

1 **Response of Vegetable Crops to Heavy Metal Exposure in Contaminated**

2 **Irrigation Water and Its Implications for Food Safety**

3 Anggrika Riyanti^{1,4}, Benyamin Lakitan^{2,3*}, Momon Sodik Imanudin², Muhammad Yazid²

4 ¹Graduate School of Environmental Science, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia

5 ²Faculty of Agriculture, Universitas Sriwijaya, Indralaya 30662, South Sumatra, Indonesia

6 ³Research Center for Sub-optimal Lands, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia

7 ⁴Department of Environmental Engineering, Faculty of Engineering, Universitas Batanghari, Jambi 36122,
8 Indonesia

9 *Corresponding author's e-mail: blakitan60@unsri.ac.id

10 **Abstract**

11 Heavy metal contamination in irrigation water poses serious risks to crop productivity and food safety,
12 particularly for leafy vegetables that readily accumulate toxic elements. This study evaluated the growth
13 response, bioaccumulation behavior, and health risks of three commonly consumed leafy vegetables,
14 velvetleaf (*Limnocharis flava*), kailan (*Brassica oleracea* var. *alboglabra*), and kangkong (*Ipomoea*
15 *aquatica*), exposed to Pb at 50 mg L⁻¹, Cd at 1 mg L⁻¹, and Cu at 2 mg L⁻¹ under controlled irrigation
16 conditions. Plant length, leaf number, and leaf area were monitored over an eighteen-day exposure
17 period. Heavy metal concentrations in roots and leaves were quantified using ICP-OES with high
18 analytical accuracy. Data were analyzed using analysis of variance, and means compared using the
19 Duncan Multiple Range Test (DMRT). The results showed specific growth responses for each cultivar.
20 Kailan exhibited the strongest stress symptoms, including a twenty-four percent reduction in plant
21 length and a thirty-three percent decrease in leaf area under Cu exposure, while velvetleaf and kangkong
22 showed comparatively higher tolerance. Bioconcentration factors exceeded one for all metals,
23 indicating strong accumulation potential, particularly in kailan with Pb at 2873.21, Cd at 99.87, and Cu
24 at 414.13. Translocation factors were consistently below one, indicating restricted metal movement
25 from roots to leaves. Despite low translocation, Pb and Cd concentrations in edible tissues exceeded
26 FAO and WHO safety limits, resulting in very high Hazard Index values, especially for kailan at 3097.6.
27 These findings demonstrate that plant tolerance alone does not guarantee food safety. The integration
28 of accurate analytical measurement, mathematical performance evaluation, and health risk assessment
29 provides a robust framework for identifying safer crop choices and guiding irrigation management in
30 heavy metal-contaminated environments.

31 **Keywords:** heavy metal stress, plant tolerance, bioaccumulation, food safety, polluted irrigation water.

32 **1. INTRODUCTION**

33 Heavy metal contamination in agricultural ecosystems is an increasingly significant
34 global concern, particularly in peri-urban areas and wetlands exposed to industrial activities

35 and intensive agricultural practices with inadequate waste management (Kim et al., 2020). The
36 scarcity of clean water resources has resulted in the use of low-quality water as an alternative
37 irrigation source in agriculture (Dotaniya et al., 2023). Heavy metals in irrigation water can
38 accumulate in crops, significantly increasing the risk of human exposure through dietary
39 consumption (Bounar et al., 2020; Khan et al., 2023). These metals are toxic to plants, causing
40 substantial physiological and morphological changes that adversely affect plant growth and the
41 nutritional quality of vegetables (Noor et al., 2022; Rahman et al., 2022). Previous studies have
42 shown that heavy metal contamination in irrigation water leads to reduced biomass, altered
43 growth patterns, and disturbed plant development (Tekle et al., 2023; Waheed et al., 2022).
44 The toxic effects of these metals are further exacerbated by the fact that many vegetables absorb
45 and accumulate heavy metals in their edible parts, such as leaves and fruits, which increases
46 the potential risks to human health.

47 Exposure to heavy metals such as chromium (Cr), manganese (Mn), iron (Fe), copper
48 (Cu), nickel (Ni), zinc (Zn), cadmium (Cd), lead (Pb), and mercury (Hg) has been found in
49 high concentrations in various vegetables sold in the market (Manwani, Vanisree, et al., 2022).
50 Pb, Cd, and Cu are of particular concern which are commonly found in high concentrations in
51 various vegetables, including Japanese spinach (*Spinacia oleracea*), tomatoes (*Solanum*
52 *lycopersicum*), mustard and cabbage (*Brassica parachinensis L.*, *Brassica kompestris L.*,
53 *Brassica oleracea L.*), lettuce (*Lactuca sativa*) (Abbas et al., 2023; Zhou et al., 2016), and
54 spinach (*Amaranthus viridis*, *Amaranthus tricolour*, *Amaranthus paniculatus L.*) (Islam &
55 Hoque, 2014). Pb, Cd, and Cu contamination in irrigation water affects different growth
56 responses among plant species. Previous study indicates that plant species exhibit varying
57 levels of tolerance to heavy metals (Singh et al., 2024a), with some plants demonstrating better
58 adaptation and resilience than others. As the global demand for safe and nutritious vegetables
59 increases, understanding the morphological responses of plants to heavy metals is crucial for
60 developing sustainable agricultural practices.

61 Various scientific studies have investigated the morphological responses of vegetables
62 to heavy metal contamination. Studies on spinach have shown that this plant is capable of
63 accumulating high levels of Pb and Cd in its roots and leaves when irrigated with contaminated
64 water (Bonanno & Cirelli, 2017; Ogunkunle et al., 2015). A study on cucumbers has shown
65 significant changes in growth patterns, including reduced root and shoot biomass, indicating
66 toxicity due to heavy metal exposure (Othman et al., 2021; Somda et al., 2019). In addition to
67 growth inhibition, heavy metals often cause chlorosis in leaves, further exposing the noticeable
68 morphological impact of contamination on irrigation water (Aksouh et al., 2024). Furthermore,

69 research indicates that certain vegetables, such as spinach, lettuce, and cabbage, show increased
70 heavy metal concentrations when exposed to contaminated water and soil (Abbas et al., 2023).
71 Understanding plant responses to heavy metal stress and their ability to accumulate and tolerate
72 metals can enhance vegetable safety and mitigate risks associated with heavy metal
73 contamination in vegetable cultivation.

74 Although previous studies have reported heavy-metal accumulation in various vegetables, the
75 current literature still lacks comparative evidence on how different leafy species respond
76 physiologically to specific metal contaminants supplied through irrigation water under
77 controlled conditions. Most studies use soil-based exposure, focus on a single crop, or assess
78 only one metal, which limits the understanding of species-specific tolerance, accumulation,
79 and translocation pathways relevant to real irrigation risks. Moreover, few studies integrate
80 morphological responses with quantitative bioaccumulation metrics and health risk assessment
81 to determine the safe-use potential of vegetables grown under contaminated water.

82 The novelty of this study lies in its combined experimental and risk-based approach. First, the
83 work provides a controlled, comparative assessment of three widely consumed leafy vegetables
84 exposed to Pb, Cd, and Cu at environmentally relevant concentrations delivered through
85 irrigation water. Second, the study quantifies both bioconcentration and translocation factors
86 to identify species-specific metal movement from roots to edible leaves, which directly
87 determines food safety. Third, the analysis links plant responses to a health risk framework
88 based on Estimated Daily Intake, Hazard Quotient, and Hazard Index, allowing a direct
89 interpretation of the implications for consumers. This integrated approach enables the
90 identification of species with lower translocation potential and supports crop selection
91 strategies for cultivation in areas where irrigation water may contain heavy metals.

92 **2. LITERATURE REVIEW**

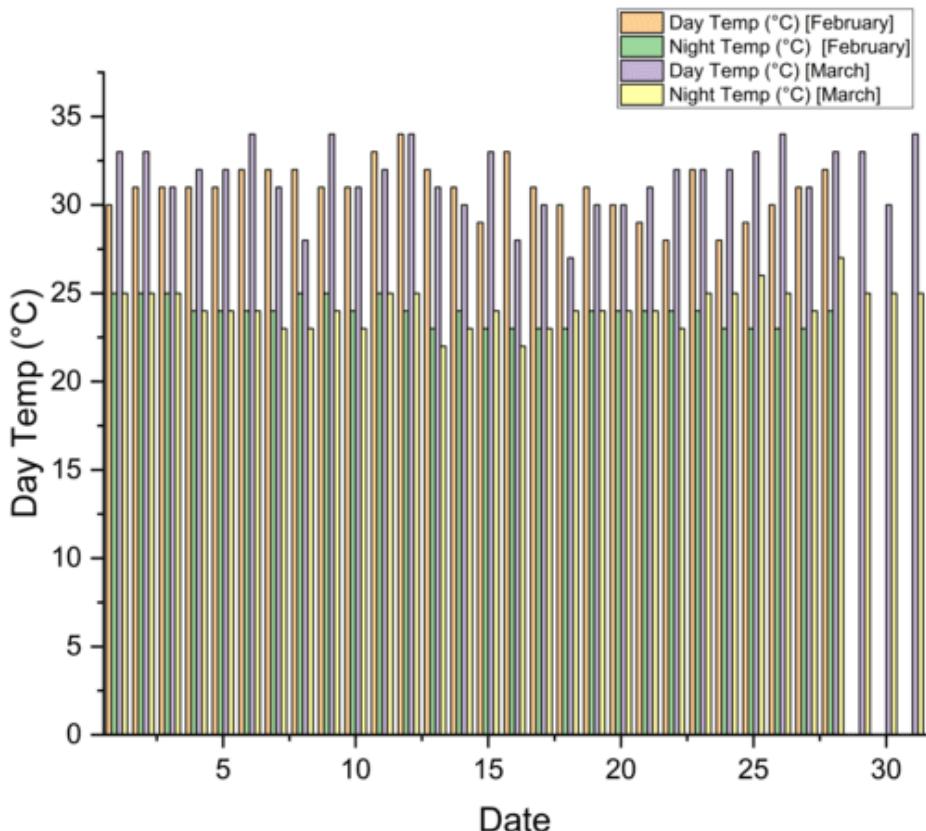
93 Heavy metal contamination of irrigation water and soil has emerged as a critical environmental
94 and food safety issue worldwide, particularly in regions where untreated or partially treated
95 wastewater is reused for crop production. Such practices are common in peri-urban and water-
96 scarce agricultural systems due to limited freshwater availability. Heavy metals such as Pb, Cd,
97 and Cu are persistent, non-biodegradable contaminants that accumulate in soils and crops,
98 posing significant risks to ecosystem health and human consumers. Studies have documented
99 that continuous irrigation with contaminated water increases soil metal concentrations over
100 time, subsequently enhancing the uptake and accumulation of metals in crops and increasing

101 the likelihood of entry into the food chain. This process remains a major concern for
102 agricultural sustainability and public health globally (Khaliq et al., 2022).

103 Leafy vegetables are particularly vulnerable to heavy metal contamination due to their
104 morphological and physiological characteristics, including shallow root systems and high
105 transpiration rates, which facilitate efficient absorption of metals from soil and irrigation water.
106 Research indicates that leafy vegetables such as spinach and okra often accumulate higher
107 metal concentrations compared to other vegetables under similar exposure conditions, making
108 them important indicators of environmental contamination (Khaliq et al., 2022). Metal uptake
109 and accumulation in plants are influenced by several factors, including metal speciation, soil
110 pH, organic matter content, and plant species traits. The extent of metal uptake and internal
111 distribution can vary widely among species, with some metals like Cd and Pb being readily
112 absorbed by roots and subsequently transported to aerial parts, while others may be more
113 strongly retained in root tissue. Copper, although essential at trace levels, becomes toxic at
114 higher concentrations, leading to physiological stress and reduced crop performance (Ali &
115 Ahirwar, 2025).

116 To quantify metal accumulation in plants, researchers frequently use mathematical indicators
117 such as the bioconcentration factor (BCF) and translocation factor (TF). The BCF represents
118 the ratio of metal concentration in plant tissues to that in the soil or water medium, providing
119 a measure of the plant's capacity to accumulate metals. The TF describes the efficiency of
120 metal movement from roots to shoots or edible parts. High BCF values indicate strong
121 accumulation potential, whereas TF values below one suggest limited internal metal mobility.
122 Studies have shown that many leafy vegetables exhibit high BCF values but low TFs, indicating
123 considerable metal retention in roots despite potential accumulation in edible tissues (Kaur et
124 al., 2025).

125 Assessment of plant tolerance to heavy metal stress often involves morphological and
126 physiological parameters such as plant height, leaf area, and biomass. Tolerant species are
127 generally those capable of maintaining growth despite stress by activating detoxification
128 mechanisms such as metal sequestration, synthesis of metal-binding proteins, and antioxidant
129 defenses. However, tolerance in terms of growth does not necessarily correlate with safety for
130 human consumption, as tolerant plants may still accumulate metals at concentrations exceeding
131 food safety thresholds. This decoupling underscores the need for integrated evaluation
132 frameworks that consider both plant performance and potential health risks (Ali & Ahirwar,

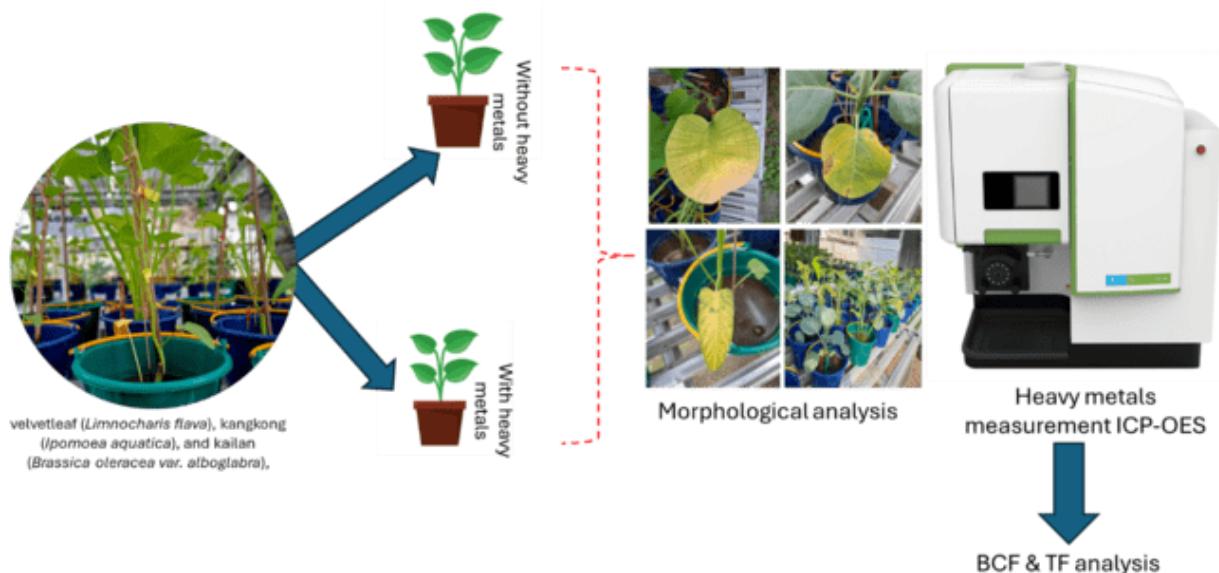

133 2025). From a human health perspective, consumption of vegetables contaminated with heavy
134 metals represents a primary exposure route. Health risk assessment models, including
135 Estimated Daily Intake (EDI), Hazard Quotient (HQ), and Hazard Index (HI), are widely used
136 to evaluate potential non-carcinogenic risks associated with dietary exposure. HQ values
137 greater than one indicate potential health concerns, and HI integrates multiple metal risks to
138 reflect combined exposure. Studies consistently report that Pb and Cd contribute
139 disproportionately to overall health risk due to their high toxicity and low tolerable intake
140 limits, while children are found to be especially vulnerable due to higher intake relative to body
141 mass (Ahmed et al., 2022).

