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Abstract

As the central city of Hunan Province, Changsha is a key to grasping how carbon emission growth is
playing out and getting the peak carbon emission event to happen faster than initially planned. In this
study, it adopts the data from 2011 to 2022 to build the LMDI-STIRPAT model and forecast the
carbon emission trend of Changsha. Through scenario simulations, the research identifies the primary
factors influencing carbon emissions, projects future emission trajectories, and determines the
optimal pathways for emission reduction. The main results: (1) The energy structure restrains the
growth of carbon emission, while the population size is still a big pusher that helps increase the
carbon emission. (2) Out of eight forecasting situations, only situation S1 arrives at the carbon peak
goal by 2030, which achieves 20.37 Mt, whereas the others vary in their delay. (3) Changsha reaches
its carbon peak according to the plan in the low-carbon situation S1, making it the most effective
option for emission cuts. To achieve this, the paper gives recommendations such as modifying energy
consumption structure, optimizing industrial layout, and reinforcing related the policy framework
supporting cities low carbon transition and explained in conclusion.

Keywords: energy intensity; sensitivity analysis; carbon emission forecasting; scenario analysis

1. Introduction

With the rapid development of the global economy, carbon dioxide emissions have been rapidly
increasing, and the degree of global warming has also been increasing. The occurrence frequency of
natural disasters (Babu et al. 2025) all over the world has been rapidly rising, and the occurrence of
extreme days is also becoming more and more frequent (Jasmine et al. 2025). The melting of sea ice,
increase of sea level, floods and storm and other disasters have become more serious by the effects of

rising sea level, it is a big danger for ecosystem, climate (Kumar et al. 2025)and sustainable
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development of humans. As per the IPCC, the temperature of the entire world has been increasing
since the last 100 years due to the greenhouse gases produced from the burning of fossil fuel and the
industries. So, reducing carbon emissions has become the main way to stop the earth getting too
warm, and all the countries need to work together. During the Reform and Opening-up period,
China’s economic growth is based on the huge amount of energy consumption which leads to a large
continuous emission of carbon dioxide. In response to the increasing climate risk, China has made the
commitment at 75th session of UN General Assembly to achieve peak carbon before 2030 and carbon
neutral before 2060.

Dual carbon goal, Carbon Peak and Carbon Neutrality, have turned into a central theme for policies
and academic works in China. Now we are trying to find low-carbon development models.
Government supported low carbon city pilot project is one of the earliest policy instruments to
promote these goals. It attempts to reconcile ecological sustainability with economic growth. In
2010, 2012 and 2017, 81 cities became national low-carbon pilot cities, including Changsha in the
third batch. The Changsha government wants to promote high quality development and encourage
the use of energy saving and emission reduction technology, so they have made making the
economy less polluting a key goal.

In terms of factors influencing carbon emissions, from the research literature we can see that most of
the papers will use IDA to analyze which components affect carbon dioxide emissions, like urban
population, economy scale, energy intensity, energy consumption. Also, it can be investigated well on
the influence that every factor has over carbon emission (Liu ef al. 2021; Fan et al. 2017). As for
different IDA approaches, LMDI is most acknowledged as a good approach to adopt for resource and
environment research because it has the advantage of being a zero-residual property, additivity, and

ease of result interpretation (Dong et al. 2019; Long et al. 2019; Ding et al. 2020; Yang et al. 2020);
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(Ang et al. 2001). Furthermore, it handles zeros in the data well (Ang 2005; Ang et al. 2007). Existing
studies using the LMDI method decompose emissions by carbon emission coefficients, energy
structure, energy intensity, industrial structure, economic development, and population size (Chong et
al. 2019; Mohmmed et al. 2019; Zheng et al. 2019). Take Shanghai as an example, it is shown that an
increase in per capita GDP and population size is the main cause of the increase in carbon emissions,
and a decrease in energy intensity has greatly reduced the amount of emissions. (Gu ef al. 2019; Li et
al. 2023b) carried out an empirical decomposition of CO> emissions in Tianjin with the LMDI
method, and found that improvement of energy efficiency and energy structure optimization are very
important to reduce carbon emissions.

Forecasting carbon emissions generally uses the system dynamics models (Feng et al. 2013; Zhao et
al. 2024; Li et al. 2024), neural network models (Sun et al. 2021), long-term energy alternatives
planning system (LEAP) models (Nieves ef al. 2019; Maduekwe et al. 2020), STIRPAT models
(Rokhmawati et al. 2024; Xiao et al. 2023). (Luo et al. 2023) used system dynamic models to
forecast the carbon emission peak and post-peak trends in the Guangdong - Hong Kong - Macao
Greater Bay Area and its surrounding cities. (Ren ef al. 2021) developed an improved fast learning
network prediction algorithm to forecast the carbon emissions of Guangdong from 2020 to 2060. (Cai
et al. 2023) applied the LEAP model to do 4 scenario analysis about the CO; emissions of Bengbu,
Anhui Province in 2030, also simulating the influence of various emission reduction policies. (Fang
et al. 2019) used STIRPAT model combined with scenario analysis to check if the carbon emissions
in 30 Chinese provinces would peak in 2030. Among them, among all these methods dynamics
system, has a strong advantage in a large number of variables, multiple variables situation, more
feedback, nonlinear. However this heavily dependents on the modeler’s skill, so it would be

subjective. Neural network models have better fit on complex data patterns, more accurately, but
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needs a lot of data set. The LEAP model has the flexibility and transparency of scenario simulation
and policy evaluation. But, it relies heavily on expert input, which may introduce bias. On the
contrary, STIRPAT model is a kind of statistic model, which can take into account the factors that
reflect the real situation and policy implementation. Moreover, we can do the scenario analysis for
different emission trackways by changing these elements, which is also flexible.

