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Abstract

Under China’s “dual-carbon” targets, the tourism
industry’s green transformation increasingly depends on
deep integration of digital technology. Using panel data
from 30 Chinese provinces (2011-2022), this study
constructs a tourism carbon emission intensity dataset
with an energy-stripping method and develops a
multidimensional digital technology index via factor
analysis. Two-way fixed-effects and system GMM models
are employed to estimate the impact of digital technology
on tourism carbon intensity, while nonlinear specifications
test for turning-point effects. Regional heterogeneity is
examined through cluster-based quantile regressions, and
a structural equation model verifies three transmission
mechanisms: industrial structure upgrading, energy-
efficiency improvement, and innovation enhancement.
Multiple robustness checks (lagged regressions, placebo
tests, Monte Carlo simulation, counterfactual analysis)
confirm result reliability. The findings show that digital
technology significantly reduces tourism carbon emission
intensity and exhibits an inverted U-shaped relationship,
with a strengthened decarbonization effect after China’s
“dual-carbon” policy. All three mediating channels are
significant, and the effects vary across regional
development levels and carbon-intensity quantiles.
Provides sector-specific evidence of digital-driven
decarbonization and offers policy implications for

promoting smart, low-carbon tourism in developing

economies.

Keywords: digital technology; tourism industry; carbon
emission intensity; nonlinear relationship; mediating
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1. Introduction and Literature Review

Rapid advances in cloud computing, big data, the Internet
of Things (loT), artificial intelligence (Al), and 5G
communication have accelerated digital transformation
across industries, while energy-intensive development has
increased environmental pressures. China has committed
to peak carbon emissions by 2030 and achieve carbon
neutrality by 2060 at the 75th United Nations General
Assembly. Under these “dual-carbon” targets, sector-
specific low-carbon transition pathways are increasingly
required.

Tourism is a key service sector but also an important
source of carbon emissions due to its dependence on
transportation, accommodation, and supporting
infrastructure. With fast digitalization and tighter climate
constraints, it is necessary to clarify how digital
technology affects tourism carbon emission intensity.
Existing studies mainly address tourism carbon
measurement, digitalization-related mitigation
mechanisms, and regional heterogeneity.

1.1. Tourism carbon emission measurement

Tourism carbon emission intensity (carbon emissions per
unit of tourism output) is widely used to evaluate tourism
carbon efficiency (Sun 2023). However, measurement
remains challenging due to fragmented service chains and
heterogeneous activity boundaries, and large spatial
differences have been reported across destinations (Li et
al. 2024).

Two accounting approaches are common. Top-down
methods allocate emissions using energy balance sheets
and input—output tables (Kelly et al. 2007), while bottom-
up methods aggregate emissions from transport,
accommodation, and sightseeing (Dong et al. 2023). In
China, the lack of a unified tourism carbon accounting
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system often leads to boundary inconsistencies and
indirect estimation.

Tourism transport has long been emphasized because it
contributes more than 70% of global tourism-related
emissions, with aviation dominating this share (Bach
1996; Becken 2002; World Tourism Organization 2009;
Lenzen et al. 2018). In China, tourism transportation
accounted for nearly 90% of tourism emissions during
2000-2013 (Liu et al. 2019). Subsequent studies examined
spatial-temporal evolution and drivers using the Theil
index, exploratory spatial data analysis, STIRPAT models,
LMDI decomposition, and efficiency measures (e.g., SBM
and Super-SBM), documenting significant regional
disparities (Huang 2019; Huang et al. 2019; Shao 2020;
Yao et al. 2021; Cheng et al. 2023). Tourism scale and
energy use generally increase emissions, while lower
energy intensity and higher tourism productivity mitigate
emission growth (Huang et al. 2019; Yao et al. 2021).
Nevertheless, most studies focus on internal drivers, and
the role of external drivers—especially digital
technology—remains insufficiently addressed.

1.2. Digital
mechanisms

technology and emission-reduction

Digital technology is widely viewed as a driver of low-
carbon transition by improving efficiency, optimizing
resource allocation, and enabling real-time monitoring
(Gao et al. 2022; Dogan & Pata 2022; Zhang et al. 2021),
thereby supporting carbon neutrality targets (Zhong
2023). In tourism, digital infrastructure and smart services
are associated with service upgrading and higher-quality
development (Zhang & Shang 2022), and evidence
suggests that digital economy development improves
tourism carbon emission efficiency in China (Su et al.
2023).

At the macro level, platforms and data-driven governance
can support tourism growth and service upgrading (Kumar
2020; Cheng 2023; Yang 2023; Wu et al. 2023). At the
micro level, digitalization can enhance coordination and
factor allocation, increasing total-factor carbon
productivity (Bai et al. 2021). Firm-level studies further
report improvements in carbon performance following
digital transformation (Li 2024; Cai et al. 2024; Wang et al.
2024; Fang et al. 2025). Cross-sector evidence from
intelligent modelling and smart process control also shows
that digital technologies reduce energy use and emissions
(Gao et al. 2022; Zhang et al. 2021; Cai et al. 2024a; Cai et
al. 2024b; Cai et al. 2025; Ramachandran et al. 2025; Pydi
et al. 2025a; Sivasundar et al. 2025; Vijayakumar 2025;
Pydi et al. 2025b), supporting their application to tourism.

Importantly, the digital-carbon relationship may be non-
linear. Several studies identify an inverted U-shaped
relationship between digital economy development and
carbon emissions (Xu et al. 2025; Zhou et al. 2025),
suggesting that early-stage infrastructure expansion may
raise energy demand, while later-stage efficiency gains
and innovation dominate (Sun & Zhou 2022; Zeng 2025).

1.3. Regional heterogeneity and research gaps
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Tourism carbon emission intensity varies markedly across
China due to differences in development levels, resource
endowments, and industrial structure. Evidence from the
Yangtze River Economic Belt shows upstream-—
downstream differences and convergence trends (Huang
2019). Spatial analyses reveal high-intensity clusters in
eastern coastal provinces and lower-intensity clusters in
western regions (Yao et al. 2021), while efficiency studies
indicate higher tourism carbon efficiency in more
developed regions (Cheng et al. 2023).

The mitigation effects of digitalization also differ across
regions. Empirical studies suggest stronger carbon-
reducing impacts where digital readiness is higher and
weaker effects in less developed areas (Sun & Zhou 2022;
Zeng 2025). However, tourism studies often provide
limited mechanism-based explanations for heterogeneous
effects, and much of the non-linear digital-emission
literature remains at aggregate or multi-sector levels.

1.4. Contribution and positioning of this study

This study addresses these gaps by developing a tourism-
specific framework that constructs a refined measure of
tourism carbon emission intensity, tests the non-linear
impact of digital technology, identifies multiple
transmission mechanisms, and examines regional
heterogeneity across China. By integrating the Technology
Acceptance Model and Resource Allocation Theory, it
provides sector-level evidence on how digital
transformation supports low-carbon tourism under
China’s dual-carbon targets.

2. Theoretical Analysis and Research Hypotheses

To explain how digital technology affects tourism carbon
emission intensity, this study integrates the Technology
Acceptance Model (TAM) and Resource Allocation Theory
(RAT). TAM emphasizes micro-level adoption driven by
perceived usefulness and ease of use (Davis 1989). In
tourism, digital applications such as online booking, e-
ticketing, and smart management systems improve
operational efficiency and service quality.