142 Despite extensive research on heavy metal uptake and health risk assessment, the literature
143 reveals a fragmented focus on isolated aspects, such as accumulation metrics or health
144 implications alone, without an integrated performance evaluation framework. Many studies
145 lack a unified methodology linking plant growth response, metal accumulation behavior,
146 translocation patterns, and human health risk, which limits applicability for decision-making
147 in agricultural management. Recent efforts have emphasized the integration of morphological
148 measures with mathematical performance indices to provide a more comprehensive and
149 reproducible evaluation of crop suitability under contaminated irrigation (Mafuyai & Ugbidye,
150 2021).

151 **3. MATERIALS AND METHODS**

152 **3.1 Study site, design, experimental unit, and replication**

153 The experiment was conducted at an open experimental site in Pematang Sulur village,
154 Telanaipura District, Jambi Province, Indonesia ($1^{\circ}36'25.6''$ S, $103^{\circ}33'52.1''$ E). The site was
155 selected because it is located in a peri-urban agricultural area with potential exposure to low-
156 quality irrigation water. Daily meteorological data including air temperature and humidity were
157 obtained from the nearest official station of Badan Meteorologi, Klimatologi, dan Geofisika
158 (BMKG), located approximately 5 km from the experimental site. Sampling of plant tissues
159 was conducted at harvest on day 18. Roots and leaves from each treatment pot were collected
160 as composite samples to reduce variability between individual plants. The details of daily
161 temperatures during the experimental can be seen in **Figure 1**.



162

163 **Figure 1.** Daily temperature during the experimental period (February–March 2025) recorded
 164 by the Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) Station of Sultan Thaha
 165 Airport, Jambi

166 The experimental used a Randomized Block Design (RDB) with three replications,
 167 consisting of one factor, namely the combination of plant cultivars and type of heavy metal.
 168 The plants used consist of three vegetables: velvetleaf (*Limnocharis flava*),
 169 kangkong (*Ipomoea aquatica*), and kailan (*Brassica oleracea* var. *alboglabra*) and the heavy
 170 metals: non-metals, Plumbum (Pb), Cadmium (Cd), and Copper (Cu), resulting in 12 treatment
 171 combinations. Each treatment combination was repeated in three replications (three blocks).
 172 There was a total of 36 treatment combinations, where each treatment unit consist of 4 plants,
 173 with 2 plants as samples. The total number of plants in this study was 144. Pots (25 cm × 20
 174 cm) were arranged under a transparent polyethylene shelter to prevent rainfall interference
 175 while maintaining natural photoperiod and ventilation. Treatments were randomized within
 176 blocks to minimize positional effects.

177

178

179 **Figure 2.** Experimental workflow of the study

180 **3.2 Experimental Setup and Instrumentation**

181 The experiment was conducted inside a transparent polyethylene shelter ($6\text{ m} \times 3\text{ m} \times 2.5\text{ m}$)
 182 constructed to exclude rainfall while maintaining natural light and ventilation (**Figure 2**). The
 183 shelter frame was built from galvanized steel and covered with 0.12 mm UV-stabilized
 184 polyethylene film. Ambient temperature and humidity inside the shelter were monitored
 185 continuously using a digital thermo-hygrometer (Testo 608-H2, Germany) placed at plant
 186 canopy height ($\approx 50\text{ cm}$) and recorded every 30 min.

187 The experimental bench was arranged in three blocks, each measuring $1.8\text{ m} \times 0.9\text{ m}$, separated
 188 by 50 cm aisles to minimize edge effects and ensure uniform exposure. Within each block,
 189 twelve $25\text{ cm} \times 20\text{ cm}$ plastic pots were positioned on elevated trays (height = 60 cm). Pots
 190 were randomly assigned to treatment combinations of plant species \times metal type. Each pot was
 191 labeled with an alphanumeric code. Irrigation and metal dosing were performed manually using
 192 graduated glass cylinders (500 mL, Pyrex) to ensure a precise daily application of 400 mL
 193 solution per pot. Fresh working solutions were prepared every morning from analytical-grade
 194 salts ($\text{Pb}(\text{NO}_3)_2$, $\text{Cd}(\text{NO}_3)_2$, and $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$) dissolved in distilled water and stored in amber
 195 glass containers to prevent photodegradation.

196 Concentrations of Pb, Cd, and Cu in the working solutions were verified using Inductively
 197 Coupled Plasma–Optical Emission Spectrometry (ICP-OES; PlasmaQuant 9100, Analytik
 198 Jena, Germany). The instrument was calibrated daily using five-point external standards for
 199 each metal (0.01, 0.1, 1, 5, and 10 mg L^{-1}) prepared from certified stock solutions (Merck,

200 Germany). Calibration curves were accepted when the coefficient of determination (r^2) was
201 greater than 0.999. Concentration drift was monitored by analyzing continuing calibration
202 verification standards every ten samples. If the measured value deviated by more than ± 5
203 percent of the expected value, the instrument was recalibrated and previous samples were re-
204 run. All laboratory glassware was soaked in 10 percent HNO_3 for 24 h, rinsed three times with
205 deionized water, and dried in a clean cabinet before use. Method blanks and field blanks were
206 included in each analytical batch to detect background contamination. Duplicate samples were
207 analyzed at a frequency of one in every ten samples to evaluate analytical precision.

208 For morphological observations, a fixed-position digital camera (Canon EOS 250D, 24.1 MP)
209 was mounted on a tripod at 1.0 m distance perpendicular to the plant canopy. This setup ensured
210 identical framing, distance, and illumination for all photographs. Reference scale markers (2
211 cm \times 2 cm grid) were placed beside each pot for image calibration. Plant length was measured
212 with a digital caliper (Mitutoyo 500-196-30, Japan); leaf area at harvest was measured using
213 Easy Leaf Area software (Easlon & Bloom, 2014) based on individual leave scanned on a flat
214 A4 surface. Oven-drying of plant samples was performed in a forced-air drying oven
215 (Memmert UF110, Germany) at 80 °C until constant weight, and dry weight was measured
216 using an analytical balance (Shimadzu ATX224, ± 0.0001 g). All laboratory glassware was
217 acid-washed (10 % HNO_3) and rinsed with deionized water before use. Lastly, all analytical
218 procedures followed internal quality-management protocols of the Saraswanti Indo Genetech
219 Laboratory, which are aligned with ISO/IEC 17025 standards.

220 To quantitatively evaluate plant performance under heavy metal exposure, a mathematical
221 framework integrating growth response, metal accumulation, translocation efficiency, and
222 human health risk was applied. Morphological performance was expressed as relative growth
223 change (%) compared to the control treatment. Metal accumulation performance was quantified
224 using the bioconcentration factor (BCF), while metal mobility within plants was assessed using
225 the translocation factor (TF). Food safety performance was evaluated using Estimated Daily
226 Intake (EDI), Hazard Quotient (HQ), and Hazard Index (HI). These indices collectively
227 represent the ability of a plant to tolerate metal stress while minimizing human exposure risk.
228 Plants exhibiting high growth tolerance, $\text{BCF} > 1$, $\text{TF} < 1$, and $\text{HI} <$ critical thresholds are
229 considered to have superior performance under contaminated irrigation conditions.

230 **3.3 Plant material and substrate**
231 Velvetleaf, kangkong, and kailan seeds were treated differently depending on the plant's
232 characteristics. Velvetleaf seeds were sown in seedling trays filled with soil until sprouts
233 appeared in approximately 1 month, then transferred to the nursery. Kangkong was propagated
234 vegetatively using 10 cm stem cuttings from the base of the stem. The kangkong cuttings were
235 planted in soil, and once four leaves had developed, the seedlings moved to the nursery.
236 Meanwhile, kailan seeds were sown in rockwool until sprouts appeared in approximately 3
237 days and transfer to the nursery. The nursery medium for all three plants is a mixture of soil
238 and manure in a 1:1 ratio. After two weeks in the nursery, the roots were gently washed free of
239 adhering soil and each plant was transferred to a plastic pot (25 cm × 20 cm) containing 2 kg
240 of washed, sieved river sand per pot to provide an inert, low-background substrate. Natural
241 ventilation and sunlight were maintained; rainfall was excluded by the polyethylene roof.

242 **3.4 Heavy-metal solutions: preparation and treatment on plants**
243 The exposure phase involved the application of aqueous heavy metal solutions through the root
244 zone of each plant in 18 days exposure. The metals used were Pb, Cd, and Cu, applied in the
245 form of $\text{Pb}(\text{NO}_3)_2$, $\text{Cd}(\text{NO}_3)_2$, and $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$, respectively. All chemical reagents were
246 obtained from certified analytical-grade suppliers. Stock solutions were prepared using
247 distilled water and subsequently diluted to final concentrations of 50 ppm Pb, 1 ppm Cd, and
248 2 ppm Cu. These concentrations were determined based on previous phytotoxicity studies that
249 demonstrated observable yet sub-lethal effects on plant growth (Aboelkassem et al., 2022;
250 Doğan et al., 2022). Fresh working solutions were prepared daily. Concentrations at each
251 renewal were verified by ICP-OES PlasmaQuant 9100 Series using five-point external
252 calibration ($0.01\text{--}10 \text{ mg L}^{-1}$; $r^2 \geq 0.999$). Continuing calibration verification, method blanks,
253 and duplicates were run every 10 samples.

254 Each pot received 400 mL day^{-1} of the assigned solution for 18 days to ensure continuous root
255 contact. Control plants were irrigated with distilled water only. To prevent nutrient deficiency
256 during exposure, foliar fertilization using Bayfolan D was applied at a concentration of 2 mL
257 L^{-1} every four days throughout the experimental period.

258 **3.5 Morphological observation and harvest**
259 Morphological observation in this study was conducted to measure and visually document the
260 growth dynamics of plants under different heavy metal exposure conditions. The observation
261 included plant length, total leaf number, maximum leaf length, and leaf width, which were

262 measured every two days beginning two days before exposure until harvest (day 18). To
263 complement quantitative measurements, visual documentation was performed throughout the
264 experiment. Each plant was photographed at the same distance, angle, and illumination using
265 a fixed-position digital camera, enabling accurate visual comparison of morphological growth
266 across treatments (**Figure 3**). These photographs provided qualitative evidence of growth
267 inhibition and stress symptoms under Pb, Cd, and Cu exposure. At the end of the exposure
268 period (day 18), all plants were carefully harvested and separated into roots, stems, and leaves.
269 Each tissue was thoroughly rinsed with deionized water, followed by a brief wash in 0.01 M
270 EDTA for 30 seconds to remove any surface-adsorbed metals, then rinsed again, blotted dry,
271 and oven-dried at 80 °C to constant weight. Leaf area at harvest was quantified using scanned-
272 image analysis with the Easy Leaf Area software (Easlon & Bloom, 2014). During the growth
273 phase, daily leaf area was estimated using a validated linear regression model based on non-
274 destructive morphological measurements (Lakitan et al., 2023, 2025). Overall, this combined
275 quantitative and photographic approach allowed real-time tracking of morphological
276 responses, providing both visual and analytical evidence of stress adaptation in velvetleaf,
277 kangkong, and kailan exposed to Pb, Cd, and Cu.

278
279 **Figure 3.** Morphological observation of velvetleaf (*Limnocharis flava*), kangkong (*Ipomoea*
280 *aquatica*), and kailan (*Brassica oleracea* var. *alboglabra*) during 18 days of exposure to Pb
281 (50 ppm), Cd (1 ppm), and Cu (2 ppm).

282 **3.6 Heavy metal measurements, Bioaccumulation and Translocation Factors**

283 Heavy metal analysis was performed on dried plant roots and leaves. Plant samples were taken
284 as composites by collecting leaves and roots from each treatment. Measurement of heavy metal
285 concentration using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES).

286 Bioconcentration factor (BCF) and translocation factor (TF) were calculated as

287
$$BCF = \frac{C_p}{C_w} \quad (1)$$

288 where C_p represents the metal concentration in the plant tissue (mg kg^{-1}) and C_w denotes the
289 metal concentration in irrigation water (mg L^{-1}). The TF, which represents the efficiency of
290 metal transport from roots to leaves, was calculated as:

291
$$TF = \frac{C_{leaf}}{C_{root}} \quad (2)$$

292 where C_{leaf} and C_{root} are the metal concentrations in the leaves and roots, respectively. BCF
293 values greater than 1 indicate a high accumulation capacity, while TF values greater than 1
294 suggest efficient translocation from roots to aerial tissues (Wibowo et al., 2023).

295 **3.7 Health Risk Assessment**

296 Health Risk Assessment (HRA) was conducted to evaluate the potential risk of heavy
297 metal contamination in vegetables grown under polluted irrigation water. The analysis focused
298 on Estimated Daily Intake (EDI), Hazard Quotient (HQ), and Hazard Index (HI), which are
299 commonly used to assess the potential health risks posed by heavy metal accumulation through
300 consumption of contaminated plants. The EDI for each metal (Pb, Cd, Cu) was calculated using
301 the following equation:

302
$$EDI = \frac{C_{metal} \times F \times W}{BW \times 1000} \quad (3)$$

303 C_{metal} is the metal concentration in the edible part of the vegetable (mg/kg), F is the average
304 consumption rate of the vegetable (g/day), W is the weight of the edible part (kg), BW is the
305 average body weight (kg) of the population (typically 60 kg for adults).