In summary, this paper has the following major contributions: The first is that most of the studies on
carbon emissions driving forces and forecasts at present are focused on the national and provincial
levels, but the studies at the city level are still few. Second, this is a combined approach using LMDI
method + extended STIRPAT model. This combined model allows us to conduct comprehensive and
systematic analysis on the factors driving carbon emissions at city level. It also forecasts when
Changsha will reach its carbon peak and looks at what changes might happen in reducing carbon.
With Changsha in focus this research looks at, projects its main drivers of carbon emissions and offers
advice to help the city develop.

2. Methods and Data

2.1 Calculation of carbon emissions

In terms of prior research, energy consumption is usually the largest part of a nations greenhouse gas
inventory and accounts for more than 90% of CO> emissions (Wen et al. 2020). Therefore, many
scholars concentrate their research on calculating the carbon emissions from energy use. For this
paper, we’re going to be using the emission factor to find the CO» emission for Changsha. Using
relevant literature (Angin ef al. 2022) and city-level data on the consumption of major energy, as well
as using the 2006 IPCC guidelines for national greenhouse gas inventories, we quantify the CO»
emissions from the major energy source of the city. Calculate it is:

=) ECXEE*EF, (1)
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Where, / is the total amount of carbon emission of Changsha; EC; is the consumption of the i-th kind
of energy; EE; is the carbon emission factor for the i-th kind of energy; EF; is the standard coal
conversion factor for the i-th kind of energy.

2.2 LMDI model

This article uses the LMDI model to decompose and analyze the carbon emissions of Changsha, and
to decompose the carbon emissions of Changsha associated with various factors. Considering the
city’s context, we take the following decomposition factors: the carbon emission coefficient of
energy, the structure of energy, the intensity of energy, economic development, and the scale of the
population, as expressed in Equation (2):

ZxZxZxP= 1, CIXES;<TxAxP @)

=21 é‘ll x
Where [ denotes total carbon dioxide emissions; ; denotes the carbon dioxide emissions from the i-th
energy source; E; denotes the consumption of the i-th energy source; £ denotes the total energy
consumption; G denotes the gross regional product; P denotes the population size; CI/ = I;/E; denotes
the carbon emission coefficient of energy; ES; = Ei/E denotes the energy structure; 7 = E/G denotes
energy intensity; 4 = G/P denotes the level of economic development.
According to the LMDI model, the change in Changsha’s CO» emissions from period 0 (base period)

to period t (target period) is A/=I' — I, It is then possible to calculate the effect of 5 driving factors

on Changsha’s CO, emissions, as shown in Egs (3)-(8).

AI=I — 10=Z CIi xES!xTtx APt — Z CI) xES?xT?% A% P?
=1 =1

:MC]+AIEs+AIT+AIA+AIP (3)
L1 Ch

A]C[: ;l:l InZ-nf? % lnﬁ (4)
I ES;

Alge= Zizl m 8 lnE_S? v
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Al=¥1 n/-inl? xIn I (6)
11} 4

A=Y i x lnA—? (7)
11} i

Alp= Y < 50 ®)

Where t denotes the last year of the reporting period, and O represents the beginning year of the
reporting period, Al denotes the change in CO: in Changsha City from period 0 (base period) to
period t, Al-; denotes energy carbon emission coefficient effect, Alpg denotes energy structure
effect, Alr denotes energy intensity effect, Al, denotes the effect of economic development level,
and Alp denotes the population size effect.

To quantify the contribution of each factor from the base period to period ¢, we extend the carbon
emission effect formulation. The contribution rate of each factor to the total CO. emissions is

defined as:

CR=1c _ Moy | Algs | Mlr | Aly
Al

AL
AN AL AL +A_52CRCI+CRES+CRT+CRA+CRP 9)

Where CR stands for the contribution rate of each factor, Al- stands for the amount of CO;
emission increased by factor C, Al stands for the total amount of increase in CO2 emission, CRc;
represents the contribution rate of energy carbon emission coefficients, CRgs represents the
contribution rate of energy structure, and CRr represents the contribution rate of energy intensity;
CR, represents the contribution rate of economic development, and CRp represents the contribution
rate of population size.

2.3 STIRPAT model

IPAT identity (Ehrlich et al. 1971) has been used extensively since the 1970s to analyze
environmental impacts, which assumes that all drivers have equal proportional impacts. To solve the
problems discussed before, (Dietz et al. 1997) introduced the STIRPAT model in which different

effects of those factors could be provided. The basic form of the IPAT model is as follows:
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[=aP’A°TVe (10)
where [ denotes environmental impact, P denotes population size, 4 denotes GDP per capita, T
denotes technology level, a denotes model coefficient, b, ¢, and d denote elasticity exponents of the
corresponding variables, and e denotes random error term.
On the foundation of IPAT identity, the STIRPAT model is chosen here as an adaptable stochastic
framework to evaluate environmental impacts. Based on the specific circumstances of Changsha
City and the findings of prior research (Kong et al. 2022; Zeng et al. 2022), we added up three
traditional P, A, T variables to three influential drivers of CO; emissions, they were population,
economic growth rate, energy intensity, the proportion of urbanization, the structure of industry, and
carbon intensity. Model is set up like this:
In/=Ina+bInP+clnA+dinT+fInU+gIlnN+hlnM~+1Ine (11)
Where [ is Changsha’s CO; emissions, P is the total number of people, 4 is GDP per capita, T is
energy intensity, U is urbanization rate, N is industrial structure, and M is carbon emission intensity.
The parameter a is the model coefficient, while b, ¢, d, f, g, and & are the elasticity coefficients
corresponding to each variable. The term e represents the random error. Detailed definitions of these
variables and their changes over the study period are presented in Error! Not a valid bookmark
self-reference. and illustrated in Figure 1.