RAT explains how digitalization reshapes the allocation of
capital, labor, and energy across sectors, redirecting
resources toward energy-saving equipment and intelligent
systems. In tourism, digital infrastructure supports energy
optimization, industrial upgrading, and green innovation.
Together, TAM explains adoption motivation, while RAT
clarifies how adoption translates into resource
reallocation and emission reduction, forming the basis for
the following hypotheses.

2.1. Efficiency improvement mechanism

Digital technology can reduce tourism carbon emission
intensity by improving energy efficiency and resource
utilization. Digital tools such as loT sensors, big data
analytics, and intelligent management systems enable
real-time monitoring and optimization of energy use in
tourism facilities. Online booking and e-ticketing further
reduce material inputs and operational costs, thereby
lowering emissions per unit of output.
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Hypothesis 1 (H1). Digital technology development is
negatively associated with tourism carbon emission
intensity.

This mechanism is consistent with RAT and supported by
studies showing that digital penetration improves
efficiency and reduces carbon intensity through better
resource allocation (Sun & Zhou 2022).

2.2. Industrial structure upgrading mechanism

Digital technology promotes industrial structure
upgrading in tourism by improving the efficiency of
information, capital, and logistics matching. It facilitates a
shift from high-carbon subsectors toward low-carbon and
high value-added activities, such as smart tourism and
digital services, thereby reducing overall carbon emission
intensity.

Hypothesis 2 (H2). Digital technology reduces tourism
carbon emission intensity by promoting industrial
structure upgrading.

Smart tourism platforms and Al-based management
systems further enhance energy efficiency and support
this structural transition. Empirical evidence confirms that
digital applications significantly reduce energy intensity
and emissions across tourism facilities (Li et al. 2024).

2.3. Innovation stimulation mechanism

Digitalization stimulates green innovation in tourism by
supporting new products, services, and management
models. Digital tools enable energy-saving solutions,
carbon monitoring, and innovative business models such
as virtual tourism and sharing platforms, which reduce
physical resource consumption.

Hypothesis 3 (H3). Digital technology reduces tourism
carbon emission intensity by enhancing green innovation
capacity.

Firm-level studies show that digital transformation
significantly promotes green innovation and improves
environmental performance, particularly in tourism
enterprises facing competitive and regulatory pressures
(Fang et al. 2025).

2.4. Non-linear mechanism

The impact of digital technology on tourism carbon
emission intensity may be non-linear. At early stages,
infrastructure expansion may increase energy demand,
while efficiency gains, industrial upgrading, and
innovation dominate beyond a threshold. At higher levels,
diminishing marginal returns and rebound effects may
weaken emission-reduction benefits.

Hypothesis 4 (H4). There exists an inverted U-shaped
relationship between digital technology development and
tourism carbon emission intensity.

Recent empirical studies document similar non-linear
dynamics between digital economy development and
carbon emissions (Xu et al. 2025; Zhou et al. 2025). This
study extends these insights to the tourism sector.

Figure 1 presents the integrated theoretical framework
based on TAM and RAT. Digital technology affects tourism
carbon emission intensity through three main channels—

efficiency improvement, industrial structure upgrading,
and innovation stimulation—while exhibiting potential
non-linear effects. These hypotheses are empirically
tested in the subsequent sections.

3. Data sources and modeling

3.1. Data sources and carbon emissions stripping methods

This study employs a balanced panel of 30 provincial-level
regions in mainland China from 2011 to 2022. Tibet
Autonomous Region, Hong Kong, Macao, and Taiwan are
excluded to ensure data consistency and comparability.
Tibet is omitted because its tourism sector is highly
specialized (e.g., religious pilgrimage and eco-tourism),
exhibits atypical carbon emission patterns, and lacks
complete tourism-related energy statistics over the study
period. Moreover, Tibet's digital infrastructure and
technology adoption lag substantially behind other
provinces, and its distinctive policy environment may
generate leverage effects in regression estimation.
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Figure 1. Systematic analysis framework based on TAM model
and RAT theory

Hong Kong, Macao, and Taiwan are excluded because
they are not fully integrated into the mainland provincial
statistical system. Differences in statistical definitions,
data availability, and institutional contexts—together with
their exceptionally high levels of digital penetration—
would introduce heterogeneity that could bias parameter
estimates. As a result, the empirical analysis focuses on
mainland provinces with comparable economic structures,
digital development trajectories, and policy frameworks.

Potential bias from these exclusions is limited. The
omitted regions account for a small share of national
population and tourism activity, and the use of two-way
fixed effects further absorbs time-invariant regional
characteristics and nationwide shocks. Nevertheless, the
results do not capture high-altitude tourism dynamics in
Tibet or highly urbanized digital ecosystems such as Hong
Kong, which is acknowledged as a limitation.

The source of basic data consists of two main aspects:



(1) Primary data on carbon emissions from tourism at the
provincial level. Raw data on carbon emissions from
tourism at the provincial level are obtained from
provincial statistical yearbooks and official.

(2) Data on 12 types of end-use energy consumption in
tourism-related industries. The consumption of 12
end-use energy sources (raw coal, coal, coke, crude
oil, gasoline, kerosene, diesel fuel, fuel oil,

In order to estimate the direct energy consumption of

China's tourism industry, we used the industry association

weight coefficient method for energy consumption

stripping:

Industry association coefficient (): Firstly, the industry

association coefficients are calculated based on the

proportion of the output value of tourism-related
industries (transportation, storage and postal services,
wholesale and retail.

The coefficient matrix is used to deconstruct the end-use
energy consumption of the tertiary industry in China, and
obtain the baseline value of energy consumption of
tourism-related industries.

Terminal energy decomposition (Ej): the terminal energy
consumption of each tertiary industry is assigned to
tourism-related sub-industries using the Pit coefficient.

Tourism Development Coefficient (R:): Calculate tourism-
specific adjustment coefficients, i.e. the ratio of tourism
revenue to tertiary GDP for each province and year.

Tourism Energy Consumption (E:): the product of R:, Pi
and E; yields the estimated direct energy use of the
tourism industry in each province, as shown in equation

(2):

E, =R,.Z(p,.,.Ey.) (1)

Specific explanation:

E: is the total energy consumption of the tourism industry
in the province,

R: is the coefficient of tourism development,

Pit is the share of tourism-related industries in the tertiary
industry,

Ejj is the sectoral end-use energy consumption by energy
type.

Using these energy consumption estimates, we
subsequently calculated carbon emissions by applying
fuel-specific emission factors and national CO2 conversion
factors in accordance with the IPCC guidelines, as shown
in Equation (2)(3):

C =2 (Efh) (2)

G (3)

Tourism Revenue,

V4

where C: is the overall carbon emissions and G, is the
carbon intensity (in tons per million dollars of tourism
revenue).
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(3) Robustness analysis of the energy stripping method.
This suggests that the energy stripping approach used
in this study is methodologically robust and relatively
insensitive to modest changes in the base.

(4) To address potential concerns regarding the
robustness and credibility of the tourism carbon
emissions estimates derived from the energy
stripping method, this study undertook a multi-
pronged reinforcement strategy.

For transparency, the values and data sources of the

tourism energy decomposition parameters (a, B, y) and

sector-specific emission factors used in equations (1) — (3)

are reported in Appendix A.

