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Graphical abstract 

 

Abstract 

Under China’s “dual-carbon” targets, the tourism 
industry’s green transformation increasingly depends on 
deep integration of digital technology. Using panel data 
from 30 Chinese provinces (2011–2022), this study 
constructs a tourism carbon emission intensity dataset 
with an energy-stripping method and develops a 
multidimensional digital technology index via factor 
analysis. Two-way fixed-effects and system GMM models 
are employed to estimate the impact of digital technology 
on tourism carbon intensity, while nonlinear specifications 
test for turning-point effects. Regional heterogeneity is 
examined through cluster-based quantile regressions, and 
a structural equation model verifies three transmission 
mechanisms: industrial structure upgrading, energy-
efficiency improvement, and innovation enhancement. 
Multiple robustness checks (lagged regressions, placebo 
tests, Monte Carlo simulation, counterfactual analysis) 
confirm result reliability. The findings show that digital 
technology significantly reduces tourism carbon emission 
intensity and exhibits an inverted U-shaped relationship, 
with a strengthened decarbonization effect after China’s 
“dual-carbon” policy. All three mediating channels are 
significant, and the effects vary across regional 
development levels and carbon-intensity quantiles. 
Provides sector-specific evidence of digital-driven 
decarbonization and offers policy implications for 

promoting smart, low-carbon tourism in developing 
economies. 

Keywords: digital technology; tourism industry; carbon 
emission intensity; nonlinear relationship; mediating 
mechanisms 

1. Introduction and Literature Review 

Rapid advances in cloud computing, big data, the Internet 
of Things (IoT), artificial intelligence (AI), and 5G 
communication have accelerated digital transformation 
across industries, while energy-intensive development has 
increased environmental pressures. China has committed 
to peak carbon emissions by 2030 and achieve carbon 
neutrality by 2060 at the 75th United Nations General 
Assembly. Under these “dual-carbon” targets, sector-
specific low-carbon transition pathways are increasingly 
required. 

Tourism is a key service sector but also an important 
source of carbon emissions due to its dependence on 
transportation, accommodation, and supporting 
infrastructure. With fast digitalization and tighter climate 
constraints, it is necessary to clarify how digital 
technology affects tourism carbon emission intensity. 
Existing studies mainly address tourism carbon 
measurement, digitalization-related mitigation 
mechanisms, and regional heterogeneity. 

1.1. Tourism carbon emission measurement 

Tourism carbon emission intensity (carbon emissions per 
unit of tourism output) is widely used to evaluate tourism 
carbon efficiency (Sun 2023). However, measurement 
remains challenging due to fragmented service chains and 
heterogeneous activity boundaries, and large spatial 
differences have been reported across destinations (Li et 
al. 2024). 

Two accounting approaches are common. Top-down 
methods allocate emissions using energy balance sheets 
and input–output tables (Kelly et al. 2007), while bottom-
up methods aggregate emissions from transport, 
accommodation, and sightseeing (Dong et al. 2023). In 
China, the lack of a unified tourism carbon accounting 
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system often leads to boundary inconsistencies and 
indirect estimation. 

Tourism transport has long been emphasized because it 
contributes more than 70% of global tourism-related 
emissions, with aviation dominating this share (Bach 
1996; Becken 2002; World Tourism Organization 2009; 
Lenzen et al. 2018). In China, tourism transportation 
accounted for nearly 90% of tourism emissions during 
2000–2013 (Liu et al. 2019). Subsequent studies examined 
spatial–temporal evolution and drivers using the Theil 
index, exploratory spatial data analysis, STIRPAT models, 
LMDI decomposition, and efficiency measures (e.g., SBM 
and Super-SBM), documenting significant regional 
disparities (Huang 2019; Huang et al. 2019; Shao 2020; 
Yao et al. 2021; Cheng et al. 2023). Tourism scale and 
energy use generally increase emissions, while lower 
energy intensity and higher tourism productivity mitigate 
emission growth (Huang et al. 2019; Yao et al. 2021). 
Nevertheless, most studies focus on internal drivers, and 
the role of external drivers—especially digital 
technology—remains insufficiently addressed. 

1.2. Digital technology and emission-reduction 
mechanisms 

Digital technology is widely viewed as a driver of low-
carbon transition by improving efficiency, optimizing 
resource allocation, and enabling real-time monitoring 
(Gao et al. 2022; Dogan & Pata 2022; Zhang et al. 2021), 
thereby supporting carbon neutrality targets (Zhong 
2023). In tourism, digital infrastructure and smart services 
are associated with service upgrading and higher-quality 
development (Zhang & Shang 2022), and evidence 
suggests that digital economy development improves 
tourism carbon emission efficiency in China (Su et al. 
2023). 

At the macro level, platforms and data-driven governance 
can support tourism growth and service upgrading (Kumar 
2020; Cheng 2023; Yang 2023; Wu et al. 2023). At the 
micro level, digitalization can enhance coordination and 
factor allocation, increasing total-factor carbon 
productivity (Bai et al. 2021). Firm-level studies further 
report improvements in carbon performance following 
digital transformation (Li 2024; Cai et al. 2024; Wang et al. 
2024; Fang et al. 2025). Cross-sector evidence from 
intelligent modelling and smart process control also shows 
that digital technologies reduce energy use and emissions 
(Gao et al. 2022; Zhang et al. 2021; Cai et al. 2024a; Cai et 
al. 2024b; Cai et al. 2025; Ramachandran et al. 2025; Pydi 
et al. 2025a; Sivasundar et al. 2025; Vijayakumar 2025; 
Pydi et al. 2025b), supporting their application to tourism. 

Importantly, the digital–carbon relationship may be non-
linear. Several studies identify an inverted U-shaped 
relationship between digital economy development and 
carbon emissions (Xu et al. 2025; Zhou et al. 2025), 
suggesting that early-stage infrastructure expansion may 
raise energy demand, while later-stage efficiency gains 
and innovation dominate (Sun & Zhou 2022; Zeng 2025). 

1.3. Regional heterogeneity and research gaps 

Tourism carbon emission intensity varies markedly across 
China due to differences in development levels, resource 
endowments, and industrial structure. Evidence from the 
Yangtze River Economic Belt shows upstream–
downstream differences and convergence trends (Huang 
2019). Spatial analyses reveal high-intensity clusters in 
eastern coastal provinces and lower-intensity clusters in 
western regions (Yao et al. 2021), while efficiency studies 
indicate higher tourism carbon efficiency in more 
developed regions (Cheng et al. 2023). 

The mitigation effects of digitalization also differ across 
regions. Empirical studies suggest stronger carbon-
reducing impacts where digital readiness is higher and 
weaker effects in less developed areas (Sun & Zhou 2022; 
Zeng 2025). However, tourism studies often provide 
limited mechanism-based explanations for heterogeneous 
effects, and much of the non-linear digital–emission 
literature remains at aggregate or multi-sector levels. 

1.4. Contribution and positioning of this study 

This study addresses these gaps by developing a tourism-
specific framework that constructs a refined measure of 
tourism carbon emission intensity, tests the non-linear 
impact of digital technology, identifies multiple 
transmission mechanisms, and examines regional 
heterogeneity across China. By integrating the Technology 
Acceptance Model and Resource Allocation Theory, it 
provides sector-level evidence on how digital 
transformation supports low-carbon tourism under 
China’s dual-carbon targets. 

2. Theoretical Analysis and Research Hypotheses 

To explain how digital technology affects tourism carbon 
emission intensity, this study integrates the Technology 
Acceptance Model (TAM) and Resource Allocation Theory 
(RAT). TAM emphasizes micro-level adoption driven by 
perceived usefulness and ease of use (Davis 1989). In 
tourism, digital applications such as online booking, e-
ticketing, and smart management systems improve 
operational efficiency and service quality. 