Table 1 Explanation of the variables in the STIRPAT model

Symbol Variables Description Units
1 CO» Total carbon dioxide emissions metric tonnes (Mt)
emissions
P Population size Total Resident Population at Year-End 10* persons
A GDP per capita The ratio of regional GDP to the total CNY 10, 000 Yuan
population at the end of the year /Person

T Energy intensity ~ Energy consumption per unit of GDP Tons of standard coal /
CNY 10, 000 Yuan

U Urbanization rate Ratio of urban residents to the total %

population at the end of the year
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Figure 1 Changes in the indicators during the study period
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2.4 Scenario analysis

Using scenario analysis, we project Changsha’s future CO. emissions. To examine whether and
when the city will reach its peak emissions, scenarios and forecasts were developed for the period
of 2023-2060. The growth rates of population size, economic development, energy intensity,
industrial structure, urbanization, and carbon emissions intensity were determined based on
historical trajectories, policy plans, and related studies. Accordingly, each variable was assigned
high, medium, and low growth paths. The parameter settings are listed in Table 2.

2.4.1 Population size

According to the Changsha Statistical Yearbook, the resident population at the end of 2022 was
10.4206 million, and the natural population growth rate is 0.59 percent higher than in the previous
year. Based on the 2012-2022 data, the average natural population growth rate is 4.79 percent. In
recent years, this rate has slowed noticeably. From 2018 to 2022, Changsha’s average natural
population growth rate declined to 2.7 percent and exhibits a slowing, stable pattern. Accordingly,
under the baseline scenario (S2), the population growth rate for 2023 to 2025 is set at 2.7 percent.
The detailed parameters are listed in Table 2.

2.4.2 Per capita GDP

The growth rate of per capita GDP aligns with the overall economic growth rate. According to
Changsha’s Fourteenth Five-Year Plan and the 2035 long-term objectives (the Plan), the city targets
an average annual GDP growth rate of 7.8 percent during 2021-2025. Based on the plan and recent
GRP data, the computed five-year average GDP growth rate for Changsha is 6.8 percent.
Accordingly, we set the growth path for 2023-2060 as follows: Under the baseline scenario (S2),
per capita GDP grows at 6.8 percent during 2023-2025. As the economy transitions to a new normal,

the growth rate is expected to decline gradually. The detailed parameters are listed in Table 2.
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2.4.3 Energy intensity

Drawing on the GDP growth plan set out in the Thirteenth Five-Year Plan for National Economic
and Social Development, the Implementation Plan for Carbon Peaking in Changsha, and the Outline
of the Vision Goals for 2035, from 2015 to 2020, energy intensity falls by 20 percent in Changsha,
averaging about 4 percent per year. By 2025, it will be 15% less than the 2020 level which would
amount to around a 3% average annual decrease. So for our baseline scenario (S2) we go 3%
annually off from 2023-2025. In parallel, broader development trends and local conditions are
considered. The detailed parameters are listed in Table 2.

2.4.4 Urbanization rate

The urbanization rate (U) is a key indicator of social development. In recent years, Changsha has
advanced integrated urban and rural development, and the rate of urbanization has risen steadily.
Given the high starting level, its growth converges to a stable pace. This rate reached 83.27 percent
in 2022. To limit the impact of interannual variation, we used the Five-Year average growth rate of
0.5 percent for 2018-2022 as the representative value. Accordingly, under the baseline scenario (S2),
the urbanization rate is set at 0.5 percent per year for 2023-2025. The detailed parameters are listed
in Table 2.

2.4.5 Industrial structure

Changsha’s industrial structure (N) shifts from the secondary to the tertiary sector, with the share of
services exceeding 50 percent in 2013. In line with the moderation of economic growth, the pace of
structural upgrading has stabilized in recent years. Drawing on statistics for 2013 to 2022, the
tertiary sector recorded an average annual growth rate of 0.71 percent. Accordingly, under the
baseline scenario (S2), the annual pace of industrial structure (N) is set at 0.7 percent for 2023 to

2025. The detailed parameters are listed in Table 2.
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2.4.6 Carbon emission intensity

Drawing on the Thirteenth Five-Year Plan for National Economic and Social Development, CO>
emissions per unit of gross regional product declined by 17 percent from 2015 to 2020,
corresponding to an average annual decrease of 3.4 percent. On January 13th, 2023, the Changsha
municipal government issued the Plan for Implementing Changsha’s Efforts Towards carbon
peaking which states that it aims to reach an 18% drop in CO; emission per unit of GDP by 2025 in
line with China’s target. Therefore, under the baseline scenario, carbon emission intensity will drop
by 3.6 percent annually from 2023 to 2025. The detailed parameters are listed in Table 2.

Table 2 Parameter settings in low (L), medium (M), and high (H) speed development conditions

2023-2025 2026-2030 2031-2040 2041-2050 2051-2060

L 2.2 1.7 1.2 0.7 0.2

Population Size (P) M 2.7 2.2 1.7 1.2 0.7
H 3.2 2.7 2.2 1.7 1.2

L 6.8 5.8 4.8 3.8 2.8

Per Capita GDP (A) M 7.8 6.8 5.8 4.8 3.8
H 8.8 7.8 6.8 5.8 4.8

L -2.5 -2 -1.5 -1 -0.5

Energy Intensity (T) M -3 2.5 -2 -1.5 -1
H -3.5 -3 -2.5 -2 -1.5
L 0.45 0.4 0.35 0.3 0.25

Urbanization Rate (U) M 0.5 0.45 0.4 0.35 0.3
H 0.55 0.5 0.45 0.4 0.45

Industrial Structure (N) L 0.6 0.5 0.4 0.3 0.2
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H 0.8 0.7 0.6 0.5 0.4

L -3.3 -3.6 -3.9 -4.2 -4.5
Carbon Emission

M -3.6 -3.9 -4.2 -4.5 -4.8
Intensity (M)

H -3.9 -4.2 -4.5 -4.8 -5.1

1) Note: “L”, “M,” and “H” represent low, medium, and high parameter levels.