306 The Hazard Quotient (HQ) is used to estimate the potential health risk of individual metals by
307 comparing the intake with a reference dose (RfD), which is a level of daily exposure to a
308 contaminant that is considered to be without risk of harmful effects.

309
$$HQ = \frac{EDI}{RfD} \quad (4)$$

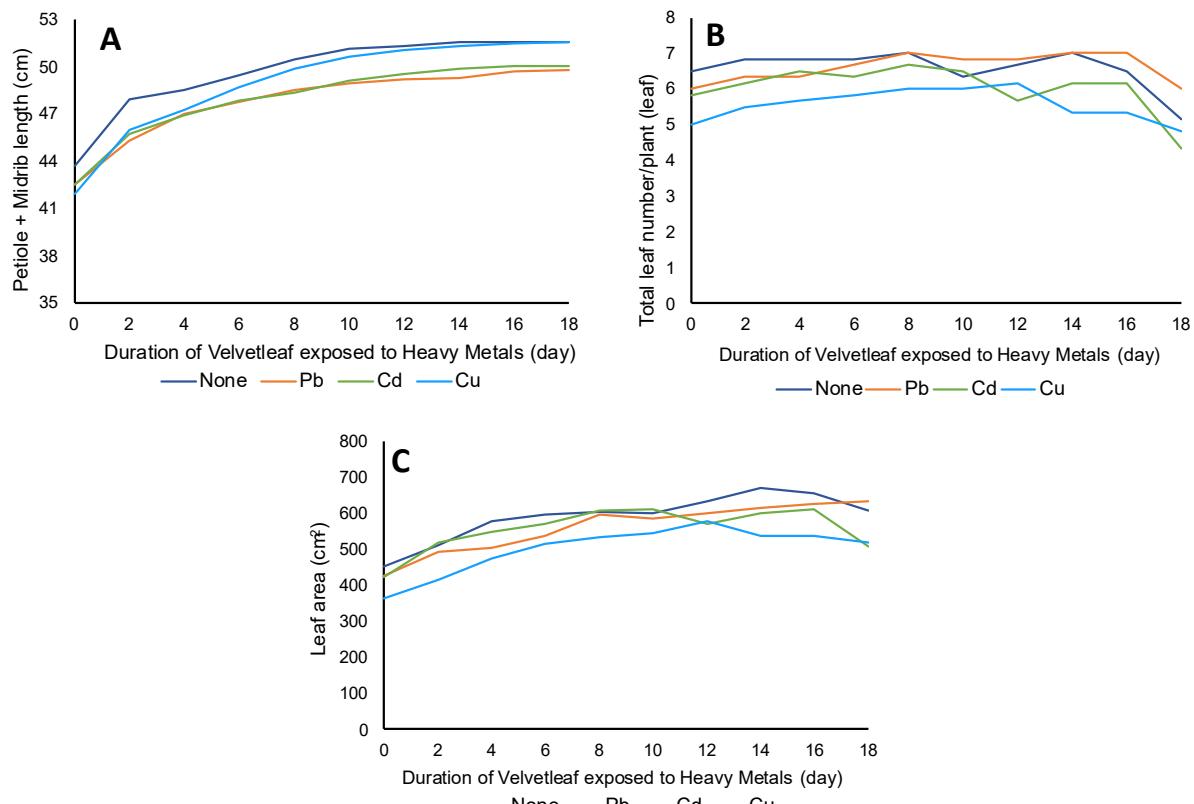
310 RfD is the reference dose (mg/kg/day), which is a standard value determined by health
311 agencies, the standard for Pb RfD: 0.0035 mg/kg/day; Cd RfD: 0.001 mg/kg/day and Cu
312 RfD: 0.05 mg/kg/day.

313 The Hazard Index (HI) is the sum of the HQ values for each metal. If the HI is greater than 1,
314 it indicates a potential health risk due to the combined exposure to multiple metals.

315
$$HI = \sum_i HQ_i \quad (5)$$

316 Where HQi is the Hazard Quotient for each metal (Pb, Cd, Cu). HQ < 1: No significant health
317 risk; HQ \geq 1: Potential health risk; HI \geq 1: Cumulative health risk from exposure to multiple
318 heavy metals.

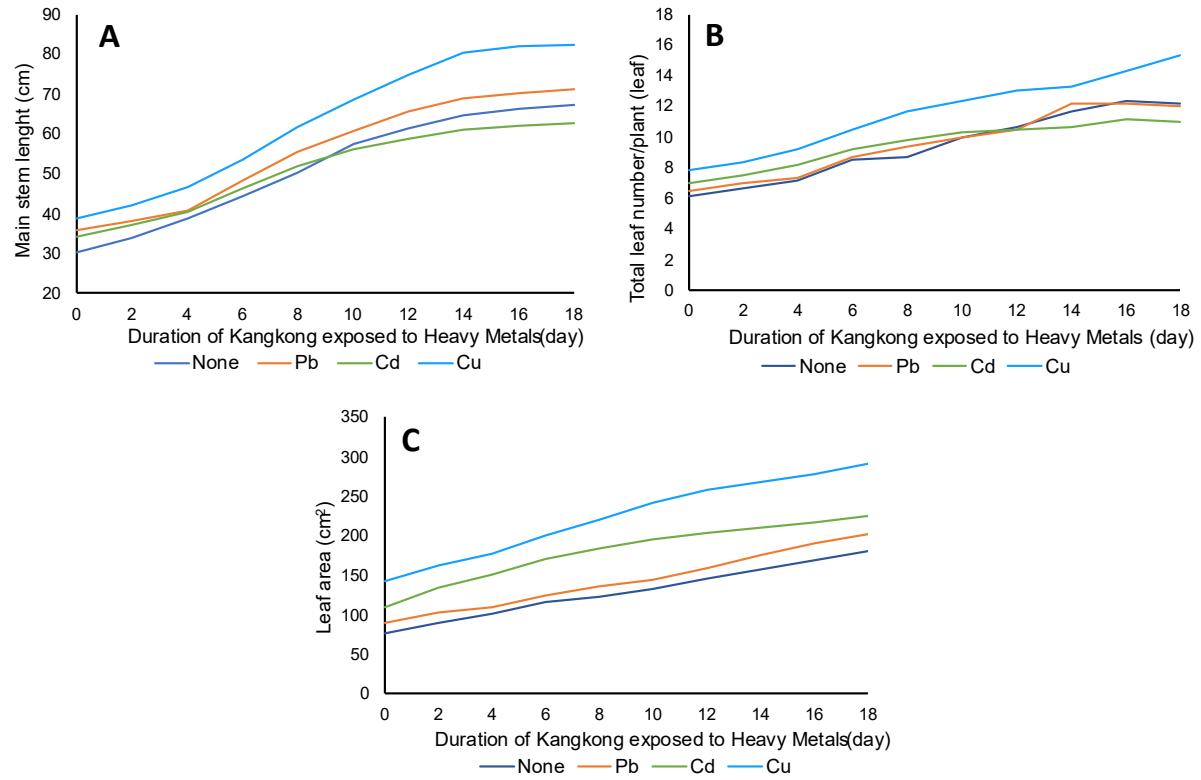
319 **3.8 Statistical Analysis**


320 All analyses were performed in using IBM SPSS Statistics 25 for Windows (IBM
321 Corporation, Armonk, USA). Pot-level means were used as observations. Normality and
322 homoscedasticity were assessed by Shapiro–Wilk and Levene tests; variables were transformed
323 when needed. Treatment effects within each species were tested by one-way ANOVA followed
324 by Duncan’s Multiple Range Test at $\alpha = 0.05$. Results are reported as mean \pm SD across pots
325 ($n = 3$). Last, reliability and reproducibility were strengthened by the use of independent
326 experimental replications, standardized measurement protocols, and analytical quality control
327 procedures, ensuring that observed treatment effects were not artifacts of measurement or
328 sampling bias.

329 **4. RESULTS**

330 **4.1 Morphological Response of Plants**

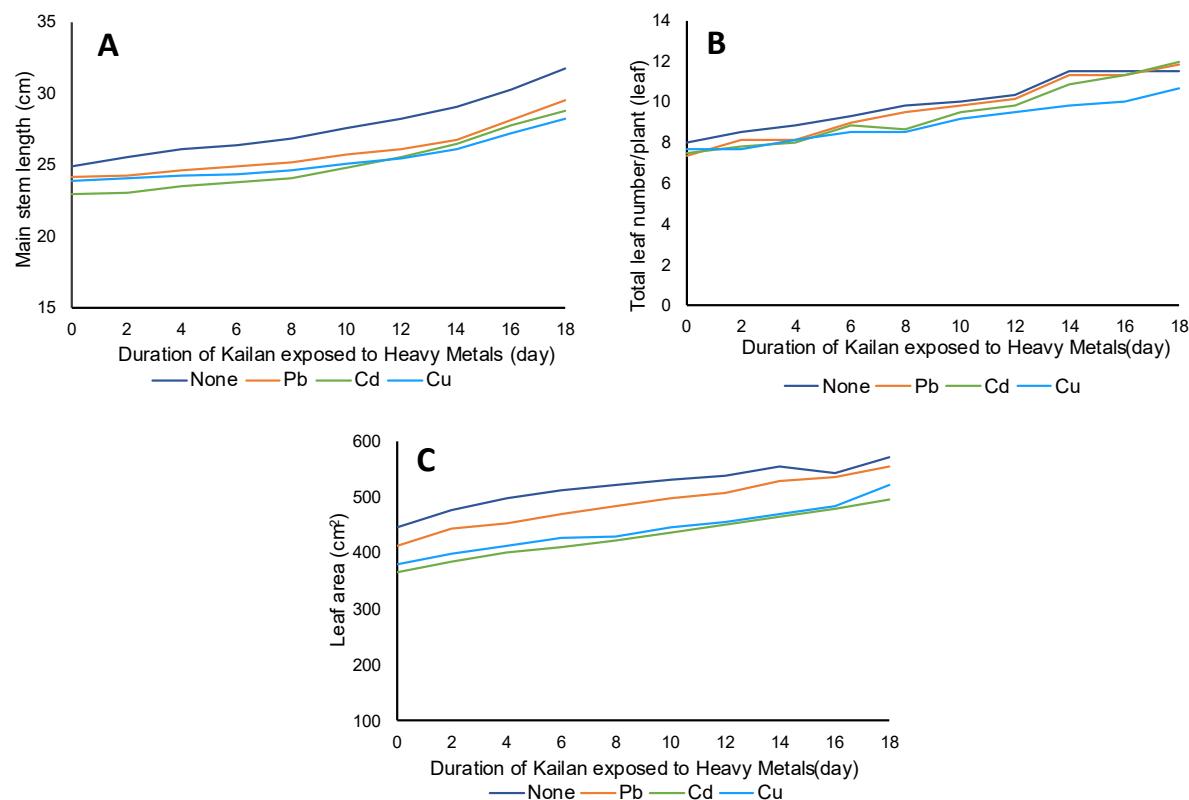
331 The results showed that different types of plants exhibited different growth patterns due
332 to exposure to various kinds of heavy metals. Exposure to Pb and Cd in velvetleaf showed a
333 decrease in petiole length compared to velvetleaf without metals. Conversely, Cu exposure did
334 not have a significant effect on velvetleaf, as velvetleaf did not experience any inhibition in
335 petiole length. A decrease in plant length began to appear on days 10 to 18 in velvetleaf samples
336 (**Figure 4**). The leaf number of velvetleaf tends to decrease in both exposure to metals and
337 without metals. **Figure 4A** shows that petiole + midrib length increased gradually in all
338 treatments during the initial exposure phase (0–8 days), indicating that early growth was not
339 immediately inhibited by heavy metal stress. However, plants exposed to Pb and Cd exhibited
340 a slower rate of elongation compared with the control, suggesting mild growth suppression due


341 to metal toxicity. Among the metals, Cd had the most pronounced inhibitory effect after 12
 342 days, consistent with its strong affinity for binding to cellular components and disrupting
 343 physiological processes such as photosynthesis and enzyme activity. **Figure 4B** presents the
 344 total leaf number per plant, which remained relatively stable throughout the exposure period.
 345 A slight reduction in leaf number was observed in the Cd and Cu treatments after day 10,
 346 indicating that prolonged exposure may have interfered with leaf initiation or accelerated
 347 senescence. Pb exposure produced minimal effect, suggesting that Velvetleaf may exhibit some
 348 degree of tolerance to Cd stress compared with Pb and Cu. **Figure 4C** illustrates the trend in
 349 leaf area, which followed a similar pattern to petiole and midrib elongation. The control plants
 350 showed continuous increases in leaf area, reaching the highest values around day 12–14. In
 351 contrast, plants treated with Cd and Cu exhibited reduced leaf expansion toward the later stage
 352 of exposure. This decline in leaf area may reflect both inhibited cell enlargement and potential
 353 oxidative damage induced by heavy metal accumulation.

354
 355 **Figure 4.** Effects of heavy metal exposure (Pb, Cd, and Cu) on Velvetleaf growth parameters
 356 over time. (A) Petiole + midrib length (cm), (B) total leaf number per plant, and (C) leaf area
 357 (cm²) were measured during 18 days of exposure. “None” represents treatment without heavy
 358 metal addition.

359 Cd exposure resulted in the lowest reduction in both leaf number and total leaf area of
360 velvetleaf. Meanwhile, in velvetleaf exposed to Pb, the decrease in leaf number occurs over a
361 longer period, with leaves beginning to wilt and die on the 16th day after exposure. The total
362 leaf area of velvetleaf also decreased along with the decrease in leaf number, which starts on
363 day 10 after exposure. Velvetleaf exposed to Cd and Cu tended to experience a lower decrease
364 in leaf area compared to exposure to Pb. However, there is a similar pattern between velvetleaf
365 exposed to heavy metals and the control group.

