.

Variable

(1) Operational efficiency

(2) Green innovation capabilities

Al See Figure 11

sk

See Figure 12"

(Intercept) 376.180"""(53.817) -2.267"
(0.889)
Fixed -56.173"** (13.121) 0.505** (0.241)
TMTPay -1.655 (1.484) 0.048*(0.027)
Size -16.593"** (2.448) 0.068" (0.041)
Lev 11.361% (6.703) -0.139 (0.122)
Inst 12.372 (8.262) 0.100 (0.149)

Note: *, ** *** indijcate significant at the 10%, 5%, and 1% significance levels, respectively. The standard error is in brackets.

According to Figure 11, the marginal effect of Al investment
on the operational efficiency of agricultural firms shows a
downward-then-upward trend. The value of the marginal
effect is initially less than zero and then becomes greater
than zero. This indicates that the use of Al by agricultural
firms first suppresses and then promotes their operational
efficiency, which confirms Hypothesis 2 of this paper. Al
affects pollutant emissions intensity by influencing the
operational efficiency of agricultural firms. Al investment
initially reduces and then enhances operational efficiency,
thereby exerting a suppressing-then-promoting effect on
agricultural pollutant emissions.
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Figure 11. The marginal effect of Al on operational efficiency in
agricultural enterprises

Specifically, when the logarithmic value of Al investment by
agricultural firms is less than approximately 14, it exerts a
suppressing effect on operational efficiency. This
suppressing effect shows a trend of first decreasing, then

increasing, and finally slightly declining. This suggests that,
during this stage, firms are constrained by both limited
technological adaptability and learning barriers among
unskilled labor, resulting in reduced operational efficiency.
This hinders the expansion of production scale and leads to
a reduction in pollutant emissions. Meanwhile, when the
logarithmic value of Al investment is approximately equal
to 10, the decline in operational efficiency becomes
controlled, indicating that issues related to technological
adaptability and labor learning barriers begin to ease.

When the logarithmic value of Al investment exceeds
approximately 14, it promotes operational efficiency, with
the marginal effect exhibiting an accelerating yet
fluctuating upward trend. This indicates that, during this
stage, technological adaptability improves continuously,
and learning barriers for unskilled labor are gradually
overcome. As a result, firms become increasingly adaptive,
which accelerates improvements in operational efficiency.
As operational efficiency rises, the resulting productivity
and scale expansion effects lead to a rapid increase in
pollutant emissions.

6.3.2. Green innovation capabilities

The estimation results of the mechanism model based on
green innovation capabilities are shown in Column (2) of
Table 4.

According to Figure 12, the marginal effect of Al investment
by agricultural firms on their green innovation capability
generally follows an inverted U-shaped pattern, first
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increasing and then decreasing. The marginal effect value
first falls below zero, then rises above zero, and eventually
drops below zero again. Although in the early stage of Al
investment—when the logarithmic value of Al investment
is approximately less than 4—the marginal effect is
negative, its magnitude becomes less negative over time.
Therefore, overall, Al exerts a promoting effect followed by
a suppressing effect on agricultural firms’ green innovation
capability, which supports Hypothesis 3. Al influences
pollutant emissions by affecting firms’ green innovation
capability. Specifically, Al investment intensity first
enhances and then reduces green innovation, which in turn
first suppresses and later promotes pollutant emissions.
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Figure 12. The marginal effect of Al on green innovation
capabilities of agricultural enterprises

Specifically, when the logarithmic value of Al investment in
agriculture is approximately less than 4, it exerts a
suppressing effect on firms’ green innovation, although this
negative effect gradually weakens. A possible reason for
this phenomenon is that in the initial stage of Al adoption,
firms require time to allocate appropriate R&D resources.
The resulting time-lag effect prevents Al from showing a
positive impact on green innovation capability during this
stage.

However, when the logarithmic value of agricultural Al
investment is approximately greater than 4 but less than
14, it promotes green innovation capability. This suggests
that Al can effectively enhance agricultural firms’ green
technology innovation through complementary effects. At
the same time, this promoting effect first strengthens and
then weakens, indicating a saturation trend in the enabling
effect of Al as- investment intensity increases. After
reaching a peak, the positive impact on green innovation
gradually diminishes.

