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Abstract 12 

As the central city of Hunan Province, Changsha is a key to grasping how carbon emission growth is 13 

playing out and getting the peak carbon emission event to happen faster than initially planned. In this 14 

study, it adopts the data from 2011 to 2022 to build the LMDI-STIRPAT model and forecast the 15 

carbon emission trend of Changsha. Through scenario simulations, the research identifies the primary 16 

factors influencing carbon emissions, projects future emission trajectories, and determines the 17 

optimal pathways for emission reduction. The main results: (1) The energy structure restrains the 18 

growth of carbon emission, while the population size is still a big pusher that helps increase the 19 

carbon emission. (2) Out of eight forecasting situations, only situation S1 arrives at the carbon peak 20 

goal by 2030, which achieves 20.37 Mt, whereas the others vary in their delay. (3) Changsha reaches 21 

its carbon peak according to the plan in the low-carbon situation S1, making it the most effective 22 

option for emission cuts. To achieve this, the paper gives recommendations such as modifying energy 23 

consumption structure, optimizing industrial layout, and reinforcing related the policy framework 24 

supporting cities low carbon transition and explained in conclusion. 25 

Keywords: energy intensity; sensitivity analysis; carbon emission forecasting; scenario analysis 26 

1. Introduction 27 

With the rapid development of the global economy, carbon dioxide emissions have been rapidly 28 

increasing, and the degree of global warming has also been increasing. The occurrence frequency of 29 

natural disasters (Babu et al. 2025) all over the world has been rapidly rising, and the occurrence of 30 

extreme days is also becoming more and more frequent (Jasmine et al. 2025). The melting of sea ice, 31 

increase of sea level, floods and storm and other disasters have become more serious by the effects of 32 

rising sea level, it is a big danger for ecosystem, climate (Kumar et al. 2025)and sustainable 33 



 

 

development of humans. As per the IPCC, the temperature of the entire world has been increasing 34 

since the last 100 years due to the greenhouse gases produced from the burning of fossil fuel and the 35 

industries. So, reducing carbon emissions has become the main way to stop the earth getting too 36 

warm, and all the countries need to work together. During the Reform and Opening-up period, 37 

China’s economic growth is based on the huge amount of energy consumption which leads to a large 38 

continuous emission of carbon dioxide. In response to the increasing climate risk, China has made the 39 

commitment at 75th session of UN General Assembly to achieve peak carbon before 2030 and carbon 40 

neutral before 2060. 41 

Dual carbon goal, Carbon Peak and Carbon Neutrality, have turned into a central theme for policies 42 

and academic works in China. Now we are trying to find low-carbon development models. 43 

Government supported low carbon city pilot project is one of the earliest policy instruments to 44 

promote these goals. It attempts to reconcile ecological sustainability with economic growth. In 45 

2010, 2012 and 2017, 81 cities became national low-carbon pilot cities, including Changsha in the 46 

third batch. The Changsha government wants to promote high quality development and encourage 47 

the use of energy saving and emission reduction technology, so they have made making the 48 

economy less polluting a key goal. 49 

In terms of factors influencing carbon emissions, from the research literature we can see that most of 50 

the papers will use IDA to analyze which components affect carbon dioxide emissions, like urban 51 

population, economy scale, energy intensity, energy consumption. Also, it can be investigated well on 52 

the influence that every factor has over carbon emission (Liu et al. 2021; Fan et al. 2017). As for 53 

different IDA approaches, LMDI is most acknowledged as a good approach to adopt for resource and 54 

environment research because it has the advantage of being a zero-residual property, additivity, and 55 

ease of result interpretation (Dong et al. 2019; Long et al. 2019; Ding et al. 2020; Yang et al. 2020); 56 



 

 

(Ang et al. 2001). Furthermore, it handles zeros in the data well (Ang 2005; Ang et al. 2007). Existing 57 

studies using the LMDI method decompose emissions by carbon emission coefficients, energy 58 

structure, energy intensity, industrial structure, economic development, and population size (Chong et 59 

al. 2019; Mohmmed et al. 2019; Zheng et al. 2019). Take Shanghai as an example, it is shown that an 60 

increase in per capita GDP and population size is the main cause of the increase in carbon emissions, 61 

and a decrease in energy intensity has greatly reduced the amount of emissions. (Gu et al. 2019; Li et 62 

al. 2023b) carried out an empirical decomposition of CO2 emissions in Tianjin with the LMDI 63 

method, and found that improvement of energy efficiency and energy structure optimization are very 64 

important to reduce carbon emissions. 65 

Forecasting carbon emissions generally uses the system dynamics models (Feng et al. 2013; Zhao et 66 

al. 2024; Li et al. 2024), neural network models (Sun et al. 2021), long-term energy alternatives 67 

planning system (LEAP) models (Nieves et al. 2019; Maduekwe et al. 2020), STIRPAT models 68 

(Rokhmawati et al. 2024; Xiao et al. 2023). (Luo et al. 2023) used system dynamic models to 69 

forecast the carbon emission peak and post-peak trends in the Guangdong - Hong Kong - Macao 70 

Greater Bay Area and its surrounding cities. (Ren et al. 2021) developed an improved fast learning 71 

network prediction algorithm to forecast the carbon emissions of Guangdong from 2020 to 2060. (Cai 72 

et al. 2023) applied the LEAP model to do 4 scenario analysis about the CO2 emissions of Bengbu, 73 

Anhui Province in 2030, also simulating the influence of various emission reduction policies. (Fang 74 

et al. 2019) used STIRPAT model combined with scenario analysis to check if the carbon emissions 75 

in 30 Chinese provinces would peak in 2030. Among them, among all these methods dynamics 76 

system, has a strong advantage in a large number of variables, multiple variables situation, more 77 

feedback, nonlinear. However this heavily dependents on the modeler’s skill, so it would be 78 

subjective. Neural network models have better fit on complex data patterns, more accurately, but 79 



 

 

needs a lot of data set. The LEAP model has the flexibility and transparency of scenario simulation 80 

and policy evaluation. But, it relies heavily on expert input, which may introduce bias. On the 81 

contrary, STIRPAT model is a kind of statistic model, which can take into account the factors that 82 

reflect the real situation and policy implementation. Moreover, we can do the scenario analysis for 83 

different emission trackways by changing these elements, which is also flexible. 84 

In summary, this paper has the following major contributions: The first is that most of the studies on 85 

carbon emissions driving forces and forecasts at present are focused on the national and provincial 86 

levels, but the studies at the city level are still few. Second, this is a combined approach using LMDI 87 

method + extended STIRPAT model. This combined model allows us to conduct comprehensive and 88 

systematic analysis on the factors driving carbon emissions at city level. It also forecasts when 89 