366 Compared to velvetleaf, kangkong tends to be more resistant to heavy metal stress. At
367 the beginning of exposure, kangkong showed normal growth until the 14th day of exposure. A
368 decrease in plant length and leaf number of kangkong was seen after the 14th day. The lowest
369 plant length, leaf number, and leaf area of kangkong occurred in the Cd exposure. Meanwhile,
370 Cu exposure had a positive effect on kangkong growth, as indicated by higher increases in
371 length, leaf number, and leaf area compared to kangkong without metals (**Figure 5**). **Figure**
372 **5A** shows that main stem length increased steadily in all treatments during the experimental
373 period, though plants subjected to Pb, Cd, and Cu exhibited reduced elongation rates compared
374 with the control. The control plants reached the greatest stem length by day 18, while Pb and
375 Cd treatments produced the most pronounced inhibition. This suggests that these metals
376 interfere with cell division and elongation processes, likely by disrupting hormonal regulation
377 and nutrient uptake. **Figure 5B** presents total leaf number per plant, which also increased over
378 time in all treatments. However, the growth rate of new leaves was consistently lower under
379 heavy metal exposure, particularly for Pb and Cd. Cu exposure caused only moderate
380 suppression, implying that Kangkong may possess higher tolerance to Cu stress. The reduced
381 leaf proliferation under Pb and Cd treatments might be linked to impaired photosynthetic
382 efficiency and limited carbohydrate allocation to developing leaves. **Figure 5C** illustrates the
383 effect of heavy metals on leaf area expansion. Control plants maintained the largest leaf areas
384 throughout the experiment, while Pb- and Cd-treated plants showed the smallest. Cu exposure
385 caused an intermediate response. The decline in leaf area under metal stress reflects the
386 inhibitory effects of heavy metals on cell enlargement and chlorophyll synthesis, both of which
387 are essential for optimal photosynthetic performance.



388

389 **Figure 5.** Growth response of Kangkong to heavy metals during exposure time: (A) Plant
 390 length, (B) Total leaf number, and (C) Total leaf area

391 Unlike velvetleaf and kangkong, kailan showed a different growth response. In the initial
 392 stages of exposure, there was a suppression of kailan length until day 12. However, after day
 393 12, kailan length growth began to increase again, indicating a recovery mechanism against
 394 heavy metal stress. The increase in leaf number and leaf area of kailan leaves also showed a
 395 similar trend to plant length, where kailan experienced growth inhibition at the initial stage of
 396 exposure. Exposure to Cd and Cu resulted in lower increases in plant length, leaf number, and
 397 leaf area compared to Pb. The three types of heavy metals tested (Pb, Cd, and Cu) tended to
 398 have a negative impact on kailan growth (**Figure 6**). **Figure 6A** shows that main stem length
 399 increased progressively in all treatments over time, indicating continued growth despite the
 400 presence of heavy metals. However, plants exposed to Cd and Cu exhibited lower elongation
 401 rates relative to the control and Pb treatments. The inhibitory effect was more pronounced
 402 under Cu exposure, suggesting that Cu toxicity more strongly affects stem elongation, possibly
 403 by impairing cell wall extensibility and interfering with auxin-regulated growth processes.
 404 **Figure 6B** illustrates the total leaf number per plant, which gradually increased throughout the
 405 experimental period. The differences among treatments were relatively small, indicating that
 406 Kailan maintained leaf production under moderate heavy metal stress. However, slight

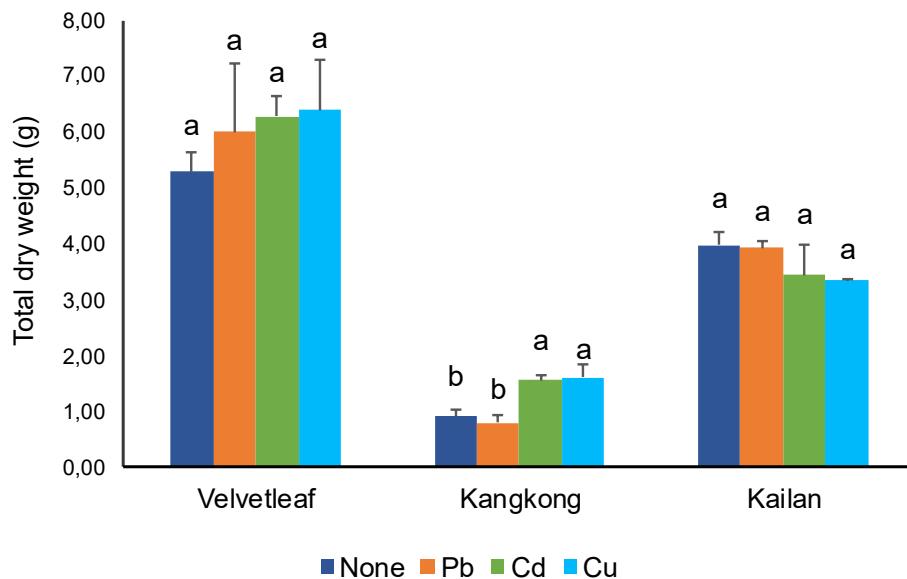
407 suppression in leaf number was evident under Cd and Cu treatments, particularly after 12 days,
 408 which may reflect a delayed impact of metal accumulation on leaf initiation and expansion.
 409 **Figure 6C** shows the trend in leaf area, where the control plants maintained the largest leaf
 410 area throughout the 18-day exposure period. Pb-treated plants showed a smaller but relatively
 411 stable reduction compared with the control, whereas Cd and Cu caused greater declines in leaf
 412 expansion. This reduction in leaf area under Cd and Cu stress may result from disturbances in
 413 photosynthetic efficiency, chlorophyll degradation, and decreased turgor pressure factors
 414 commonly linked with heavy metal-induced oxidative stress.

415
 416 **Figure 6.** Growth response of Kailan to heavy metals during exposure time: (A) Plant length,
 417 (B) Total leaf number, and (C) Total leaf area

418 The analysis of variance reveals no significant differences in the increase in leaf length
 419 and leaf area in velvetleaf and kailan following exposure to Pb, Cd, and Cu metals. It was
 420 different for kangkong, where there were significant differences in plant length between
 421 kangkong exposed to Cu and kangkong exposed to Pb and Cd. Metal exposure gives
 422 significant differences in the increase in leaf number of velvetleaf and kailan. Velvetleaf
 423 exposed to Cd has the lowest leaf number and is significantly different from other metals.
 424 Meanwhile, exposure to Cu in the leaf number of kailan showed a significant difference

425 compared to Pb and Cd. However, exposure to Pb, Cd, and Cu metals showed substantial
426 differences in the increase in leaf area in all plants. (**Table 1**).

427 Exposure to heavy metals Pb, Cd, and Cu caused a decrease in the dry weight of kailan.
428 However, it did not have a negative effect on the dry weight of velvetleaf. Meanwhile, in
429 kangkong, only exposure to Pb caused a decrease in dry weight. The analysis of variance
430 showed that the dry weight of kangkong exposed to Pb was significantly different from that
431 exposed to Cd and Cu (**Figure 7**). Identification and comparison of morphological plants
432 showed in **Table 2**.


433

434 **Table 1.** Increase in plant length, leaf number, and total leaf area in various types of metal

Parameter	Treatment	Velvetleaf	Kangkong	Kailan
Increase in plant length (cm)	Without metal	7.90 a	36.93 ab	6.63 a
	Pb	7.22 a	35.40 bc	5.40 a
	Cd	7.48 a	28.50 c	5.80 a
	Cu	9.57 a	43.47 a	4.30 a
Increase in leaf number (leaves/plant)	Without metal	-1.33 bc	6.00 a	3.50 ab
	Pb	0.17 a	5.50 a	4.50 a
	Cd	-1.50 c	4.00 a	4.50 a
	Cu	-0.17 ab	7.50 a	3.00 b
Increase in total leaf area (cm²)	Without metal	156.23 a	111.08 a	123.91 a
	Pb	204.13 a	112.68 a	142.73 a
	Cd	136.78 a	123.64 a	131.75 a
	Cu	154.84 a	147.85 a	140.49 a

435

436 Values followed by different letters in the same column indicate significant differences
437 based on DMRT at $p < 0.05$. Negative values indicate a decrease.

438
439
440

Figure 7. Total dry weight of plants on various types of metal. Different letters on each bar indicate significant differences based on DMRT at $p < 0.05$.

441 **Table 2.** Morphological Responses of Plants to Heavy Metal Exposure

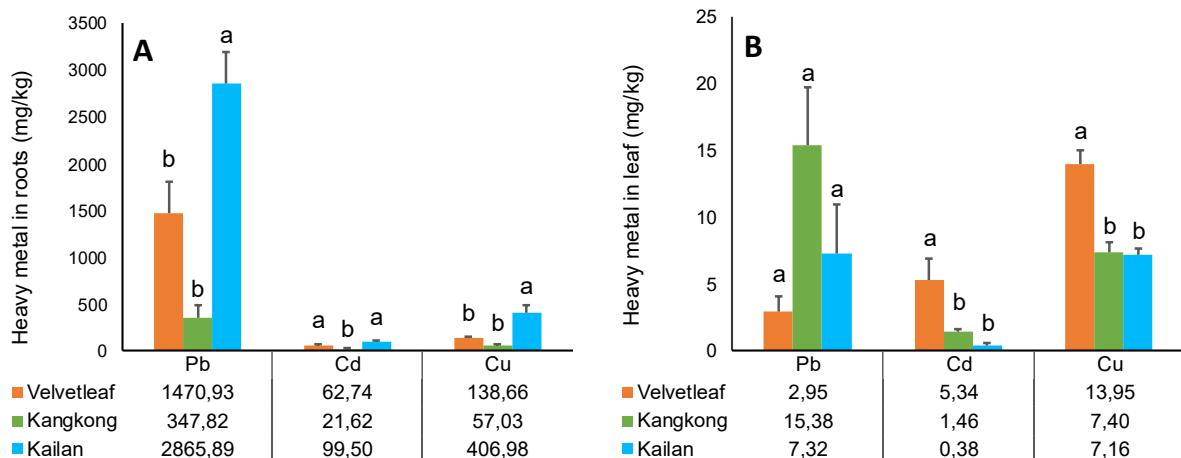
Plant species	Pollutants Tested	Morphological effects	Ref.
Velvetleaf, Kangkong, Kailan	Pb, Cd, Cu	Chlorosis, reduced leaf size, stunted growth, leaf curling, necrosis	This study
<i>Spinacia oleracea, Amaranthus grain, Mentha spicata</i>	Cr, Ni, Zn, Cu, Pb	Growth inhibition, yellowing, wilting, leaf deformation	(Singh et al., 2024b)
Malabar spinach, 13 leafy species	Pb, Cd, As, Cu	Growth retardation, biomass reduction, low Cd accumulation in select spinach varieties	(Cui et al., 2022)
Lettuce, radish, carrot	Fe, Cu, Cr, Zn	Lettuce: chlorosis; Radish: reduced root length; Carrot: mild symptoms	(Qureshi et al., 2016)

General vegetables (review)	As, Cd, Hg, Pb	Overall yield reduction, leaf necrosis, root blackening	(Manwani, Devi, et al., 2022)
Pumpkin, spinach, gourd varieties	Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb	Leaf curling, reduced chlorophyll, thin leaves, early senescence	(Jolly et al., 2024)

442

443 **4.2 Heavy metal uptake in plants**

444 Heavy metal content in the three types of plants showed the highest accumulation of
 445 metals in plant tissues, namely Pb, followed by Cd and Cu (**Figure 8**). In terms of distribution,
 446 metal absorption in the underground organs (roots) was much higher than in above-ground
 447 organs (leaves). Pb uptake in roots was found to be highest in kailan at 2873.21 mg/kg,
 448 velvetleaf at 1473.88 mg/kg, and kangkong at 363.20 mg/kg.


449 In contrast to roots, the highest Pb concentration in leaves was found in kangkong,
 450 while Cd and Cu were found to be highest in velvetleaf leaves. The DMRT analysis ($p < 0.05$)
 451 showed that there were significant differences between the concentrations of Pb, Cd, and Cu
 452 in kailan roots and other plants. The results also showed significant differences between the
 453 concentrations of Cd and Cu in velvetleaf leaves and the leaves of other plants.

454 The Bioconcentration Factor (BCF) for the three types of plants exposed to Pb, Cd, and Cu
 455 were greater than 1. Kailan had the highest BCF value, followed by kangkong, and
 456 velvetleaf. Among the three heavy metals tested (Pb, Cd, and Cu), the highest BCF values were
 457 recorded in kailan, namely 2873.21 Pb, 99.87 Cd, and 414.13 Cu. The DMRT test results ($p <$
 458 0.05) showed that the BCF values of kailan showed a significant difference compared to
 459 velvetleaf and kangkong. Meanwhile, the BCF values of velvetleaf and kangkong did not differ
 460 significantly (**Table 3**).

461 The Translocation Factor (TF) values for the three plant species for Pb, Cd, and Cu
 462 metals were greater than 1. The TF values for kailan for Cd and Cu were the lowest compared
 463 to other plants, indicating that heavy metal translocation from the roots to the leaves was very
 464 low. The test results showed that there were significant differences in TF for Cd and Cu in
 465 kailan and velvetleaf. Meanwhile, TF for Pb did not differ significantly among the three plant
 466 species (**Table 3**). In addition, **Table 4** showed the heavy metals concentration in plants
 467 comparing with the WHO/FAO standard. This study showed that the concentration of metals
 468 are higher than limit concentration in mg/kg plants.

469

470

471

472 **Figure 8.** Heavy metal concentrations in plants (A) in roots (B) and leaves. Different letters on
 473 each bar indicate significant differences based on DMRT at $p < 0.05$.

474 **Table 3.** Bioconcentration factor (BCF) and translocation factor (TF) values for Pb, Cd, and
 475 Cu metals in various types of plants

	Pb	Cd	Cu
BCF			
Velvetleaf	29.48 b	1.36 b	3.05 b
Kailan	2873.21 a	99.87 a	414.13 a
Kangkong	181.60 b	11.54 b	32.21 b
TF			
Velvetleaf	0.0028 a	0.0976 a	0.1027 a
Kailan	0.0028 a	0.0041 b	0.0192 b
Kangkong	0.0074 a	0.0677 ab	0.1442 a

476 Values followed by different letters in the same column indicate significant differences based on DMRT at $p <$
 477 0.05 .