3.2. Horizontal spatial disaggregation of carbon emission
intensity in China's tourism industry

From the horizontal spatial stratification of carbon
emission intensity of China's tourism industry, it can be
seen that the overall carbon emission intensity of China's
tourism industry decreases from 2011 to 2022, and the
provinces with lower values of carbon emission intensity
that remain at low levels include Qinghai, Gansu, Ningxia,
Xinjiang, Jilin, Beijing, Hebei, and Fujian.

Figure 2. Spatiotemporal Distribution of Carbon Emission
Intensity in China's Tourism Industry. (a)Spatial Quantile Map of
Carbon Emission Intensity in China's Tourism. (b)Spatial Quantile

Map of Carbon Emission Intensity in China's Tourism Industry
(2014). (c) Spatial Quantile Map of Carbon Emission Intensity in
China's Tourism Industry (2018). (d) Spatial Quantile Map of
Carbon Emission Intensity in China's Tourism Industry (2022)

This map is based on the standard map No. GS [2024]
0650 downloaded from the standard map service website
of the Map Technical Review Center of the Ministry of
Natural Resources, with no modifications to the base map.
The bottom map is the same.

Meanwhile, the spatial quantile map of the development
level of digital technology in China's tourism industry
shows that digital technology in China's tourism industry
has developed rapidly from 2011 to the present, and the
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new crown virus has promoted the use of digital transformation of the industrial structure and
technology in the tourism industry to promote the development (Table 1).
Table 1. Digital technology indicator system
Target Layer Subsystem layer Indicator layer Unit Attribute
Number of 5G base stations Number of Base N
and coverage rate (%) Stations/Coverage Rate (%)
Market Penetration Rate Market share (%) +
. Number of Data
Data Center Size and Energy .
- Centers/Energy Efficiency +
Efficiency
(kWh/GB)
Digital technology Internet Access Rate (Fixed & (Number of users per 100 N
infrastructure Facility Mobile Broadband) people)
Construction Internet of Things Device (Number of devices per 1,000 N
Penetration Rate people)
Smart device penetration rate
Number of users (per 100
(smartphones, smart home +
. people)
devices, etc.)
Penetration rate of electronic Frequency of transactions N
payment systems (per month)
Wireless Communication
Coverage area (%) +
Technology Coverage
High Performance Computin
g 'p g Investment (RMB billion) +
Platform Construction
Data Privacy Protection Technology Adoption Rate N
Digital technology level Technology Application (%)
Market Penetration of Cloud
Digital technology ) ) Market share (%) +
" L Computing Services
specific Application - -
. Intelligent Transportation -
penetration rate . Investment (RMB billion) +
System Construction
Application and Popularization . .
. . Equipment Penetration Rate
of Intelligent Manufacturing (%) +
Technology ?
Application rate of artificial
intelligence (Al) in various Application coverage rate (%) +
industries
Application of Intelligent
it . & Proportion of users (%) +
Education Technology
Intelligent Retail System
& L 4 Market coverage (%) +
Applications
Digital Technolo, Data Mining and Analysis
& . g.y & . .y Enterprise Adoption Rate (%) +
Generation Benefits Technology Application
Number of Access Users
5G Network Access Capacity - +
(million)
High-speed Internet Investment amount (RMB N
Infrastructure Construction billion)

3.3. Construction of Digital Technology Indicator System

3.3.1. FA-PCA-Based Digital Technology Indicator System
for Tourism

Factor analysis (FA) and principal component analysis
(PCA) were used to construct the digital technology
indicator system. All indicators were standardized to
ensure comparability. Factor analysis (FA) was used to
identify potential factors by grouping related indicators
into subsystem layers such as "digital technology
infrastructure construction", "digital technology
application penetration" and "digital technology benefits".

To enhance conceptual alignment, we critically reviewed
and removed any indicators deemed insufficiently
relevant to the tourism context. The revised indicator

system retains only those dimensions that contribute
meaningfully to capturing digital infrastructure,
application breadth, and spillover benefits to tourism.
Each retained indicator is explicitly mapped to its
theoretical contribution.

The composite index is constructed using an objective
entropy—TOPSIS procedure to minimize subjective
weighting.

N

e,=—ky p,Inp,.k=(nN)", and its divergence d, =1-e¢,.
i=1

The entropy

weight is then



d, - : . .
o, :W’ assigning greater weight to indicators with
m=1—m

higher cross-provincial discrimination.

S = \/Z(a)jzij —4; ). S = \/Z(a)jzij _A;)Z
7 j

and the closeness coefficient is.

G =#e[0,1]
S+,

i

which serves as the province-level digital technology
score. Factor analysis/PCA is used diagnostically to assess
dimensional coherence and redundancy (e.g., loading
structure, variance capture) rather than to set weights;
entropy-TOPSIS supplies the final, data-driven weights
and aggregation (Figures 3 and 4).
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Figure 3. Spatiotemporal Distribution of Digital Technology
Development Level in China's Tourism Industry. (a)Spatial
Quantile Map of Digital Technology Development Level in China
(2011). (b) Spatial Quantile Map of Digital Technology
Development Level in China (2014). (c)Spatial Quantile Map of
Digital Technology Development Level in China (2018). (d)
Spatial Quantile Map of Digital Technology Development Level in
China (2022)

Table 2. Descriptive statistics results of all empirical test variables
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3.3.2. Index validity and robustness.

Multiple checks support the validity and robustness of the
digital technology index. The index rankings align well
with provinces widely recognized as digital leaders, while
lower-ranked provinces are typically less developed
western regions. In addition, correlation tests with
alternative digital proxies and sensitivity analyses using
modified indicator sets confirm that the index and
subsequent regression results are stable.

3.4. Data modeling

The paper selected the digital technology sample data of
China's 30 provincial panels during the period of 2011-
2022 and measured the level of digital technology using
the entropy weight TOPSIS method.

The study systematically implemented multidimensional
statistical diagnostic procedures prior to modeling. Firstly,
Pearson's bivariate correlation analysis (Pearson's r) was
carried out to initially explore the characteristics of the
association between variables. It can be seen that the
core explanatory variable, Digital, is statistically
significantly and positively associated with Carbon, a
finding that is directionally different from theoretical
expectations.

In order to ensure that the various types of indicators
analyzed cover different dimensions (such as government
intervention, technological expenditure, industrial
structure, etc.), and there is no overlap in the theoretical
logic of each other, the study adopts.

Under the econometric theoretical framework of panel
data modeling, the applicability of models needs to be
systematically examined in terms of the structural
suitability of mixed regression models, fixed effects
models and random effects models.

According to the results of Hausman test, the fixed effect
model was chosen due to the existence of the test
probability 0<P<0.05, Hausman test as well as the F-test
result statistic were significant to reject the original
hypothesis (Tables 2 to 6).