2.4.7 Sensitivity analysis

A sensitivity analysis is used to assess the stability and robustness of the model. It quantifies how
each factor affects CO2 emission outcomes. For the sensitivity analysis, the rates of change are set
within their observed ranges as follows: population size (P) at 0.2 percent, 1.7 percent, and 3.2
percent; per capita GDP (A) at 2.8 percent, 4.8 percent, and 7.8 percent; energy intensity (T) at —
0.5 percent, —2.0 percent, and —3.5 percent; urbanization rate (U) at 0.25 percent, 0.4 percent, and
0.55 percent; industrial structure (N) at 0.2 percent, 0.5 percent, and 0.8 percent; and carbon
emissions intensity (M) at —4.5 percent, —4.2 percent, and —3.9 percent. The sensitivity results
are shown in Figure 2. The sensitivity analysis showed that population size (P) is one of the
strongest determinants of emissions; increasing its rate to 3.2 percent raises CO2 emissions by 0.71
percent. By contrast, the impact of industrial structure (N) is modest; a 0.8 percent increase in
industrial structure (N) raises emissions by 0.09 percent. Accordingly, scenario design must pay

attention to population changes, and industrial structure should be improved at the same time.
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2.4.8 Scenario settings

Scenario analysis is a vital tool for forecasting carbon emission pathways across multiple scales. It
gives likely future trends by judging key drivers under various assumptions. By relying on the
expanded STIRPAT model, we did scenario analysis to predict the CO> emission trends from 2023 to
2060 of Changsha under different situations. There were 8 scenarios based on sample data and
relevant studies (Li, Chen, and You 2023b; Li et al. 2023a; Dong et al. 2022): low carbon (S1),
baseline (S2), high carbon (S3), industrial optimization (S4), green development (S5), clean
development (S6), energy saving (S7), and economic slowdown (S8). The specific parameter of all
scenarios is Table 3.

(1) Low carbon scenario (S1)

Low carbon scenario (S1): all variables have low rates of change and strong control. Scenario
evaluates the natural trend of emissions taking aggressive policies to limit growth.

(2) Baseline scenario (S2)

In baseline scenario (S2) all the rates of change for all variables are set to medium. This situation is in
line with how Changsha is currently developing, following what has already happened, accounting
for the continued impact of existing policies as is, without making further changes.

(3) High carbon scenario (S3)

Set all variables to their highest growth rates to simulate carbon emissions under the fastest
urbanization in Changsha, assuming that each index grows at its maximum.

(4) Industrial optimization scenario (S4)

Industrial structure (N) is set to be a high growth rate, but all others are middle. Guided by
Changsha’s 14th Five-year plan and related policy, it expands the third industry, especially modern

service industry, education and social security, and improves traditional industry. These efforts can



263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

hold back high energy consuming and emitting industries.

(5) Green development scenario (S5)

Building upon the baseline scenario, this case sets high rates for energy intensity (T), industrial
structure (N), and carbon emission intensity (M), whereas the other variables remain unchanged.
According to the Implementation Plan for Changsha’s carbon peaking work, it emphasizes the
regulation of the energy mix and the promotion of the application of new energy to change
industrial structure in order to achieve environmental goals.

(6) Clean development scenario (S6)

Building on the baseline case, this one assigns a high rate of reduction to carbon emission intensity
(M), and holds all else constant. It is prioritizing eco and environment safety and is enforcing strict
dual constraints on total energy consumption and intensity of consumption, providing an all-around
and systematic incentive for the improvement, usage of the high-efficient energy-saving facilities
and tools and strengthening control on the emissions from industrial production as well as
household activities.

(7) Energy-saving development scenario (S7)

The rate of change for energy intensity (T) is a high value but the rest are medium. Environmental
protection has been strengthened in Changsha in recent years, its energy intensity is also showing an
improvement trend in the past five years, and there is still great room for energy reduction. In this
case, we make things even stricter about following energy rules, we step up our talks with other
places about new tech, and we push ourselves to get better at using new tech, which makes it go
down faster for us to use less energy, and that causes our emissions to go down too.

(8) Economic slowdown scenario (S8)
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The rates of change for GDP per capita (A) and the urbanization rate (U) are set to high values,
while the other variables are set to medium values. This scenario represents Changsha’s emission
trend under a binding national carbon peaking constraint, where low carbon development is
prioritized over economic growth. The city moderates economic growth by implementing
energy-saving and carbon-reduction policies, which lower CO2 emissions and bring the emissions
peak forward.

Table 3 Scenario settings.

Energy o Industrial Carbon
. Urbanization ..
Intensity Rate (U) Structure Emission
(T (ND Intensity (M)

Population Per Capita

Scenario o (P)  GDP (A)
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2.5 Data source

Data for other indicators, including year-end resident population and gross domestic product, are
drawn from the Changsha Statistical Yearbook, the Hunan Statistical Yearbook, and the China
Energy Statistical Yearbook for the period 2011 to 2022. Carbon emission factors by fuel and
standard coal conversion coefficients are obtained from data released by national authorities and the
China Statistical Yearbook.