RAT explains how digitalization reshapes the allocation of 
capital, labor, and energy across sectors, redirecting 
resources toward energy-saving equipment and intelligent 
systems. In tourism, digital infrastructure supports energy 
optimization, industrial upgrading, and green innovation. 
Together, TAM explains adoption motivation, while RAT 
clarifies how adoption translates into resource 
reallocation and emission reduction, forming the basis for 
the following hypotheses. 

2.1. Efficiency improvement mechanism 

Digital technology can reduce tourism carbon emission 
intensity by improving energy efficiency and resource 
utilization. Digital tools such as IoT sensors, big data 
analytics, and intelligent management systems enable 
real-time monitoring and optimization of energy use in 
tourism facilities. Online booking and e-ticketing further 
reduce material inputs and operational costs, thereby 
lowering emissions per unit of output. 
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Hypothesis 1 (H1). Digital technology development is 
negatively associated with tourism carbon emission 
intensity. 

This mechanism is consistent with RAT and supported by 
studies showing that digital penetration improves 
efficiency and reduces carbon intensity through better 
resource allocation (Sun & Zhou 2022). 

2.2. Industrial structure upgrading mechanism 

Digital technology promotes industrial structure 
upgrading in tourism by improving the efficiency of 
information, capital, and logistics matching. It facilitates a 
shift from high-carbon subsectors toward low-carbon and 
high value-added activities, such as smart tourism and 
digital services, thereby reducing overall carbon emission 
intensity. 

Hypothesis 2 (H2). Digital technology reduces tourism 
carbon emission intensity by promoting industrial 
structure upgrading. 

Smart tourism platforms and AI-based management 
systems further enhance energy efficiency and support 
this structural transition. Empirical evidence confirms that 
digital applications significantly reduce energy intensity 
and emissions across tourism facilities (Li et al. 2024). 

2.3. Innovation stimulation mechanism 

Digitalization stimulates green innovation in tourism by 
supporting new products, services, and management 
models. Digital tools enable energy-saving solutions, 
carbon monitoring, and innovative business models such 
as virtual tourism and sharing platforms, which reduce 
physical resource consumption. 

Hypothesis 3 (H3). Digital technology reduces tourism 
carbon emission intensity by enhancing green innovation 
capacity. 

Firm-level studies show that digital transformation 
significantly promotes green innovation and improves 
environmental performance, particularly in tourism 
enterprises facing competitive and regulatory pressures 
(Fang et al. 2025). 

2.4. Non-linear mechanism 

The impact of digital technology on tourism carbon 
emission intensity may be non-linear. At early stages, 
infrastructure expansion may increase energy demand, 
while efficiency gains, industrial upgrading, and 
innovation dominate beyond a threshold. At higher levels, 
diminishing marginal returns and rebound effects may 
weaken emission-reduction benefits. 

Hypothesis 4 (H4). There exists an inverted U-shaped 
relationship between digital technology development and 
tourism carbon emission intensity. 

Recent empirical studies document similar non-linear 
dynamics between digital economy development and 
carbon emissions (Xu et al. 2025; Zhou et al. 2025). This 
study extends these insights to the tourism sector. 

Figure 1 presents the integrated theoretical framework 
based on TAM and RAT. Digital technology affects tourism 
carbon emission intensity through three main channels—

efficiency improvement, industrial structure upgrading, 
and innovation stimulation—while exhibiting potential 
non-linear effects. These hypotheses are empirically 
tested in the subsequent sections. 

3. Data sources and modeling 

3.1. Data sources and carbon emissions stripping methods  

This study employs a balanced panel of 30 provincial-level 
regions in mainland China from 2011 to 2022. Tibet 
Autonomous Region, Hong Kong, Macao, and Taiwan are 
excluded to ensure data consistency and comparability. 
Tibet is omitted because its tourism sector is highly 
specialized (e.g., religious pilgrimage and eco-tourism), 
exhibits atypical carbon emission patterns, and lacks 
complete tourism-related energy statistics over the study 
period. Moreover, Tibet’s digital infrastructure and 
technology adoption lag substantially behind other 
provinces, and its distinctive policy environment may 
generate leverage effects in regression estimation. 

 

Figure 1. Systematic analysis framework based on TAM model 

and RAT theory 

Hong Kong, Macao, and Taiwan are excluded because 
they are not fully integrated into the mainland provincial 
statistical system. Differences in statistical definitions, 
data availability, and institutional contexts—together with 
their exceptionally high levels of digital penetration—
would introduce heterogeneity that could bias parameter 
estimates. As a result, the empirical analysis focuses on 
mainland provinces with comparable economic structures, 
digital development trajectories, and policy frameworks. 

Potential bias from these exclusions is limited. The 
omitted regions account for a small share of national 
population and tourism activity, and the use of two-way 
fixed effects further absorbs time-invariant regional 
characteristics and nationwide shocks. Nevertheless, the 
results do not capture high-altitude tourism dynamics in 
Tibet or highly urbanized digital ecosystems such as Hong 
Kong, which is acknowledged as a limitation. 

The source of basic data consists of two main aspects: 
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(1) Primary data on carbon emissions from tourism at the 
provincial level. Raw data on carbon emissions from 
tourism at the provincial level are obtained from 
provincial statistical yearbooks and official. 

(2) Data on 12 types of end-use energy consumption in 
tourism-related industries. The consumption of 12 
end-use energy sources (raw coal, coal, coke, crude 
oil, gasoline, kerosene, diesel fuel, fuel oil, 

In order to estimate the direct energy consumption of 
China's tourism industry, we used the industry association 
weight coefficient method for energy consumption 
stripping: 

Industry association coefficient (): Firstly, the industry 
association coefficients are calculated based on the 
proportion of the output value of tourism-related 
industries (transportation, storage and postal services, 
wholesale and retail. 

The coefficient matrix is used to deconstruct the end-use 
energy consumption of the tertiary industry in China, and 
obtain the baseline value of energy consumption of 
tourism-related industries. 

Terminal energy decomposition (Eij): the terminal energy 
consumption of each tertiary industry is assigned to 
tourism-related sub-industries using the Pit coefficient. 

Tourism Development Coefficient (Rt): Calculate tourism-
specific adjustment coefficients, i.e. the ratio of tourism 
revenue to tertiary GDP for each province and year. 

Tourism Energy Consumption (Et): the product of Rt, Pit 
and Ei yields the estimated direct energy use of the 
tourism industry in each province, as shown in equation 
(1): 

t . ( . )t it ij

i

E R p E=   
(1) 

Specific explanation: 

Et is the total energy consumption of the tourism industry 
in the province,  

Rt is the coefficient of tourism development,  

Pit is the share of tourism-related industries in the tertiary 
industry,  

Eij is the sectoral end-use energy consumption by energy 
type. 

Using these energy consumption estimates, we 
subsequently calculated carbon emissions by applying 
fuel-specific emission factors and national CO2 conversion 
factors in accordance with the IPCC guidelines, as shown 
in Equation (2)(3): 

( . . )t ij j

j

C E f k=  (2) 

Tourism Revenue

t

p

t

C
C =  

(3) 

where Ct is the overall carbon emissions and Cp is the 
carbon intensity (in tons per million dollars of tourism 
revenue). 

(3) Robustness analysis of the energy stripping method. 
This suggests that the energy stripping approach used 
in this study is methodologically robust and relatively 
insensitive to modest changes in the base. 

