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Abstract: With the upgrading of urban industrial structures, the regenerative use of industrial 8 

wasteland has become vital for sustainable urban renewal. Transforming such sites into green 9 

spaces can alleviate urban green space shortages and improve ecological quality. This study 10 

focuses on two distinct industrial wasteland sites in Harbin’s Xiangfang District, namely the 11 

former Xingguang Machinery Factory (XMF) and the former Textile Printing and Dyeing 12 

Factory (TPDF). A green value evaluation system comprising five criterion layers and 21 13 

indicators was established using the Analytic Hierarchy Process (AHP), and field surveys and 14 

GIS analysis were applied for assessment. The results indicate that XMF (score 3.76) exhibits 15 

significantly higher green value than TPDF (score 2.44), mainly due to differences in ecological 16 

quality, pollution levels, and urban integration. Differentiated regeneration strategies 17 

incorporating AI-assisted planning (e.g., machine learning for contamination mapping and 18 

generative design for spatial configuration) are proposed. For XMF, an ecology-culture 19 

integrated park is recommended, while for TPDF, an art-led green cultural-creative district with 20 

zoned remediation is suggested. This research offers a scientifically supported and technology-21 

informed approach for the sustainable regeneration of industrial wasteland.  22 
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1. Introduction 27 

Rapid urbanization and the advent of the post-industrial era have led to the emergence of 28 

numerous industrial wastelands within cities (Accordino & Johnson, 2000). The formation of 29 

these sites results from the interplay of various complex factors, including global and local 30 

economic changes, climatic conditions, social structure, political decisions, population 31 

movements, and cultural context (Cui et al., 2025; Hwang & Lee, 2019; Mrak et al., 2022; 32 

Newman et al., 2018). During industrial transformation and urban renewal, numerous 33 

brownfields and abandoned plots have emerged as legacy spaces that cannot be overlooked in 34 

urban development (Chien & Knoble, 2024; Qu et al., 2020; Song et al., 2020). 35 



 

 

These areas not only face problems such as soil pollution, ecological degradation, and 36 

landscape fragmentation (Adams et al., 2010), but also fragment the city’s physical structure 37 

and visual landscape to some extent, while harboring environmental pollution and public safety 38 

risks that pose potential threats to residents’ lives (Beam et al., 2021; Cui et al., 2022; Cundy 39 

et al., 2016). However, from the perspective of urban ecological restoration, these brownfield 40 

resources, often seen as “urban scars”, can be transformed into important catalysts for urban 41 

vitality. Their conversion into urban green spaces can bring profound impacts for sustainable 42 

urban development (Anderson & Minor, 2017; Preston et al., 2024; Rupprecht & Byrne, 2014; 43 

Stanford et al., 2025). This transformation is significant for alleviating construction land 44 

shortages, improving residents’ quality of life, and preserving industrial culture (Adams et al., 45 

2010). 46 

In recent years, researchers and practitioners worldwide have continuously explored 47 

diverse regeneration strategies including ecological restoration, landscape remodeling, and 48 

functional replacement, while introducing cutting-edge technologies such as artificial 49 

intelligence to enhance the scientific rigor and foresight of industrial wasteland redevelopment 50 

(Mao et al., 2022; Naghibi et al., 2021; Song et al., 2022; Xi, 2024). However, current research 51 

predominantly focuses on overall transformation models or discussions of single cases, while 52 

comparative studies examining the inherent characteristics and differences in greening potential 53 

among different types of industrial wasteland remain insufficient (Derudder & Taylor, 2021; 54 

Fu et al., 2024). Particularly, wastelands originating from different industrial sectors (e.g., 55 

heavy industry vs. light industry) exhibit essential differences in historical context, spatial 56 

structure, pollution levels, and other aspects, which inevitably lead to differentiation in their 57 

green value and regeneration pathways (Draus et al., 2020; Gobster et al., 2020; Hsiao, 2022). 58 

Current research on evaluation systems and differentiated strategies for urban wasteland 59 

utilization requires further enhancement (Cui et al., 2025). How to scientifically evaluate 60 

greening potential and formulate targeted landscape optimization strategies has become a 61 

research hotspot in fields such as landscape architecture, urban and rural planning, and urban 62 

ecology (Akkerman & Cornfeld, 2009; Atkinson et al., 2014; Cady et al., 2020; Chen & 63 