3. Results and Discussion

3.1 Analysis of Changsha carbon emission influencing factors

Using equations (2) to (8), we calculate the effects of the carbon emissions coefficient, energy
structure, energy intensity, economic development, and population size on Changsha’s CO-
emissions for 2012-2022. The decomposition results and contribution rates for 2012-2022 are

presented in Figure 3 and Figure 4.
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308 The LMDI decomposition indicates that changes in Changsha’s CO. emissions are shaped by
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several drivers. Among the factors that reduce emissions, optimization of the energy structure and
declines in the energy carbon-emission coefficient make the most consistent negative contributions.
Their reducing effect is especially clear in 2015-2017 and again after 2021, matching coal-to-gas
switching, the rollout of distributed photovoltaics, and industrial energy-saving upgrades. By
contrast, the energy-intensity effect has generally acted as a positive driver of emissions; however,
in recent years it turned negative, suggesting that industrial restructuring, technological progress,
and upgrades in traditional heavy industry have started to cut energy use per unit of output and thus
restrain emissions. Overall, the population-scale effect remains a promoter of emissions: with
continued economic expansion and rising urbanization, population growth has exerted upward
pressure on COs.. Finally, the economic-development effect is the core driver of emissions growth.
The economic-development effect is the core driver of emissions growth. It is directly tied to
Changsha’s expansion model, with average GDP growth above 8 percent. This pace has accelerated
social development and encouraged industrial clustering, which in turn raises energy use and carbon
emissions.

3.2 STIRPAT model

3.2.1 Multicollinearity test

In multiple regression analysis, multicollinearity among independent variables can distort the
estimated coefficients (Yang et al. 2023). To address this issue, we used SPSS to test for
multicollinearity among the regressors. Several pairs exhibit correlation coefficients as high as 0.9.
The detailed results are shown in Figure 5. On this basis, assessed multicollinearity using the

variance inflation factor (VIF); all variables had VIF values greater than 10 (

Table 4), indicating a serious multicollinearity problem. Therefore, multicollinearity among the

explanatory variables should be eliminated to obtain valid results.
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Figure 5 Test results of Spearman correlation coefficient for variables

Table 4 The results of the multicollinearity test.

Variable t Value Standard Error Sig Value VIF
c -10.939 0.483 0.000
InP 13.668 0.074 0.000 44.162
InA 10.067 1.131 0.000 347.811
InT -1.713 0.030 0.147 60.211
InU -0.289 0.124 0.784 52.861
InN -1.379 0.084 0.226 19.202
InM 11.698 0.104 0.000 562.013

3.2.2 Analyses of model fitting

To prevent distorted model evaluation, the constructed model is estimated with ridge regression to

mitigate multicollinearity in the independent variables. As shown in Figure 6 and Figure 7, when K

= 0.03, the regression coefficients for the influencing factors become stable. The detailed results of

the ridge regression analysis are presented in
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Based on the ridge regression diagnostics (Table 5), R? and the adjusted R* are above 0.99, the F
value was 67.01, and the F statistic also passed the significance level test of 0.1%, indicating that
the regression equation is significant and the fit is satisfactory. The STIRPAT model relating
Changsha’s CO: emissions to the explanatory variables is:
In1=0.07+0.2241nP+0.177InA+0.152InT+0.123InU+0.119InN+0.1941nM (12)
Equation (12) indicates that a 1 percent change in population size, per capita GDP, energy intensity,
urbanization rate, industrial structure, and carbon intensity corresponds to changes in CO; emissions
of 0.224 percent, 0.177 percent, 0.152 percent, 0.123 percent, 0.119 percent, and 0.194 percent,
respectively. Accordingly, the relative contribution ranking is: population size (P) > carbon intensity

(M) > per capita GDP (A) > energy intensity (T) > urbanization rate (U) > industrial structure (N).

Table 5 Results of ridge regression analysis for each variable

B SE(B) Beta R? Adj R? F
Constant 0.07 0.207 0.000
InP 0.224 0.277 0.243
InA 0.177 0.366 0.230
InT 0.152 0.536 0.161 0.996 0.993  F=67.01,P=0.003,
InU 0.123 0.122 0.123 Sig F=0.00007
InN 0.119 0.118 0.119
InM 0.194 0.194 0.206

To further validate the extended STIRPAT model after ridge regression, we compare the CO:
emission simulated values with the actual values. As shown in Figure 8, the average annual error
between the simulated values and the actual values for Changsha is 6 percent, indicating a
satisfactory goodness of fit. The model is therefore suitable for projecting future CO. emissions in

Changsha.
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371 3.2.3 Carbon emission prediction analysis
372 Based on the extended STIRPAT model, this study forecasts Changsha’s CO: emission trends for

373 2023-2060. The results are shown in Figure 9 and Figure 10.
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Figure 10 Predictions of carbon emissions and carbon emissions intensity in Changsha from 2023 to
2060 under 8 scenarios

Table 6 Peak year and peak CO> emissions in Changsha under different scenario Combinations

S1 S2 S3 S4 S5 S6 S7 S8

Timing of peak
CO: emissions 2030 2040 2050 2040 2040 2040 2040 2040

Peak CO: (MU' 5037 2005 2191 2099 2119 2095 2067 2137

Based on various scenarios of the change of Changsha city’s CO2 emission from 2023 to 2060, and
the actual situation and policy orientation of the development of the city, the main conclusions are as
follows. The timing of Changsha’s carbon peak varies significantly across different development
paths, ranging from as early as 2030 (S1) to as late as 2050 (S3), as summarized in Table 6. The
maximum value of CO; emissions is 20.37-21.91 Mt, as can be seen from Table 6, which further
demonstrates that the regulatory impact can be seen in policy, a large amount of the use of new
technology is the result of emission. Implementation point of view, among all, S1 (low-carbon)
becomes the key approach to achieving carbon peak in 2030. And it also stresses on optimizing the
energy mix and the more that we can have renewables, which is very aligned to what Changsha is

doing in terms of green industrial transition, their goal is to grow more off photovoltaics, grow more
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energy storage. On the contrary, the delayed peaks shown in the high carbon and economic slowdown
scenarios are due to the bad impacts of still depending on traditional energy intensive industries, slow
economic speed, and slow adoption of green technology, all of which cause the peaking process to be
postponed. In short, the above forecast can provide a certain amount of evidence for the differentiated
policies of Changsha. In terms of keeping economic growth and clean energy substitution and
improving energy efficiency to achieve an earlier and lower peak of CO2 emissions.