(4) To address potential concerns regarding the 
robustness and credibility of the tourism carbon 
emissions estimates derived from the energy 
stripping method, this study undertook a multi-
pronged reinforcement strategy. 

For transparency, the values and data sources of the 
tourism energy decomposition parameters (α, β, γ) and 
sector-specific emission factors used in equations (1) – (3) 
are reported in Appendix A. 

3.2. Horizontal spatial disaggregation of carbon emission 
intensity in China's tourism industry 

From the horizontal spatial stratification of carbon 
emission intensity of China's tourism industry, it can be 
seen that the overall carbon emission intensity of China's 
tourism industry decreases from 2011 to 2022, and the 
provinces with lower values of carbon emission intensity 
that remain at low levels include Qinghai, Gansu, Ningxia, 
Xinjiang, Jilin, Beijing, Hebei, and Fujian. 

 

Figure 2. Spatiotemporal Distribution of Carbon Emission 

Intensity in China's Tourism Industry. (a)Spatial Quantile Map of 

Carbon Emission Intensity in China's Tourism. (b)Spatial Quantile 

Map of Carbon Emission Intensity in China's Tourism Industry 

(2014). (c) Spatial Quantile Map of Carbon Emission Intensity in 

China's Tourism Industry (2018). (d) Spatial Quantile Map of 

Carbon Emission Intensity in China's Tourism Industry (2022) 

This map is based on the standard map No. GS [2024] 
0650 downloaded from the standard map service website 
of the Map Technical Review Center of the Ministry of 
Natural Resources, with no modifications to the base map. 
The bottom map is the same. 

Meanwhile, the spatial quantile map of the development 
level of digital technology in China's tourism industry 
shows that digital technology in China's tourism industry 
has developed rapidly from 2011 to the present, and the 
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new crown virus has promoted the use of digital 
technology in the tourism industry to promote the 

transformation of the industrial structure and 
development (Table 1). 

Table 1. Digital technology indicator system 

Target Layer Subsystem layer Indicator layer Unit Attribute 

Digital technology level 

Digital technology 

infrastructure Facility 

Construction 

Number of 5G base stations 

and coverage rate (%) 

Number of Base 

Stations/Coverage Rate (%) 
+ 

Market Penetration Rate Market share (%) + 

Data Center Size and Energy 

Efficiency 

Number of Data 

Centers/Energy Efficiency 

(kWh/GB) 

+ 

Internet Access Rate (Fixed & 

Mobile Broadband) 

(Number of users per 100 

people) 
+ 

Internet of Things Device 

Penetration Rate 

(Number of devices per 1,000 

people) 
+ 

Smart device penetration rate 

(smartphones, smart home 

devices, etc.) 

Number of users (per 100 

people) 
+ 

Penetration rate of electronic 

payment systems 

Frequency of transactions 

(per month) 
+ 

Digital technology 

specific Application 

penetration rate 

Wireless Communication 

Technology Coverage 
Coverage area (%) + 

High Performance Computing 

Platform Construction 
Investment (RMB billion) + 

Data Privacy Protection 

Technology Application 

Technology Adoption Rate 

(%) 
+ 

Market Penetration of Cloud 

Computing Services 
Market share (%) + 

Intelligent Transportation 

System Construction 
Investment (RMB billion) + 

Application and Popularization 

of Intelligent Manufacturing 

Technology 

Equipment Penetration Rate 

(%) 
+ 

Application rate of artificial 

intelligence (AI) in various 

industries 

Application coverage rate (%) + 

Digital Technology 

Generation Benefits 

Application of Intelligent 

Education Technology 
Proportion of users (%) + 

Intelligent Retail System 

Applications 
Market coverage (%) + 

Data Mining and Analysis 

Technology Application 
Enterprise Adoption Rate (%) + 

5G Network Access Capacity 
Number of Access Users 

(million) 
+ 

High-speed Internet 

Infrastructure Construction 

Investment amount (RMB 

billion) 
+ 

3.3. Construction of Digital Technology Indicator System 

3.3.1. FA–PCA-Based Digital Technology Indicator System 
for Tourism 

Factor analysis (FA) and principal component analysis 
(PCA) were used to construct the digital technology 
indicator system. All indicators were standardized to 
ensure comparability. Factor analysis (FA) was used to 
identify potential factors by grouping related indicators 
into subsystem layers such as "digital technology 
infrastructure construction", "digital technology 
application penetration" and "digital technology benefits". 

To enhance conceptual alignment, we critically reviewed 
and removed any indicators deemed insufficiently 
relevant to the tourism context. The revised indicator 

system retains only those dimensions that contribute 
meaningfully to capturing digital infrastructure, 
application breadth, and spillover benefits to tourism. 
Each retained indicator is explicitly mapped to its 
theoretical contribution. 

The composite index is constructed using an objective 
entropy–TOPSIS procedure to minimize subjective 
weighting. 

1

1

ln , (ln )
N

j ij ij

i

e k p p k N −

=

= − = , and its divergence 1j jd e= − . 

The entropy weight is then  
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1
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d
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

=

=


, assigning greater weight to indicators with 

higher cross-provincial discrimination. 

2 2( ) , ( )i j ij j i j ij j

j j

S z A S z A + + − −= − = −   

and the closeness coefficient is. 

[0,1]i

i

i i

S
C

S S

−

+ −
= 

+
 

which serves as the province-level digital technology 
score. Factor analysis/PCA is used diagnostically to assess 
dimensional coherence and redundancy (e.g., loading 
structure, variance capture) rather than to set weights; 
entropy–TOPSIS supplies the final, data-driven weights 
and aggregation (Figures 3 and 4). 

 

Figure 3. Spatiotemporal Distribution of Digital Technology 

Development Level in China's Tourism Industry. (a)Spatial 

Quantile Map of Digital Technology Development Level in China 

(2011). (b) Spatial Quantile Map of Digital Technology 

Development Level in China (2014). (c)Spatial Quantile Map of 

Digital Technology Development Level in China (2018). (d) 

Spatial Quantile Map of Digital Technology Development Level in 

China (2022) 

3.3.2. Index validity and robustness. 

Multiple checks support the validity and robustness of the 
digital technology index. The index rankings align well 
with provinces widely recognized as digital leaders, while 
lower-ranked provinces are typically less developed 
western regions. In addition, correlation tests with 
alternative digital proxies and sensitivity analyses using 
modified indicator sets confirm that the index and 
subsequent regression results are stable. 

3.4. Data modeling 

The paper selected the digital technology sample data of 
China's 30 provincial panels during the period of 2011-
2022 and measured the level of digital technology using 
the entropy weight TOPSIS method. 

The study systematically implemented multidimensional 
statistical diagnostic procedures prior to modeling. Firstly, 
Pearson's bivariate correlation analysis (Pearson's r) was 
carried out to initially explore the characteristics of the 
association between variables. It can be seen that the 
core explanatory variable, Digital, is statistically 
significantly and positively associated with Carbon, a 
finding that is directionally different from theoretical 
expectations. 

In order to ensure that the various types of indicators 
analyzed cover different dimensions (such as government 
intervention, technological expenditure, industrial 
structure, etc.), and there is no overlap in the theoretical 
logic of each other, the study adopts. 

Under the econometric theoretical framework of panel 
data modeling, the applicability of models needs to be 
systematically examined in terms of the structural 
suitability of mixed regression models, fixed effects 
models and random effects models. 

According to the results of Hausman test, the fixed effect 
model was chosen due to the existence of the test 
probability 0<P<0.05, Hausman test as well as the F-test 
result statistic were significant to reject the original 
hypothesis (Tables 2 to 6). 