Changsha will reach its carbon peak and looks at what changes might happen in reducing carbon. 90 

With Changsha in focus this research looks at, projects its main drivers of carbon emissions and offers 91 

advice to help the city develop. 92 

2. Methods and Data 93 

2.1 Calculation of carbon emissions 94 

In terms of prior research, energy consumption is usually the largest part of a nations greenhouse gas 95 

inventory and accounts for more than 90% of CO2 emissions (Wen et al. 2020). Therefore, many 96 

scholars concentrate their research on calculating the carbon emissions from energy use. For this 97 

paper, we’re going to be using the emission factor to find the CO2 emission for Changsha. Using 98 

relevant literature (Angin et al. 2022) and city-level data on the consumption of major energy, as well 99 

as using the 2006 IPCC guidelines for national greenhouse gas inventories, we quantify the CO2 100 

emissions from the major energy source of the city. Calculate it is: 101 

 I=∑ ECi×EEi×EFi
n
i=1  (1) 102 



 

 

Where, I is the total amount of carbon emission of Changsha; ECi is the consumption of the i-th kind 103 

of energy; EEi is the carbon emission factor for the i-th kind of energy; EFi is the standard coal 104 

conversion factor for the i-th kind of energy. 105 

2.2 LMDI model 106 

This article uses the LMDI model to decompose and analyze the carbon emissions of Changsha, and 107 

to decompose the carbon emissions of Changsha associated with various factors. Considering the 108 

city’s context, we take the following decomposition factors: the carbon emission coefficient of 109 

energy, the structure of energy, the intensity of energy, economic development, and the scale of the 110 

population, as expressed in Equation (2): 111 

 I=∑
Ii

Ei
×

Ei

E
×

E

G
×

G

P
×P=∑ CI×ESi×T×A×Pn

i=1
n
i=1  (2) 112 

Where I denotes total carbon dioxide emissions; Ii denotes the carbon dioxide emissions from the i-th 113 

energy source; Ei denotes the consumption of the i-th energy source; E denotes the total energy 114 

consumption; G denotes the gross regional product; P denotes the population size; CI = Ii/Ei denotes 115 

the carbon emission coefficient of energy; ESi = Ei/E denotes the energy structure; T = E/G denotes 116 

energy intensity; A = G/P denotes the level of economic development. 117 

According to the LMDI model, the change in Changsha’s CO2 emissions from period 0 (base period) 118 

to period t (target period) is ΔI=It − 𝐼0. It is then possible to calculate the effect of 5 driving factors 119 

on Changsha’s CO2 emissions, as shown in Eqs (3)-(8). 120 

ΔI=It − 𝐼0=∑CI𝑖
𝑡

n

i=1

×𝐸𝑆i
t×T𝑖

𝑡×A𝑖
𝑡
×𝑃𝑖

𝑡 −∑CI𝑖
0

n

i=1

×𝐸𝑆𝑖
0×T𝑖

0×A𝑖
0
×𝑃𝑖

0 121 

 = ΔICI + Δ𝐼ES + Δ𝐼T + Δ𝐼A + Δ𝐼P (3) 122 

 ΔICI=∑
Ii
t-Ii

0

ln Ii
t- ln Ii

0
n
i=1 × ln

CIi
t

CIi
0 (4) 123 

 ΔIES=∑
Ii
t-Ii

0

ln Ii
t- ln Ii

0
n
i=1 × ln

ESi
t

ESi
0 (5) 124 



 

 

 ΔIT=∑
Ii
t-Ii

0

ln Ii
t- ln Ii

0
n
i=1 × ln

Ti
t

Ti
0 (6) 125 

 ΔIA=∑
Ii
t-Ii

0

ln Ii
t- ln Ii

0
n
i=1 × ln

Ai
t

Ai
0 (7) 126 

 ΔIP=∑
Ii
t-Ii

0

ln Ii
t- ln Ii

0
n
i=1 × ln

Pi
t

Pi
0 (8) 127 

Where t denotes the last year of the reporting period, and 0 represents the beginning year of the 128 

reporting period, ΔI denotes the change in CO₂ in Changsha City from period 0 (base period) to 129 

period t, ΔICI denotes energy carbon emission coefficient effect, ΔIES denotes energy structure 130 

effect, ΔIT denotes energy intensity effect, ΔIA denotes the effect of economic development level, 131 

and ΔIP denotes the population size effect. 132 

To quantify the contribution of each factor from the base period to period t, we extend the carbon 133 

emission effect formulation. The contribution rate of each factor to the total CO₂ emissions is 134 

defined as: 135 

 CR=
ΔIC

ΔI
=

ΔICI

ΔI
+

ΔI𝐸𝑆

ΔI
+

ΔI𝑇

ΔI
+

ΔIA

ΔI
+

ΔI𝑃

ΔI
=CRCI+CRES+CRT+CRA+CRP (9) 136 

Where CR stands for the contribution rate of each factor, ΔIC stands for the amount of CO2 137 

emission increased by factor C, ΔI stands for the total amount of increase in CO2 emission, CRCI 138 

represents the contribution rate of energy carbon emission coefficients, CRES represents the 139 

contribution rate of energy structure, and CRT represents the contribution rate of energy intensity; 140 

CRA represents the contribution rate of economic development, and CRP represents the contribution 141 

rate of population size. 142 

2.3 STIRPAT model 143 

IPAT identity (Ehrlich et al. 1971) has been used extensively since the 1970s to analyze 144 

environmental impacts, which assumes that all drivers have equal proportional impacts. To solve the 145 

problems discussed before, (Dietz et al. 1997) introduced the STIRPAT model in which different 146 

effects of those factors could be provided. The basic form of the IPAT model is as follows: 147 



 

 

 I=aPbAcTde (10) 148 

where I denotes environmental impact, P denotes population size, A denotes GDP per capita, T 149 

denotes technology level, a denotes model coefficient, b, c, and d denote elasticity exponents of the 150 

corresponding variables, and e denotes random error term. 151 

On the foundation of IPAT identity, the STIRPAT model is chosen here as an adaptable stochastic 152 

framework to evaluate environmental impacts. Based on the specific circumstances of Changsha 153 

City and the findings of prior research (Kong et al. 2022; Zeng et al. 2022), we added up three 154 

traditional P, A, T variables to three influential drivers of CO2 emissions, they were population, 155 

economic growth rate, energy intensity, the proportion of urbanization, the structure of industry, and 156 

carbon intensity. Model is set up like this: 157 

 lnI=lna+blnP+clnA+dlnT+flnU+glnN+hlnM+lne (11) 158 

Where I is Changsha’s CO2 emissions, P is the total number of people, A is GDP per capita, T is 159 

energy intensity, U is urbanization rate, N is industrial structure, and M is carbon emission intensity. 160 