478

479 **Table 4.** Comparison the heavy metals concentration in plants vs FAO/WHO standard

Heavy metals	Plant	Concentration in leaf	Max concentration (FAO/WHO, 2016) (mg/kg)

Pb	Velvetleaf Kangkong Kailan	2.95* 15.28* 7.32*	0.3
Cd	Velvetleaf Kangkong Kailan	5.34* 1.46* 0.38*	0.2
Cu	Velvetleaf Kangkong Kailan	13.95 7.4 7.16	40

480 *Exceeding the maximum level

481

482

483 **4.3 Health Risk Assessment**

484 **Tables 5–7** show the Health Risk Assessment (HRA) results, which indicate that all
485 three vegetables pose severe health risks due to Pb and Cd contamination in the edible parts.
486 The Hazard Index for kale (3097.6) was the highest, followed by velvetleaf (1421.2) and water
487 spinach (349.1), clearly exceeding the safe threshold of 1. Pb contributed the most to the HQ
488 and HI, suggesting that Pb contamination is the dominant factor affecting human health. Cd
489 also showed a significant contribution, particularly in kale. Cu posed a negligible risk as its HQ
490 values were below 1. The results emphasize the urgent need for monitoring irrigation water
491 and selecting crops with limited translocation of metals to edible parts to ensure food safety.

492 **Table 5.** Estimate Daily Intake of heavy metals in each plants

Plant	Metal	Concentration (mg/kg)	EDI (mg/kg/day)
Velvetleaf	Pb	1473.88	4.91
	Cd	5.50	0.018
	Cu	2.50	0.0083
Kangkong	Pb	363.20	1.21
	Cd	1.20	0.004
	Cu	1.50	0.005

Kailan	Pb	2873.21	9.58
	Cd	99.87	0.333
	Cu	414.13	1.38

493 *Estimated Daily Intake (EDI)

494 **Table 6.** Analysis of Hazard Quotient (HQ)

Plant	Metal	EDI (mg/kg/day)	RfD	HQ
Velvetleaf	Pb	4.91	0.0035	1403
	Cd	0.018	0.001	18
	Cu	0.0083	0.05	0.166
Kangkong	Pb	1.21	0.0035	345
	Cd	0.004	0.001	4
	Cu	0.005	0.05	0.1
Kailan	Pb	9.58	0.0035	2737
	Cd	0.333	0.001	333
	Cu	1.38	0.05	27.6

495 *Estimated Daily Intake (EDI); Reference Dose (RfD); Hazard Quotients (HQ)

496 **Table 7.** Hazzard Index

Plant	HI	Interpretation
Velvetleaf	1421.2	Very high health risk
Kangkong	349.1	Very high health risk
Kailan	3097.6	Extremely high health risk

497 4.4 Challenges and Limitations

498 Despite providing valuable insights into the morphological responses, bioaccumulation, and
499 translocation of heavy metals in leafy vegetables, this study has several challenges and
500 limitations that should be acknowledged. First, the experimental setup was conducted under
501 controlled pot-scale conditions, which, although useful for isolating variables, may not fully
502 replicate field-scale dynamics. Factors such as fluctuating temperature, rainfall, microbial
503 activity, and soil heterogeneity can alter metal bioavailability and plant uptake under real
504 agricultural conditions. Future studies should therefore validate these findings across multiple
505 growing seasons and varied soil types to confirm ecological consistency.
506 Second, the analysis primarily focused on total metal concentrations without differentiating
507 between free ionic and complexed forms. This limits the interpretation of true bioavailability,

508 as metal speciation strongly influences plant uptake and toxicity. Incorporating speciation-
509 aware analysis and rhizosphere measurements such as pH, redox potential, and dissolved
510 organic carbon would provide a more mechanistic understanding of plant-metal interactions.
511 Third, while this research focused on morphological and accumulation parameters, the
512 molecular and biochemical pathways underlying plant tolerance and detoxification were not
513 investigated. Future research integrating transcriptomic or proteomic profiling could elucidate
514 gene-level defense mechanisms and help identify biomarkers of metal stress.
515 Fourth, the health risk assessment used standard reference consumption rates and exposure
516 assumptions, which may vary across populations. Region-specific dietary data and chronic
517 exposure modeling should be incorporated to refine risk estimations and enhance applicability
518 to local food systems. Finally, current predictive and statistical approaches, though effective
519 for experimental analysis, could be enhanced through hybrid data-driven models that integrate
520 environmental sensing and optimization algorithms, such as Al-Biruni Earth Radius
521 Optimization and Vision Graph Neural Networks. These advanced computational tools could
522 improve the precision of contamination prediction and enable spatial mapping of risk zones.

523 5. DISCUSSION

524 Each type of plant has a different response to heavy metal exposure. The results showed
525 that the growth of plants exposed to heavy metals tends to be lower than that of plants without
526 heavy metals. Among the three types of plants tested, kailan showed initial stress to the toxicity
527 of heavy metals Pb, Cd, and Cu, where plant length and leaf number were significantly
528 inhibited at the beginning of exposure. Heavy metal exposure causes morphophysiological,
529 biochemical, and molecular changes in plants, thereby inhibiting plant growth and productivity
530 (Noor et al., 2022; Raza et al., 2020). This is evident from the decrease in plant height, number
531 of branches, leaf area and biomass, to the decrease in wet weight and dry weight (Hu et al.,
532 2023; Waheed et al., 2022). After 12 days of exposure, kailan growth increased again,
533 indicating a recovery or adaptation phase of plants in a heavy metal-contaminated environment
534 (Ghori et al., 2019).

535 When exposed to heavy metals, some plants experience initial stress characterised by
536 the production of Reactive Oxygen Species (ROS), which can cause cell damage (Liu et al.,
537 2023; Pande et al., 2022). To overcome this, plants activate various defence mechanisms by
538 enhancing the antioxidant system and producing proteins, hormones, metabolites, and
539 chelating molecules such as phytochelatin and metallothionein to reduce oxidative damage
540 (Ghori et al., 2019; Liu et al., 2023). Phytochelatin and metallothionein chelate toxic metal

541 ions, forming complex compounds that are transported to vacuoles for storage, thereby
542 reducing the concentration of heavy metals in the cytosol (Faizan et al., 2024). This response
543 is crucial for enhancing metal detoxification capacity, repairing damage, and helping plants
544 recover from initial stress and adapt to contaminated environments.

545 The concentration of heavy metals in kailan tissue was found to be very high (Pb
546 2873.21 mg/kg, Cd 99.87 mg/kg, and Cu 414.13 mg/kg). It indicates that high heavy metal
547 content in the environment causes plants to be unable to limit the amount of heavy metals
548 absorbed. The ability of plants to limit the absorption of heavy metals in the environment is
549 limited, among other things, by their absorption capacity. The capacity of vacuoles to store
550 heavy metal complexes is limited, causing saturation and a decrease in the efficiency of metal
551 absorption, especially in contaminated environmental conditions (Choppala et al., 2014; Teng
552 et al., 2024). Results in this study are consistent with previous reports, which found that the
553 increase in heavy metal concentrations in plants correlates with higher heavy metal
554 concentrations in the environment and more prolonged exposure durations (Chen et al., 2015;
555 Ghori et al., 2019).

556 In contrast to kailan, exposure to heavy metals did not have a significant effect on the
557 growth of velvetleaf and kangkong. Neither plant showed initial signs of stress during
558 exposure. This indicates that the concentrations of heavy metals used in the study were still
559 tolerable for the plants. These plants are effectively able to avoid stress by limiting the entry of
560 metals through root exudates and maintaining metal ion homeostasis (Ejaz et al., 2023; Ghori
561 et al., 2019). This exudate plays a role in limiting metal absorption by stimulating peroxidase
562 enzyme activity, which thickens the root cell walls (Noor et al., 2022). The root apoplast acts
563 as a physical barrier that inhibits the movement of metal ions into plant tissues (Ejaz et al.,
564 2023; Singh et al., 2024a).

565 In velvetleaf, a decrease in plant growth was observed after 10 to 14 days of exposure,
566 including without metal. This indicates that the decrease in velvetleaf growth was not caused
567 by heavy metal exposure, but rather because the plants entered the generative stage (flowering
568 phase). It can be seen from the similarity in the pattern of growth reduction in the control group
569 that was not exposed to metal. Heavy metal exposure also had no significant effect on the dry
570 weight of velvetleaf and kangkong. It indicates that velvetleaf and kangkong have better
571 tolerance and adaptation mechanisms to heavy metal exposure than kailan.

572 Based on the type of heavy metal, exposure to Pb and Cd resulted in lower plant length
573 and slowed leaf growth in all three plants. Cd exposure had the most adverse effect on plant
574 growth, both in velvetleaf, kailan, and kangkong. Pb and Cd are non-essential metals that are

575 toxic to plants. However, Cd has a higher density than Pb, so even at low concentrations, it
576 causes toxicity that disrupts metabolism and inhibits plant growth. Cd is easily absorbed by
577 plant roots and accumulates with exposure time, then transported to leaves and fruit (Ran et al.,
578 2024). High Cd concentrations in plants caused a decrease in leaf stomatal density, limiting
579 stomata and mesophyll conductance, resulting in slow growth due to disrupted photosynthesis
580 (Guo et al., 2023; Hu et al., 2023). Increased Cd concentrations and exposure time in the three
581 plant accelerate leaf yellowing (chlorosis) due to chlorophyll pigment degradation, leading to
582 plant death (**Figure 9**). Previous studies have indicated a direct correlation between Cd
583 exposure and chlorophyll breakdown, where increased Cd concentration caused a reduction in
584 chlorophyll content in spinach (*Spinacia oleracea L.*) by up to 68% (Rydzyński et al., 2019),
585 and 9–20% in Hybrid pennisetum (Song et al., 2019)

586 Meanwhile, Cu has a positive effect on the growth of velvetleaf and kangkong. Cu is
587 an essential micronutrient that plays a role in various metabolic processes and physiological
588 reactions in plants, including participating in the electron transport chain of photosynthesis and
589 respiration, oxidative metabolism, cell wall metabolism, and hormone signaling (Nazir et al.,
590 2019; Shabbir et al., 2020). Plants require Cu in low concentrations, but it becomes toxic at
591 higher concentrations. There was a slight different between the essential and harmful
592 concentrations of Cu in organisms. The presence of Cu in the growing medium encourages
593 plants to absorb Cu because of their need as a micronutrient, but plants cannot control the
594 amount of Cu absorbed, causing it to exceed the limit (Kumar et al., 2021; Xu et al., 2024).
595

596
597 **Figure 9.** Chlorosis on the leaves of Velvetleaf, Kangkong, and Kailan

598 **Table 2** summarizes the morphological alterations observed in various vegetable species
599 exposed to different heavy metals, highlighting both interspecific variability and pollutant-
600 specific responses. In this study, velvetleaf, kangkong, and kailan exhibited visible stress
601 symptoms such as chlorosis, leaf curling, and growth inhibition under Pb, Cd, and Cu
602 contamination. These morphological changes indicate disruptions in photosynthetic efficiency

603 and nutrient translocation caused by metal toxicity. Similar manifestations have been reported
604 in *Spinacia oleracea*, *Amaranthus* grain, and *Mentha spicata* subjected to Cr, Ni, Zn, Cu, and
605 Pb exposure, where leaf deformation and wilting were attributed to oxidative damage and
606 impaired water balance (Singh et al., 2024b).

607 Consistent with these findings, *Basella alba* (Malabar spinach) and other leafy vegetables
608 showed reduced biomass and visible growth retardation under Pb, Cd, As, and Cu exposure,
609 suggesting that metal accumulation interferes with cell division and elongation processes (Cui
610 et al., 2022). Root vegetables such as lettuce, radish, and carrot demonstrated organ-specific
611 sensitivity, where chlorosis, root shortening, and mild necrotic symptoms were evident
612 depending on the dominant metal present (Qureshi et al., 2016). A broader review by Manwani
613 et al. (2022) confirmed that exposure to As, Cd, Hg, and Pb generally results in yield reduction,
614 leaf necrosis, and blackening of roots, reinforcing that morphological deterioration is a reliable
615 indicator of physiological stress.

616 Furthermore, studies on pumpkin, spinach, and gourd varieties exposed to multiple metals (Cr,
617 Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) demonstrated cumulative toxicity manifested through leaf
618 thinning, early senescence, and reduced chlorophyll content (Jolly et al., 2024). Collectively,
619 these results emphasize that morphological abnormalities serve as rapid, visible markers of
620 heavy metal stress and can be used as preliminary diagnostic criteria before conducting
621 biochemical or molecular analyses. The present study therefore aligns with previous reports,
622 confirming that both leaf deformation and growth suppression are universal adaptive responses
623 among leafy vegetables subjected to heavy metal contamination.

624 The ability of plants to accumulate pollutants from growing media, both water and soil,
625 is calculated using the Bioconcentration Factor (BCF). Several studies have used BCF values
626 to evaluate the potential for metal bioaccumulation by plants. The BCF for Pb, Cd, and Cu in
627 the three types of plants tested were greater than 1, indicating that all three plants have a high
628 potential for heavy metal accumulation (Dogan et al., 2018; Sipos et al., 2023). Based on the
629 BCF values, the order of plant ability to accumulate Pb, Cd, and Cu is
630 kailan<kangkong<velvetleaf. All plants are capable of absorbing heavy metals at high
631 concentrations, thereby increasing the risk of heavy metal exposure through consumption.

632 Based on the distribution of heavy metals in plant parts, higher concentrations of heavy
633 metals were detected in underground organs (root tissue) than in above-ground organs (leaf
634 tissue) in all plant tested. Higher heavy metal accumulation in roots is a tolerance strategy of
635 plants to reduce the effects of toxicity on photosynthetic tissues (Bonanno & Cirelli, 2017).
636 The highest accumulation of Pb, Cd, and Cu was found in kailan roots, 2-3 times higher than

637 velvetleaf and kangkong. However, the heavy metals translocated to the kailan leaves were
638 lower than those of velvetleaf and kangkong. The highest accumulation of heavy metals in the
639 leaves was found in kangkong leaves. It indicates that kangkong tends to transfer more heavy
640 metals from underground organs to above-ground organs.