VarName Obs Mean Min Median Median
carbon 360 7.014 0.817 4.094 7.171 8.804
digital 0.130 0.130 0.126 0.126 0.019 0.827

GDP 360 9.905 0.870 7.421 9.959 11.768
gov 360 0.247 0.102 0.107 0.224 0.224
tech 360 0.005 0.003 0.003 0.004 0.004
edu 360 0.039 0.014 0.021 0.034 0.091
open 360 0.017 0.025 0.000 0.007 0.152
struc 360 0.480 0.480 0.297 0.475 0.839
Table 3. Correlation coefficient matrix test results
carbon digital GDP gov tech edu open
carbon 1.000
digital 0.257*** 1.000
GDP 0.640*** 0.725%** 1.000
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gov -0.486*** -0.463*** -0.818*** 1.000
tech 0.003 0.483*** 0.186*** -0.095%* 1.000
edu -0.326*** -0.450*** -0.714%** 0.887*** -0.139%** 1.000
open 0.048 0.398*** 0.300%** -0.357%** 0.508*** -0.413%** 1.000
*¥% p0,01, ** p<0.05, * p<0.1
Table 4. Covariance test results of selected indicators
VIF 1/VIF
gov 7.951 126
GDP 6.168 0.162
edu 5.002 0.2
digital 3.304 0.303
tech 1.706 0.586
open 1.641 0.609
Mean VIF 4.295
Table 5. Hausman test and F-test results
Hausman test F test
chi2 statistic p value result chi2 statistic p value result
25.55 0.000 reject 12.66 0.000 reject
Table 6. Analysis of benchmark regression results of fixed-effects model
VARIABLES (1) carbon (2) carbon (3) carbon
» -1.908*** -2.607*** -2.469%**
digital
(-25.40) (-16.46) (-8.82)
1.136*** 1.201***
GDP
(10.65) (14.11)
2.713%** 1.396
gov (3.89) (1.43)
36.795%** 33.502***
tech
(4.87) (4.10)
14.797***
edu
(4.44)
2.934
open (0.94)
6.875%** -5.486*** -6.433***
Constant
(445.42) (-4.48) (-6.08)
Observations 360 360 360
R-squared 0.580 0.638 0.646
Number of groups 30 30 30
area YES YES YES
year YES YES YES

t-statistics in parentheses, *** p<0.01, ** p<0.05, * p<0.1
3.4.1. Two-way fixed effects model setting and diagnosis

Model structure: a panel two-way fixed-effects model is
used to control individual heterogeneity () and time
trend (A:), and the specific calculation process is shown in

equation (4).
The regression result equation is:
carbon, = ¢, + fdigital,, + (4)
B, scontrols, +y, + 4, +¢,
Controls: set of control variables (including GDP, gov, tech
and other variables)
olo: constant term
Prs: Coefficients of each explanatory variable
#: individual fixed effects

Ar: time fixed effect

&t: random perturbation term

The within-group R? of models (1) to (3) improves from
0.580 to 0.646, indicating that the gradual inclusion of
control variables enhances the explanatory power of the
model to capture 64.6% of the sources of variation in
carbon emission intensity. Meanwhile, the F-statistic was
significant (P<0.01), verifying the overall validity of the
model.

The coefficients of digital technology in the three models
are negative and highly significant (P<0.01), specifically -
1.908 (model 1), -2.607 (model 2), -2.469 (model 3),
indicating that for every unit of improvement in digital
technology, the intensity of carbon emission will be
reduced by 1.9 units on average.

3.4.2. GMM model setting and diagnosis

To address potential bidirectional causality and other
endogeneity concerns between digital technology



development and tourism carbon emission intensity, a
dynamic panel data model is estimated using the System
GMM approach. Tourism carbon emission intensity is
treated as a dynamic process, as past emission
performance may influence current outcomes through
persistence effects.

Endogeneity may arise from three main sources. First,
reverse causality may exist because digital technology can
reduce carbon emission intensity, while regions with
higher emissions may simultaneously increase investment
in digital technologies to improve energy efficiency.
Second, omitted variables, such as economic development
level, industrial structure, and environmental regulation
intensity, may jointly affect both digitalization and carbon
emissions. Third, measurement error may be present
because digital technology development is captured by a
composite index. These issues can lead to correlation
between explanatory variables and the error term, biasing
conventional fixed-effects estimates.

Accordingly, this study adopts a two-step System GMM
estimator. Lagged values of endogenous variables are
used as internal instruments, while external instruments
are constructed based on historical and geographic
characteristics to strengthen identification.

3.4.3. Instrument selection and validity tests

External instrumental variables include historical
communication infrastructure (e.g., landline telephone
penetration in the 1980s and historical postal network
density), which reflect early information connectivity and
are strongly correlated with contemporary digital
development but unlikely to directly affect current
tourism carbon emission intensity. In addition, geographic
characteristics, such as terrain ruggedness, are used to
capture exogenous variation in digital infrastructure
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deployment costs. These variables influence digital
accessibility but do not plausibly affect tourism-related
carbon emissions directly once economic and geographic
controls are included. Time-interaction terms are applied
to introduce sufficient panel variation.

Diagnostic tests confirm the validity of the instrument set.
The Hansen J-test yields a p-value of 0.483, indicating that
the overidentifying restrictions cannot be rejected. The
Arellano—Bond AR (2) test shows no evidence of second-
order serial correlation, supporting the consistency of the
System GMM estimates.

Differences in coefficient magnitudes across estimation
methods are theoretically expected. Compared with
pooled OLS and fixed-effects models, the System GMM
estimator accounts for dynamic dependence and corrects
for endogeneity, resulting in more conservative but more
reliable estimates. Importantly, the sign and statistical
significance of the digital technology coefficient remain
stable across specifications.

In summary, the dynamic panel model specified in
Equation (5) provides a robust framework for identifying
the causal impact of digital technology on tourism carbon
emission intensity.

Cl=aCl, +pDT+yX +u+2A+¢, (5)
Where denotes the carbon emission intensity (e.g., carbon
dioxide emission per unit of GDP) of region in the period
of, denotes the indicator of the development level of
digital technology (e.g., the digital economy index or the
level of information infrastructure), is the vector of other
control variables.

Table 7. Impact of digital technology on carbon emission intensity - comparison of fixed effects and GMM estimation results

Variable FE Model D-GMM S-GMM
L.Carbon Intensity 0.297*** 0.354%***
Digital Technology Index -0.053* -0.075** -0.082***
Per Capita GDP 0.234%** 0.218*** 0.206***

(Per Capita GDP)"2 -0.021** -0.019* -0.018*
Urbanization Rate -0.046* -0.061* -0.072**
Energy Consumption 0.117%** 0.112%** 0.105***

R&D Intensity -0.063* -0.057* -0.049*

Policy Dummy -0.024 -0.035 -0.038*
Pandemic Dummy (2020) -0.101*** -0.113%** -0.119%**
Pandemic Dummy (2021) -0.082** -0.093*** -0.098***
Constant 0.857*** 0.634*** 0.592%**

Table 7 reports the regression results on the impact of
digital technology on tourism carbon emission intensity
using fixed-effects, difference GMM, and system GMM
estimators. Among these methods, the system GMM
approach more effectively addresses endogeneity and
yields more reliable estimates of the core coefficients.

The system GMM results show that the coefficient of
digital technology development is negative and
statistically significant at the 1% level, indicating that
advances in digital technology significantly reduce tourism

carbon emission intensity. This finding suggests that
digitalization improves resource allocation efficiency and
facilitates low-carbon transformation. The lagged term of
carbon emission intensity is positive and significant, with a
coefficient between 0 and 1, confirming the presence of
dynamic persistence in carbon intensity and implying that
emission adjustments occur gradually over time.