The parameter a is the model coefficient, while b, c, d, f, g, and h are the elasticity coefficients 161 

corresponding to each variable. The term e represents the random error. Detailed definitions of these 162 

variables and their changes over the study period are presented in Error! Not a valid bookmark 163 

self-reference. and illustrated in Figure 1. 164 

Table 1 Explanation of the variables in the STIRPAT model 165 

Symbol Variables Description Units 

I CO2 

emissions 

Total carbon dioxide emissions metric tonnes (Mt) 

P Population size Total Resident Population at Year-End 104 persons 

A GDP per capita The ratio of regional GDP to the total 

population at the end of the year 

CNY 10, 000 Yuan 

/Person 

T Energy intensity Energy consumption per unit of GDP Tons of standard coal / 

CNY 10, 000 Yuan 

U Urbanization rate Ratio of urban residents to the total 

population at the end of the year 

% 



 

 

N Industrial 

Structure 

Ratio of Tertiary Industry Output Value 

to Regional Gross Domestic Product 

% 

M Carbon emissions 

intensity 

The ratio of total carbon emissions to 

regional gross domestic product 

— 
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Figure 1 Changes in the indicators during the study period 167 
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2.4 Scenario analysis 168 

Using scenario analysis, we project Changsha’s future CO₂ emissions. To examine whether and 169 

when the city will reach its peak emissions, scenarios and forecasts were developed for the period 170 

of 2023-2060. The growth rates of population size, economic development, energy intensity, 171 

industrial structure, urbanization, and carbon emissions intensity were determined based on 172 

historical trajectories, policy plans, and related studies. Accordingly, each variable was assigned 173 

high, medium, and low growth paths. The parameter settings are listed in Table 2. 174 

2.4.1 Population size 175 

According to the Changsha Statistical Yearbook, the resident population at the end of 2022 was 176 

10.4206 million, and the natural population growth rate is 0.59 percent higher than in the previous 177 

year. Based on the 2012-2022 data, the average natural population growth rate is 4.79 percent. In 178 

recent years, this rate has slowed noticeably. From 2018 to 2022, Changsha’s average natural 179 

population growth rate declined to 2.7 percent and exhibits a slowing, stable pattern. Accordingly, 180 

under the baseline scenario (S2), the population growth rate for 2023 to 2025 is set at 2.7 percent. 181 

The detailed parameters are listed in Table 2. 182 

2.4.2 Per capita GDP 183 

The growth rate of per capita GDP aligns with the overall economic growth rate. According to 184 

Changsha’s Fourteenth Five-Year Plan and the 2035 long-term objectives (the Plan), the city targets 185 

an average annual GDP growth rate of 7.8 percent during 2021-2025. Based on the plan and recent 186 

GRP data, the computed five-year average GDP growth rate for Changsha is 6.8 percent. 187 

Accordingly, we set the growth path for 2023-2060 as follows: Under the baseline scenario (S2), 188 

per capita GDP grows at 6.8 percent during 2023-2025. As the economy transitions to a new normal, 189 

the growth rate is expected to decline gradually. The detailed parameters are listed in Table 2. 190 



 

 

2.4.3 Energy intensity 191 

Drawing on the GDP growth plan set out in the Thirteenth Five-Year Plan for National Economic 192 

and Social Development, the Implementation Plan for Carbon Peaking in Changsha, and the Outline 193 

of the Vision Goals for 2035, from 2015 to 2020, energy intensity falls by 20 percent in Changsha, 194 

averaging about 4 percent per year. By 2025, it will be 15% less than the 2020 level which would 195 

amount to around a 3% average annual decrease. So for our baseline scenario (S2) we go 3% 196 

annually off from 2023-2025. In parallel, broader development trends and local conditions are 197 

considered. The detailed parameters are listed in Table 2. 198 

2.4.4 Urbanization rate 199 

The urbanization rate (U) is a key indicator of social development. In recent years, Changsha has 200 

advanced integrated urban and rural development, and the rate of urbanization has risen steadily. 201 

Given the high starting level, its growth converges to a stable pace. This rate reached 83.27 percent 202 

in 2022. To limit the impact of interannual variation, we used the Five-Year average growth rate of 203 

0.5 percent for 2018-2022 as the representative value. Accordingly, under the baseline scenario (S2), 204 

the urbanization rate is set at 0.5 percent per year for 2023-2025. The detailed parameters are listed 205 

in Table 2. 206 

2.4.5 Industrial structure 207 

Changsha’s industrial structure (N) shifts from the secondary to the tertiary sector, with the share of 208 

services exceeding 50 percent in 2013. In line with the moderation of economic growth, the pace of 209 

structural upgrading has stabilized in recent years. Drawing on statistics for 2013 to 2022, the 210 

tertiary sector recorded an average annual growth rate of 0.71 percent. Accordingly, under the 211 

baseline scenario (S2), the annual pace of industrial structure (N) is set at 0.7 percent for 2023 to 212 

2025. The detailed parameters are listed in Table 2. 213 



 

 

2.4.6 Carbon emission intensity 214 

Drawing on the Thirteenth Five-Year Plan for National Economic and Social Development, CO2 215 

emissions per unit of gross regional product declined by 17 percent from 2015 to 2020, 216 

corresponding to an average annual decrease of 3.4 percent. On January 13th, 2023, the Changsha 217 

municipal government issued the Plan for Implementing Changsha’s Efforts Towards carbon 218 

peaking which states that it aims to reach an 18% drop in CO2 emission per unit of GDP by 2025 in 219 

line with China’s target. Therefore, under the baseline scenario, carbon emission intensity will drop 220 

by 3.6 percent annually from 2023 to 2025. The detailed parameters are listed in Table 2. 221 

Table 2 Parameter settings in low (L), medium (M), and high (H) speed development conditions 222 

 2023-2025 2026-2030 2031-2040 2041-2050 2051-2060 

Population Size（P） 

L 2.2 1.7 1.2 0.7 0.2 

M 2.7 2.2 1.7 1.2 0.7 

H 3.2 2.7 2.2 1.7 1.2 

Per Capita GDP（A） 

L 6.8 5.8 4.8 3.8 2.8 

M 7.8 6.8 5.8 4.8 3.8 

H 8.8 7.8 6.8 5.8 4.8 

Energy Intensity（T） 

L -2.5 -2 -1.5 -1 -0.5 

M -3 -2.5 -2 -1.5 -1 

H -3.5 -3 -2.5 -2 -1.5 

Urbanization Rate（U） 

L 0.45 0.4 0.35 0.3 0.25 

M 0.5 0.45 0.4 0.35 0.3 

H 0.55 0.5 0.45 0.4 0.45 

Industrial Structure（（N） L 0.6 0.5 0.4 0.3 0.2 



 