Table 2. Descriptive statistics results of all empirical test variables 

VarName Obs Mean SD Min Median Median 

carbon 360 7.014 0.817 4.094 7.171 8.804 

digital 0.130 0.130 0.126 0.126 0.019 0.827 

GDP 360 9.905 0.870 7.421 9.959 11.768 

gov 360 0.247 0.102 0.107 0.224 0.224 

tech 360 0.005 0.003 0.003 0.004 0.004 

edu 360 0.039 0.014 0.021 0.034 0.091 

open 360 0.017 0.025 0.000 0.007 0.152 

struc 360 0.480 0.480 0.297 0.475 0.839 

Table 3. Correlation coefficient matrix test results 

 carbon digital GDP gov tech edu open 

carbon 1.000       

digital 0.257*** 1.000      

GDP 0.640*** 0.725*** 1.000     



DIGITAL TECHNOLOGY ON CARBON EMISSION INTENSITY OF CHINA'S TOURISM SECTOR IMPACT STUDIES  7 

gov -0.486*** -0.463*** -0.818*** 1.000    

tech 0.003 0.483*** 0.186*** -0.095* 1.000   

edu -0.326*** -0.450*** -0.714*** 0.887*** -0.139*** 1.000  

open 0.048 0.398*** 0.300*** -0.357*** 0.508*** -0.413*** 1.000 

*** p<0.01, ** p<0.05, * p<0.1 

Table 4. Covariance test results of selected indicators 

  VIF 1/VIF 

gov 7.951 126 

GDP 6.168 0.162 

edu 5.002 0.2 

digital 3.304 0.303 

tech 1.706 0.586 

open 1.641 0.609 

Mean VIF 4.295  

Table 5. Hausman test and F-test results 

Hausman test  F test 

chi2 statistic p value result chi2 statistic p value result 

25.55 0.000 reject 12.66 0.000 reject 

Table 6. Analysis of benchmark regression results of fixed-effects model 

VARIABLES (1) carbon (2) carbon (3) carbon 

digital 
-1.908*** -2.607*** -2.469*** 

(-25.40) (-16.46) (-8.82) 

GDP 
 1.136*** 1.201*** 

 (10.65) (14.11) 

gov 
 2.713*** 1.396 

 (3.89) (1.43) 

tech 
 36.795*** 33.502*** 

 (4.87) (4.10) 

edu 
  14.797*** 

  (4.44) 

open 
  2.934 

  (0.94) 

Constant 
6.875*** -5.486*** -6.433*** 

(445.42) (-4.48) (-6.08) 

Observations 360 360 360 

R-squared 0.580 0.638 0.646 

Number of groups 30 30 30 

area YES YES YES 

year YES YES YES 

t-statistics in parentheses, *** p<0.01, ** p<0.05, * p<0.1 

3.4.1. Two-way fixed effects model setting and diagnosis 

Model structure: a panel two-way fixed-effects model is 

used to control individual heterogeneity (i) and time 

trend (t), and the specific calculation process is shown in 

equation (4).  

The regression result equation is: 

0 1

2 6

carbon digital

controls

it it

it i t it

 

   −

= + +

+ + +
 

(4) 

Controls: set of control variables (including GDP, gov, tech 
and other variables) 

0: constant term 

1-6: Coefficients of each explanatory variable 

i: individual fixed effects 

t: time fixed effect 

it: random perturbation term 

The within-group R² of models (1) to (3) improves from 
0.580 to 0.646, indicating that the gradual inclusion of 
control variables enhances the explanatory power of the 
model to capture 64.6% of the sources of variation in 
carbon emission intensity. Meanwhile, the F-statistic was 
significant (P<0.01), verifying the overall validity of the 
model. 

The coefficients of digital technology in the three models 
are negative and highly significant (P<0.01), specifically -
1.908 (model 1), -2.607 (model 2), -2.469 (model 3), 
indicating that for every unit of improvement in digital 
technology, the intensity of carbon emission will be 
reduced by 1.9 units on average. 

3.4.2. GMM model setting and diagnosis  

To address potential bidirectional causality and other 
endogeneity concerns between digital technology 
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development and tourism carbon emission intensity, a 
dynamic panel data model is estimated using the System 
GMM approach. Tourism carbon emission intensity is 
treated as a dynamic process, as past emission 
performance may influence current outcomes through 
persistence effects. 

Endogeneity may arise from three main sources. First, 
reverse causality may exist because digital technology can 
reduce carbon emission intensity, while regions with 
higher emissions may simultaneously increase investment 
in digital technologies to improve energy efficiency. 
Second, omitted variables, such as economic development 
level, industrial structure, and environmental regulation 
intensity, may jointly affect both digitalization and carbon 
emissions. Third, measurement error may be present 
because digital technology development is captured by a 
composite index. These issues can lead to correlation 
between explanatory variables and the error term, biasing 
conventional fixed-effects estimates. 

Accordingly, this study adopts a two-step System GMM 
estimator. Lagged values of endogenous variables are 
used as internal instruments, while external instruments 
are constructed based on historical and geographic 
characteristics to strengthen identification. 

3.4.3. Instrument selection and validity tests 

External instrumental variables include historical 
communication infrastructure (e.g., landline telephone 
penetration in the 1980s and historical postal network 
density), which reflect early information connectivity and 
are strongly correlated with contemporary digital 
development but unlikely to directly affect current 
tourism carbon emission intensity. In addition, geographic 
characteristics, such as terrain ruggedness, are used to 
capture exogenous variation in digital infrastructure 

deployment costs. These variables influence digital 
accessibility but do not plausibly affect tourism-related 
carbon emissions directly once economic and geographic 
controls are included. Time-interaction terms are applied 
to introduce sufficient panel variation. 

Diagnostic tests confirm the validity of the instrument set. 
The Hansen J-test yields a p-value of 0.483, indicating that 
the overidentifying restrictions cannot be rejected. The 
Arellano–Bond AR (2) test shows no evidence of second-
order serial correlation, supporting the consistency of the 
System GMM estimates. 

Differences in coefficient magnitudes across estimation 
methods are theoretically expected. Compared with 
pooled OLS and fixed-effects models, the System GMM 
estimator accounts for dynamic dependence and corrects 
for endogeneity, resulting in more conservative but more 
reliable estimates. Importantly, the sign and statistical 
significance of the digital technology coefficient remain 
stable across specifications. 

In summary, the dynamic panel model specified in 
Equation (5) provides a robust framework for identifying 
the causal impact of digital technology on tourism carbon 
emission intensity. 

1, ,it i t it it i t itCI CI DT X     −= + + + + +
 

(5) 

Where denotes the carbon emission intensity (e.g., carbon 
dioxide emission per unit of GDP) of region in the period 
of, denotes the indicator of the development level of 
digital technology (e.g., the digital economy index or the 
level of information infrastructure), is the vector of other 
control variables. 

 

Table 7. Impact of digital technology on carbon emission intensity - comparison of fixed effects and GMM estimation results 

Variable FE Model D-GMM S-GMM 

L.Carbon Intensity  0.297*** 0.354*** 

Digital Technology Index -0.053* -0.075** -0.082*** 

Per Capita GDP 0.234*** 0.218*** 0.206*** 

(Per Capita GDP)^2 -0.021** -0.019* -0.018* 

Urbanization Rate -0.046* -0.061* -0.072** 

Energy Consumption 0.117*** 0.112*** 0.105*** 

R&D Intensity -0.063* -0.057* -0.049* 

Policy Dummy -0.024 -0.035 -0.038* 

Pandemic Dummy (2020) -0.101*** -0.113*** -0.119*** 

Pandemic Dummy (2021) -0.082** -0.093*** -0.098*** 

Constant 0.857*** 0.634*** 0.592*** 

 

Table 7 reports the regression results on the impact of 
digital technology on tourism carbon emission intensity 
using fixed-effects, difference GMM, and system GMM 
estimators. Among these methods, the system GMM 
approach more effectively addresses endogeneity and 
yields more reliable estimates of the core coefficients. 