Hashimoto, 2025). 64 

Against the backdrop above, a key scientific question arises: Do brownfields originating 65 

from different industrial sectors exhibit significantly different green potentials, and which 66 

ecological or social factors primarily drive these differences? To address this, it is necessary to 67 



 

 

move beyond established ecosystem service-based or ecological security pattern models (e.g., 68 

Cundy et al., 2016; Atkinson et al., 2014). This study aims to develop a novel green value 69 

evaluation system that integrates and weighs sector-specific factors (such as legacy pollution 70 

level, landscape structural adaptability, and cultural-historical value) with multi-dimensional 71 

urban integration indicators. This approach seeks to capture the distinct greening constraints 72 

and opportunities inherent to different industrial histories, thereby offering a more nuanced tool 73 

for comparative potential assessment and differentiated strategy formulation. 74 

Harbin, China, as a typical representative of China’s old industrial base, has the rise and 75 

fall of industrial civilization deeply imprinted in its urban fabric. Xiangfang District, located in 76 

the southeast of the city, served not only as a pioneering area for industrialization in Northeast 77 

China but also accumulated a large number of different types of industrial heritage and 78 

wasteland during the tides of the era. This study selects two highly contrasting typical cases 79 

within this region. The first is the former Xingguang Machinery Factory (XMF), which was 80 

military-industrial in nature with sturdy and grand buildings and relatively singular pollution. 81 

The second is the former Textile Printing and Dyeing Factory (TPDF), which was involved in 82 

textile printing and dyeing with lighter buildings but complex and severe pollution. This stark 83 

contrast between “hard and soft”, “heavy and light” provides an excellent sample for addressing 84 

the research question. 85 

Building on the proposed evaluation framework, this paper aims to quantitatively analyze 86 

the differences in greening potential between the two sites. Through site visits, questionnaires, 87 

field investigations, expert evaluations, and the Analytic Hierarchy Process (AHP) method, a 88 

comprehensive assessment of the greening potential of the two sites was conducted. Based on 89 

the evaluation results, this study proposes landscape optimization strategies matching their 90 

respective characteristics, aiming to provide a scientifically supported and differentiated 91 

approach for ecological restoration and landscape regeneration of similar industrial wastelands. 92 

2. Materials and Methods 93 

2.1 Study Area Overview 94 

Harbin (45°40′- 48°40′N, 125°40′-130°10′E) is located in Northeast China, the capital of 95 

Heilongjiang province, situated in the middle reaches of the Songhua River (You, 2024). The 96 

total area of Harbin is about 53,000 km², making it one of the provincial capitals with the 97 



 

 

largest area in China (Xu and Xu, 2020). Harbin was once a key industrial base constructed in 98 

the early years of the People’s Republic of China. Through the ‘Southern Factory Relocation 99 

North’ and the layout of several national major projects, it gradually formed an industrial 100 

system supported by large and medium-sized state-owned enterprises and covering 101 

comprehensive categories. Its power station equipment, precision bearings, military products, 102 

etc., were at the forefront of the country in terms of technical capability and industrial scale, 103 

becoming an important force driving national industrialization and regional economic growth 104 

(Zhang et al., 2023). The heavy industrial bases in the early founding period were mainly 105 

located in the Xiangfang District in the southeast of Harbin (Ge, 2017), as shown in Figure 1. 106 

 107 

Figure 1. Location Map of Xiangfang District, Harbin City. (a) Outline Map of China; (b) 108 

Outline Map of Heilongjiang Province; (c) Outline Map of Harbin City; (d) Outline Map of 109 

Xiangfang District. 110 

With the advancement of the market economy transition in recent years, the traditional 111 

industrial structure long relied upon by Harbin struggled to adapt to diversified demands, and 112 

many enterprises faced challenges of overcapacity and lagging technological upgrades. Against 113 

the backdrop of urban functional adjustment and industrial relocation, many old factory sites 114 

were successively closed, relocated, or transformed, with the original sites gradually turning 115 

into residential and commercial land. For example, the original Linen Factory, Cement Factory, 116 

and other plots have been developed into new urban functional areas. Simultaneously, some 117 

factory buildings have been preserved and transformed into cultural and creative parks or 118 

commercial spaces, becoming typical cases of industrial heritage reuse. In this process, a 119 

considerable number of old factory areas have been left idle and abandoned for various reasons, 120 

forming a considerable scale of industrial wasteland, such as the concentrated abandoned 121 

factory areas of bearing factories, timber factories, chemical plants, machinery factories, silk 122 

spinning mills, and textile printing and dyeing factories in Xiangfang District. These sites not 123 