4. Conclusions and Policy Implications

4.1 Conclusions

(1) Employ the LMDI method to discover what determines the CO2 emissions of Changsha. Use an
extended STIRPAT model, link emissions to some driving factors, and then calculate what the
projected emission levels and their peak years will be in different situations.

(2) And the LMDI decomposition indicates that the energy structure (ES) is the main restriction for
the CO> emission growth, and economic development (A) is the main reason for the emission
increase in Changsha.

(3) Among the 8 scenarios, the time when the carbon peak occurs differs, and the carbon peaks in
2040 in the baseline (S2), industrial optimization (S4), green development (S5), energy-saving
development (S7), and clean development (S6) scenarios; the high-carbon scenario (S3) peaks in
2050. Only the low carbon scenario S1 achieves its peak by 2030, satisfying the 2030 peaking goal.
(4) Comparison of S1 shows that the low-carbon scenario represents the optimal low-carbon path for
Changsha. It can ensure that the city’s economy can continue to develop, and at the same time achieve
a relatively low peak in CO; emissions.

(5) When we built this carbon emission model, there is a sort of subjectivity that will prevent us from

taking all of the factors that affect the emissions. Future studies will try more scientific and thorough
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way and add more driving factors to improve the accuracy and authenticity of the model.

4.2 Policy implications

(1) A low-growth path centered on structural optimization and efficiency gains

Projection results indicate that low-carbon deployment is the main lever for realizing an earlier and
lower peak in the low-carbon scenario. Well if we had an easier mix of energies, if we could just use
the energy that we have, better if you will, then it would be like kind of a big deal. So, the policy of
Changsha is to go from expanding the amount of increase to improving the carbon efficiency of each
dollar of GDP. In real life, energy-intensive industries must go through technical renovations to
transition from crude production with high value to refined production with high value, and should
not increase in quantity. Given the deceleration of urbanization, effort should focus on making the
best out of the existing urban space and upgrading the efficiency of the energy system. That is to say,
directing a limited amount of public resources toward structural upgrades and technological
innovation, so as to steer the economy and society towards higher quality, lower consumption
endogenous growth even within a slower growth context.

(2) Deepen industrial structure optimization and develop green industries

Changsha gets an important chance to make things ready for deep decarbonization during the
slower-growth part of the low-carbon situation. The city has to make up these deficiencies in
infrastructure and management during this period. Important priorities are optimizing industrial
structure for high-quality, sustainable progress, releasing more energy-saving possibilities, and
making energy efficiency better. As for carbon-intensive projects, advanced efficiency techniques
must be adopted to make thorough modernization for traditional manufacturing. At the same time,
improve fiscal incentives and support green industry policies to promote the use of low carbon and

clean production technologies. Development of green industrial parks, cultivation of clustering
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effects, it would be conducive to form robust low-carbon clusters.

(3) Improve basics and do long-term planning during low-growth period

According to the scenario projection, Changsha’s carbon peak time and quantity differ greatly
among different development paths. Low-carbon scenario (S1) emissions hit a peak sooner and
lower. In contrast to this is the high carbon scenario S3, and the other pathways all delay the peak
and have more emissions. In this way, Changsha should apply different emission reduction stage to
each scenario. In a low carbon world, we would want to push energy transition. During times of
economic slowdown, policies should focus more on promoting green technologies and innovations
so that there would be lesser effect on CO; emissions due to lesser growth.

(4) To create a changing adjustment mechanism to make the reaching-peak process safe and
controlling

Changsha must build a regulatory system if it wants to make the carbon peak work, we cannot ignore
energy structure or number of people. Specific measure is to implement frequent monitoring of the
rate of reduction of the structure of energy-saving in key areas and the rate of increase in carbon
emissions due to population; establish specific warning threshold values for these indicators
according to the results of the model’s sensitivity analysis; and immediately trigger the corresponding
tiered response measures whenever the threshold values are reached. It forms a loop of management:
“watching-worrying-handling-updating”. It points the limited policy resources to the most important
risk factors with precision, so as to protect the peak emission path in a systematic way.

5. Discussion

This research will be using the LMDI method and the STIRPAT model to do a projection of
Changsha’s future CO; emissions under several different scenarios and it would give out the peak

year and the amount of emission that year is at. Prediction will become the reference points of



459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

regulating Changsha’s future carbon emissions in the future. Among the 8 scenarios, only the
low-carbon scenario (S1) can allow Changsha to achieve carbon peaking in 2030. The way we go,
requires regulation on how much we burn for energy, structural modifications on the structures that
use energy, very slow rate of GDP (growing economy). This goes hand-in-hand with what the city has
going on presently with their sustainable efforts in greener industries such as photovoltaics and
storage. It seems as if the 2030 carbon peaking is likely to be achievable if the current policy can be
preserved and strengthened. The high carbon scenario (S3) is quite different as there is a notable delay
in reaching its peak because continuous consumption of traditional energy consumes results in more
emission and postpones the decarbonization process.