Finally, when the logarithmic value of agricultural Al
investment exceeds 14, it again exerts a suppressing effect
on green innovation capability. This implies that as Al
investment intensity continues to rise, firms gradually shift
their attention and internal resources away from
innovation, leading to a decline in green innovation. As a
result, pollutant emissions increase. Moreover, the
suppressing effect continues to intensify, indicating that
the negative impact of resource reallocation and attention
diversion on green innovation persists and strengthens
over time. This leads to a continuous increase in pollutant
emission intensity.

Our empirical findings offer important extensions to the
existing body of literature. First, existing studies primarily
focus on industrial enterprises to examine the impact of Al
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applications on pollutant emissions (Shang et al. 2024;
Cheng et al. 2024; Xu et al. 2025). In contrast, empirical
investigations into the agricultural sector remain relatively
limited. This study addresses this gap by using listed
agricultural firms in China as the research sample and
systematically analyzing the effects of Al on agricultural
pollutant emissions. It thus provides valuable empirical
evidence to supplement the literature. Moreover, this
study finds that Al exerts a two-stage effect on agricultural
emissions—initially reducing them and subsequently
increasing them—whereas most existing studies in the
industrial context report a consistently negative effect of Al
on pollution.

Second, Lin et al. (2024) suggest that Al enhances
environmental performance in agricultural enterprises by
promoting green innovation. Building on this insight, this
study further reveals that green innovation capacity is
constrained by firms’ absorptive limits. As Al adoption
advances to later stages, firms may experience a decline in
green innovation efficiency due to saturation of absorptive
capacity, which in turn leads to a rebound in pollutant
emissions. This finding implies the existence of a threshold
effect in the environmental benefits of Al.

Finally, some prior studies identify that Al indirectly affects
corporate emissions by influencing resource allocation,
input structure, and energy efficiency (Shen and Zhang
2023; Zhou et al. 2024; Cheng et al. 2024). Extending this
line" of inquiry, the present study incorporates the
perspective of operational efficiency and finds that Al first
improves and then weakens the operational efficiency of
agricultural enterprises, resulting in a nonlinear emission
pattern characterized by “initial reduction followed by
subsequent increase.” This mechanism is particularly
important because operational efficiency is closely related
to production scale. Continuous improvements in
efficiency tend to drive production expansion, which may
amplify pollutant emissions and weaken the long-term
mitigation effects of Al.

In sum, this study not only broadens the application scope
of Al's environmental impacts by introducing the
agricultural sector but also uncovers nonlinear
transmission mechanisms—via green innovation capacity
and operational efficiency—that significantly enrich the
existing literature both theoretically and empirically.

7. Conclusion and policy recommendations
7.1. Conclusion

This paper analyzes the nonlinear impact path and
underlying mechanism of Al on pollutant emissions in
agricultural firms. Using listed agricultural companies in
China from 2010 to 2022 as the sample, it constructs a
semi-parametric additive model to empirically test the
specific path through which Al investment intensity affects
pollutant emissions. It further explores the internal
mechanisms from the perspectives of operational
efficiency and green innovation capability. The main
conclusions are as follows:

First, Al has a phased impact on pollutant emissions in
agricultural firms, showing an initial suppressive effect
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followed by a promoting effect. At low levels of Al
adoption, internal and external resource constraints lead
to reductions in production efficiency and scale, resulting
in lower pollutant emissions. As Al usage intensifies, the
resulting improvements in productivity and scale
expansion lead to increased emissions.

Second, the impact path of Al on total pollutant emissions
is consistent with its effect on air pollutants, while it differs
slightly in the case of water pollutants. Specifically, at
higher levels of Al usage, water pollutant intensity shows a
fluctuating trend—rising, then falling, and rising again. This
suggests that during the early stage of production
expansion, Al primarily leads to a rapid increase in air
pollutant emissions.

Third, Al influences agricultural pollutant emissions
through a nonlinear effect on operational efficiency—first
reducing and then enhancing it. In the early stage of Al
application, firms face limitations from new technology
adaptation and learning barriers among unskilled labor,
which reduces operational efficiency and hinders
production scale expansion, thereby lowering emissions.
As Al adoption deepens, technological adaptation
improves, learning barriers diminish, and firm adaptability
increases, leading to rapid gains in operational efficiency
and, consequently, a sharp rise in pollutant emissions.