 

 

only affect land value and the urban environment but also reflect the growing pains of regional 124 

industrial structure adjustment. 125 

Based on the identification of wasteland in Harbin’s Xiangfang District using high-126 

resolution satellite imagery (Gaofen-6) combined with ArcGIS 10.8, along with preliminary 127 

field surveys assisted by drone technology (DJI Goggles 2), this study selected two distinct 128 

types of industrial wasteland, namely the former military-industrial Xingguang Machinery 129 

Factory (XMF) and the former textile printing and dyeing factory (TPDF), for research on 130 

differences in greening potential (Figure 2).  131 

 132 

Figure 2. Geographical Context and Satellite Imagery of the XMF and TPDF Industrial 133 

Wasteland Sites. (a) and (b): Locator maps showing the position of the sites within Xiangfang 134 

District; (c) and (d): High-resolution satellite image overviews of the XMF and TPDF sites, 135 

respectively. 136 

XMF was established in 1965, as a military enterprise directly under the former Ministry 137 

of Aerospace Industry. The site area is 21.22 hectares. Some internal factory buildings have 138 

been demolished, but the core protective buildings are relatively intact. The green coverage rate 139 

is high, reaching 84.91%, and vegetation growth is good. Pollution sources are mainly heavy 140 



 

 

metals and lubricating oil from machining. TPDF was built in the 1980s, as a comprehensive 141 

textile enterprise. The site area is 49.60 hectares. Most of the internal factory structures remain, 142 

but there is a lot of hardened ground. Pollution mainly comes from dyes, auxiliaries, and organic 143 

wastewater from the printing and dyeing process, with complex composition and high treatment 144 

difficulty. The green coverage rate is low, only 32.01%. Aerial photographs of the two 145 

wasteland sites are shown in Figure 3; they were acquired in June 2024. 146 

 147 

Figure 3. Aerial photographs of the XMF and TPDF industrial wasteland sites. (a1-a4) The 148 

XMF site, shown from different viewing angles; (b1-b4) The TPDF site, shown from different 149 



 

 

viewing angles. The area enclosed by the red line demarcates the extent of the factory 150 

premises, with the area beyond it defined as the surrounding zone. 151 

2.2 Construction of the Green Value Evaluation System 152 

This study employed the Analytic Hierarchy Process (AHP) to construct the evaluation 153 

system (Byun, 2001). The goal layer (A) is Green Value. The criterion layer (B) consists of five 154 

aspects: Eco-quality (B1), Ecological Value (B2), Stormwater Management (B3), Community 155 

Structure (B4), and Service Facilities (B5). The indicator layer (C) includes 21 specific 156 

indicators, such as Vegetation Coverage (C1), Original Site Area (C6), Water Retention 157 

Potential (C10), Community Utilization Potential (C15), Transportation Services (C17), etc. 158 

The hierarchical structure model of the green value evaluation system is detailed in Figure 4. 159 

 160 

Figure 4. Analytic Hierarchy Process (AHP) model for evaluating the green value of 161 

industrial wasteland. 162 

  2.3 Procedure of Consultation and Questionnaire Administration 163 

    A panel of experts specializing in landscape architecture, urban planning, and architectural 164 

engineering was assembled (see Supplementary Table 1). Expert selection criteria included: 165 

holding an associate senior professional title or above, having over 10 years of research or 166 

practical experience in related fields, and possessing hands-on project experience in industrial 167 

heritage regeneration or ecological restoration. The expert panel conducted pairwise 168 

comparisons of indicators through a combination of field visits and structured interviews to 169 

construct judgment matrices. 170 



 

 