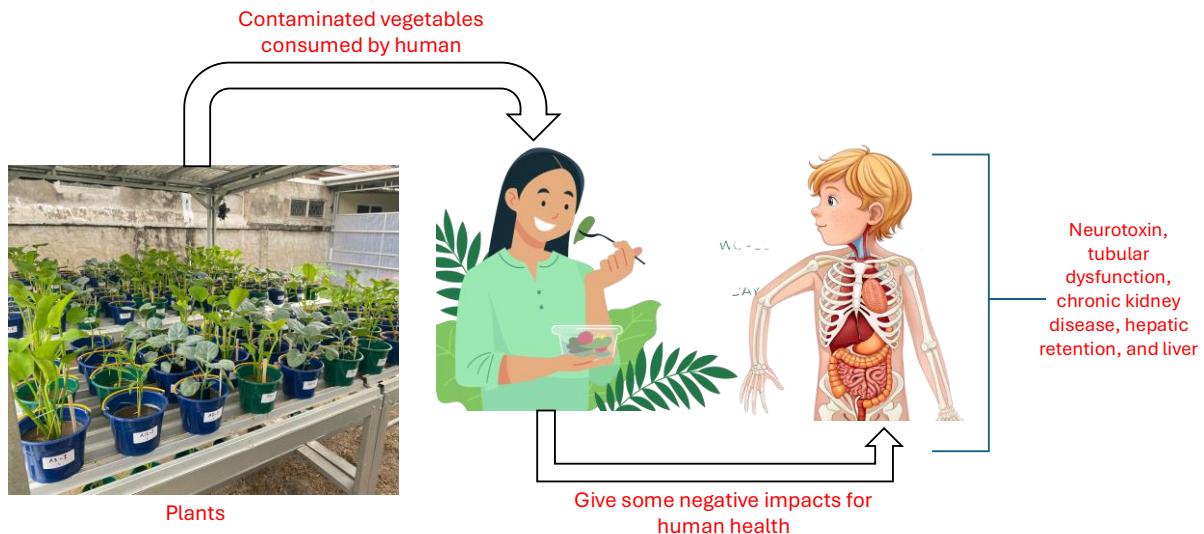
641 In kangkong, 88–95% of heavy metals accumulate in the roots, and 4–11% are
642 translocated to the leaves. Most heavy metals (90–99%) in velvetleaf also accumulate in the
643 roots, with only 0.2–10% translocated to the leaves. Meanwhile, in kailan, heavy metal
644 accumulation in the roots reaches 98–99%, while the concentration in the leaves is very low
645 (0.25–1.73%). The Translocation Factor (TF) showed that all three plants have TF greater than
646 1. The order of plants based on TF values was kangkong>velvetleaf >kailan, indicating that
647 kangkong transferred more heavy metals to leaf tissue than velvetleaf and kailan. All three
648 plant species have $BCF > 1$ and $TF < 1$; thus, they can be categorised as phytostabilizers, where
649 the plants are capable of retaining heavy metals in the roots and preventing their mobilisation
650 to leaf tissues (Hidayati & Rini, 2020).

651 The concentrations of heavy metals Pb, Cd, and Cu in the three plants tested exceeded
652 the maximum levels set by FAO/WHO for leafy vegetables, namely 0.3 mg/kg for Pb, 0.2
653 mg/kg for Cd, and 40 mg/kg for Cu. The comparison between the measured heavy-metal
654 concentrations in plant tissues and the FAO/WHO permissible limits shows a clear pattern of
655 excessive accumulation for Pb and Cd across all three vegetable species. Lead concentrations
656 in velvetleaf (2.95 mg/kg), kangkong (15.28 mg/kg), and kailan (7.32 mg/kg) exceed the
657 recommended maximum limit of 0.3 mg/kg by 9.8- to 51-fold. Kangkong demonstrates the
658 highest Pb uptake, suggesting strong bioaccumulation potential, possibly due to its aquatic
659 growth habit that enhances metal absorption from contaminated irrigation water or sediment.

660 Cadmium levels follow a similar trend, with velvetleaf (5.34 mg/kg), kangkong (1.46
661 mg/kg), and kailan (0.38 mg/kg) all exceeding the FAO/WHO limit of 0.2 mg/kg (FAO/WHO,
662 2016). The concentration in velvetleaf is particularly high, reaching more than 26 times the
663 permissible level. These results indicate a substantial health risk because Cd is known for its
664 high mobility in soil–plant systems and can accumulate in edible tissues even at relatively low
665 environmental concentrations. In contrast, copper concentrations in all plant samples remain
666 below the FAO/WHO limit of 40 mg/kg. Even though Cu is an essential micronutrient,
667 excessive levels can become toxic; however, the measured values (7.16–13.95 mg/kg) suggest
668 that Cu contamination is not a primary concern at the study site. The distinction between toxic
669 (Pb, Cd) and non-toxic (Cu) levels highlights the influence of metal speciation, soil chemistry,
670 and plant physiology on uptake behavior.

671 Food security under conditions of heavy metal contamination can be achieved through
672 integrated control at multiple stages of the food production chain. At the irrigation level, regular
673 monitoring and regulation of water quality are essential to prevent chronic input of Pb and Cd
674 into agricultural systems. When complete water treatment is not feasible, the selection of
675 vegetable species with low translocation potential becomes critical. The present study
676 demonstrates that although all tested vegetables accumulated metals ($BCF > 1$), differences in
677 translocation behavior strongly influence food safety outcomes. Species with lower TF values
678 restrict metal movement to edible tissues, thereby reducing direct dietary exposure. However,
679 low TF alone is insufficient; it must be complemented with agronomic mitigation strategies
680 such as soil pH adjustment, organic amendments, and metal-immobilizing materials to reduce
681 bioavailable fractions. From a public health perspective, security is achieved not by plant
682 tolerance alone, but by reducing human exposure below acceptable risk thresholds. Therefore,
683 integrating crop selection, water quality management, and regulatory enforcement is essential
684 to ensure safe vegetable production in contaminated environments.

685 The HRA revealed alarming implications for human consumption. The Target THQ
686 values for Pb and Cd greatly exceeded the safe threshold ($HQ > 1$) in all three plants, particularly
687 in kale, which had a Hazard Index of 3097.6. Velvetleaf and kangkong also posed severe health
688 risks, with HIs of 1421.2 and 349.1, respectively. Pb was the dominant contributor to risk,
689 followed by Cd, while Cu presented negligible risk ($HQ < 1$). These results highlight that even
690 crops with higher tolerance to heavy metal stress, like velvetleaf and kangkong, can accumulate
691 metals to hazardous levels, emphasizing the necessity of monitoring irrigation water quality
692 and implementing mitigation strategies before cultivation.


693 Several studies have highlighted the risks of human exposure to heavy metals and their
694 associated health impacts. For instance, in China, rice samples contained Cd concentrations
695 9.35 times above the Chinese maximum permissible level, emphasizing the risk of dietary
696 exposure (Cai et al., 2019). Similarly, in Iran, Pb in cow meat showed the highest Hazard
697 Quotient (HQ) among the metals analyzed, while Cd in cow kidney posed the greatest
698 carcinogenic risk (CR). Although the overall Hazard Index (HI) was greater than 1, children
699 were found to be more susceptible, indicating that frequent consumption of contaminated meat
700 could pose significant health concerns (Zeinali et al., 2019).

701 In vitro studies further support the harmful effects of heavy metals, particularly when
702 combined. Human gastric epithelial cells exposed to Cd (5 μ M) and Cu (10 μ M)
703 simultaneously exhibited a 40% loss in cell viability, a 3.5-fold increase in reactive oxygen
704 species (ROS) indicative of oxidative stress, 36% cell cycle arrest in the S phase, and a 22%

705 apoptosis rate (Wang et al., 2021). These findings indicate that co-exposure to Cd and Cu is
706 more detrimental than exposure to either metal individually, highlighting the synergistic
707 toxicity of heavy metals (Wang et al., 2021). Biomonitoring data also reflect chronic exposure
708 levels in human populations. Overall, these studies demonstrate that lead, cadmium, and copper
709 are strongly linked to adverse health effects through multiple exposure routes, including food,
710 air, and occupational contact. Even low-level, chronic exposure can lead to oxidative stress,
711 organ damage, and carcinogenic outcomes, particularly when metals act synergistically. These
712 findings underscore the critical importance of monitoring metal contamination in food sources,
713 irrigation water, and the environment to minimize cumulative health risks in vulnerable
714 populations.

715 The present findings have direct implications for public health because leafy vegetables
716 are widely consumed and can meaningfully contribute to dietary exposure when irrigation
717 water contains bioavailable Pb, Cd, and Cu. Lead is a developmental neurotoxin; even low
718 prenatal and early-life exposures are linked to decrements in intelligence quotient and adverse
719 neurocognitive outcomes, while adult exposures are associated with hypertension and kidney
720 disease (Ramírez Ortega et al., 2021). Cadmium exhibits very long biological half-lives in
721 humans and preferentially accumulates in the kidney, elevating risks of tubular dysfunction
722 and chronic kidney disease; diet is a dominant exposure route globally (Charkiewicz et al.,
723 2023). Although copper is an essential micronutrient, sustained intakes above updated health-
724 based guidance values raise concern for hepatic retention and potential liver injury,
725 underscoring the importance of controlling cumulative exposures from food (More et al.,
726 2023).

727 **Figure 10** showed the pathway of heavy-metal contamination from vegetables to
728 human health impacts. Irrigation-water contaminants such as lead (Pb), cadmium (Cd), and
729 copper (Cu) can be taken up by plants and accumulate in edible tissues; consumption elevates
730 non-carcinogenic risk (HQ and HI). Documented outcomes include neurodevelopmental
731 deficits and hypertension for Pb, renal tubular dysfunction and chronic kidney disease for Cd,
732 and hepatic effects at excessive Cu intake. Arrows indicate the progression from contaminated
733 plants to exposure and health impacts; mitigation can target water quality, soil and cultivar
734 management, and household preparation to reduce bioaccessibility.

735

736 **Figure 10.** Conceptual pathway from heavy-metal-contaminated vegetables to human health
737 outcomes

738 Risk characterization for leafy-vegetable consumption should therefore use established
739 non-cancer metrics based on the hazard quotient (HQ) and hazard index (HI). HQ values
740 greater than 1 for individual metals, or HI values greater than 1 for mixtures, indicate potential
741 concern for non-carcinogenic effects and should trigger mitigation. Because consumers
742 experience co-exposure to multiple metals and foods, reliance on single-metal assessments can
743 underestimate total risk. Mixed-metal ingestion may also worsen intestinal barrier integrity and
744 perturb the gut microbiome, amplifying systemic inflammation and metabolic risk, which
745 suggests that risk estimates based solely on total concentrations may understate overall health
746 burdens.

747 The findings of this study complement recent developments that combine
748 environmental monitoring, artificial intelligence, and sustainable agricultural management.
749 Advanced computational models have demonstrated a strong ability to improve decision-
750 making in food and crop systems. For instance, the reuse of nutrient-rich water using Recurrent
751 Neural Networks (RNN) and Natural Language Processing techniques has shown potential for
752 optimizing nutrient recovery and supporting healthier food practice (K et al., 2025). Similarly,
753 a comparative study using Support Vector Machines (SVM) and Decision Tree algorithms for
754 predicting hydroponic tomato growth revealed that data-driven models can effectively capture
755 non-linear relationships between environmental factors and crop yield (B et al., 2024). In
756 addition, real-time irrigation optimization in coffee plantations using Bi-Directional RNNs and
757 Internet of Things (IoT) sensors demonstrated the value of integrating continuous data streams
758 to enhance water use efficiency and crop productivity (Shahriar et al., 2021). Research on

759 lettuce farming using Random Forest algorithms also indicated that this model outperforms
760 conventional Decision Tree techniques in predicting plant performance and managing
761 cultivation parameters (Jegan et al., 2024) .

762 Future research should prioritize multi-season field validation across contrasting soils
763 and climatic regimes to determine whether the pot-scale responses observed here persist under
764 on-farm irrigation practices. Studies should incorporate speciation-aware exposure,
765 distinguishing free ions from complexed forms, together with rhizosphere measurements of
766 pH, redox potential, and dissolved organic carbon. This approach will help disentangle
767 bioavailability from total concentration and clarify mechanisms that govern uptake,
768 bioconcentration, and translocation. Longer observation windows that span full growth cycles,
769 including a post-exposure depuration phase in clean water, are also recommended to assess
770 whether edible tissues can reduce accumulated metals and to quantify any agronomic costs.
771 Because real wastewaters contain mixtures, future designs should shift from single-metal tests
772 to factorial or response-surface studies that span realistic multi-metal ranges, for example
773 Pb×Cd×Cu with Zn or Ni as co-contaminants. In parallel, screening of cultivars and landraces
774 within each species is needed to identify low-translocation phenotypes that maintain yield and
775 quality under stress. Mechanistic depth can be added through ionomics and multi-omics,
776 including transcriptomics, proteomics, and metabolomics, to resolve antioxidant responses,
777 chelation pathways, and vacuolar sequestration. Spatial imaging such as micro-XRF or LA-
778 ICP-MS can verify tissue-level sequestration targets suggested by physiological measurements.
779 Translational work should assemble integrative mitigation packages that combine soil
780 amendments, for example liming, silicon, phosphate, organic matter, or biochar, with foliar
781 nutrition and microbe-assisted strategies. Candidate consortia include plant growth-promoting
782 and metal-immobilizing microbes, mycorrhizae, and mineral additives such as iron or
783 manganese oxides and layered double hydroxide-based sorbents. The goal is to suppress
784 bioavailability and leaf translocation without penalizing yield. On the consumer side,
785 experiments that quantify how washing, blanching, pickling or fermentation, and common
786 cooking methods alter both total concentrations and gastrointestinal bioaccessibility will refine
787 health-risk estimates in ways that are directly relevant to household practice. These datasets
788 should feed into probabilistic exposure models that use locally stratified intake distributions by
789 age, sex, and season, and that report both uncertainty and variability. The same models should
790 be used to derive irrigation-water trigger values, defined as concentration–time safe operating
791 envelopes that keep edible-leaf metals below regulatory limits.

792 In addition, next study also should considerate environmental monitoring and precision
793 agriculture increasingly rely on advanced sensing, data-analysis and modelling techniques to
794 characterise contamination, plant stress and crop performance (Maruthai et al., 2025; Sridharan
795 Sivasubramanian et al., 2025). Finally, methodological enhancements will strengthen
796 reproducibility and policy uptake. Standardized imaging for longitudinal leaf-area tracking,
797 photographic documentation of all experimental stages, preregistered analysis plans, and a
798 priori power calculations will improve inference on treatment effects. Socio-economic and
799 policy integration, including cost–benefit and life-cycle assessments of on-farm versus water-
800 side mitigation, hotspot mapping, and co-designed risk communication with farmers and local
801 regulators, will help convert experimental insights into practical guidance. This should include
802 crop-selection recommendations for settings where water treatment is infeasible and decision
803 frameworks that link routine water monitoring to actionable farm-level responses.