 

M 0.7 0.6 0.5 0.4 0.3 

H 0.8 0.7 0.6 0.5 0.4 

Carbon Emission 

Intensity（M） 

L -3.3 -3.6 -3.9 -4.2 -4.5 

M -3.6 -3.9 -4.2 -4.5 -4.8 

H -3.9 -4.2 -4.5 -4.8 -5.1 

1) Note: “L”, “M,” and “H” represent low, medium, and high parameter levels. 223 

2.4.7 Sensitivity analysis 224 

A sensitivity analysis is used to assess the stability and robustness of the model. It quantifies how 225 

each factor affects CO2 emission outcomes. For the sensitivity analysis, the rates of change are set 226 

within their observed ranges as follows: population size (P) at 0.2 percent, 1.7 percent, and 3.2 227 

percent; per capita GDP (A) at 2.8 percent, 4.8 percent, and 7.8 percent; energy intensity (T) at −228 

0.5 percent, −2.0 percent, and −3.5 percent; urbanization rate (U) at 0.25 percent, 0.4 percent, and 229 

0.55 percent; industrial structure (N) at 0.2 percent, 0.5 percent, and 0.8 percent; and carbon 230 

emissions intensity (M) at −4.5 percent, −4.2 percent, and −3.9 percent. The sensitivity results 231 

are shown in Figure 2. The sensitivity analysis showed that population size (P) is one of the 232 

strongest determinants of emissions; increasing its rate to 3.2 percent raises CO2 emissions by 0.71 233 

percent. By contrast, the impact of industrial structure (N) is modest; a 0.8 percent increase in 234 

industrial structure (N) raises emissions by 0.09 percent. Accordingly, scenario design must pay 235 

attention to population changes, and industrial structure should be improved at the same time. 236 



 

 

 237 

Figure 2 Sensitivity of carbon emission changes to the rate of various factors 238 
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2.4.8 Scenario settings 240 

Scenario analysis is a vital tool for forecasting carbon emission pathways across multiple scales. It 241 

gives likely future trends by judging key drivers under various assumptions. By relying on the 242 

expanded STIRPAT model, we did scenario analysis to predict the CO2 emission trends from 2023 to 243 

2060 of Changsha under different situations. There were 8 scenarios based on sample data and 244 

relevant studies (Li, Chen, and You 2023b; Li et al. 2023a; Dong et al. 2022): low carbon (S1), 245 

baseline (S2), high carbon (S3), industrial optimization (S4), green development (S5), clean 246 

development (S6), energy saving (S7), and economic slowdown (S8). The specific parameter of all 247 

scenarios is Table 3. 248 

(1) Low carbon scenario (S1) 249 

Low carbon scenario (S1): all variables have low rates of change and strong control. Scenario 250 

evaluates the natural trend of emissions taking aggressive policies to limit growth. 251 

(2) Baseline scenario (S2) 252 

In baseline scenario (S2) all the rates of change for all variables are set to medium. This situation is in 253 

line with how Changsha is currently developing, following what has already happened, accounting 254 

for the continued impact of existing policies as is, without making further changes. 255 

(3) High carbon scenario (S3) 256 

Set all variables to their highest growth rates to simulate carbon emissions under the fastest 257 

urbanization in Changsha, assuming that each index grows at its maximum. 258 

(4) Industrial optimization scenario (S4) 259 

Industrial structure (N) is set to be a high growth rate, but all others are middle. Guided by 260 

Changsha’s 14th Five-year plan and related policy, it expands the third industry, especially modern 261 

service industry, education and social security, and improves traditional industry. These efforts can 262 



 

 

hold back high energy consuming and emitting industries. 263 

(5) Green development scenario (S5) 264 

Building upon the baseline scenario, this case sets high rates for energy intensity (T), industrial 265 

structure (N), and carbon emission intensity (M), whereas the other variables remain unchanged. 266 

According to the Implementation Plan for Changsha’s carbon peaking work, it emphasizes the 267 

regulation of the energy mix and the promotion of the application of new energy to change 268 

industrial structure in order to achieve environmental goals. 269 

(6) Clean development scenario (S6) 270 

Building on the baseline case, this one assigns a high rate of reduction to carbon emission intensity 271 

(M), and holds all else constant. It is prioritizing eco and environment safety and is enforcing strict 272 

dual constraints on total energy consumption and intensity of consumption, providing an all-around 273 

and systematic incentive for the improvement, usage of the high-efficient energy-saving facilities 274 

and tools and strengthening control on the emissions from industrial production as well as 275 

household activities. 276 

(7) Energy-saving development scenario (S7) 277 

The rate of change for energy intensity (T) is a high value but the rest are medium. Environmental 278 

protection has been strengthened in Changsha in recent years, its energy intensity is also showing an 279 

improvement trend in the past five years, and there is still great room for energy reduction. In this 280 

case, we make things even stricter about following energy rules, we step up our talks with other 281 

places about new tech, and we push ourselves to get better at using new tech, which makes it go 282 

down faster for us to use less energy, and that causes our emissions to go down too. 283 

(8) Economic slowdown scenario (S8) 284 



 

 

The rates of change for GDP per capita (A) and the urbanization rate (U) are set to high values, 285 

while the other variables are set to medium values. This scenario represents Changsha’s emission 286 

trend under a binding national carbon peaking constraint, where low carbon development is 287 

prioritized over economic growth. The city moderates economic growth by implementing 288 

energy-saving and carbon-reduction policies, which lower CO2 emissions and bring the emissions 289 

peak forward. 290 

Table 3 Scenario settings. 291 

Scenario 
Population 

Size（P） 

Per Capita 

GDP（A） 

Energy 

Intensity

（T） 

Urbanization 

Rate（U） 

Industrial 

Structure

（N） 

Carbon 

Emission 

Intensity（M） 

Low 

Carbon 

Scenario 

(S1) 

L L L L L L 

Baseline 

Scenario 

(S2) 

 

M M M M M M 

High 

Carbon 

Scenario 

(S3) 

H H H H H H 

Industrial 

Optimizatio

n Scenario 

(S4) 

M M M M H M 

Green 

Developme

nt Scenario 

(S5) 