A total of 200 questionnaires were distributed to residents surrounding each site, resulting 171 

in 368 valid responses, representing a response rate of 92%. The demographic profile of 172 

respondents was as follows: the majority (62%) were aged 30-50, most (71%) held a college 173 

degree or higher, and occupations included employees of enterprises and institutions, self-174 

employed individuals, students, and retirees. Respondents rated the importance of the 21 175 

specific indicators using a 5-point Likert scale (1-5). 176 

  2.4 Weight Determination and Consistency Check 177 

The geometric mean method was applied to aggregate data from expert judgment matrices 178 

and resident questionnaires to calculate the weights of indicators at each level. All judgment 179 

matrices passed the consistency check, with Consistency Ratio (CR) values as follows: 0.043 180 

(Criterion layer A), 0.028 (Eco-quality B1), 0.036 (Ecological value B2), 0.021 (Stormwater 181 

management B3), 0.039 (Community structure B4), and 0.031 (Service facilities B5).  182 

All CR values were below 0.1, satisfying the consistency requirement. Final weights and 183 

rankings are presented in Table 1. The weight analysis revealed that Ecological Value (B2) and 184 

Eco-quality (B1) are the most critical factors determining green value, ranking first and second, 185 

respectively. 186 

Table 1. Weights and ranking of green potential evaluation for each criteria  187 

A B1 B2 B3 B4 B5 Wi Order 

B1 1 0.2703 3.8912 3.1436 2.1748 0.2242 2 

B2 3.7037 1 4.9206 3.9603 4.0315 0.4597 1 

B3 0.2571 0.2033 1 0.2924 0.3618 0.0556 5 

B4 0.3185 0.2525 3.4483 1 2.8624 0.1575 3 

B5 0.4608 0.2481 2.7778 0.3497 1 0.1030 4 

Note: The meanings of each code as shown in Figure 4. 188 

2.5 Model Validation and Sensitivity Analysis 189 

  To assess the robustness of the evaluation model, a sensitivity analysis was conducted. 190 

Weights at the criterion level were randomly varied within a range of ±10% to observe their 191 

impact on the total green value scores. Results indicated that under these weight fluctuations, 192 

the green value levels of the two study sites remained stable. This demonstrates the model’s 193 



 

 

reliability and the credibility of the evaluation outcomes. Furthermore, the questionnaire survey 194 

results of this study also confirmed the stability of the model. 195 

2.6 Data Sources and Processing 196 

Data sources include the following aspects: (1) High-resolution satellite imagery (Gaofen-197 

6) from 2022, and aerial imagery (DJI Goggles 2) from 2024; (2) Experts field survey and 198 

vegetation quadrat survey; (3) Relevant urban planning documents and GIS database of 199 

Xiangfang District; (4) Residents questionnaire survey. 200 

Scores for each indicator were quantified based on pre-established scoring criteria 201 

(Supplementary Table 2, Table 3, Table 4, Table 5, Table 6). Statistical significance of 202 

differences between groups was determined using the Student’s t-test (Barrado et al., 2016), 203 

and associations between variables were assessed by Pearson correlation analysis (Mo et al., 204 

2025). 205 

2.7 Comprehensive Evaluation Model 206 

The comprehensive index evaluation method was used to calculate the total green value 207 

score (A), with the formula as follows: 208 

A = Σ (Bi × Wi) 209 

Here, Bi is the score of the i-th criterion layer, and Wi is its corresponding weight. The 210 

criterion layer score Bi is obtained by the weighted sum of its subordinate indicator layer scores. 211 

Scores are given on a 5-point scale (1, 2, 3, 4, 5). The value is categorized as follows: ‘Low’ 212 

for scores in the [1-2] range, ‘Medium’ for [2-3], ‘High’ for [3-4], and ‘Very High’ for [4-5]. 213 

3. Results and Analysis 214 

3.1 Comprehensive Green Value Evaluation Results 215 

According to the comprehensive evaluation model calculation, the total green value 216 

scores and various criterion layer scores for the XMF and TPDF sites are shown in Figure 5. 217 



 

 

 218 

Figure 5. Comparison of Green Value Evaluation Scores between the XMF and TPDF Sites. 219 

* indicates a significant differences between XMF and TPDF (p < 0.05). 220 

The Figure 5 showed that all scores of different criteria layers in XMF were higher than 221 

in TPDF. And also the total green value score of the XMF (3.76) is significantly higher than 222 

that of the TPDF site (2.44). This indicates that, in terms of comprehensive potential for 223 

transformation into green space, the Xingguang Machinery Factory is superior to the Textile 224 