Second, the use of many scenarios here has very good methodological worth and practical policy
references. Compared with the low-carbon scenario (S1) and the high-carbon scenario (S3),as well as
the economic slowdown scenario (S8),the analysis finds the best way out as well as imagining the
risks caused by policy failure or unexpected disaster. It will promote some caution from
policymakers, making them more sensitive to risk in that sense. For example, the delayed carbon peak
in economic slowdown scenario (S8), which shows that we cannot sacrifice sustainable economic
growth for the low carbon transition. A solid economy gives the important base for progress in energy
tech and infra renewal.

There are some restrictions to this study because of data accessibility, the picked drivers might not
include all the complex and different causes affecting CO» emissions. With more comprehensive and
correct data, it is expected that the research in the future will be more extensive and rigorous. And
Changsha is treated as an isolated system in this study, which does not take the interaction with other
areas into account. Future work can improve the focus of a single city to the level of the urban

agglomeration in order to more accurately reflect the regional CO, emissions. Although with
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limitations, the key findings and policy suggestions of this study are still reference materials. And it
recognizes those limitations form the basis for where I should put my energy for research in the
future.
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491  Appendix

492  Table 1 Changes in the indicators during the study period

Year Population size (P)  Economic development Energy intensity(T)  Urbanization Industrial Carbon emission
(10* person) (A) (10*CNY) (t*(10*CNY) ) rate (U) (%) structure (N) (%) intensity (M)
2011 740.36 7.39697 0.30385 68.62 46.7 0.39381
2012 766.18 8.08941 0.28744 68.99 49.7 0.35473
2013 787.46 8.76523 0.27619 70.55 52.1 0.32735
2014 813.11 9.26649 0.27834 72.45 52.7 0.29064
2015 828.27 10.26549 0.25622 75.44 54.2 0.25361
2016 859.03 10.67064 0.26361 77.56 55.6 0.23492
2017 902.94 11.13053 0.22499 79.86 57.2 0.21418
2018 928 11.21297 0.22653 81.93 57.6 0.21135
2019 963.56 11.98963 0.19818 82.46 57.7 0.19002
2020 1006.08 12.06914 0.18436 82.6 57.5 0.18218
2021 1023.93 12.96056 0.17235 83.16 57.2 0.17225
2022 1042.06 13.40241 0.15488 83.27 56.8 0.15687

493



494  Table 2 Sensitivity of carbon emission changes to the rate of various factors

The Rate of Per Rate of  Energy Rate of Rate of Rate of  Industry Rate of The change  Rate of
change  changein capita change intensit changein  changeof  change  structure change in rate of change
rate of carbon GDP in y carbon  urbanization in changing carbon carbon in

population emission change  carbon  change emissions rate (U) /% carbon rate (N) emissions/ emission carbon
(P) /% s/% rate (A) emission rate (T) 1% emission 1% % intensity ~ emission
1% s/% 1% s/% (M) /% s/%

0.2 0.04477 1.8 0.31627 -0.5 -0.07616 0.25 0.03072 0.2 0.02378 -4.5 -0.88927

1.7 0.37831 4.8 0.83329 -2 -0.30661 0.4 0.04911 0.5 0.05937 -4.2 -0.82895

3.2 0.70807 7.8 1.33828 -3.5 -0.54007 0.55 0.06749 0.8 0.09487 -3.9 -0.76878




495  Table 3 Decomposition of the Drivers of CO, Emissions in Changsha

Year Al Algg Alr Al, Alp
2012 1.24568 -0.30266 0.48789 0.18691 -1.51281
2013 0.27089 -0.31474 0.63286 0.21608 -0.58964
2014 -0.88117 -0.0701 -0.50342 -0.29016 2.02806
2015 -0.60527 0.36198 -0.44744 -0.08073 0.83889
2016 -0.03011 -0.01099 -0.01494 -0.01408 0.07064
2017 -0.00292 0.01694 -0.00451 -0.00533 -0.00414
2018 0.98595 0.04121 0.04476 0.16606 -1.10789
2019 -0.02947 0.06872 -0.03443 -0.01933 0.01544
2020 0.34078 -0.15811 0.01445 0.09444 -0.27485
2021 -1.32174 -0.64249 0.67973 0.16776 1.42955
2022 -1.25781 1.31972 -0.41395 -0.21672 1.09254
496  Table 4 Contribution Rates of Drivers to Changsha’s CO2 Emissions
Year CRa1 CREs CRr CRa CRp
2012 1186.26742 -288.229 464.62373 177.99108 -1440.65324
2013 125.72613 -146.07515 293.72374 100.28682 -273.66154
2014 -311.13817 -24.75216 -177.75512 -102.45497 716.10042
2015 -897.57067 536.78936 -663.51974 -119.7176 1244.01864
2016 -5674.73439  -2070.52581  -2816.58006  -2653.31278  13315.15304
2017 -7156.02484  41571.99577  -11073.93977  -13083.51117 -10158.51999
2018 757.88549 31.67584 34.40833 127.64935 -851.61902
2019 -3185.04794 7427.94807 -3721.60531  -2089.59506 1668.30024
2020 2039.62261 -946.32124 86.50834 565.22183 -1645.03154
2021 -422.53119 -205.38849 217.29451 53.6278 456.99737
2022 -240.13759 251.95761 -79.0294 -41.37573 208.5851