The system GMM results show that the coefficient of 
digital technology development is negative and 
statistically significant at the 1% level, indicating that 
advances in digital technology significantly reduce tourism 

carbon emission intensity. This finding suggests that 
digitalization improves resource allocation efficiency and 
facilitates low-carbon transformation. The lagged term of 
carbon emission intensity is positive and significant, with a 
coefficient between 0 and 1, confirming the presence of 
dynamic persistence in carbon intensity and implying that 
emission adjustments occur gradually over time. 

The estimated effects of control variables are generally 
consistent with theoretical expectations. GDP per capita 
and its squared term exhibit a significant inverted U-
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shaped relationship, supporting the Environmental 
Kuznets Curve hypothesis. Energy consumption has a 
positive and significant effect on carbon emission 
intensity, while the urbanization rate shows a negative 
and significant coefficient in the system GMM estimates, 
suggesting that urbanization contributes to lower carbon 
intensity through more efficient energy use and stricter 
environmental regulation. R&D investment intensity also 
has a negative effect, indicating that technological 
innovation helps reduce carbon emission intensity. The 
stability of these results across different estimation 
methods further supports the robustness of the empirical 
findings. 

4. Analysis of Research Results 

4.1. Baseline FE–GMM Estimation and Nonlinear Effects of 
Digital Technology on Carbon Intensity 

This study empirically examines the relationship between 
digital technology development and carbon intensity 
based on the two-way fixed effects model (Two-way FE) 
as well as the GMM model, and Table 8 presents the 
results of the three-stage regression. 

In order to test the potential nonlinear dynamic 
relationship between the level of digital technology 
development and carbon emission intensity, this study 
constructs a nonlinear extended model based on the 
quadratic function setting, and systematically introduces 

the triple term of the level of digital technology 
development (digital3) in the baseline. 
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It can be seen that the square term of digital technology () 
has a positive correlation with carbon emission intensity 
(Carbon) at 1% significance level, and digital technology () 
has a negative correlation with carbon emission intensity 
(Carbon) 

4.2. Instrumental variables and dynamic identification 

To address potential bidirectional causality between 
digital technology and tourism carbon intensity, the 
empirical strategy combines province–year two-way fixed 
effects with a dynamic system GMM specification that 
uses both internal and external instruments. Instrument 
counts are restricted by collapsing and limiting lag depth 
to avoid proliferation. 

4.3. Diagnostics and estimator behavior 

Instrument validity and the dynamic specification are 
supported by formal tests. The Hansen J-test does not 
reject the overidentifying restrictions (p = 0.483), 
indicating that the instrument set is orthogonal to the 
structural errors. 

Table 8. Non-linear relationship test results 

VARIABLES VARIABLES 

digital1 -3.709***(-19.59) 

digital2 1.384*** (3.03) 

digital3 -2.687(-0.76) 

GDP 1.247***(13.08) 

gov 1.481(1.53) 

gov 1.481 (1.53) 33.514***(4.07) 

edu 14.222***(4.41) 

open 3.612(1.16) 

Constant -Constant(-5.99) 

Observations 360 

Number of groups 30 

area YES 

year YES 

R-squared 0.648 

t-statistics in parentheses, *** p<0.01, ** p<0.05, * p<0.1 

In the cubic model, the theoretical inflection point of the 
U-shaped relationship is calculated as shown in Equation 
(7) (8): 

1

2

digital
2





 = −
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3.709
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2 1.384

 −
= − 

  

(8) 

Statistical significance tests were performed for the U-
shaped inflection points. According to the results of the 
estimated parameters, the inflection point 1 is about 3.65 
and the inflection point 2 is about 9.84; it falls within the 
actual interval of the sample Digital indicator and its 
confidence interval is statistically. 

4.4. Cross-model consistency and turning-point stability 

Differences in coefficient magnitudes across pooled OLS, 
two-way FE, difference GMM, and system GMM are 
theoretically expected. These convergent qualitative 
findings, alongside the favorable GMM diagnostics, 
strengthen the inference that the documented digital–
carbon nexus reflects a causal mechanism under standard 
panel assumptions. 

5. Discussion of Research Results 

5.1. Discussion of Heterogeneity of Research Results 

Based on the panel data of 30 provinces from 2011 to 
2022, we first cluster the provinces with K-means based 
on GDP per capita and the proportion of the tertiary 
industry, and then use quantile regression within each 
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group to examine the impact of digital technology on 
carbon emission intensity. The results of the analysis are 
as follows. 

5.1.1. Cluster analysis process and steps 

Cluster analysis. K-mean clustering (K=3) was used to 
group the provinces. The data are divided into K clusters, 
which makes the data points within the clusters have high 
similarity and high differences between the clusters. The 
algorithm is simple and efficient and is suitable for 
discovering subsets of provinces with similar 
characteristics. 

Quantile regression. k-mean clustering is shown in Figure 
5. 

The heterogeneity analysis was refined to ensure 
methodological robustness and interpretability. These two 
dimensions are widely recognized in the literature as the 
most fundamental characteristics differentiating Chinese 
provinces in terms of both development and industrial 
orientation (Sun & Zhou 2022; Wang et al. 2023). This 
validation suggests that the two-variable clustering is 
sufficient for stratifying provinces in a meaningful way. 

The resulting clusters align closely with widely 
acknowledged regional divisions: Cluster 1 represents 
high-development provinces (e.g., Beijing, Shanghai, 
Jiangsu, Zhejiang, Guangdong); Cluster 0 includes 
medium-level provinces (e.g., Hunan, Hubei, Henan, 
Anhui), while Cluster 2 consists primarily of low-
development. 

 

Figure 4. Digital technology and carbon emissions intensity non-

linear relationship U-shaped graph 

The high group (high per capita GDP, high industrial 
proportion provinces) mainly includes economically 
developed regions, such as Beijing, Shanghai, Guangdong, 
Jiangsu, Zhejiang, Shandong, Fujian, Hubei, Hunan, Anhui, 
Liaoning, etc. 

The quantile regression results (Tables 9–11) reveal 
differentiated impacts of digital technology across clusters 

and intensity levels. In the high-development group 
(Cluster 1), digital technology significantly reduces tourism 
carbon intensity at the 25th and 50th percentiles but 
loses. 

For the low-development group (Cluster 2), the effect of 
digital technology is not significant at the 25th percentile 
but becomes strongly negative at the 50th and 75th 
percentiles. 

 

Figure 5. K-mean clustering schematic diagram 

5.1.2. Analysis and Interpretation of Results for 
Representative Provinces 

The heterogeneity analysis based on representative 
provinces further illustrates the differentiated effects of 
digital technology on tourism carbon emission intensity. 
For high-development provinces (e.g., Beijing and 
Guangdong), digital technology exhibits a significant 
negative effect on carbon emission intensity at lower 
quantiles, indicating that early-stage efficiency gains and 
structural optimization play a dominant role. 

In middle-development provinces (e.g., Tianjin and 
Shanxi), the mitigation effect of digitalization is more 
evenly distributed across quantiles, suggesting a relatively 
balanced decarbonization process as digital adoption and 
industrial upgrading progress simultaneously. 