Printing and Dyeing Factory.  225 

3.2 Comparative and Correlative Analysis of Greening Values 226 

To elucidate the underlying causes of the differences in total green value, a detailed 227 

comparison across the five criterion layers was conducted (Figure 5). The scores and weighted 228 

contributions of each sub-criterion (C1 - C21) are presented in Table 2. 229 

Table 2. Score and weight of each sub-criteria for calculating greening value (B1 to B5)  230 

Sub-

criteria  

Score  

in XMF 

Score  

in TPDF 

Weight Sub-

criteria 

Score  

in XMF 

Score  

in TPDF 

Weight 

C1 5 2 0.0801 C12 1 5 0.0124 

C2 5 4 0.0096 C13 5 5 0.0746 

C3 5 3 0.0351 C14 3 2 0.0108 



 

 

C4 5 4 0.0146 C15 5 2 0.0495 

C5 5 2 0.0848 C16 2 5 0.0225 

C6 4 5 0.1826 C17 4 2 0.0481 

C7 2 1 0.1965 C18 4 1 0.0168 

C8 5 1 0.0484 C19 4 1 0.0056 

C9 3 1 0.0322 C20 4 1 0.0167 

C10 3 1 0.0359 C21 3 1 0.0159 

C11 1 1 0.0073     

    The total scores of XMF and TPDF of Eco-quality (B1) in Figure 5 calculated based on 231 

the comprehensive index evaluation formula that mentioned before, combining with the scores 232 

in Table 2 and the weights in Supplementary Table 2. The processing are as follows: 233 

XMF=5*0.36+5*0.04+5*0.16+5*0.07+5*0.38=5.00; 234 

TPDF=2*0.36+4*0.04+3*0.16+4*0.07+2*0.38=2.37. 235 

Also the total scores in Ecological Value (B2), Stormwater Management (B3), Community 236 

Structure (B4) and Service Facilities (B5) following the same processing above based on Table 237 

2 and Supplementary Table 3-6.  238 

To go beyond the earlier descriptive disparities, a Pearson correlation analysis of the 239 

combined sites’ standardized scores (B1-B5) is conducted here. Results revealed a strong 240 

positive correlation between Eco-quality (B1) and Stormwater Management (B3) (r = 0.89, p < 241 

0.01), indicating that sites with better inherent ecological conditions (e.g., higher vegetation 242 

cover) inherently possess greater potential for stormwater retention that is a synergy evident in 243 

XMF’s superior performance in both aspects. Furthermore, a significant positive correlation 244 

was found between Community Structure (B4) and Service Facilities (B5) (r = 0.92, p < 0.01), 245 

underscoring that well-integrated urban neighborhoods are typically accompanied by more 246 

complete service infrastructures, as seen in the XMF context. 247 

To move beyond description towards causal explanation, the analysis explicitly links 248 

indicator scores to the sites' industrial typology. The stark contrast in Eco-quality (B1), where 249 

XMF (5.00) vastly outperformed TPDF (2.37), is directly attributable to their original industrial 250 

footprints. XMF, as a machinery factory, had extensive interstitial land which underwent 251 

natural succession after abandonment, leading to high scores in vegetation coverage (C1) and 252 

local plant diversity (C5). Conversely, TPDF’s textile printing and dyeing operations required 253 



 

 

large areas of hardened ground for logistics and wastewater treatment, resulting in a legacy of 254 

low vegetation coverage and a compromised ecological baseline. 255 

The divergence in Ecological value (B2) is fundamentally driven by pollution intensity. 256 

XMF’s operations involved localized contaminants like heavy metals. In contrast, TPDF’s use 257 

of complex dyes and organic compounds led to widespread, severe contamination. This 258 

intrinsic difference in pollution burden is a primary constraint on TPDF’s ecological recovery 259 

potential. Additionally, XMF’s superior ‘Connection to green spaces’ (C8) score is not 260 

incidental but relates to its historical siting within a planned industrial zone near other facilities 261 

with green buffers, enhancing urban ecological connectivity. 262 

The assessment of Stormwater management (B3) further validates the link between 263 

industrial legacy and ecosystem function. The high score in XMF is directly tied to its superior 264 

vegetation coverage (C1), which promotes infiltration, despite both sites having poor 265 

underlying permeability due to industrial compaction. 266 

Finally, the chasm in Community structure (B4) and Service facilities (B5) finds its root 267 

in the original locational logic of each industry. XMF, as a key state-owned enterprise, was 268 

integrated into a well-serviced urban district from its inception, leading to high surrounding 269 

population density (C15) and complete services (C17). TPDF, with needs for water access and 270 

effluent disposal, was historically situated on the urban fringe. Subsequent urban growth has 271 

not fully integrated this area, leaving it with lower community density and a critical lack of 272 

services, thereby limiting its immediate social utility and accessibility. 273 

However, the above statistical and correlational analyses also have certain limitations. 274 