804 6. CONCLUSIONS

805 This study revealed that vegetables exposed to Pb, Cd, and Cu-contaminated irrigation
806 water exhibit different morphological responses. Kailan showed initial growth inhibition, while
807 velvetleaf and kangkong tolerated exposure for longer periods. Quantitatively, kailan
808 accumulates the highest concentrations. All plants displaying $BCF > 1$ and $TF < 1$ are classified
809 as phytostabilizers. Despite root retention, Pb and Cd concentrations in leaves consistently
810 exceeded FAO/WHO safety limits, resulting in very high health risk indices for kailan,
811 followed by velvetleaf and kangkong. Therefore, effective mitigation strategies are needed,
812 including monitoring and managing irrigation water quality, and selecting vegetable varieties
813 that are capable of root sequestration without leaf accumulation. This strategy is necessary to
814 reduce the risk of contamination and support the development of safe vegetable cultivation for
815 human health. Future research should prioritize multi-season field trials across diverse soil
816 types and climatic conditions to validate whether the pot-scale responses observed in this study
817 are consistent under real on-farm irrigation practices. Subsequent studies should also
818 incorporate speciation-sensitive analyses that distinguish between free ionic and complexed
819 metal forms, alongside comprehensive rhizosphere assessments of pH, redox potential, and
820 dissolved organic carbon dynamics to better elucidate metal bioavailability and plant uptake
821 mechanisms. In addition, food security in heavy metal–affected irrigation systems can be
822 achieved through a combination of preventive water management, selection of low-
823 translocation crops, and agronomic mitigation to suppress metal bioavailability. Although plant
824 tolerance allows survival under contamination, safety for human consumption requires

825 minimizing metal transfer to edible tissues and maintaining exposure levels below health-based
826 limits. These findings provide a scientific basis for risk-informed crop selection and irrigation
827 management to protect public health in peri-urban agricultural systems.

828 Future research should extend this work beyond pot-scale conditions through multi-
829 season field trials across different soil types and climatic settings to validate the consistency of
830 plant responses under real irrigation practices. Further studies should incorporate metal
831 speciation and rhizosphere processes, including pH, redox potential, and dissolved organic
832 carbon, to better elucidate bioavailability-driven uptake mechanisms. In addition, experiments
833 involving realistic multi-metal mixtures and longer exposure periods covering complete crop
834 cycles are needed to reflect actual wastewater irrigation scenarios. Screening of cultivars with
835 low translocation potential and the application of mitigation strategies such as soil
836 amendments, biochar, silicon-based materials, or microbial-assisted approaches should also be
837 prioritized. Finally, future work should integrate region-specific dietary data and probabilistic
838 health-risk models to improve the accuracy and relevance of food safety assessments for local
839 populations.

840 **7. Acknowledgements**

841 The authors would like to thank the Laboratory of Faculty of Engineering Universitas
842 Batanghari and Saraswanti Indo Genetech Laboratory for technical support during the research
843 period.

844 **8. Data Availability Statements**

845 All raw data, laboratory notebooks, and photographic documentation are archived under the
846 institution's data retention policy and are available upon reasonable request.

847 **9. References**

848 Abbas, M. T., Wadaan, M. A., Ullah, H., Farooq, M., Fozia, F., Ahmad, I., Khan, M. F.,
849 Baabbad, A., & Ullah, Z. (2023). Bioaccumulation and mobility of heavy metals in the
850 soil-plant system and health risk assessment of vegetables irrigated by wastewater.
851 *Sustainability*, 15(21), 15321. <https://doi.org/https://doi.org/10.3390/su152115321>

852 Aboelkassem, A., Alzamel, N., Alzain, M., & Loutfy, N. (2022). Effect of Pb-Contaminated
853 Water on *Ludwigia stolonifera* (Guill. & Perr.) P.H. Raven Physiology and
854 Phytoremediation Performance. *Plants*, 11(5), 636.
855 <https://doi.org/10.3390/plants11050636>

856 Ahmed, S., Fatema-Tuj-Zohra, Mahdi, M. M., Nurnabi, Md., Alam, Md. Z., & Choudhury, T.
857 R. (2022). Health risk assessment for heavy metal accumulation in leafy vegetables grown
858 on tannery effluent contaminated soil. *Toxicology Reports*, 9, 346–355.
859 <https://doi.org/10.1016/j.toxrep.2022.03.009>

860 Aksouh, M. Y., Boudieb, N., Benosmane, N., Moussaoui, Y., Michalski, R., Klyta, J., &
861 Kończyk, J. (2024). Presence of heavy metals in irrigation water, soils, fruits, and
862 vegetables: health risk assessment in Peri-Urban Boumerdes city, Algeria. *Molecules*,
863 29(17), 4187. <https://doi.org/https://doi.org/10.3390/molecules29174187>

864 Ali, S., & Ahirwar, R. (2025). Accumulation of toxic metals in vegetable crops and associated
865 dietary exposure risks to human health. *Discover Environment*, 3(1), 210.
866 <https://doi.org/10.1007/s44274-025-00373-w>

867 B, P. kalyan, R, S., & Krishnan, S. (2024). Comparative of SVM and Decision Tree Techniques
868 for Predicting Hydroponic Tomato Growth and Yield Using Deep Water Culture. *2024
869 International Conference on Innovation and Intelligence for Informatics, Computing, and
870 Technologies (3ICT)*, 705–710. <https://doi.org/10.1109/3ict64318.2024.10824383>

871 Bonanno, G., & Cirelli, G. L. (2017). Comparative analysis of element concentrations and
872 translocation in three wetland congener plants: *Typha domingensis*, *Typha latifolia* and
873 *Typha angustifolia*. *Ecotoxicology and Environmental Safety*, 143, 92–101.
874 <https://doi.org/https://doi.org/10.1016/j.ecoenv.2017.05.021>

875 Bounar, A., Boukaka, K., & Leghouchi, E. (2020). Determination of Heavy Metals in
876 Tomatoes Cultivated Under Green Houses and Human Health Risk Assessment. *Quality
877 Assurance and Safety of Crops & Foods*, 12(1), 76–86.
878 <https://doi.org/10.15586/qas2019.639>

879 Cai, L.-M., Wang, Q.-S., Luo, J., Chen, L.-G., Zhu, R.-L., Wang, S., & Tang, C.-H. (2019).
880 Heavy metal contamination and health risk assessment for children near a large Cu-
881 smelter in central China. *Science of The Total Environment*, 650, 725–733.
882 <https://doi.org/10.1016/j.scitotenv.2018.09.081>

883 Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023).
884 Cadmium Toxicity and Health Effects—A Brief Summary. *Molecules*, 28(18), 6620.
885 <https://doi.org/10.3390/molecules28186620>

886 Chen, M., Zhang, L.-L., Li, J., He, X.-J., & Cai, J.-C. (2015). Bioaccumulation and tolerance
887 characteristics of a submerged plant (*Ceratophyllum demersum* L.) exposed to toxic metal
888 lead. *Ecotoxicology and Environmental Safety*, 122, 313–321.
889 <https://doi.org/https://doi.org/10.1016/j.ecoenv.2015.08.007>

890 Choppala, G., Saifullah, Bolan, N., Bibi, S., Iqbal, M., Rengel, Z., Kunhikrishnan, A., Ashwath,
891 N., & Ok, Y. S. (2014). Cellular mechanisms in higher plants governing tolerance to
892 cadmium toxicity. *Critical Reviews in Plant Sciences*, 33(5), 374–391.
893 <https://doi.org/https://doi.org/10.1080/07352689.2014.903747>.

894 Cui, S., Wang, Z., Li, X., Wang, H., Wang, H., & Chen, W. (2022). A comprehensive
895 assessment of heavy metal(loid) contamination in leafy vegetables grown in two mining
896 areas in Yunnan, China—a focus on bioaccumulation of cadmium in Malabar spinach.
897 *Environmental Science and Pollution Research*, 30(6), 14959–14974.
898 <https://doi.org/10.1007/s11356-022-23017-5>

899 Doğan, M., Çavuşoğlu, K., Yalçın, E., & Acar, A. (2022). Comprehensive toxicity screening
900 of Pazarsuyu stream water containing heavy metals and protective role of lycopene.
901 *Scientific Reports*, 12(1), 16615. <https://doi.org/10.1038/s41598-022-21081-y>

902 Dogan, M., Karatas, M., & Aasim, M. (2018). Cadmium and lead bioaccumulation potentials
903 of an aquatic macrophyte *Ceratophyllum demersum* L.: A laboratory study. *Ecotoxicology*
904 and *Environmental Safety*, 148, 431–440. <https://doi.org/10.1016/j.ecoenv.2017.10.058>

905 Dotaniya, M. L., Meena, V. D., Saha, J. K., Dotaniya, C. K., Mahmoud, A. E. D., Meena, B.
906 L., Meena, M. D., Sanwal, R. C., Meena, R. S., Doutaniya, R. K., Solanki, P., Lata, M.,
907 & Rai, P. K. (2023). Reuse of poor-quality water for sustainable crop production in the
908 changing scenario of climate. In *Environment, Development and Sustainability* (Vol. 25,
909 Issue 8, pp. 7345–7376). Springer Science and Business Media B.V.
910 <https://doi.org/10.1007/s10668-022-02365-9>

911 Easlon, H. M., & Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for
912 rapid and accurate measurement of leaf area. *Applications in Plant Sciences*, 2(7),
913 1400033. <https://doi.org/https://doi.org/10.3732/apps.1400033>

914 Ejaz, U., Khan, S. M., Khalid, N., Ahmad, Z., Jehangir, S., Fatima Rizvi, Z., Lho, L. H., Han,
915 H., & Raposo, A. (2023). Detoxifying the heavy metals: a multipronged study of tolerance

916 strategies against heavy metals toxicity in plants. In *Frontiers in Plant Science* (Vol. 14).
917 Frontiers Media S.A. <https://doi.org/10.3389/fpls.2023.1154571>

918 Faizan, M., Alam, P., Hussain, A., Karabulut, F., Tonny, S. H., Cheng, S. H., Yusuf, M., Adil,
919 M. F., Sehar, S., & Alomrani, S. O. (2024). Phytochelatins: key regulator against heavy
920 metal toxicity in plants. *Plant Stress*, 11, 100355.
921 <https://doi.org/https://doi.org/10.1016/j.stress.2024.100355>

922 FAO/WHO. (2016). *E REP16/CF JOINT FAO/WHO FOOD STANDARDS PROGRAMME
923 CODEX ALIMENTARIUS COMMISSION 39 th Session REPORT OF THE 10 th
924 SESSION OF THE CODEX COMMITTEE ON CONTAMINANTS IN FOODS.*

925 Ghori, N. H., Ghori, T., Hayat, M. Q., Imadi, S. R., Gul, A., Altay, V., & Ozturk, M. (2019).
926 Heavy metal stress and responses in plants. *International Journal of Environmental
927 Science and Technology*, 16, 1807–1828. <https://doi.org/10.1007/s13762-019-02215-8>

928 Guo, Z., Gao, Y., Yuan, X., Yuan, M., Huang, L., Wang, S., Liu, C., & Duan, C. (2023). Effects
929 of Heavy Metals on Stomata in Plants: A Review. In *International Journal of Molecular
930 Sciences* (Vol. 24, Issue 11). Multidisciplinary Digital Publishing Institute (MDPI).
931 <https://doi.org/10.3390/ijms24119302>

932 Hidayati, N., & Rini, D. S. (2020). Evaluation of wild plants as lead (Pb) and cadmium (Cd)
933 accumulators for phytoremediation of contaminated rice fields. *Biodiversitas Journal of
934 Biological Diversity*, 21(5).

935 Hu, Z., Zhao, C., Li, Q., Feng, Y., Zhang, X., Lu, Y., Ying, R., Yin, A., & Ji, W. (2023). Heavy
936 metals can affect plant morphology and limit plant growth and photosynthesis processes.
937 *Agronomy*, 13(10), 2601. <https://doi.org/https://doi.org/10.3390/agronomy13102601>

938 Islam, Md. Saiful., & Hoque, M. F. (2014). Concentrations of heavy metals in vegetables
939 around the industrial area of Dhaka city, Bangladesh and health risk assessment.
940 *International Food Research Journal*, 21(6).

941 Jegan, D., Surendran, R., & Madhusundar, N. (2024). Hydroponic using Deep Water Culture
942 for Lettuce Farming using Random Forest Compared with Decision Tree Algorithm. *2024
943 8th International Conference on Electronics, Communication and Aerospace Technology
944 (ICECA)*, 907–914. <https://doi.org/10.1109/ICECA63461.2024.10800972>

945 Jolly, Y. N., Akter, S., Kabir, M. J., Mamun, K. M., Abedin, M. J., Fahad, S. M., & Rahman, A. (2024). Heavy Metals Accumulation in Vegetables and Its Consequences on Human Health in the Areas Influenced by Industrial Activities. *Biological Trace Element Research*, 202(7), 3362–3376. <https://doi.org/10.1007/s12011-023-03923-6>

946

947

948

949 K, L., R, S., & E, L. (2025). Empowering a Nutritional Lifestyle through Soaked and Streamed Nuts Water Reuse using Novel RNN and NLP. *2024 International Conference on IT Innovation and Knowledge Discovery (ITIKD)*, 1–5. <https://doi.org/10.1109/ITIKD63574.2025.11004716>

950

951

952

953 Kaur, N., Singh, J., Sharma, N. R., Natt, S. K., Mohan, A., Malik, T., & Girdhar, M. (2025). Heavy metal contamination in wastewater-irrigated vegetables: assessing food safety challenges in developing Asian countries. *Environmental Science: Processes & Impacts*, 27(7), 1747–1767. <https://doi.org/10.1039/D4EM00565A>

954

955

956

957 Khaliq, M. A., Javed, M. T., Hussain, S., Imran, M., Mubeen, M., Nasim, W., Fahad, S., Karuppannan, S., Al-Taisan, W. A., Almohamad, H., Al Dughairi, A. A., Al-Mutiry, M., Alrasheedi, M., & Abdo, H. G. (2022). Assessment of heavy metal accumulation and health risks in okra (*Abelmoschus Esculentus L.*) and spinach (*Spinacia Oleracea L.*) fertigated with wastewater. *International Journal of Food Contamination*, 9(1), 11. <https://doi.org/10.1186/s40550-022-00097-2>

958

959

960

961

962

963 Khan, R., Shukla, S., Kumar, M., Zuorro, A., & Pandey, A. (2023). Sewage sludge derived biochar and its potential for sustainable environment in circular economy: Advantages and challenges. *Chemical Engineering Journal*, 144495.