In low-development provinces (e.g., Ningxia and Hainan), 
the estimated effects are less stable, partly due to limited 
sample size and uneven digital infrastructure. Overall, 
digital technology generally suppresses tourism carbon 
emission intensity, but its effectiveness varies across 
development stages and emission levels. These findings 
are consistent with existing studies emphasizing that 
digital-driven emission reduction is more pronounced in 
economically advanced regions, while institutional 
constraints and infrastructure bottlenecks may weaken its 
impact elsewhere. 

 

Table 9. Quartile regression results for the high group 

Variable 0.25 quantile 0.50 quantile 0.75 quartile 

digital -2.513*** -2.510*** 0.696 

Per Capita GDP 1.079*** 1.211*** 0.474*** 

tertiary sector -1.210** -0.504 -0.884 

open 4.171*** 1.711 1.279 
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gov 7.359*** 6.844*** 9.387*** 

edu -11.453 -7.336 -33.825** 

tech -6.904 6.687 -42.185** 

Constant  -4.279** -5.814*** 2.489 

Table 10. Median group quartile regression results 

Variable 0.25 quantile 0.50 quantile 0.75 quartile 

digital -25.034*** -20.710*** -14.908*** 

Per Capita GDP -4.188*** -3.847*** 0.257 

tertiary sector 3.019** 3.970*** 5.880*** 

open 127.287*** 114.819*** 105.071*** 

gov 31.280*** 26.837*** 10.639** 

edu -130.710*** -70.858*** -141.941*** 

tech 114.434** 32.229 95.349** 

Constant  -17.122*** -17.989*** -10.874*** 

Table 11. Results of low-component quantile regression 

Variable 0.25 quantile 0.50 quantile 0.75 quantile 

digital -78.175 -98.117*** -95.257** 

Per Capita GDP 1.573 2.208** 2.775* 

tertiary sector 6.960** 8.622*** 5.777* 

open -13.249 -20.650** -9.054 

gov 1.623 1.864 4.036** 

edu -16.529 -4.984 -20.630** 

tech 63.349 25.048 63.191 

Constant  -8.124 -13.689 -17.152 

*Note: Quartile regression results for high, medium and low groups (*p<0.1, **p<0.05, ***p<0.01). 

 

To avoid over-interpretation, unobserved factors such as 
local policy interventions, governance capacity, and 
infrastructure conditions are acknowledged as potential 
contributors to the observed heterogeneity. 

5.2. Test of Influence Mechanisms 

5.2.1. Mechanism analysis of multiple intermediary 
pathways 

In order to further explore the transmission mechanism of 
digital technology to reduce the carbon emission intensity 
of tourism, this paper extends the mediation analysis 
beyond industrial structure upgrading. Specifically, we 
integrate three core mechanisms into a multiple 
mediation framework: (1) Industrial structure upgrading 
(ISU). (2) Energy efficiency improvement (EEI). (3) 
Technological Innovation Capacity (TIC). 

5.2.2. Theoretical principles of multiple intermediation 

ISU: Digital infrastructure facilitates service-oriented 
tourism transformation and reduces dependence on 
energy-intensive inputs. 

EEI: Digital applications (e.g., smart energy management, 
digital twin simulation) optimize energy allocation in 
tourism operations. 

TIC: Digitalization enables low-carbon innovations (e.g., 
green building technologies, AI in traffic management) to 
reduce emissions. 

5.2.3. Empirical strategy 

Structural Equation Modeling (SEM) was constructed to 
capture the indirect impacts of Digital through three 
intermediaries on Carbon. The specific calculation process 
of the model structure is shown in Equation (9) (10): 
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(10) 

DIGITAL is the digital development index. 

Mediator_1 = ISU, Mediator_2 = EEI, Mediator_3 = TIC. 

Xit is a vector of control variables (GDP, gov, open, edu, 
tech). 

I, t are province and year fixed effects. 

Bootstrapping (500 replications) was used to test the 
significance of each indirect effect path. 

In order to operationalize the three mediating 
mechanisms, this study adopts clear and measurable 
proxies that align with established empirical practice. 

The SEM specification incorporates both the direct path 
from digital technology to carbon intensity and the three 
indirect paths operating through ISU, EEI, and TIC. 
Structural equations are presented to detail the linkages 
between the exogenous digital technology. 

To reduce the risk of confounding, the SEM includes the 
same set of control variables as the baseline regression 
models, including GDP per capita, government 
expenditure, openness, education level, and technological 
input. This consistent inclusion ensures that the mediation 
effects identified are not attributable to omitted-variable 
bias. 
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5.2.4. Results and Interpretation 

The indirect effects of digital technology through all three 
mediators are statistically significant and the results of the 
SEM analysis are shown in Table 12. 

The results reported in Table 12 show that all three 
indirect pathways are statistically significant. The indirect 
effect of digital technology on carbon intensity through 
ISU is –0.048 (p < 0.01), suggesting that structural 
upgrading plays a major. 

The direct effect of digital technology on carbon intensity 
becomes smaller and only marginally significant once the 
mediators are accounted for, underscoring that much of 
the effect operates indirectly through the identified 
pathways. This provides empirical support for the 
hypothesis that digitalization reduces emissions intensity 
primarily by altering industrial structure, 

Practical evidence further illustrates the mechanisms 
identified. For example, the “Smart Scenic Area” initiative 
in Zhejiang Province reduced electricity consumption by 
approximately 15% through IoT-based energy 

management, exemplifying the EEI pathway. Similarly, 
Hainan’s rapid growth in green technology patents linked 
to tourism showcases the TIC pathway by translating 
digital transformation. 

The path diagram of the impact of digital technology on 
tourism carbon reduction is shown in Figure 6. 

5.3. Discussion on the robustness of the research results 

In the baseline regression, the core explanatory variable 
Digital is significantly negatively correlated with the 
dependent variable Carbon, in order to avoid the 
endogeneity problem due to bidirectional causality and 
explore the possible time lag in the influence. 

The study conducted 1st and 2nd order lags for all 
explanatory variables, and after regression again the 
results of the study show that the core explanatory 
variable (Digital) is significantly negatively correlated with 
the dependent variable (Carbon) at the 1% significance 
level. It also means that the development and use (Tables 
13 and 14). 

 

Table 12. Results of SEM mechanism analysis 

Pathway Indirect Effect p-value 

Digital→ ISU→ Carbon -0.048*** <0.01 

Digital→ EEI→ Carbon -0.035** <0.05 

Digital→ TIC→ Carbon -0.029** <0.05 

Digital→ Carbon -0.021 <0.1 

Total effect -0.133 <0.01 

Table 13. Analysis of robustness results 

VARIABLES f1_carbon f2_carbon 

digital -2.760***(-7.86) -2.146***(-25.18) 

GDP 1.443***(14.62) 1.265***(11.36) 

gov 2.374***(3.13) 1.463(1.34) 

tech 28.413***(3.10) 26.327**(2.28) 

edu 16.249***(3.02) 15.173**(2.23) 

open 1.160(0.33) 3.752**(2.41) 

Constant -9.064***(-8.34) -7.064***(-5.74) 

Observations 330 300 

R-squared 0.646 0.640 

Number of groups 30 30 

area YES YES 

year YES YES 

digital -2.760*** -2.146*** 

 (-7.86) (-25.18) 

t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Table 14. Relationship between digital technology and carbon emission intensity 

Variables Coefficient Standard Error Significance 

DT -0.128 0.032 *** 

CI_{t-1} 0.562 0.061 *** 

Policy -0.042 0.021 ** 

DT×Policy -0.087 0.029 *** 

Covid2020 -0.164 0.047 *** 

Covid2021 -0.102 0.045 ** 

GDP -0.031 0.014 ** 

structure 0.015 0.01 * 

Energy intensity 0.094 0.033 *** 

Rate of urbanization -0.058 0.024 ** 
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Intensity of environmental regulation Constant terms -0.012 0.008 * 

Constant terms 0.973 0.285 *** 

 

(1) Confirmation of the direction of causality 

The lagged model strips out the reverse causal 
interference (i.e., the reverse effect of the dependent 
variable on the independent variable) through "time 
isolation", if the inhibition effect of digital technology on 
carbon emissions is still significant in the lagged model, it 
indicates that the digital technology drives the reduction 
of carbon emissions. 