Although two cases are strategically selected for their contrasting typologies, the small sample 275 

size and locations limit the generalizability of the statistical correlations observed. Future work 276 

should expand the number of sites across multiple cities to strengthen the robustness of the 277 

evaluation framework and the derived inter-indicator relationships.  278 

4. Discussion 279 

4.1 Underlying Reasons for Differences in Green Value 280 

It should be noted that industrial wastelands in different regional and urban contexts often 281 

possess uniqueness in their historical background, spatial characteristics, and social and cultural 282 



 

 

significance. Therefore, deeply interpreting their formation context and landscape morphology 283 

not only helps understand their local value but also provides key perspectives and 284 

methodological support for formulating more adaptive and humanistic regeneration strategies 285 

(Beames et al., 2018; Li et al., 2018; Li et al., 2024; Preston et al., 2023). The two case studies 286 

selected show prominent differences in green utilization value. 287 

The comprehensive green value score of the XMF site (3.76) was substantially higher than 288 

that of the TPDF site (2.44), indicating a significant disparity in their potential for 289 

transformation into urban green space. This divergence stems directly from their distinct 290 

original industrial attributes, which have profoundly shaped their current ecological conditions, 291 

pollution status, and urban integration, as quantified in the evaluation results across the five 292 

criterion layers. 293 

First, the stark contrast in Eco-quality (B1), where XMF (5.00) vastly outperformed TPDF 294 

(2.37), is primarily attributable to their differing industrial footprints and subsequent ecological 295 

disturbance. The XMF site, as a machinery factory, featured large, impervious factory buildings 296 

but also extensive interstitial land. After its abandonment, this land experienced minimal 297 

ongoing disturbance, allowing for natural succession. This is evidenced by its top scores in 298 

Vegetation Coverage (C1) and Native Plant Proportion (C5), resulting in a high ecological 299 

baseline. Conversely, the TPDF site, dedicated to textile printing and dyeing, required vast 300 

areas of hardened ground for logistics and wastewater basins, leaving a legacy of low vegetation 301 

coverage (C1) and a compromised ecological foundation that hinders natural recovery. 302 

Second, the divergence in Ecological Value (B2) and pollution status is a direct 303 

consequence of their production nature. XMF’s military-industrial operations involved 304 

localized pollution, primarily heavy metals and lubricants (C8), categorizing it as a ‘Moderately 305 

Polluting Industry’. In contrast, TPDF's use of complex dyes, auxiliaries, and organic 306 

compounds led to widespread and severe contamination, marking it as a ‘Heavily Polluting 307 

Industry’ (C8). This fundamental difference is reflected in their pollution control difficulty 308 

scores. Furthermore, XMF’s superior performance in ‘Connection to Green Spaces’ (C7) is not 309 

incidental. Its historical placement within a planned industrial zone, often co-located with other 310 

large facilities possessing green buffers, enhanced its connectivity to the urban ecological 311 

network. TPDF, potentially sited for water access and effluent disposal, ended up in a more 312 

isolated location, weakening its ecological linkages. 313 



 

 

Third, the assessment of Stormwater Management (B3) further underscores the role of pre-314 

existing site conditions. XMF's higher score (2.29 vs. 1.89 for TPDF) is directly linked to its 315 

superior vegetation coverage (C1), which promotes infiltration and retention, despite both sites 316 

having generally poor underlying permeability due to historical industrial compaction and 317 

construction. 318 

Finally, the chasm in urban integration, captured by the Community Structure (B4) and 319 

Service Facilities (B5) criteria, is rooted in their original locational logic and the subsequent 320 

urban development patterns. The XMF site, as part of a significant state-owned industrial base, 321 

was integrated into a well-serviced urban district from its inception. Over time, the surrounding 322 

area developed into mature residential neighborhoods, explaining its high scores for Population 323 