964

965

966 Kim, H., Lee, M., Lee, J.-H., Kim, K.-H., Owens, G., & Kim, K.-R. (2020). Distribution and extent of heavy metal (loid) contamination in agricultural soils as affected by industrial activity. *Applied Biological Chemistry*, 63(1), 31.

967

968

969 Kumar, V., Pandita, S., Singh Sidhu, G. P., Sharma, A., Khanna, K., Kaur, P., Bali, A. S., & Setia, R. (2021). Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. In *Chemosphere* (Vol. 262). Elsevier Ltd. <https://doi.org/10.1016/j.chemosphere.2020.127810>

970

971

972

973 Lakitan, B., Muda, S. A., Purwanto, P., Nurshanti, D. F., Karenina, T., Ria, R. P., Gustiar, F., Ratmini, N. P. S., Ramadhani, F., & Viryananda, S. D. (2025). Morphological Characteristics, Growth, Behaviour, and Potential of Yard-Long Bean (*Vigna unguiculata*

974

975

976 spp. *sesquipedalis* (L.) Verdc.) as A Vegetable for Cultivation in Tropical Urban Areas.
977 *Journal of Horticultural Research*, 33(1), 87–94. <https://doi.org/DOI:10.2478/johr-2025-0011>

979 Lakitan, B., Susilawati, S., Wijaya, A., Ria, R. P., & Muda, S. A. (2023). Leaf Blade Growth
980 and Development in Red, Pink, and Yellow Petiole Cultivars of the Swiss Chards Grown
981 in Floating Culture System. *Jordan Journal of Biological Sciences*, 16(1).
982 <https://doi.org/https://doi.org/10.54319/jjbs/160119>

983 Liu, X., Gong, D., Ke, Q., Yin, L., Wang, S., & Gao, T. (2023). Meta-analysis of the effect of
984 nitric oxide application on heavy metal stress tolerance in plants. *Plants*, 12(7), 1494.
985 <https://doi.org/https://doi.org/10.3390/plants12071494>.

986 Mafuyai, G., & Ugbidye, S. (2021). Heavy metals contamination in vegetable crops irrigated
987 with wastewater: A review. *International Journal of Research in Agronomy*, 4(2), 23–36.
988 <https://doi.org/10.33545/2618060X.2021.v4.i2a.80>

989 Manwani, S., Devi, P., Singh, T., Yadav, C. S., Awasthi, K. K., Bhoot, N., & Awasthi, G.
990 (2022). Heavy metals in vegetables: a review of status, human health concerns, and
991 management options. *Environmental Science and Pollution Research*, 30(28), 71940–
992 71956. <https://doi.org/10.1007/s11356-022-22210-w>

993 Manwani, S., Vanisree, C. R., Jaiman, V., Awasthi, K. K., Yadav, C. S., Sankhla, M. S., Pandit,
994 P. P., & Awasthi, G. (2022). Heavy metal contamination in vegetables and their toxic
995 effects on human health. *Sustainable Crop Production: Recent Advances*, 181.
996 <https://doi.org/DOI: 10.5772/intechopen.102651>

997 Maruthai, S., Selvanarayanan, R., Thanarajan, T., & Rajendran, S. (2025). Hybrid vision GNNs
998 based early detection and protection against pest diseases in coffee plants. *Scientific
999 Reports*, 15(1), 11778. <https://doi.org/10.1038/s41598-025-96523-4>

1000 More, S. J., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T. I., Hernández-Jerez, A.
1001 F., Bennekou, S. H., Koutsoumanis, K., Lambré, C., Machera, K., Mullins, E., Nielsen, S.
1002 S., Schlatter, J. R., Schrenk, D., Turck, D., Younes, M., Boon, P., Ferns, G. A., Lindtner,
1003 O., ... Leblanc, J. (2023). Re-evaluation of the existing health-based guidance values for
1004 copper and exposure assessment from all sources. *EFSA Journal*, 21(1).
1005 <https://doi.org/10.2903/j.efsa.2023.7728>

1006 Nazir, F., Hussain, A., & Fariduddin, Q. (2019). Hydrogen peroxide modulate photosynthesis
1007 and antioxidant systems in tomato (*Solanum lycopersicum* L.) plants under copper stress.
1008 *Chemosphere*, 230, 544–558. <https://doi.org/10.1016/j.chemosphere.2019.05.001>

1009 Noor, I., Sohail, H., Sun, J., Nawaz, M. A., Li, G., Hasanuzzaman, M., & Liu, J. (2022). Heavy
1010 metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation
1011 strategies. *Chemosphere*, 303, 135196.
1012 <https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.135196>

1013 Ogunkunle, C. O., Ziyath, A. M., Adewumi, F. E., & Fatoba, P. O. (2015). Bioaccumulation
1014 and associated dietary risks of Pb, Cd, and Zn in amaranth (*Amaranthus cruentus*) and jute
1015 mallow (*Corchorus olitorius*) grown on soil irrigated using polluted water from Asa River,
1016 Nigeria. *Environmental Monitoring and Assessment*, 187(5), 281.
1017 <https://doi.org/https://doi.org/10.1007/s10661-015-4441-6>.

1018 Othman, Y. A., Al-Assaf, A., Tadros, M. J., & Albalawneh, A. (2021). Heavy metals and
1019 microbes accumulation in soil and food crops irrigated with wastewater and the potential
1020 human health risk: a metadata analysis. *Water*, 13(23), 3405.
1021 <https://doi.org/https://doi.org/10.3390/w13233405>

1022 Pande, A., Mun, B.-G., Methela, N. J., Rahim, W., Lee, D.-S., Lee, G.-M., Hong, J. K.,
1023 Hussain, A., Loake, G., & Yun, B.-W. (2022). Heavy metal toxicity in plants and the
1024 potential NO-releasing novel techniques as the impending mitigation alternatives.
1025 *Frontiers in Plant Science*, 13, 1019647.
1026 <https://doi.org/https://doi.org/10.3389/fpls.2022.1019647>

1027 Qureshi, A. S., Hussain, M. I., Ismail, S., & Khan, Q. M. (2016). Evaluating heavy metal
1028 accumulation and potential health risks in vegetables irrigated with treated wastewater.
1029 *Chemosphere*, 163, 54–61. <https://doi.org/10.1016/j.chemosphere.2016.07.073>

1030 Rahman, S. U., Nawaz, M. F., Gul, S., Yasin, G., Hussain, B., Li, Y., & Cheng, H. (2022).
1031 State-of-the-art OMICS strategies against toxic effects of heavy metals in plants: A
1032 review. *Ecotoxicology and Environmental Safety*, 242, 113952.
1033 <https://doi.org/https://doi.org/10.1016/j.ecoenv.2022.113952>

1034 Ramírez Ortega, D., González Esquivel, D. F., Blanco Ayala, T., Pineda, B., Gómez Manzo,
1035 S., Marcial Quino, J., Carrillo Mora, P., & Pérez de la Cruz, V. (2021). Cognitive

1036 Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead
1037 Neurotoxicity. *Toxics*, 9(2), 23. <https://doi.org/10.3390/toxics9020023>

1038 Ran, T., Cao, G., Xiao, L., Li, Y., Xia, R., Zhao, X., Qin, Y., Wu, P., & Tian, S. (2024). Effects
1039 of cadmium stress on the growth and physiological characteristics of sweet potato. *BMC*
1040 *Plant Biology*, 24(1). <https://doi.org/10.1186/s12870-024-05551-1>

1041 Raza, A., Habib, M., Kakavand, S. N., Zahid, Z., Zahra, N., Sharif, R., & Hasanuzzaman, M.
1042 (2020). Phytoremediation of cadmium: physiological, biochemical, and molecular
1043 mechanisms. *Biology*, 9(7), 177. <https://doi.org/https://doi.org/10.3390/biology9070177>

1044 Shabbir, Z., Sardar, A., Shabbir, A., Abbas, G., Shamshad, S., Khalid, S., Natasha, Murtaza,
1045 G., Dumat, C., & Shahid, M. (2020). Copper uptake, essentiality, toxicity, detoxification
1046 and risk assessment in soil-plant environment. In *Chemosphere* (Vol. 259). Elsevier Ltd.
1047 <https://doi.org/10.1016/j.chemosphere.2020.127436>

1048 Shahriar, S. M., Peyal, H. I., Nahiduzzaman, Md., & Pramanik, Md. A. H. (2021). An IoT-
1049 Based Real-Time Intelligent Irrigation System using Machine Learning. *2021 13th*
1050 *International Conference on Information & Communication Technology and System*
1051 (*ICTS*), 277–281. <https://doi.org/10.1109/ICTS52701.2021.9608813>

1052 Singh, R., Singh, P. K., Madheshiya, P., Khare, A. K., & Tiwari, S. (2024a). Heavy metal
1053 contamination in the wastewater irrigated soil and bioaccumulation in cultivated
1054 vegetables: Assessment of human health risk. *Journal of Food Composition and Analysis*,
1055 128. <https://doi.org/10.1016/j.jfca.2024.106054>

1056 Singh, R., Singh, P. K., Madheshiya, P., Khare, A. K., & Tiwari, S. (2024b). Heavy metal
1057 contamination in the wastewater irrigated soil and bioaccumulation in cultivated
1058 vegetables: Assessment of human health risk. *Journal of Food Composition and Analysis*,
1059 128, 106054. <https://doi.org/10.1016/j.jfca.2024.106054>

1060 Sipos, B., Bibi, D., Magura, T., Tóthmérész, B., & Simon, E. (2023). High phytoremediation
1061 and translocation potential of an invasive weed species (*Amaranthus retroflexus*) in
1062 Europe in metal-contaminated areas. *Environmental Monitoring and Assessment*, 195(6),
1063 790. <https://doi.org/https://doi.org/10.1007/s10661-023-11422-3>

1064 Somda, M. K., Samake, S., Kabore, D., Nikiema, M., Mogmenga, I., Dabire, Y., Ouattara, A.,
1065 Keita, I., Mihin, H. B., & Akakpo, A. Y. (2019). Assessment of heavy metals and

1066 microbial pollution of lettuce (*Lactuca sativa*) cultivated in two sites (Paspanga and
1067 Tanghin) of Ouagadougou, Burkina Faso. *Journal of Environmental Protection*, 10(3),
1068 454–471. [https://doi.org/https://doi.org/10.4236/jep.2019.103026](https://doi.org/10.4236/jep.2019.103026)

1069 Song, X., Yue, X., Chen, W., Jiang, H., Han, Y., & Li, X. (2019). Detection of cadmium risk
1070 to the photosynthetic performance of Hybrid pennisetum. *Frontiers in Plant Science*, 10.
1071 <https://doi.org/10.3389/fpls.2019.00798>

1072 Sridharan Sivasubramanian, G.V. Sam Kumar, Tamilvizhi Thanarajan, & Rajendran, S.
1073 (2025). AL-BIRUNI EARTH RADIUS OPTIMIZATION FOR ENHANCED
1074 ENVIRONMENTAL DATA ANALYSIS IN REMOTE SENSING IMAGERY.
1075 *Agrociencia*, 1–18. <https://doi.org/10.47163/agrociencia.v59i5.3380>

1076 Tekle, H. T., Sbhatu, D. B., & Gebreyohannes, G. (2023). *Assessment of concentrations of*
1077 *heavy metals in three leafy vegetables irrigated with wastewater in hadnet district,*
1078 *mekelle, Ethiopia*. [https://doi.org/https://doi.org/10.21203/rs.3.rs-2505020/v1](https://doi.org/10.21203/rs.3.rs-2505020/v1)

1079 Teng, Y., Yu, A., Jiang, Z., Guan, W., Li, Z., Yu, H., & Zou, L. (2024). *Cadmium*
1080 *accumulation, chelation and antioxidation during the process of vacuolar*
1081 *compartmentalization in the hyperaccumulator plant Solanum nigrum L.*
1082 <https://doi.org/https://doi.org/10.22541/au.170664663.32283946/v1>.

1083 Waheed, A., Haxim, Y., Islam, W., Ahmad, M., Ali, S., Wen, X., Khan, K. A., Ghramh, H. A.,
1084 Zhang, Z., & Zhang, D. (2022). Impact of cadmium stress on growth and physio-
1085 biochemical attributes of *Eruca sativa* Mill. *Plants*, 11(21), 2981.
1086 <https://doi.org/https://doi.org/10.3390/plants11212981>

1087 Wang, K., Ma, J.-Y., Li, M.-Y., Qin, Y.-S., Bao, X.-C., Wang, C.-C., Cui, D.-L., Xiang, P., &
1088 Ma, L. Q. (2021). Mechanisms of Cd and Cu induced toxicity in human gastric epithelial
1089 cells: Oxidative stress, cell cycle arrest and apoptosis. *Science of The Total Environment*,
1090 756, 143951. <https://doi.org/10.1016/j.scitotenv.2020.143951>

1091 Wibowo, Y. G., Tyaz Nugraha, A., & Rohman, A. (2023). Phytoremediation of several
1092 wastewater sources using *Pistia stratiotes* and *Eichhornia crassipes* in Indonesia.
1093 *Environmental Nanotechnology, Monitoring and Management*, 20.
1094 <https://doi.org/10.1016/j.enmm.2023.100781>

1095 Xu, E., Liu, Y., Gu, D., Zhan, X., Li, J., Zhou, K., Zhang, P., & Zou, Y. (2024). Molecular
1096 Mechanisms of Plant Responses to Copper: From Deficiency to Excess. In *International*
1097 *Journal of Molecular Sciences* (Vol. 25, Issue 13). Multidisciplinary Digital Publishing
1098 Institute (MDPI). <https://doi.org/10.3390/ijms25136993>

1099 Zeinali, T., Salmani, F., & Naseri, K. (2019). Dietary Intake of Cadmium, Chromium, Copper,
1100 Nickel, and Lead through the Consumption of Meat, Liver, and Kidney and Assessment
1101 of Human Health Risk in Birjand, Southeast of Iran. *Biological Trace Element Research*,
1102 191(2), 338–347. <https://doi.org/10.1007/s12011-019-1637-6>

1103 Zhou, H., Yang, W. T., Zhou, X., Liu, L., Gu, J. F., Wang, W. L., Zou, J. L., Tian, T., Peng, P.
1104 Q., & Liao, B. H. (2016). Accumulation of heavy metals in vegetable species planted in
1105 contaminated soils and the health risk assessment. *International Journal of Environmental
1106 Research and Public Health*, 13(3). <https://doi.org/10.3390/ijerph13030289>

1107