

1

4

5 Tae Jin Kim

6

7 Department of Civil Engineering, Daegu University, 201 Daegudae-ro, Jillyang, Gyeongsan,
8 Gyeongbuk, 712-714, Korea; E-mail: kimtj@daegu.ac.kr

9

10 **ABSTRACT**

11

12 This study evaluates the hydrologic and water quality performance of a proposed retention pond
13 located downstream of an existing stormwater structural control in the City of San Angelo, Texas.
14 The Storm Water Management Model (SWMM) was calibrated and verified using six monitored
15 storm events, yielding mean relative error (MRE) values of -0.23 to 0.40, correlation coefficient
16 (R^2) values of 0.80 to 0.90, and Nash–Sutcliffe Efficiency (NSE) values of 0.59 to 0.92. The
17 verified model was applied to assess retention pond performance under varying initial storage
18 volumes (0~100%) and three outlet orifice sizes. Results indicate peak flow reductions of
19 2.6~3.3%, runoff volume reductions of 0.4~40%, and pollutant load reductions of 41.4~64.3%
20 depending on storage availability. Smaller orifices provided slightly greater peak flow attenuation
21 under full storage conditions due to increased hydraulic retention time. Overall, the proposed
22 retention pond can enhance flood mitigation, improve downstream water quality, and increase
23 stormwater availability for supplemental municipal use. These findings demonstrate the value of
24 retention-based Best Management Practices in semi-arid urban watersheds.

25

26 **Keywords:** Hydraulic Retention Time; Pollutant Load Reduction; Semi-arid Watershed; Urban
27 Runoff Control

28

29

30 **Introduction**

31

32 The City of San Angelo (COSA), located downstream of the North Concho River, has
33 experienced recurring issues such as water contamination, fish kill events, and aesthetic water
34 quality degradation, primarily driven by stormwater discharges from nonpoint sources. In
35 response, the city adopted multiple non-structural measures, including public education and
36 outreach initiatives, as well as structural controls such as retention and detention ponds
37 implemented under its Best Management Practices (BMPs) program. Nevertheless, rapid
38 population growth and limitations in the existing sewer and drainage systems have resulted in the
39 need for a more comprehensive, citywide stormwater management strategy.

40 To address these challenges, COSA initiated a coordinated stormwater management program in
41 partnership with the Upper Colorado River Authority (UCRA). As part of this initiative, the
42 watershed was subdivided into several monitored subcatchments equipped with stormwater
43 gauging stations. Structural BMPs were subsequently implemented in selected subcatchments to
44 mitigate urban flooding and improve water quality conditions.

45 Among the monitored areas, one subcatchment within COSA (Fig. 1) was selected for the design
46 and evaluation of a conventional stormwater control structure. Owing to its high runoff generation,
47 this subcatchment was identified as having potential to contribute supplementary municipal water
48 supplies during dry periods.

49 Between August 2010 and July 2012, this subcatchment produced peak stormwater flows of up
50 to 11.96 m³/s, representing approximately 65% of COSA's annual municipal water demand
51 (UCRA, 2013). This substantial runoff generation highlights the potential for stormwater
52 harvesting to supplement municipal water supplies while simultaneously improving downstream
53 water quality. BMPs designed to retain high volume runoff can further reduce pollutant loads
54 during storm events.

55 The Storm Water Management Model (SWMM) has been widely applied to evaluate the
56 hydrologic and water quality performance of urban BMPs, primarily focusing on peak flow
57 attenuation or pollutant reduction under fixed initial storage assumptions (Sehrawat et al., 2025).

58 Recent studies have further extended SWMM-based analyses by incorporating Low Impact
59 Development (LID) practices and alternative BMP configurations, while machine learning
60 approaches have increasingly been used to enhance prediction accuracy in water quality and
61 environmental systems (Venkatraman et al., 2024; Surendran et al., 2024). However, many of these
62 studies emphasize either predictive performance or individual hydraulic or water quality
63 responses, with limited consideration of operational variability.

64 Field-based and synthesis studies have demonstrated that retention-based BMPs, including
65 stormwater ponds and bioretention systems, can effectively reduce runoff volumes and pollutant
66 loads (Landon et al., 2025; Sabbagh et al., 2025). Nevertheless, the ability of existing modeling

67 approaches to represent realistic operational conditions—such as varying antecedent storage levels
68 and outlet configurations—remains limited, particularly in semi-arid regions.

69 Therefore, the aim of this study is to assess the hydraulic attenuation, pollutant reduction, and
70 potential municipal water supply benefits of a proposed stormwater retention pond by integrating
71 water quantity and water quality modeling with scenario-based evaluation of initial storage
72 conditions and outlet orifice configurations.

73 To provide a clearer quantitative basis for the problem formulation, the watershed characteristics
74 relevant to stormwater response are explicitly described. Subcatchment II(a), which contributes
75 the majority of runoff, contains approximately *40.78% impervious area*, whereas subcatchment
76 II(b) has *18.01% imperviousness*, based on the COSA (2010) GIS dataset. Because imperviousness
77 strongly governs runoff generation, the substantially higher impervious surface coverage in
78 subcatchment II(a) explains its dominant contribution to peak flows and supports its selection for
79 BMP evaluation.