Density (C15), Transportation Services (C17), and other public amenities. Its transformation 324 

into a park thus serves an immediate and dense population. The TPDF site, typical of industries 325 

with specific logistical or environmental needs, was historically situated on the urban fringe. 326 

The subsequent pattern of urban growth has not fully integrated this area, leaving it with lower 327 

community density and a critical lack of service facilities (B5 score: 3.85 for XMF vs. 1.47 for 328 

TPDF), thereby limiting its immediate social demand value and accessibility. 329 

In summary, the quantitative evaluation reveals that the ‘hard’ military-industrial legacy 330 

of XMF conferred a robust ecological and urban-integration advantage. In contrast, the ‘soft’ 331 

but chemically intensive legacy of the textile industry left TPDF with a more deeply impaired 332 

ecosystem and a peripheral relationship to the urban fabric, necessitating a fundamentally 333 

different regeneration approach. 334 

4.2 Conceptual Differentiated Landscape Optimization Strategies 335 

Based on the above evaluation and comparison, targeted landscape optimization strategies 336 

are proposed for the two industrial wasteland sites.  337 

For XMF site, the strategy proposed an ecology- and culture-integrated comprehensive 338 

park. First, ecological restoration is prioritized by conserving and enhancing existing vegetation 339 

communities to establish a stable near-natural ecosystem. Second, the industrial heritage’s 340 

value is revitalized through the adaptive reuse of iconic structure into immersive museums, 341 

exhibition hall, or outdoor art spaces, reinforcing its robust military-industrial cultural character. 342 



 

 

Third, community needs are met by incorporating facilities for leisure, play, and education, 343 

culminating in an urban park that blends ecology, culture, and recreatin.  344 

For TPDF site, the strategy focuses on zoned remediation to create an art-led green cultural 345 

district. First, severely polluted printing and dyeing areas undergo risk-based containment, 346 

while less polluted zones receive sensor-guided soil improvement. Second, flexible, low-347 

intervention approaches are adopted: transforming contaminated zones into land art or hardy 348 

plant displays, and applying ‘light-touch’ renovations to retained buildings to attract creative 349 

tenants. Third, the site is positioned as a regional fashion art or cultural-creative park with 350 

phased integration into the urban fabric or spur local vitality. 351 

To enhance the scientific precision and implementation efficiency of these strategies, an 352 

AI-assisted planning workflow is proposed as shown in Figure 6, integrating specific 353 

technologies into key stages: (1)Site Assessment and Analysis: Machine learning (ML) 354 

algorithms are employed for pollution mapping and predicting ecological restoration potential 355 

by analyzing spatial data such as soil samples and plant vegetation indices. (2)Conceptual and 356 

Generative Design: Using generative design tools (deep learning or optimization algorithms) 357 

to automatically generate and evaluate multiple spatial layout options that meet predefined 358 

constraints (e.g., sun exposure, landscape connectivity, zoning regulations) and objectives such 359 

as preserving heritage structures. (3)Simulation and Optimization: Using deep neural network 360 

simulates long-term outcomes such as vegetation community development, stormwater runoff, 361 

and human foot traffic patterns under different design scenarios. (4)Monitoring and 362 

Management: Using computer vision and internet of things (IoT) sensor networks to monitor 363 

soil health, plant growth, and visitor flows, supporting adaptive management post-construction. 364 



 

 

 365 

Figure 6. Schematic diagram of the Ai-assisted workflow for industrial brownfield regeneration 366 

planning. 367 

5. Conclusion 368 

This study quantitatively evaluated and compared the green value of two typical industrial 369 

wastelands, XMF and TPDF, in Harbin, China. The main conclusions are as follows: 370 

(1) The green value evaluation system developed effectively quantifies the potential of 371 

industrial wastelands for transformation into urban green spaces. Significant differences in 372 

ecological baselines, pollution levels, and urban integration resulted in XMF (3.76) 373 

outperforming TPDF (2.44). 374 

(2) Original industrial attributes critically shape all aspects of green value and must be 375 

considered in formulating differentiated regeneration strategies. 376 

(3) The proposed AI-assisted planning workflow, integrating machine learning for 377 

contamination mapping, generative design for spatial configuration, and predictive modeling 378 

for ecosystem simulation, can significantly improve the feasibility, adaptability, and scientific 379 

robustness of such strategies. For XMF, ecological preservation and cultural enhancement are 380 

prioritized, while TPDF requires risk control, flexible design, and creativity-driven reactivation. 381 