(2) Continuity and Stability of Inhibition Effect 

The emission reduction effect of digital technology is still 
significant in the lag 1-2 period, indicating that the impact 
of digital technology has long-term and continuity. For 
example, the scenic area has adopted intelligent lighting 
system to continuously. 

(3) Analysis of the impacts of policy changes and epidemic 
shocks on the carbon emission intensity of digital 
technologies 

In order to further identify the interference or 
enhancement mechanisms of policy changes and 
epidemic shocks on the path of digital technology 
affecting the carbon emission intensity of the tourism 
industry, this paper introduces the dummy variables of 
"dual-carbon" policy (Policy) and epidemic year 
(Covid2020, Covid2021) into the baseline regression. 

 

Figure 6. Path diagram of the impact of digital technology on 

carbon emission intensity 

It can be seen that digital technology has a significant 
inhibitory effect on carbon emission intensity, and the 
coefficient of the core variable is -0.128 and is significant 
at the 1% significance level. 

From the estimation method, the dynamic panel 
regression is conducted by using system GMM, and the p-
value of the AR(2) test is 0.274, which does not reject the 
original hypothesis, indicating that the model does not 
have second-order. 

In order to further identify the potential impacts of the 
policy environment and public health emergencies on the 
carbon emission intensity of tourism, and to examine their 

moderating effects on the mechanism of digital 
technology, the study introduces the dummy variables of 
the "dual carbon" policy and the shock of new crown 
epidemics as well. 
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where: CarbonIntensityit denotes the carbon intensity of 
tourism in that year denotes the development level of 
digital technology; and Policyt is a dummy variable for the 
"dual-carbon" policy, whose value is 1 in 2020 and 
beyond, and 0 otherwise. 

Covid2020 and Covid2021 are dummy variables for the 
impact of the epidemic in 2020 and 2021, respectively, 
and are interaction terms to test the moderating effect of 
the policy and the epidemic on the carbon reduction 
effect of digital technology. 

DTitPolicyt, DTitCovid2020t, DTitCovid2021t are the 
control variable matrices, where γ corresponds to the 
coefficient vector; 

i is a region fixed effect, t denotes a time fixed effect, 

and it is a disturbance term. 

The coefficient of the interaction term is -0.087, which is 
also significant at the 1% level, indicating that the carbon 
emission reduction effectiveness of digital technology has 
been significantly enhanced since the 2020 "dual-carbon" 
target was proposed. Combined with the results of the 
trend graphs, the carbon emission intensity shows (Figure 
8). 

The extended model not only considers the direct impacts 
of macro policy changes and emergencies on carbon 
emissions, but also further explores whether they have 
indirect impacts by enhancing or weakening the emission 
reduction path of digital technologies, 

 
Figure 7. Comparison of digital technology and carbon emission 

intensity before and after the "dual-carbon" policy 

At the same time, in 2020, 2021, the carbon emission 
intensity of tourism cliff decline and 2022 rebound trend. 
As shown in Figure 8. 

Through the above analysis, digital technology (DT) 
significantly reduces the carbon emission intensity of 
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tourism with a coefficient of -0.128, which is significant at 
the 1% level. These findings provide solid empirical 
support for the promotion of digital technology-enabled 
green tourism. 

5.4. Robustness test of the research results 

In order to verify the reliability and extrapolation of the 
core regression results, this paper carries out robustness 
tests in four dimensions, including sample period change, 
placebo test, Monte Carlo simulation and counterfactual 
simulation. 

 

Figure 8. Line graph of the trend of tourism carbon emission 

intensity in epidemic years 

5.4.1. Sample period adjustment 

Sub-sampling regression by dividing the sample into a pre-
epidemic phase and a post-epidemic policy intensification 
phase (2017-2022) shows that the mitigation effect of 
digitalization on carbon intensity holds in both phases. 
According to the following sub-sample re-estimation 
models, the effects of digital technology on tourism 
carbon intensity are all significantly (Table 15). 

5.4.2. Placebo test 

To rule out spurious correlations, pseudo-regressions are 
constructed with 500 random permutations of the 
numerical technical indicators (holding the control 
variables constant with the panel structure). The true 
estimates are well outside the 95% confidence interval of 
the placebo distribution, indicating that the effect 
relationship is not by chance. As shown in Figure 9. 

Table 15. Robustness analysis after sample period adjustment 

Sample Period Digital Coef p-value R-squared Significance 

2011-2019(Pre-pandemic) -0.0309 0 0.9059 *** 

2017-2022 (Post-policy) -0.0307 0 0.897 *** 

 

 

Figure 9. Placebo test effect plot 

 

Figure 10. Monte Carlo simulation test results 

5.4.3. Monte Carlo Simulation 

To check the stability of the estimates under sampling 
uncertainty, a Monte Carlo simulation was performed by 
generating 1,000 bootstrap estimates around the original 
coefficient (-0.078) using a standard error of 0.01. The 
bootstrap estimates are centered around the original 
coefficient (-0.078). The Monte Carlo distribution was 

constructed by simulating 1,000 sets of beta values 
centered on the main estimate (-0.078) with the standard 
error set to 0.01. The distribution of estimates is 
symmetric, with the main estimate at the center, and 
more than 95% of the simulation results are significantly 
negative. It indicates high robustness, as shown in Figure 
10. 

Three families of robustness exercises substantiate the 
reliability of the findings, including the non-linear 
relationship. Re-estimation on a pre-pandemic sub-period 
(2011–2019) yields qualitatively identical signs and 
significance for the digital terms; the non-linearity 
persists, suggesting that the relationship is not driven 
solely by pandemic-era shocks, although magnitudes 
attenuate as expected (Figure 11). 

 

Figure 11. Counterfactual simulation of carbon emission 

intensity of tourism (2011-2022) 

To estimate the net decarbonization effect of digital 
development, a counterfactual scenario was constructed 
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assuming that digitization remains at the 2011 level 
throughout the study period. 

This section reports results in the order of the hypotheses. 
Subsection 5.1 presents baseline estimates, marginal 
effects, and turning-point inference for the inverted U-
shaped association between Digital and Carbon. 
Subsection 5.2 quantifies the three mediation channels 
and compares indirect with direct effects to clarify how 
digitalization translates into abatement. 

Beyond the Chinese context, these results offer broader 
implications for developing economies pursuing digital 
transformation under tightening climate constraints. 
Policymakers in other developing economies may 
therefore consider sequencing digital investment with 
power-sector decarbonization and designing 
complementary instruments, such as low-carbon travel 
incentives, green finance for tourism enterprises, and 
data-driven regulatory. 

6. Conclusions and Policy Recommendations 

6.1. Conclusions of the study 

Based on panel data from 30 Chinese provinces during 
2011–2022, this study constructs a digital development 
index using PCA and measures tourism carbon emission 
intensity through the energy stripping method, and 
empirically examines the relationship between digital 
technology and tourism carbon emissions. 