M M 
H 

M M 
H 

Clean 

Developme

nt Scenario 

(S6) 

M M M M M H 

Energy-Sav

ing 

Developme

nt Scenario 

(S7) 

M M H M M M 



 

 

Economic 

Slowdown 

Scenario 

(S8) 

M H M H M M 

2.5 Data source 292 

Data for other indicators, including year-end resident population and gross domestic product, are 293 

drawn from the Changsha Statistical Yearbook, the Hunan Statistical Yearbook, and the China 294 

Energy Statistical Yearbook for the period 2011 to 2022. Carbon emission factors by fuel and 295 

standard coal conversion coefficients are obtained from data released by national authorities and the 296 

China Statistical Yearbook. 297 

3. Results and Discussion 298 

3.1 Analysis of Changsha carbon emission influencing factors 299 

Using equations (2) to (8), we calculate the effects of the carbon emissions coefficient, energy 300 

structure, energy intensity, economic development, and population size on Changsha’s CO₂ 301 

emissions for 2012-2022. The decomposition results and contribution rates for 2012-2022 are 302 

presented in Figure 3 and Figure 4. 303 



 

 

 304 

Figure 3 Decomposition of the Drivers of CO₂ Emissions in Changsha 305 

 306 

Figure 4 Contribution Rates of Drivers to Changsha’s CO2 Emissions 307 

The LMDI decomposition indicates that changes in Changsha’s CO₂ emissions are shaped by 308 
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several drivers. Among the factors that reduce emissions, optimization of the energy structure and 309 

declines in the energy carbon-emission coefficient make the most consistent negative contributions. 310 

Their reducing effect is especially clear in 2015–2017 and again after 2021, matching coal-to-gas 311 

switching, the rollout of distributed photovoltaics, and industrial energy-saving upgrades. By 312 

contrast, the energy-intensity effect has generally acted as a positive driver of emissions; however, 313 

in recent years it turned negative, suggesting that industrial restructuring, technological progress, 314 

and upgrades in traditional heavy industry have started to cut energy use per unit of output and thus 315 

restrain emissions. Overall, the population-scale effect remains a promoter of emissions: with 316 

continued economic expansion and rising urbanization, population growth has exerted upward 317 

pressure on CO₂. Finally, the economic-development effect is the core driver of emissions growth. 318 

The economic-development effect is the core driver of emissions growth. It is directly tied to 319 

Changsha’s expansion model, with average GDP growth above 8 percent. This pace has accelerated 320 

social development and encouraged industrial clustering, which in turn raises energy use and carbon 321 

emissions. 322 

3.2 STIRPAT model  323 

3.2.1 Multicollinearity test 324 

In multiple regression analysis, multicollinearity among independent variables can distort the 325 

estimated coefficients (Yang et al. 2023). To address this issue, we used SPSS to test for 326 

multicollinearity among the regressors. Several pairs exhibit correlation coefficients as high as 0.9. 327 

The detailed results are shown in Figure 5. On this basis, assessed multicollinearity using the 328 

variance inflation factor (VIF); all variables had VIF values greater than 10 ( 329 

 330 

Table 4), indicating a serious multicollinearity problem. Therefore, multicollinearity among the 331 

explanatory variables should be eliminated to obtain valid results. 332 



 

 

 333 

Figure 5 Test results of Spearman correlation coefficient for variables 334 

 335 

 336 

Table 4 The results of the multicollinearity test. 337 

Variable t Value Standard Error Sig Value VIF 

c -10.939 0.483 0.000  

lnP 13.668 0.074 0.000 44.162 

lnA 10.067 1.131 0.000 347.811 

lnT -1.713 0.030 0.147 60.211 

lnU -0.289 0.124 0.784 52.861 

lnN -1.379 0.084 0.226 19.202 

lnM 11.698 0.104 0.000 562.013 

3.2.2 Analyses of model fitting 338 

To prevent distorted model evaluation, the constructed model is estimated with ridge regression to 339 

mitigate multicollinearity in the independent variables. As shown in Figure 6 and Figure 7, when K 340 

= 0.03, the regression coefficients for the influencing factors become stable. The detailed results of 341 

the ridge regression analysis are presented in  342 

 343 
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Table 5. 345 

 346 

Figure 6 Ridge trace of various influencing variables 347 

 348 

Figure 7 The ridge trace map of the R2 value and k value 349 



 

 

Based on the ridge regression diagnostics (Table 5), R2 and the adjusted R2 are above 0.99, the F 350 

value was 67.01, and the F statistic also passed the significance level test of 0.1%, indicating that 351 

the regression equation is significant and the fit is satisfactory. The STIRPAT model relating 352 

Changsha’s CO₂ emissions to the explanatory variables is: 353 

 lnI=0.07+0.224lnP+0.177lnA+0.152lnT+0.123lnU+0.119lnN+0.194lnM (12) 354 

Equation (12) indicates that a 1 percent change in population size, per capita GDP, energy intensity, 355 

urbanization rate, industrial structure, and carbon intensity corresponds to changes in CO2 emissions 356 

of 0.224 percent, 0.177 percent, 0.152 percent, 0.123 percent, 0.119 percent, and 0.194 percent, 357 

respectively. Accordingly, the relative contribution ranking is: population size (P) > carbon intensity 358 

(M) > per capita GDP (A) > energy intensity (T) > urbanization rate (U) > industrial structure (N). 359 

 360 

 361 

 362 

Table 5 Results of ridge regression analysis for each variable 363 

 B SE(B) Beta R2 Adj R2 F 

Constant 0.07 0.207 0.000 

0.996 0.993 F=67.01,P=0.003, 

Sig F=0.00007 

lnP 0.224 0.277 0.243 

lnA 0.177 0.366 0.230 

lnT 0.152 0.536 0.161 

lnU 0.123 0.122 0.123 

lnN 0.119 0.118 0.119 

lnM 0.194 0.194 0.206 

To further validate the extended STIRPAT model after ridge regression, we compare the CO₂ 364 

emission simulated values with the actual values. As shown in Figure 8, the average annual error 365 

between the simulated values and the actual values for Changsha is 6 percent, indicating a 366 

satisfactory goodness of fit. The model is therefore suitable for projecting future CO₂ emissions in 367 

Changsha. 368 



 

 

 369 

Figure 8 Comparison of CO₂ emission simulation values and actual values 370 

3.2.3 Carbon emission prediction analysis 371 

Based on the extended STIRPAT model, this study forecasts Changsha’s CO₂ emission trends for 372 