 

 

This research confirms the value of evidence-based and technology-supported landscape 382 

design in industrial wasteland regeneration. Future studies should incorporate detailed 383 

engineering measures, cost-benefit analysis, and public participation to strengthen strategy 384 

implementation. 385 
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Supplementary Tables (Note: The meanings of each criteria code in the following tables as 518 

shown in Figure 4.) 519 

 520 

Suppl Table 1. Summary of expert consultancy panel composition 521 

Professional 

title 

Affiliation Specialty Participant 

count 

Inquiry 

method 

Professor Northeast Agricultural  

University 

Landscape 

architecture 

3 Field visit and 

investigation 

Professor Northeast Forestry 

University 

Landscape 

architecture 

3 Field visit and 

investigation 

Professor Harbin Institute of 

Technology 

Landscape 

architecture 

2 Field visit and 

investigation 

Professor Heilongjiang Agricultural 

Vocational Engineering 

College 

Architectural 

engineering 

2 Field visit and 

investigation 

Associate 

professor 

Heilongjiang Vocational 

& Technical University 

of Agricultural 

Engineering 

Landscape 

architecture 

1 Field visit and 

investigation 

Associate 

professor 

Heilongjiang College of 

Architectural Technology 

Urban Architecture 2 Field visit and 

investigation 

Urban 

designer 

Heilongjiang Building 

Design Institute 

Landscape 

architecture 

1 Field visit and 

investigation 

Manager Harbin Sanfeng 

Landscape Co., Ltd 

Landscape 

architecture 

1 Field visit and 

investigation 

 522 

 523 

Suppl Table 2. Weight and ranking of sub-criteria in the eco-quality (B1) dimension 524 

Sub-criteria C1 C2 C3 C4 C5 Wi Order 

C1 1 7.0613 3.8602 5.9636 0.8624 0.3573 2 

C2 0.1416 1 0.2142 0.3618 0.1836 0.0429 5 

C3 0.2591 4.7619 1 4.7141 0.2604 0.1563 3 

C4 0.1678 2.7778 0.2123 1 0.1421 0.0651 4 

C5 1.1628 5.5556 3.8462 7.1429 1 0.3784 1 

 525 

Suppl Table 3. Weight and ranking of sub-criteria in the ecological value (B2) dimension 526 



 

 

Sub-criteria C6 C7 C8 C9 Wi Order 

C6 1 1.0624 4.9136 4.3478 0.3973 2 

C7 0.9434 1 5.8747 5.5556 0.4274 1 

C8 0.2037 0.1704 1 2.4391 0.1053 3 

C9 0.2312 0.18 0.41 1 0.0700 4 

 527 

 528 

Suppl Table 4. Weight and ranking of sub-criteria in stormwater management (B3) 529 

dimensions 530 

Sub-criteria C10 C11 C12 Wi Order 

C10 1 4.8208 2.9614 0.6456 1 

C11 0.2075 1 0.5733 0.1307 3 

C12 0.3378 1.7544 1 0.2237 2 

 531 

 532 

Suppl Table 5. Weights and ranking of sub-criteria in the community structure (B4) 533 

dimension 534 

Sub-criteria C13 C14 C15 C16 Wi Order 

C13 1 6.8124 1.7802 2.9342 0.4739 1 

C14 0.1468 1 0.2641 0.4186 0.0688 4 

C15 0.5618 3.8462 1 3.0616 0.3144 2 

C16 0.3413 2.439 0.3268 1 0.1429 3 

 535 

Suppl Table 6. Weights and ranking of sub-criteria in the service facilities (B5) dimension 536 

Sub-criteria C17 C18 C19 C20 C21 Wi Order 

C17 1 5.0283 4.9321 3.8849 2.7654 0.4667 1 

C18 0.1992 1 3.0633 1.8911 1.1228 0.1631 2 

C19 0.2028 0.3268 1 0.2942 0.2214 0.0541 5 

C20 0.2577 0.5291 3.4483 1 1.9862 0.1621 3 

C21 0.3623 0.8929 4.5455 0.5051 1 0.1539 4 

 537 

 538 

 539 