The estimated effects of control variables are generally
consistent with theoretical expectations. GDP per capita
and its squared term exhibit a significant inverted U-
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shaped relationship, supporting the Environmental
Kuznets Curve hypothesis. Energy consumption has a
positive and significant effect on carbon emission
intensity, while the urbanization rate shows a negative
and significant coefficient in the system GMM estimates,
suggesting that urbanization contributes to lower carbon
intensity through more efficient energy use and stricter
environmental regulation. R&D investment intensity also
has a negative effect, indicating that technological
innovation helps reduce carbon emission intensity. The
stability of these results across different estimation
methods further supports the robustness of the empirical
findings.

4. Analysis of Research Results

4.1. Baseline FE-GMM Estimation and Nonlinear Effects of
Digital Technology on Carbon Intensity

This study empirically examines the relationship between
digital technology development and carbon intensity
based on the two-way fixed effects model (Two-way FE)
as well as the GMM model, and Table 8 presents the
results of the three-stage regression.

In order to test the potential nonlinear dynamic
relationship between the level of digital technology
development and carbon emission intensity, this study
constructs a nonlinear extended model based on the
quadratic function setting, and systematically introduces
Table 8. Non-linear relationship test results

the triple term of the level of digital technology
development (digital3) in the baseline.
carbon, = a,+ f3, digital, + 3, digital” (6)

+B,digita; + X B, Controls, + y,+ 4,

It can be seen that the square term of digital technology ()
has a positive correlation with carbon emission intensity
(Carbon) at 1% significance level, and digital technology ()
has a negative correlation with carbon emission intensity
(Carbon)

4.2. Instrumental variables and dynamic identification

To address potential bidirectional causality between
digital technology and tourism carbon intensity, the
empirical strategy combines province—year two-way fixed
effects with a dynamic system GMM specification that
uses both internal and external instruments. Instrument
counts are restricted by collapsing and limiting lag depth
to avoid proliferation.

4.3. Diagnostics and estimator behavior

Instrument validity and the dynamic specification are
supported by formal tests. The Hansen J-test does not
reject the overidentifying restrictions (p = 0.483),
indicating that the instrument set is orthogonal to the
structural errors.

VARIABLES VARIABLES
digitalt -3.709***(-19.59)
digital? 1.384%*** (3.03)
digital® -2.687(-0.76)

GDP 1.247*%*(13.08)
gov 1.481(1.53)
gov 1.481 (1.53) 33.514*%*(4.07)
edu 14.222%%*(4.41)
open 3.612(1.16)
Constant -Constant(-5.99)
Observations 360
Number of groups 30
area YES
year YES
R-squared 0.648

t-statistics in parentheses, *** p<0.01, ** p<0.05, * p<0.1
In the cubic model, the theoretical inflection point of the
U-shaped relationship is calculated as shown in Equation

(7) (8):

7
digital” = _ B 7)
2 2
_ 8
digital’ = ——% <1 34 (8)
2x1.384

Statistical significance tests were performed for the U-
shaped inflection points. According to the results of the
estimated parameters, the inflection point 1 is about 3.65
and the inflection point 2 is about 9.84; it falls within the
actual interval of the sample Digital indicator and its
confidence interval is statistically.

4.4. Cross-model consistency and turning-point stability

Differences in coefficient magnitudes across pooled OLS,
two-way FE, difference GMM, and system GMM are
theoretically expected. These convergent qualitative
findings, alongside the favorable GMM diagnostics,
strengthen the inference that the documented digital—
carbon nexus reflects a causal mechanism under standard
panel assumptions.

5. Discussion of Research Results
5.1. Discussion of Heterogeneity of Research Results

Based on the panel data of 30 provinces from 2011 to
2022, we first cluster the provinces with K-means based
on GDP per capita and the proportion of the tertiary
industry, and then use quantile regression within each
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group to examine the impact of digital technology on
carbon emission intensity. The results of the analysis are
as follows.

5.1.1. Cluster analysis process and steps

Cluster analysis. K-mean clustering (K=3) was used to
group the provinces. The data are divided into K clusters,
which makes the data points within the clusters have high
similarity and high differences between the clusters. The
algorithm is simple and efficient and is suitable for
discovering  subsets of provinces with similar
characteristics.

Quantile regression. k-mean clustering is shown in Figure
5.

The heterogeneity analysis was refined to ensure
methodological robustness and interpretability. These two
dimensions are widely recognized in the literature as the
most fundamental characteristics differentiating Chinese
provinces in terms of both development and industrial
orientation (Sun & Zhou 2022; Wang et al. 2023). This
validation suggests that the two-variable clustering is
sufficient for stratifying provinces in a meaningful way.

The resulting clusters align closely with widely
acknowledged regional divisions: Cluster 1 represents
high-development provinces (e.g., Beijing, Shanghai,
Jiangsu, Zhejiang, Guangdong); Cluster 0 includes
medium-level provinces (e.g., Hunan, Hubei, Henan,
Anhui), while Cluster 2 consists primarily of low-
development.

Nonlinear Relationship between Digital Technology and Carbon Emission Intensity
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Figure 4. Digital technology and carbon emissions intensity non-
linear relationship U-shaped graph

The high group (high per capita GDP, high industrial
proportion provinces) mainly includes economically
developed regions, such as Beijing, Shanghai, Guangdong,
Jiangsu, Zhejiang, Shandong, Fujian, Hubei, Hunan, Anhui,
Liaoning, etc.

The quantile regression results (Tables 9-11) reveal
differentiated impacts of digital technology across clusters
Table 9. Quartile regression results for the high group

MA AND ZENG

and intensity levels. In the high-development group
(Cluster 1), digital technology significantly reduces tourism
carbon intensity at the 25th and 50th percentiles but
loses.

For the low-development group (Cluster 2), the effect of
digital technology is not significant at the 25th percentile
but becomes strongly negative at the 50th and 75th
percentiles.

K-Means Clustering of Provinces (2022)

Beiing

e

Tertiary Industry Share
)
>
2

85 9.0 95 105 11.0 115

10.0
GDP per Capita
Figure 5. K-mean clustering schematic diagram

5.1.2. Analysis and Interpretation of Results for
Representative Provinces

The heterogeneity analysis based on representative
provinces further illustrates the differentiated effects of
digital technology on tourism carbon emission intensity.
For high-development provinces (e.g., Beijing and
Guangdong), digital technology exhibits a significant
negative effect on carbon emission intensity at lower
quantiles, indicating that early-stage efficiency gains and
structural optimization play a dominant role.

In  middle-development provinces (e.g., Tianjin and
Shanxi), the mitigation effect of digitalization is more
evenly distributed across quantiles, suggesting a relatively
balanced decarbonization process as digital adoption and
industrial upgrading progress simultaneously.

In low-development provinces (e.g., Ningxia and Hainan),
the estimated effects are less stable, partly due to limited
sample size and uneven digital infrastructure. Overall,
digital technology generally suppresses tourism carbon
emission intensity, but its effectiveness varies across
development stages and emission levels. These findings
are consistent with existing studies emphasizing that
digital-driven emission reduction is more pronounced in
economically advanced regions, while institutional
constraints and infrastructure bottlenecks may weaken its
impact elsewhere.