Finally, Al affects pollutant emissions by first enhancing and
then weakening green innovation capacity in agricultural
firms. At low levels of Al use, resource allocation and the
complementary effect with skilled labor improve green
innovation, reducing emissions. As Al use intensifies,
diminishing returns set in, innovation resources are
reallocated, and organizational attention shifts—factors
that gradually erode green innovation capacity and lead to
rising pollutant emissions.

7.2. Policy recommendations

Building upon the empirical findings, this section discusses
their broader implications for policy design and managerial
practice. The results reveal that Al adoption exerts a
nonlinear environmental effect in agricultural enterprises—
emissions decline in the early stages but rebound as
adoption deepens. This U-pattern is transmitted through
two key mechanisms: green innovation capacity and
operational efficiency. These dynamics suggest that simple
promotion of Al may not guarantee sustainable emission
reductions unless paired with supportive policy and
managerial responses. Accordingly, the following
recommendations are proposed:

First, it is important to improve the Al technology
adaptation mechanism to shorten the “low-efficiency
adaptation period” during the initial stage of digital
transformation in agricultural firms. The research shows
that in the early phase of Al application, agricultural firms
often face problems such as poor technological
compatibility and long learning curves for unskilled labor.
These issues reduce operational efficiency and constrain
production activities, leading to a temporary decline in
pollutant emissions. To prevent such “false reductions”
from masking structural problems, the government is

advised to strengthen public support for Al applications in
agriculture. This includes establishing technical adaptation
guidance centers, launching standardized solutions for
different sub-industries, and offering skill training and
hands-on coaching for grassroots agricultural firms to help
them overcome the initial adaptation gap and achieve both
technological progress and green development.

Second, a differentiated regulatory mechanism should be
introduced to manage the emission rebound associated
with large-scale Al adoption. As Al usage increases,
productivity improves significantly and industrial
expansion accelerates, which leads to a rapid rise in
pollutant emissions. To address this risk, pollutant emission
intensity should be embedded into capacity-expansion
approval, Al-related subsidy qualification, and green credit
evaluation. Firms with a severe disconnect between
expansion and emission control should be subject to
capacity constraints and _enhanced environmental
supervision to prevent the spread of “high-intelligence but
high-emission expansion.”

Finally, the positive impact of Al on green innovation
should be strengthened to avoid the marginal decline of its
long-term enabling effects. The research shows that Al
initially promotes green innovation in agricultural firms
through resource restructuring and complementarity,
thereby effectively curbing emissions. However, as Al
adoption deepens, firms may shift their resource allocation
to ‘non-green areas, weakening their green innovation
capacity. To sustain Al's green-enabling effect, a
coordinated policy framework—linking Al adoption with
green R&D incentives—should be implemented to guide
firms in applying Al to energy saving, cleaner production,
and resource recycling. It is recommended to establish
special funds, provide green tax incentives, and introduce
performance-linked environmental subsidies.
Incorporating  green  technology outcomes into
performance evaluation and financing criteria can further
strengthen firms’ long-term motivation for continuous
green innovation.

7.3. Limitations and future research

This study has several limitations that offer directions for
future research. First, the sample includes only listed
agricultural firms in China, which may not fully represent
the broader sector, particularly small and non-listed
enterprises with different capacities for Al adoption and
environmental management. Moreover, the sample size is
relatively small (22 firms). While this firm-level evidence
still provides valuable insights into Al’s environmental
impacts within the agricultural sector, the limited sample
inevitably constrains the statistical power of the analysis
and may weaken the external validity of the findings.

Second, while firm-level investment in Al hardware and
software provides a practical proxy for Al application, it
does not capture specific use cases. Different Al
technologies—such as precision irrigation, pest detection,
or automated spraying—may affect emissions through
distinct pathways. This heterogeneity is not fully reflected
in the current analysis.
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Future research could address these limitations by
incorporating data from non-listed enterprises or
conducting field-level surveys to obtain more detailed
information on Al usage patterns and expand the sample
size. Additionally, disaggregating Al applications by
function could help identify which technologies contribute
most effectively to environmental performance, thereby
offering more targeted policy and managerial implications.
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