2023-2060. The results are shown in Figure 9 and Figure 10. 373 

 374 

Figure 9 Eight scenarios of CO2 Emission trends in Changsha from 2023 to 2060 375 
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 376 

Figure 10 Predictions of carbon emissions and carbon emissions intensity in Changsha from 2023 to 377 

2060 under 8 scenarios 378 

Table 6 Peak year and peak CO2 emissions in Changsha under different scenario Combinations 379 

 S1 S2 S3 S4 S5 S6 S7 S8 

Timing of peak 

CO₂ emissions 2030 2040 2050 2040 2040 2040 2040 2040 

Peak CO₂ （（Mt） 
20.37 20.95 21.91 20.99 21.19 20.95 20.67 21.37 

Based on various scenarios of the change of Changsha city’s CO2 emission from 2023 to 2060, and 380 

the actual situation and policy orientation of the development of the city, the main conclusions are as 381 

follows. The timing of Changsha’s carbon peak varies significantly across different development 382 

paths, ranging from as early as 2030 (S1) to as late as 2050 (S3), as summarized in Table 6. The 383 

maximum value of CO2 emissions is 20.37-21.91 Mt, as can be seen from Table 6, which further 384 

demonstrates that the regulatory impact can be seen in policy, a large amount of the use of new 385 

technology is the result of emission. Implementation point of view, among all, S1 (low-carbon) 386 

becomes the key approach to achieving carbon peak in 2030. And it also stresses on optimizing the 387 

energy mix and the more that we can have renewables, which is very aligned to what Changsha is 388 

doing in terms of green industrial transition, their goal is to grow more off photovoltaics, grow more 389 
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energy storage. On the contrary, the delayed peaks shown in the high carbon and economic slowdown 390 

scenarios are due to the bad impacts of still depending on traditional energy intensive industries, slow 391 

economic speed, and slow adoption of green technology, all of which cause the peaking process to be 392 

postponed. In short, the above forecast can provide a certain amount of evidence for the differentiated 393 

policies of Changsha. In terms of keeping economic growth and clean energy substitution and 394 

improving energy efficiency to achieve an earlier and lower peak of CO2 emissions. 395 

4. Conclusions and Policy Implications 396 

4.1 Conclusions 397 

(1) Employ the LMDI method to discover what determines the CO2 emissions of Changsha. Use an 398 

extended STIRPAT model, link emissions to some driving factors, and then calculate what the 399 

projected emission levels and their peak years will be in different situations. 400 

(2) And the LMDI decomposition indicates that the energy structure (ES) is the main restriction for 401 

the CO2 emission growth, and economic development (A) is the main reason for the emission 402 

increase in Changsha. 403 

(3) Among the 8 scenarios, the time when the carbon peak occurs differs, and the carbon peaks in 404 

2040 in the baseline (S2), industrial optimization (S4), green development (S5), energy-saving 405 

development (S7), and clean development (S6) scenarios; the high-carbon scenario (S3) peaks in 406 

2050. Only the low carbon scenario S1 achieves its peak by 2030, satisfying the 2030 peaking goal. 407 

(4) Comparison of S1 shows that the low-carbon scenario represents the optimal low-carbon path for 408 

Changsha. It can ensure that the city’s economy can continue to develop, and at the same time achieve 409 

a relatively low peak in CO2 emissions. 410 

(5) When we built this carbon emission model, there is a sort of subjectivity that will prevent us from 411 

taking all of the factors that affect the emissions. Future studies will try more scientific and thorough 412 



 

 

way and add more driving factors to improve the accuracy and authenticity of the model. 413 

4.2 Policy implications 414 

(1) A low-growth path centered on structural optimization and efficiency gains 415 

Projection results indicate that low-carbon deployment is the main lever for realizing an earlier and 416 

lower peak in the low-carbon scenario. Well if we had an easier mix of energies, if we could just use 417 

the energy that we have, better if you will, then it would be like kind of a big deal. So, the policy of 418 

Changsha is to go from expanding the amount of increase to improving the carbon efficiency of each 419 

dollar of GDP. In real life, energy-intensive industries must go through technical renovations to 420 

transition from crude production with high value to refined production with high value, and should 421 

not increase in quantity. Given the deceleration of urbanization, effort should focus on making the 422 

best out of the existing urban space and upgrading the efficiency of the energy system. That is to say, 423 

directing a limited amount of public resources toward structural upgrades and technological 424 

innovation, so as to steer the economy and society towards higher quality, lower consumption 425 

endogenous growth even within a slower growth context. 426 

(2) Deepen industrial structure optimization and develop green industries 427 

Changsha gets an important chance to make things ready for deep decarbonization during the 428 

slower-growth part of the low-carbon situation. The city has to make up these deficiencies in 429 

infrastructure and management during this period. Important priorities are optimizing industrial 430 

structure for high-quality, sustainable progress, releasing more energy-saving possibilities, and 431 

making energy efficiency better. As for carbon-intensive projects, advanced efficiency techniques 432 

must be adopted to make thorough modernization for traditional manufacturing. At the same time, 433 

improve fiscal incentives and support green industry policies to promote the use of low carbon and 434 

clean production technologies. Development of green industrial parks, cultivation of clustering 435 



 

 

effects, it would be conducive to form robust low-carbon clusters. 436 

(3) Improve basics and do long-term planning during low-growth period 437 

According to the scenario projection, Changsha’s carbon peak time and quantity differ greatly 438 

among different development paths. Low-carbon scenario (S1) emissions hit a peak sooner and 439 

lower. In contrast to this is the high carbon scenario S3, and the other pathways all delay the peak 440 

and have more emissions. In this way, Changsha should apply different emission reduction stage to 441 

each scenario. In a low carbon world, we would want to push energy transition. During times of 442 

economic slowdown, policies should focus more on promoting green technologies and innovations 443 

so that there would be lesser effect on CO2 emissions due to lesser growth. 444 

(4) To create a changing adjustment mechanism to make the reaching-peak process safe and 445 

controlling 446 

Changsha must build a regulatory system if it wants to make the carbon peak work, we cannot ignore 447 

energy structure or number of people. Specific measure is to implement frequent monitoring of the 448 

rate of reduction of the structure of energy-saving in key areas and the rate of increase in carbon 449 

emissions due to population; establish specific warning threshold values for these indicators 450 

according to the results of the model’s sensitivity analysis; and immediately trigger the corresponding 451 

tiered response measures whenever the threshold values are reached. It forms a loop of management: 452 

“watching-worrying-handling-updating”. It points the limited policy resources to the most important 453 

risk factors with precision, so as to protect the peak emission path in a systematic way. 454 