Variable 0.25 quantile 0.50 quantile 0.75 quartile
digital -2.513*** -2.510*** 0.696
Per Capita GDP 1.079*** 1.211%** 0.474%**
tertiary sector -1.210** -0.504 -0.884
open 4.171%** 1.711 1.279
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gov 7.359%** 6.844%** 9.387***
edu -11.453 -7.336 -33.825%*
tech -6.904 6.687 -42.185%*
Constant -4.279** -5.814*** 2.489
Table 10. Median group quartile regression results
Variable 0.25 quantile 0.50 quantile 0.75 quartile
digital -25.034%** -20.710%** -14.908***
Per Capita GDP -4,188*** -3.847*** 0.257
tertiary sector 3.019** 3.970%** 5.880%***
open 127.287*** 114.819%** 105.071***
gov 31.280*** 26.837*** 10.639%**
edu -130.710*** -70.858*** -141.941***
tech 114.434** 32.229 95.349**
Constant -17.122%** -17.989*** -10.874%**
Table 11. Results of low-component quantile regression
Variable 0.25 quantile 0.50 quantile 0.75 quantile
digital -78.175 -98.117%** -95.257**
Per Capita GDP 1.573 2.208** 2.775*
tertiary sector 6.960** 8.622%** 5.777*
open -13.249 -20.650** -9.054
gov 1.623 1.864 4.036**
edu -16.529 -4.984 -20.630**
tech 63.349 25.048 63.191
Constant -8.124 -13.689 -17.152
*Note: Quartile regression results for high, medium and low groups (*p<0.1, **p<0.05, ***p<0.01).
To avoid over-interpretation, unobserved factors such as Mediator = o+ - digital,, (9)

local policy interventions, governance capacity, and
infrastructure conditions are acknowledged as potential
contributors to the observed heterogeneity.

5.2. Test of Influence Mechanisms

5.2.1. Mechanism analysis of multiple intermediary
pathways

In order to further explore the transmission mechanism of
digital technology to reduce the carbon emission intensity
of tourism, this paper extends the mediation analysis
beyond industrial structure upgrading. Specifically, we
integrate three core mechanisms into a multiple
mediation framework: (1) Industrial structure upgrading
(ISU). (2) Energy efficiency improvement (EEI). (3)
Technological Innovation Capacity (TIC).

5.2.2. Theoretical principles of multiple intermediation

ISU: Digital infrastructure facilitates service-oriented
tourism transformation and reduces dependence on
energy-intensive inputs.

EEl: Digital applications (e.g., smart energy management,
digital twin simulation) optimize energy allocation in
tourism operations.

TIC: Digitalization enables low-carbon innovations (e.g.,
green building technologies, Al in traffic management) to
reduce emissions.

5.2.3. Empirical strategy

Structural Equation Modeling (SEM) was constructed to
capture the indirect impacts of Digital through three
intermediaries on Carbon. The specific calculation process
of the model structure is shown in Equation (9) (10):

+}/./" Xit+ /’li+ vit+ gi{ (] = 1’ 2’ 3)

3 . (10)
Carbon, =0+ Zﬁj- Mediator;, +

Jj=1

¢-digital, + 1- X, + u+v+¢,
DIGITAL is the digital development index.
Mediator_1 = ISU, Mediator_2 = EEI, Mediator_3 = TIC.

Xit is a vector of control variables (GDP, gov, open, edu,
tech).

L4, vt are province and year fixed effects.

Bootstrapping (500 replications) was used to test the
significance of each indirect effect path.

In order to operationalize the three mediating
mechanisms, this study adopts clear and measurable
proxies that align with established empirical practice.

The SEM specification incorporates both the direct path
from digital technology to carbon intensity and the three
indirect paths operating through ISU, EEl, and TIC.
Structural equations are presented to detail the linkages
between the exogenous digital technology.

To reduce the risk of confounding, the SEM includes the
same set of control variables as the baseline regression
models, including GDP per capita, government
expenditure, openness, education level, and technological
input. This consistent inclusion ensures that the mediation
effects identified are not attributable to omitted-variable
bias.
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5.2.4. Results and Interpretation

The indirect effects of digital technology through all three
mediators are statistically significant and the results of the
SEM analysis are shown in Table 12.

The results reported in Table 12 show that all three
indirect pathways are statistically significant. The indirect
effect of digital technology on carbon intensity through
ISU is —0.048 (p < 0.01), suggesting that structural
upgrading plays a major.

The direct effect of digital technology on carbon intensity
becomes smaller and only marginally significant once the
mediators are accounted for, underscoring that much of
the effect operates indirectly through the identified
pathways. This provides empirical support for the
hypothesis that digitalization reduces emissions intensity
primarily by altering industrial structure,

Practical evidence further illustrates the mechanisms
identified. For example, the “Smart Scenic Area” initiative
in Zhejiang Province reduced electricity consumption by
approximately  15%  through loT-based energy

Table 12. Results of SEM mechanism analysis
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management, exemplifying the EEl pathway. Similarly,
Hainan’s rapid growth in green technology patents linked
to tourism showcases the TIC pathway by translating
digital transformation.

The path diagram of the impact of digital technology on
tourism carbon reduction is shown in Figure 6.

5.3. Discussion on the robustness of the research results

In the baseline regression, the core explanatory variable
Digital is significantly negatively correlated with the
dependent variable Carbon, in order to avoid the
endogeneity problem due to bidirectional causality and
explore the possible time lag in the influence.

The study conducted 1st and 2nd order lags for all
explanatory variables, and after regression again the
results of the study show that the core explanatory
variable (Digital) is significantly negatively correlated with
the dependent variable (Carbon) at the 1% significance
level. It also means that the development and use (Tables
13 and 14).

Pathway Indirect Effect p-value
Digital-> ISU-> Carbon -0.048%** <0.01
Digital-> EEI- Carbon -0.035** <0.05
Digital-> TIC-> Carbon -0.029** <0.05

Digital-> Carbon -0.021 <0.1
Total effect -0.133 <0.01
Table 13. Analysis of robustness results
VARIABLES f1_carbon f2_carbon
digital -2.760%**(-7.86) -2.146%*%(-25.18)
GDP 1.443***(14.62) 1.265***(11.36)
gov 2.374*%%(3.13) 1.463(1.34)
tech 28.413***(3.10) 26.327*%(2.28)
edu 16.249***(3.02) 15.173**(2.23)
open 1.160(0.33) 3.752%%(2.41)

Constant -9.064***(-8.34) -7.064***(-5,74)

Observations 330 300

R-squared 0.646 0.640

Number of groups 30 30
area YES YES
year YES YES
digital -2.760*** -2.146%**
(-7.86) (-25.18)
t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Table 14. Relationship between digital technology and carbon emission intensity
Variables Coefficient Standard Error Significance
DT -0.128 0.032 ol
Cl_{t-1} 0.562 0.061 ok
Policy -0.042 0.021 **
DTxPolicy -0.087 0.029 ol
Covid2020 -0.164 0.047 ol
Covid2021 -0.102 0.045 *x
GDP -0.031 0.014 *x
structure 0.015 0.01 *
Energy intensity 0.094 0.033 *oAk
Rate of urbanization -0.058 0.024 *x
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Intensity of environmental regulation Constant terms

-0.012 0.008 *

Constant terms

0.973 0.285 ok

(1) Confirmation of the direction of causality

The lagged model strips out the reverse causal
interference (i.e., the reverse effect of the dependent
variable on the independent variable) through "time
isolation", if the inhibition effect of digital technology on
carbon emissions is still significant in the lagged model, it
indicates that the digital technology drives the reduction
of carbon emissions.