(1) Digital technology development significantly reduces 
tourism carbon emission intensity, but the effect is 
heterogeneous across regions and development 
stages. The relationship between digital technology 
and carbon emission intensity is non-linear, exhibiting 
an inverted U-shaped pattern, indicating that 
emissions may increase during the early phase of 
digital expansion. 

(2) Mediation analysis shows that digitalization achieves 
carbon reduction through three main channels: 
industrial structure optimization, energy efficiency 
improvement, and technological innovation 
enhancement. 

(3) Following the implementation of the dual-carbon 
policy, the carbon-reduction effect of digital 
technology is strengthened, while the COVID-19 
pandemic caused a short-term decline in tourism-
related carbon emissions. 

(4) Placebo tests, Monte Carlo simulations, and 
alternative model specifications confirm the 
robustness of the findings. 

Overall, this study provides an operational empirical basis 
for understanding how digital transformation contributes 
to the green transition of service-based industries, 
particularly tourism. Several methodological limitations 
remain, and future research could incorporate micro-level 
data, alternative identification strategies, and broader 
spatial coverage. 

6.2. Policy recommendations 

To translate the empirical findings into actionable 
strategies, policy recommendations are proposed to 

support the green digital transformation of China’s 
tourism industry, from macro-level national coordination 
to micro-level enterprise operations. 

(1) Integrate national strategies with local capabilities. 
National digital and low-carbon strategies provide overall 
direction, but local governments face economic and 
technological constraints. A national–local digital carbon 
synergy platform is recommended to facilitate policy 
coordination and data sharing. In high-development 
provinces, digital upgrading should be combined with 
clean energy supply for ICT facilities, mandatory energy-
management standards, transparent data disclosure, and 
demand-side instruments to mitigate rebound effects. 

(2) Strengthen government institutional guidance. 
Digital infrastructure alone does not automatically 
generate environmental benefits. Governments should 
establish green digital standards for tourism platforms 
and smart hotel systems, require carbon impact disclosure 
in funding applications, and issue a Digital Green 
Performance Guide for the tourism industry. 

(3) Provide operational support tools for enterprises. 
Small and medium-sized tourism enterprises often lack 
technological and financial capacity. Targeted digital 
carbon-reduction tools should be provided, and pilot 
programmes for digital carbon-neutral tourism 
enterprises should be promoted to encourage early 
adoption. 

(4) Establish policy feedback and dynamic adjustment 
mechanisms. 

Tourism digital transformation is a long-term process 
involving uncertainty and risk. Regionally differentiated 
strategies are required. In western and parts of 
northeastern China, policy should prioritize basic digital 
connectivity, targeted skills training, and pilot 
programmes combining digital technology with low-
carbon tourism development. 

6.3. Cultural, economic, and institutional barriers 

Low-carbon transformation depends on more than 
infrastructure availability. Effective adoption of digital 
tools varies with human capital, digital literacy, 
managerial capacity, and local institutional norms. 
Regions with limited technical expertise or low trust in 
digital systems may underutilize installed technologies, 
delaying efficiency gains. 

Future research could use more detailed micro-level data 
on tourism firms and households to explore within-
province heterogeneity and extend the analysis to cross-
country contexts to test whether similar non-linear 
patterns hold under different institutional and energy 
structures. 

7. Appendix A 

7.1. A1. Sectoral allocation parameters , ,  and total 
tourism energy Et 

In the main text, total tourism energy consumption in year 
t is calculated as  
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,( )Et Rti pitEij=   
(1) 

where Et denotes total tourism energy use in year t, Rt is 
an adjustment coefficient aligning tourism statistics and 
energy statistics in year t, Pit is the share of tourism-
related activity in sector i, and Eij is the final energy 
consumption of sector i using energy type j. The index i 
runs over the Eij main tourism-related sectors—transport, 
accommodation, and sightseeing/other services—while j 
indexes energy types (coal, petroleum products, natural 
gas and electricity). 

For transparency, the proportional allocation parameters 
used in Pit are defined as follows: 

Tourism transport share t For transport-related energy, 
tourism energy use is obtained by scaling total transport 
energy according to the tourism share of passenger 
transport: 

tourism-related passenger turnover

total passenger turnover

t
it t

t

p = =  

where passenger turnover (passenger-km) is taken from 
the China Transport Yearbook and provincial statistical 
yearbooks, and tourism-related passenger turnover is 
derived from the share of tourist trips in total passenger 
trips for the relevant transport modes (road, rail, air and 
water). 

Tourism accommodation share t For the accommodation 
sector tourism energy is obtained from total hotel/lodging 
energy according to the tourism share in guest-nights: 

tourist overnights in hotels and guesthouses
,

total guest-nights in hotels and guesthouses

t

it t

t

p = =  

where data on tourist overnights and total guest-nights 
come from the China Tourism Statistical Yearbook and 
provincial tourism statistical bulletins. 

Tourism sightseeing and other services share t 

For sightseeing, recreation and other
 

tourism-related 
services, tourism energy is obtained by scaling the energy 
use of the corresponding tertiary sectors by the tourism-
related share in value added: 

value added of tourism-related services

total value added of the corresponding tertiary sectors

t
it t

t

p = =  

Sectoral value added is taken from the China Statistical 
Yearbook and China Tourism Statistical Yearbook. 
Tourism-related value added is calculated on the basis of 
tourism satellite accounts or the share of tourism revenue 
in total sectoral revenue, depending on data availability. 

Thus, in equation (1) the term Pit is operationalized by the 

sector-specific parameters t, t and t for transport, 
accommodation and sightseeing/other services, 
respectively. These parameters are computed for each 
year t from official statistics; the full panel of values is 
available from the authors upon request. 

7.2. A2. Emission factors fj and tourism carbon emissions 
Ct 

Tourism carbon emissions in year t are obtained from 
tourism energy consumption using 

j ,( )ft ijC j E k= 
 

(2) 

where Ct denotes total tourism CO2 emissions in year t, Eij 
is tourism final energy consumption of energy type j 
(aggregated over tourism-related sectors i), fj is the CO2 
emission factor of energy type j, and K is the carbon-to-
CO2 conversion coefficient. 

The paper considers four main energy types j: coal, 
petroleum products, natural gas and electricity. 
Consistent with the 2006 IPCC Guidelines for National 
Greenhouse Gas Inventories, the emission factors fj and 
the conversion coefficient kkk are set as follows: 

294,600    /coalf kgCO TJ=  

273,300    /petroleumf kgCO TJ=  (aggregate petroleum products 

used in transport and accommodation); 

256,100    /gasf kgCO TJ= (natural gas); For electricity, a 

province- and year-specific grid emission factor (t 
CO2/MWh) is used instead of a direct fuel-based fj, 
reflecting the power generation mix and efficiency in each 
year; k=44/12, converting carbon emissions to CO2 
emissions. 

Fuel-specific net calorific values needed to convert 
physical energy quantities into TJ are also taken from the 
2006 IPCC Guidelines and cross-checked against the China 
Energy Statistical Yearbook. Grid emission factors for 
electricity are obtained from China’s national greenhouse 
gas inventory reports and related energy statistics; when 
official data are missing for individual years, linear 
interpolation between adjacent years is applied. 

7.3. A3. Tourism carbon intensity CP 

Finally, tourism carbon intensity is defined in the main 
text as 

p

Ct
C

TourismRevenuet
=  

(3) 

where CP is tourism carbon emission intensity in year t, Ct 
is total tourism CO2–  emissions from equation (2), and 
TourismRevenuet denotes total tourism revenue in year t  

(in constant prices). This ratio measures CO2 emissions per 
unit of tourism output and serves as the core dependent 
variable in the empirical analysis. 
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