5. Discussion 455 

This research will be using the LMDI method and the STIRPAT model to do a projection of 456 

Changsha’s future CO2 emissions under several different scenarios and it would give out the peak 457 

year and the amount of emission that year is at. Prediction will become the reference points of 458 



 

 

regulating Changsha’s future carbon emissions in the future. Among the 8 scenarios, only the 459 

low-carbon scenario (S1) can allow Changsha to achieve carbon peaking in 2030. The way we go, 460 

requires regulation on how much we burn for energy, structural modifications on the structures that 461 

use energy, very slow rate of GDP (growing economy). This goes hand-in-hand with what the city has 462 

going on presently with their sustainable efforts in greener industries such as photovoltaics and 463 

storage. It seems as if the 2030 carbon peaking is likely to be achievable if the current policy can be 464 

preserved and strengthened. The high carbon scenario (S3) is quite different as there is a notable delay 465 

in reaching its peak because continuous consumption of traditional energy consumes results in more 466 

emission and postpones the decarbonization process. 467 

Second, the use of many scenarios here has very good methodological worth and practical policy 468 

references. Compared with the low-carbon scenario (S1) and the high-carbon scenario (S3),as well as 469 

the economic slowdown scenario (S8),the analysis finds the best way out as well as imagining the 470 

risks caused by policy failure or unexpected disaster. It will promote some caution from 471 

policymakers, making them more sensitive to risk in that sense. For example, the delayed carbon peak 472 

in economic slowdown scenario (S8), which shows that we cannot sacrifice sustainable economic 473 

growth for the low carbon transition. A solid economy gives the important base for progress in energy 474 

tech and infra renewal. 475 

There are some restrictions to this study because of data accessibility, the picked drivers might not 476 

include all the complex and different causes affecting CO2 emissions. With more comprehensive and 477 

correct data, it is expected that the research in the future will be more extensive and rigorous. And 478 

Changsha is treated as an isolated system in this study, which does not take the interaction with other 479 

areas into account. Future work can improve the focus of a single city to the level of the urban 480 

agglomeration in order to more accurately reflect the regional CO2 emissions. Although with 481 



 

 

limitations, the key findings and policy suggestions of this study are still reference materials. And it 482 

recognizes those limitations form the basis for where I should put my energy for research in the 483 

future. 484 
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Appendix 491 

Table 1 Changes in the indicators during the study period 492 

Year Population size（P）

(104 person) 

Economic development

（A）(104 CNY) 

Energy intensity（（T）

(t*(104 CNY)-1) 

Urbanization 

rate（U）(%) 

Industrial 

structure（（N）(%) 

Carbon emission 

intensity（M） 

2011 740.36 7.39697 0.30385 68.62 46.7 0.39381 

2012 766.18 8.08941 0.28744 68.99 49.7 0.35473 

2013 787.46 8.76523 0.27619 70.55 52.1 0.32735 

2014 813.11 9.26649 0.27834 72.45 52.7 0.29064 

2015 828.27 10.26549 0.25622 75.44 54.2 0.25361 

2016 859.03 10.67064 0.26361 77.56 55.6 0.23492 

2017 902.94 11.13053 0.22499 79.86 57.2 0.21418 

2018 928 11.21297 0.22653 81.93 57.6 0.21135 

2019 963.56 11.98963 0.19818 82.46 57.7 0.19002 

2020 1006.08 12.06914 0.18436 82.6 57.5 0.18218 

2021 1023.93 12.96056 0.17235 83.16 57.2 0.17225 

2022 1042.06 13.40241 0.15488 83.27 56.8 0.15687 

  493 



 

 

Table 2 Sensitivity of carbon emission changes to the rate of various factors 494 

The 

change 

rate of 

population

（P）/% 

Rate of 

change in 

carbon 

emission

s/% 

Per 

capita 

GDP 

change 

rate（（A）

/% 

Rate of 

change 

in 

carbon 

emission

s/% 

Energy 

intensit

y 

change 

rate（（T）

/% 

Rate of 

change in 

carbon 

emissions

/% 

Rate of 

change of 

urbanization 

rate（（U）/% 

Rate of 

change 

in 

carbon 

emission

s/% 

Industry 

structure 

changing 

rate（N）

/% 

Rate of 

change in 

carbon 

emissions/

% 

The change 

rate of 

carbon 

emission 

intensity

（M）/% 

Rate of 

change 

in 

carbon 

emission

s/% 

0.2 0.04477 1.8 0.31627 -0.5 -0.07616 0.25 0.03072 0.2 0.02378 -4.5 -0.88927 

1.7 0.37831 4.8 0.83329 -2 -0.30661 0.4 0.04911 0.5 0.05937 -4.2 -0.82895 

3.2 0.70807 7.8 1.33828 -3.5 -0.54007 0.55 0.06749 0.8 0.09487 -3.9 -0.76878 



 

 

Table 3 Decomposition of the Drivers of CO2 Emissions in Changsha 495 

Year ΔICI ΔIES ΔIT ΔIA ΔIP 

2012 1.24568 -0.30266 0.48789 0.18691 -1.51281 

2013 0.27089 -0.31474 0.63286 0.21608 -0.58964 

2014 -0.88117 -0.0701 -0.50342 -0.29016 2.02806 

2015 -0.60527 0.36198 -0.44744 -0.08073 0.83889 

2016 -0.03011 -0.01099 -0.01494 -0.01408 0.07064 

2017 -0.00292 0.01694 -0.00451 -0.00533 -0.00414 

2018 0.98595 0.04121 0.04476 0.16606 -1.10789 

2019 -0.02947 0.06872 -0.03443 -0.01933 0.01544 

2020 0.34078 -0.15811 0.01445 0.09444 -0.27485 

2021 -1.32174 -0.64249 0.67973 0.16776 1.42955 

2022 -1.25781 1.31972 -0.41395 -0.21672 1.09254 

Table 4 Contribution Rates of Drivers to Changsha’s CO2 Emissions 496 

Year CRCI CRES CRT CRA CRP 

2012 1186.26742 -288.229 464.62373 177.99108 -1440.65324 

2013 125.72613 -146.07515 293.72374 100.28682 -273.66154 

2014 -311.13817 -24.75216 -177.75512 -102.45497 716.10042 

2015 -897.57067 536.78936 -663.51974 -119.7176 1244.01864 

2016 -5674.73439 -2070.52581 -2816.58006 -2653.31278 13315.15304 

2017 -7156.02484 41571.99577 -11073.93977 -13083.51117 -10158.51999 

2018 757.88549 31.67584 34.40833 127.64935 -851.61902 

2019 -3185.04794 7427.94807 -3721.60531 -2089.59506 1668.30024 

2020 2039.62261 -946.32124 86.50834 565.22183 -1645.03154 

2021 -422.53119 -205.38849 217.29451 53.6278 456.99737 

2022 -240.13759 251.95761 -79.0294 -41.37573 208.5851 



 