(2) Continuity and Stability of Inhibition Effect

The emission reduction effect of digital technology is still
significant in the lag 1-2 period, indicating that the impact
of digital technology has long-term and continuity. For
example, the scenic area has adopted intelligent lighting
system to continuously.

(3) Analysis of the impacts of policy changes and epidemic
shocks on the carbon emission intensity of digital
technologies

In order to further identify the interference or
enhancement mechanisms of policy changes and
epidemic shocks on the path of digital technology
affecting the carbon emission intensity of the tourism
industry, this paper introduces the dummy variables of
"dual-carbon" policy (Policy) and epidemic year
(Covid2020, Covid2021) into the baseline regression.

Digital Technology
DIG)

Industrial Structure

Enangy Efficiency
Upgrading (151} el

Improvement (EEI}

Technologica
Innavation (MC)
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Carbon Emissio
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Figure 6. Path diagram of the impact of digital technology on
carbon emission intensity

It can be seen that digital technology has a significant
inhibitory effect on carbon emission intensity, and the
coefficient of the core variable is -0.128 and is significant
at the 1% significance level.

From the estimation method, the dynamic panel
regression is conducted by using system GMM, and the p-
value of the AR(2) test is 0.274, which does not reject the
original hypothesis, indicating that the model does not
have second-order.

In order to further identify the potential impacts of the
policy environment and public health emergencies on the
carbon emission intensity of tourism, and to examine their

moderating effects on the mechanism of digital
technology, the study introduces the dummy variables of
the "dual carbon" policy and the shock of new crown
epidemics as well.

Carbonlntensity, = £, + f,DT, + B,Policy, + 3,Covid2020, +
B,Covid2021, + B (DT, x Policy, ) + j3; (DT, x Covid2020, )+
B, (DT, xCovid2021, )+ y X, + pt, + A, + &,

(11)

where: Carbonintensity: denotes the carbon intensity of
tourism in that year denotes the development level of
digital technology; and Policy: is a dummy variable for the
"dual-carbon" policy, whose value is 1 in 2020 and
beyond, and 0 otherwise.

Covid2020 and Covid2021 are dummy variables for the
impact of the epidemic in 2020 and 2021, respectively,
and are interaction terms to test the moderating effect of
the policy and the epidemic on the carbon reduction
effect of digital technology.

DTixPolicys, DTixCovid2020:;, DTixCovid2021; are the
control variable matrices, where y corresponds to the
coefficient vector;

Mi is a region fixed effect, A+ denotes a time fixed effect,
and &t is a disturbance term.

The coefficient of the interaction term is -0.087, which is
also significant at the 1% level, indicating that the carbon
emission reduction effectiveness of digital technology has
been significantly enhanced since the 2020 "dual-carbon"
target was proposed. Combined with the results of the
trend graphs, the carbon emission intensity shows (Figure
8).

The extended model not only considers the direct impacts
of macro policy changes and emergencies on carbon
emissions, but also further explores whether they have
indirect impacts by enhancing or weakening the emission
reduction path of digital technologies,

1.2 Carbon Intensity
Digital Technology Index
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Figure 7. Comparison of digital technology and carbon emission
intensity before and after the "dual-carbon" policy

At the same time, in 2020, 2021, the carbon emission

intensity of tourism cliff decline and 2022 rebound trend.
As shown in Figure 8.

Through the above analysis, digital technology (DT)
significantly reduces the carbon emission intensity of
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tourism with a coefficient of -0.128, which is significant at
the 1% level. These findings provide solid empirical
support for the promotion of digital technology-enabled
green tourism.

5.4. Robustness test of the research results

In order to verify the reliability and extrapolation of the
core regression results, this paper carries out robustness
tests in four dimensions, including sample period change,
placebo test, Monte Carlo simulation and counterfactual
simulation.

Carbon Intensity
= -

o

08

2018 2019 2020 2021 2022
Year

Table 15. Robustness analysis after sample period adjustment

MA AND ZENG

Figure 8. Line graph of the trend of tourism carbon emission
intensity in epidemic years

5.4.1. Sample period adjustment

Sub-sampling regression by dividing the sample into a pre-
epidemic phase and a post-epidemic policy intensification
phase (2017-2022) shows that the mitigation effect of
digitalization on carbon intensity holds in both phases.
According to the following sub-sample re-estimation
models, the effects of digital technology on tourism
carbon intensity are all significantly (Table 15).

5.4.2. Placebo test

To rule out spurious correlations, pseudo-regressions are
constructed with 500 random permutations of the
numerical technical indicators (holding the control
variables constant with the panel structure). The true
estimates are well outside the 95% confidence interval of
the placebo distribution, indicating that the effect
relationship is not by chance. As shown in Figure 9.

Sample Period Digital Coef p-value R-squared Significance
2011-2019(Pre-pandemic) -0.0309 0 0.9059 *okx
2017-2022 (Post-policy) -0.0307 0 0.897 *Ek
50 constructed by simulating 1,000 sets of beta values
centered on the main estimate (-0.078) with the standard
40 error set to 0.01. The distribution of estimates is
symmetric, with the main estimate at the center, and
g3 more than 95% of the simulation results are significantly
% negative. It indicates high robustness, as shown in Figure
® 10.
" Three families of robustness exercises substantiate the
reliability of the findings, including the non-linear
ol e e = — e relationship. Re-estimation on a pre-pandemic sub-period

Estimated Coefficient

Figure 9. Placebo test effect plot

Frequency

-0.08 -0.07
Estimated Coefficient

Figure 10. Monte Carlo simulation test results

5.4.3. Monte Carlo Simulation

To check the stability of the estimates under sampling
uncertainty, a Monte Carlo simulation was performed by
generating 1,000 bootstrap estimates around the original
coefficient (-0.078) using a standard error of 0.01. The
bootstrap estimates are centered around the original
coefficient (-0.078). The Monte Carlo distribution was

(2011-2019) vyields qualitatively identical signs and
significance for the digital terms; the non-linearity
persists, suggesting that the relationship is not driven
solely by pandemic-era shocks, although magnitudes
attenuate as expected (Figure 11).

- Actual (With Digitalization)
B e~ Counterfactual (No Digitalization)
0.22 - Estimated Reduction

0.20
0.18
0.16

0.14 ey -

Tourism Carbon Emission Intensity (CEI)

0.12
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Year

Figure 11. Counterfactual simulation of carbon emission
intensity of tourism (2011-2022)

To estimate the net decarbonization effect of digital
development, a counterfactual scenario was constructed
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assuming that digitization remains at the 2011 level
throughout the study period.

This section reports results in the order of the hypotheses.
Subsection 5.1 presents baseline estimates, marginal
effects, and turning-point inference for the inverted U-
shaped association between Digital and Carbon.
Subsection 5.2 quantifies the three mediation channels
and compares indirect with direct effects to clarify how
digitalization translates into abatement.

Beyond the Chinese context, these results offer broader
implications for developing economies pursuing digital
transformation under tightening climate constraints.
Policymakers in other developing economies may
therefore consider sequencing digital investment with
power-sector decarbonization and designing
complementary instruments, such as low-carbon travel
incentives, green finance for tourism enterprises, and
data-driven regulatory.

6. Conclusions and Policy Recommendations

6.1. Conclusions of the study

Based on panel data from 30 Chinese provinces during
2011-2022, this study constructs a digital development
index using PCA and measures tourism carbon emission
intensity through the energy stripping method, and
empirically examines the relationship between digital
technology and tourism carbon emissions.