497  Table 5 Spearman examines the original data

Year Inl InP InA InT InU InN InM

2011 3.07114 6.60714 11.23622 -1.19123 -0.37659 -0.76096 -0.9319
2012 3.0904 6.64142 11.3179 -1.24674 -0.37121 -0.69877 -1.0364
2013 3.11772 6.66881 11.39474 -1.28665 -0.34885 -0.65128 -1.11672
2014 3.08643 6.70087 11.45263 -1.2789 -0.32227 -0.64026 -1.23567
2015 3.071 6.71934 11.54832 -1.36173 -0.28183 -0.61337 -1.37196
2016 3.06963 6.7558 11.59591 -1.33328 -0.25412 -0.5873 -1.4485
2017 3.06924 6.80566 11.64464 -1.49168 -0.2249 -0.55893 -1.54093
2018 3.09069 6.83303 11.641 -1.48489 -0.1993 -0.55112 -1.55424
2019 3.08889 6.87063 11.71301 -1.61856 -0.19286 -0.55037 -1.66062
2020 3.09653 6.91382 11.72235 -1.69085 -0.19116 -0.55369 -1.70277
2021 3.12932 6.9314 11.781 -1.75821 -0.1844 -0.55822 -1.75882
2022 3.08691 6.94895 11.81451 -1.86509 -0.18308 -0.56658 -1.85231




498  Table 6 Comparison of CO2 emission simulation values and actual values

Year Simulation value Actual value
2011 21.56646 20.90692
2012 21.98585 20.93799
2013 22.59471 21.07437
2014 21.89876 21.07665
2015 21.56345 20.87151
2016 21.53384 21.13568
2017 21.52564 20.81589
2018 21.99226 20.98343
2019 21.95272 20.59049
2020 22.12108 20.42587
2021 22.85854 20.29356
2022 21.90917 19.78551

499  Table 7 Eight scenarios of CO2 Emission trends in Changsha from 2023 to 2060

Year S1 S2 S3 S4 S5 S6 S7 S8
2023 19.89544 19.93074 19.96552 19.93309 19.93826 19.91869 19.92761 19.96486
2024  20.00597 20.07703 20.14716 20.08177 20.09219 20.05276 20.07073 20.14584
2025  20.11712  20.22439 20.33046 20.23156 20.24731 20.18774 20.21488 20.32846
2026  20.16817 20.30398 20.45935 20.31358 20.34327 20.26187 20.28874 20.43923
2027  20.21935 20.38388 20.58906 20.39592 20.43969 20.33627 20.36286 20.55061
2028  20.27066 20.46409 20.7196  20.4786 20.53656 20.41094 20.43726 20.66259
2029  20.32209 20.54462 20.85096 20.56162 20.63389 20.48588 20.51193 20.77519
2030  20.37366 20.62546 20.98315 20.64497 20.73168 20.5611 20.58687 20.8884
2031 20.36796 20.65354 21.05791 20.67553 20.77229 20.59516 20.59047 20.93105
2032 20.36227 20.7044 21.13293 20.72889 20.83589 20.65198 20.61674 20.99687
2033 20.35657 20.75538 21.20821 20.78239 20.89967 20.70895 20.64304 21.06289
2034  20.35088 20.78363 21.28377 20.81314 20.94061 20.74325 20.64666 21.10591
2035 20.34519 20.81193 21.3596 20.84395 20.98163 20.77761 20.65028  21.149
2036 20.3395 20.84027 21.43569 20.8748 21.02273 20.81203 20.65389 21.19219



500

501
502
503
504
505
506
507
508

2037  20.33381 20.86864 21.51206 20.9057 21.06392 20.8465 20.65751 21.23547
2038  20.32812 20.89706 21.5887 20.93664 21.10518 20.88104 20.66113 21.27883
2039 2031011 20.92551 21.66561 20.96762 21.14652 20.91562 20.66475 21.32228
2040  20.29212  20.954  21.74279 20.99866 21.18795 20.95027 20.66838 21.36582
2041  20.22887 20.9285 21.75944 20.97559 21.17012 20.94251 20.59987 21.3364
2042 20.16582 20.90303 21.7761 20.95254 21.15232 20.93476 20.53158 21.30702
2043 20.10297 20.87759 21.79277 20.92952 21.13452  20.927 20.46353 21.27768
2044  20.04031 20.85218 21.80946 20.90653 21.11675 20.91925 20.39569 21.24838
2045  19.97785 20.8268 21.82616 20.88356 21.09898 209115 20.32809 21.21912
2046 19.91558 20.80146 21.84287 20.86061 21.08124 20.90376 20.26071 21.18991
2047  19.85351 20.77614 21.85959 20.83769 21.0635 20.89602 20.19355 21.16073
2048 19.79163 20.75086 21.87633 20.8148 21.04579 20.88828 20.12661 21.13159
2049  19.72994 20.7256 21.89308 20.79193 21.02808 20.88054 20.0599 21.10249
2050 19.66844 20.70038 21.90984 20.76909 21.0104 20.87281 19.9934 21.07343
2051 19.56235 20.6217 21.8649 20.69261 20.93348 20.82253 19.85712 20.97211
2052 19.45684 20.54333 21.82006 20.61641 20.85684 20.77748 19.7266 20.87128
2053  19.35189 20.46525 21.77531 20.54049 20.78049 20.72743 19.59213 20.77093
2054  19.24751 20.38747 21.73065 20.46485 20.70441 20.67751 19.45858 20.67106
2055 19.14369 20.30999 21.68608 20.38949 20.62861 20.6277 19.32594 20.57167
2056 19.03937 20.2328  21.6416  20.3144 20.55309 20.57802 19.1942 20.47276
2057  18.93668 20.1559 21.59721 20.2396 20.47785 20.52845 19.06337 20.37433
2058  18.83454 20.0793 21.55292 20.16507 20.40288 20.479  18.93342 20.27637
2059  18.73294 20.00298 21.50871 20.09081 20.32819 20.42968 18.80436 20.17888
2060  18.6319 19.92696 21.4646 20.01682 20.25377 20.38047 18.67618 20.08186
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