 

Table 5 Spearman examines the original data 497 

Year lnI lnP lnA lnT lnU lnN lnM 

2011 3.07114 6.60714 11.23622 -1.19123 -0.37659 -0.76096 -0.9319 

2012 3.0904 6.64142 11.3179 -1.24674 -0.37121 -0.69877 -1.0364 

2013 3.11772 6.66881 11.39474 -1.28665 -0.34885 -0.65128 -1.11672 

2014 3.08643 6.70087 11.45263 -1.2789 -0.32227 -0.64026 -1.23567 

2015 3.071 6.71934 11.54832 -1.36173 -0.28183 -0.61337 -1.37196 

2016 3.06963 6.7558 11.59591 -1.33328 -0.25412 -0.5873 -1.4485 

2017 3.06924 6.80566 11.64464 -1.49168 -0.2249 -0.55893 -1.54093 

2018 3.09069 6.83303 11.641 -1.48489 -0.1993 -0.55112 -1.55424 

2019 3.08889 6.87063 11.71301 -1.61856 -0.19286 -0.55037 -1.66062 

2020 3.09653 6.91382 11.72235 -1.69085 -0.19116 -0.55369 -1.70277 

2021 3.12932 6.9314 11.781 -1.75821 -0.1844 -0.55822 -1.75882 

2022 3.08691 6.94895 11.81451 -1.86509 -0.18308 -0.56658 -1.85231 



 

 

Table 6 Comparison of CO₂ emission simulation values and actual values 498 

Year Simulation value Actual value 

2011 21.56646 20.90692 

2012 21.98585 20.93799 

2013 22.59471 21.07437 

2014 21.89876 21.07665 

2015 21.56345 20.87151 

2016 21.53384 21.13568 

2017 21.52564 20.81589 

2018 21.99226 20.98343 

2019 21.95272 20.59049 

2020 22.12108 20.42587 

2021 22.85854 20.29356 

2022 21.90917 19.78551 

Table 7 Eight scenarios of CO2 Emission trends in Changsha from 2023 to 2060 499 

Year S1 S2 S3 S4 S5 S6 S7 S8 

2023 19.89544 19.93074 19.96552 19.93309 19.93826 19.91869 19.92761 19.96486 

2024 20.00597 20.07703 20.14716 20.08177 20.09219 20.05276 20.07073 20.14584 

2025 20.11712 20.22439 20.33046 20.23156 20.24731 20.18774 20.21488 20.32846 

2026 20.16817 20.30398 20.45935 20.31358 20.34327 20.26187 20.28874 20.43923 

2027 20.21935 20.38388 20.58906 20.39592 20.43969 20.33627 20.36286 20.55061 

2028 20.27066 20.46409 20.7196 20.4786 20.53656 20.41094 20.43726 20.66259 

2029 20.32209 20.54462 20.85096 20.56162 20.63389 20.48588 20.51193 20.77519 

2030 20.37366 20.62546 20.98315 20.64497 20.73168 20.5611 20.58687 20.8884 

2031 20.36796 20.65354 21.05791 20.67553 20.77229 20.59516 20.59047 20.93105 

2032 20.36227 20.7044 21.13293 20.72889 20.83589 20.65198 20.61674 20.99687 

2033 20.35657 20.75538 21.20821 20.78239 20.89967 20.70895 20.64304 21.06289 

2034 20.35088 20.78363 21.28377 20.81314 20.94061 20.74325 20.64666 21.10591 

2035 20.34519 20.81193 21.3596 20.84395 20.98163 20.77761 20.65028 21.149 

2036 20.3395 20.84027 21.43569 20.8748 21.02273 20.81203 20.65389 21.19219 



 

 

2037 20.33381 20.86864 21.51206 20.9057 21.06392 20.8465 20.65751 21.23547 

2038 20.32812 20.89706 21.5887 20.93664 21.10518 20.88104 20.66113 21.27883 

2039 20.31011 20.92551 21.66561 20.96762 21.14652 20.91562 20.66475 21.32228 

2040 20.29212 20.954 21.74279 20.99866 21.18795 20.95027 20.66838 21.36582 

2041 20.22887 20.9285 21.75944 20.97559 21.17012 20.94251 20.59987 21.3364 

2042 20.16582 20.90303 21.7761 20.95254 21.15232 20.93476 20.53158 21.30702 

2043 20.10297 20.87759 21.79277 20.92952 21.13452 20.927 20.46353 21.27768 

2044 20.04031 20.85218 21.80946 20.90653 21.11675 20.91925 20.39569 21.24838 

2045 19.97785 20.8268 21.82616 20.88356 21.09898 20.9115 20.32809 21.21912 

2046 19.91558 20.80146 21.84287 20.86061 21.08124 20.90376 20.26071 21.18991 

2047 19.85351 20.77614 21.85959 20.83769 21.0635 20.89602 20.19355 21.16073 

2048 19.79163 20.75086 21.87633 20.8148 21.04579 20.88828 20.12661 21.13159 

2049 19.72994 20.7256 21.89308 20.79193 21.02808 20.88054 20.0599 21.10249 

2050 19.66844 20.70038 21.90984 20.76909 21.0104 20.87281 19.9934 21.07343 

2051 19.56235 20.6217 21.8649 20.69261 20.93348 20.82253 19.85712 20.97211 

2052 19.45684 20.54333 21.82006 20.61641 20.85684 20.77748 19.7266 20.87128 

2053 19.35189 20.46525 21.77531 20.54049 20.78049 20.72743 19.59213 20.77093 

2054 19.24751 20.38747 21.73065 20.46485 20.70441 20.67751 19.45858 20.67106 

2055 19.14369 20.30999 21.68608 20.38949 20.62861 20.6277 19.32594 20.57167 

2056 19.03937 20.2328 21.6416 20.3144 20.55309 20.57802 19.1942 20.47276 

2057 18.93668 20.1559 21.59721 20.2396 20.47785 20.52845 19.06337 20.37433 

2058 18.83454 20.0793 21.55292 20.16507 20.40288 20.479 18.93342 20.27637 

2059 18.73294 20.00298 21.50871 20.09081 20.32819 20.42968 18.80436 20.17888 

2060 18.6319 19.92696 21.4646 20.01682 20.25377 20.38047 18.67618 20.08186 
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