(1) Digital technology development significantly reduces
tourism carbon emission intensity, but the effect is
heterogeneous across regions and development
stages. The relationship between digital technology
and carbon emission intensity is non-linear, exhibiting
an inverted U-shaped pattern, indicating that
emissions may increase during the early phase of
digital expansion.

(2) Mediation analysis shows that digitalization achieves
carbon reduction through three main channels:
industrial structure optimization, energy efficiency
improvement, and  technological innovation
enhancement.

(3) Following the implementation of the dual-carbon
policy, the carbon-reduction effect of digital
technology is strengthened, while the COVID-19
pandemic caused a short-term decline in tourism-
related carbon emissions.

(4) Placebo tests, Monte Carlo simulations, and
alternative model specifications confirm the
robustness of the findings.

Overall, this study provides an operational empirical basis
for understanding how digital transformation contributes
to the green transition of service-based industries,
particularly tourism. Several methodological limitations
remain, and future research could incorporate micro-level
data, alternative identification strategies, and broader
spatial coverage.

6.2. Policy recommendations

To translate the empirical findings into actionable
strategies, policy recommendations are proposed to

support the green digital transformation of China’s
tourism industry, from macro-level national coordination
to micro-level enterprise operations.

(1) Integrate national strategies with local capabilities.

National digital and low-carbon strategies provide overall
direction, but local governments face economic and
technological constraints. A national-local digital carbon
synergy platform is recommended to facilitate policy
coordination and data sharing. In high-development
provinces, digital upgrading should be combined with
clean energy supply for ICT facilities, mandatory energy-
management standards, transparent data disclosure, and
demand-side instruments to mitigate rebound effects.

(2) Strengthen government institutional guidance.

Digital infrastructure alone does not automatically
generate environmental benefits. Governments should
establish green digital standards for tourism platforms
and smart hotel systems, require carbon impact disclosure
in funding applications, and issue a Digital Green
Performance Guide for the tourism industry.

(3) Provide operational support tools for enterprises.
Small and medium-sized tourism enterprises often lack
technological and financial capacity. Targeted digital
carbon-reduction tools should be provided, and pilot
programmes for digital carbon-neutral tourism
enterprises should be promoted to encourage early
adoption.

(4) Establish policy feedback and dynamic adjustment
mechanisms.

Tourism digital transformation is a long-term process
involving uncertainty and risk. Regionally differentiated
strategies are required. In western and parts of
northeastern China, policy should prioritize basic digital
connectivity, targeted skills training, and pilot
programmes combining digital technology with low-
carbon tourism development.

6.3. Cultural, economic, and institutional barriers

Low-carbon transformation depends on more than
infrastructure availability. Effective adoption of digital
tools varies with human capital, digital literacy,
managerial capacity, and local institutional norms.
Regions with limited technical expertise or low trust in
digital systems may underutilize installed technologies,
delaying efficiency gains.

Future research could use more detailed micro-level data
on tourism firms and households to explore within-
province heterogeneity and extend the analysis to cross-
country contexts to test whether similar non-linear
patterns hold under different institutional and energy
structures.

7. Appendix A

7.1. Al. Sectoral allocation parameters o, [, y and total
tourism energy E:

In the main text, total tourism energy consumption in year
tis calculated as
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Et= Rti Y pitEij), (1)

where E: denotes total tourism energy use in year t, Rt is
an adjustment coefficient aligning tourism statistics and
energy statistics in year t, Pz is the share of tourism-
related activity in sector i, and Ej is the final energy
consumption of sector i using energy type j. The index i
runs over the E; main tourism-related sectors—transport,
accommodation, and sightseeing/other services—while j
indexes energy types (coal, petroleum products, natural
gas and electricity).

For transparency, the proportional allocation parameters
used in Pi are defined as follows:

Tourism transport share o For transport-related energy,
tourism energy use is obtained by scaling total transport
energy according to the tourism share of passenger
transport:

_ tourism-related passenger turnover,

b, =
total passenger turnover,

where passenger turnover (passenger-km) is taken from
the China Transport Yearbook and provincial statistical
yearbooks, and tourism-related passenger turnover is
derived from the share of tourist trips in total passenger
trips for the relevant transport modes (road, rail, air and
water).

Tourism accommodation share S For the accommodation
sector tourism energy is obtained from total hotel/lodging
energy according to the tourism share in guest-nights:

tourist overnights in hotels and guesthouses,

Pe=b= total guest-nights in hotels and guesthouses, ’
where data on tourist overnights and total guest-nights
come from the China Tourism Statistical Yearbook and
provincial tourism statistical bulletins.

Tourism sightseeing and other services share »

For sightseeing, recreation and other tourism-related
services, tourism energy is obtained by scaling the energy
use of the corresponding tertiary sectors by the tourism-
related share in value added:

value added of tourism-related services,

Pu=t = total value added of the corresponding tertiary sectors,
Sectoral value added is taken from the China Statistical
Yearbook and China Tourism Statistical Yearbook.
Tourism-related value added is calculated on the basis of
tourism satellite accounts or the share of tourism revenue
in total sectoral revenue, depending on data availability.

Thus, in equation (1) the term Pit is operationalized by the
sector-specific parameters at, & and 1 for transport,
accommodation and sightseeing/other services,
respectively. These parameters are computed for each
year t from official statistics; the full panel of values is
available from the authors upon request.

7.2. A2. Emission factors f; and tourism carbon emissions
Ct

MA AND ZENG

Tourism carbon emissions in year t are obtained from
tourism energy consumption using

C=J UE,f;k), (2)

where Ct denotes total tourism CO2 emissions in year t, Ej
is tourism final energy consumption of energy type j
(aggregated over tourism-related sectors i), f; is the CO:
emission factor of energy type j, and K is the carbon-to-
CO: conversion coefficient.

The paper considers four main energy types j: coal,
petroleum products, natural gas and electricity.
Consistent with the 2006 IPCC Guidelines for National
Greenhouse Gas Inventories, the emission factors f; and
the conversion coefficient kkk are set as follows:

£ =94,600kg CO,/ TJ

f =73,300kg CO,/ TJ (aggregate petroleum products

petroleum™

used in transport and accommodation);
Sous=56,100kg CO,/ TJ (natural gas); For electricity, a

province- and year-specific grid emission factor (t
CO2/MWh) is used instead of a direct fuel-based f
reflecting the power generation mix and efficiency in each
year; k=44/12, converting carbon emissions to CO:
emissions.

Fuel-specific net calorific values needed to convert
physical energy quantities into TJ are also taken from the
2006 IPCC Guidelines and cross-checked against the China
Energy Statistical Yearbook. Grid emission factors for
electricity are obtained from China’s national greenhouse
gas inventory reports and related energy statistics; when
official data are missing for individual years, linear
interpolation between adjacent years is applied.

7.3. A3. Tourism carbon intensity Cp

Finally, tourism carbon intensity is defined in the main
text as

B Ct (3)

P TourismRevenuet

where Cp is tourism carbon emission intensity in year t, C:
is total tourism CO>- emissions from equation (2), and
TourismRevenue: denotes total tourism revenue in year ¢
(in constant prices). This ratio measures CO2 emissions per
unit of tourism output and serves as the core dependent
variable in the empirical analysis.
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