80 The specific objectives of this study are to:

81 (1) verify the SWMM model for both water quantity and water quality using observed storm
82 event data;
83 (2) evaluate the performance of the proposed retention pond under alternative initial storage
84 volumes and outlet orifice configurations; and
85 (3) quantify the resulting changes in downstream hydraulic response and pollutant loads.

86 The scope of this study is limited to a representative urban subcatchment within COSA and
87 focuses on scenario-based simulations rather than long-term optimization or real-time operational
88 control. Nevertheless, the proposed framework is transferable to similar semi-arid urban
89 watersheds.

90 These simulations enable the assessment of existing watershed conditions, BMP performance,
91 and expected changes in stormwater quantity and quality following implementation of the
92 proposed structural control. The simulation results are used to evaluate how the proposed Storm
93 Water Structural Control (SWSC), namely the retention pond configuration, affects the hydraulic
94 response of the urban watershed at the downstream monitoring station, providing an integrated
95 basis for assessing BMP performance and predicting changes in stormwater quantity and quality
96 under the recommended structural controls.

97 Therefore, to provide a clear visual summary of the methodology, the overall workflow of the
98 study is presented in Figure 2, which illustrates the sequence from data collection to SWMM
99 implementation, calibration and verification, BMP scenario evaluation, and the final assessment
100 of hydraulic and water quality outcomes.

101 This schematic diagram illustrates (1) the collection and preprocessing of rainfall, flow, water
102 quality, land use, and soil type data; (2) the SWMM model setup, including watershed delineation,
103 hydraulic geometry, hydrologic parameterization, and pollutant buildup/washoff configuration; (3)
104 model calibration and verification using six monitored storm events with performance indicators

105 such as mean relative error (MRE), correlation coefficient (R^2), and Nash–Sutcliffe Efficiency
106 (NSE); (4) development of BMP scenarios through alternative initial storage conditions and outlet
107 orifice configurations for the proposed retention pond; and (5) comparative analysis of hydraulic
108 response and water quality outcomes at the downstream monitoring station. The flowchart
109 highlights the key inputs, simulation paths, and performance outputs, making the methodological
110 framework more accessible to readers.

111

112 **Case Study Area**

113

114 The COSA is located at the confluence of the North and South Concho Rivers, on the
115 southwestern edge of the Edwards Plateau and the northeastern boundary of the Chihuahuan Desert
116 within Tom Green County, Texas. The city relies on three major reservoirs - Twin Buttes
117 Reservoir, O.C. Fisher Reservoir, and Lake Nasworthy - for municipal and recreational water
118 supply. For watershed assessment and stormwater planning, the entire city was delineated into
119 subcatchments using ArcSWAT (Arc Soil Water Assessment Tool) with 30 m resolution Digital
120 Elevation Models (DEMs), resulting in 10 permanent monitoring stations, 12 temporary stations,
121 and 23 additional points of interest (UCRA, 2013).

122 The site indicated in Fig. 1 was identified as a suitable location for constructing a large dry or
123 wet pond to reduce pollutant loadings, particularly suspended sediments. Numerous studies have

124 demonstrated that wet and dry detention ponds are effective at reducing sediment and nutrient
125 loads by promoting settling and extended hydraulic retention (USEPA, 2002; Wong & Geiger,
126 1997). In addition, the site offers opportunities for stormwater reuse, water conservation, and
127 potential recreational enhancements.

128 Specifically, a large wet pond with a controlled release structure can be constructed immediately
129 downstream of the South Chadbourne Bridge. Such a facility would provide temporary storage of
130 excess stormwater that can be released gradually downstream, used on-site, or potentially
131 incorporated into municipal water supply augmentation. The pond would also contribute to
132 sediment, Biochemical Oxygen Demand (BOD_5), and nutrient control within the COSA
133 watershed.

134 The case study area is divided into two primary subcatchments, I and II, as shown in Fig. 1. A
135 SWSC facility has already been constructed in subcatchment I, while an additional SWSC is
136 planned for subcatchment II to support potential municipal water supply augmentation. The
137 existing SWSC in subcatchment I primarily regulates runoff originating from the upper watershed.
138 However, monitoring data indicate that subcatchment II contributes a substantial portion of the
139 total flow to the downstream gauging station. Therefore, the construction of a retention pond
140 within subcatchment II is recommended to control runoff volumes and reduce pollutant transport.
141 For analysis purposes, subcatchment II was further divided into subcatchments II(a) and II(b), with
142 the proposed retention pond positioned near the center of subcatchment II.

143 Accordingly, a large wet retention pond with a controlled release structure and sediment forebay
144 is recommended at the outlet of subcatchment II(a) to provide temporary storage of excess
145 stormwater. The proposed system would support water conservation benefits, attenuate peak
146 flows, and reduce pollutant loadings. The objective of this study is to assess water availability,
147 hydraulic performance, and pollutant reduction potential associated with the proposed structural
148 controls through: (1) verification of the SWMM model for the study watershed, and (2) evaluation
149 and adaptation of BMP scenarios tailored to the case study area.

150

151 **SWMM Model Verification for Water Quantity and Quality**

152

153 SWMM (Huber and Dickinson, 1988; Rossman, 2009) has been widely applied for the
154 evaluation of rain gardens, rain barrels (Abi Aad et al., 2010), retention and detention basins
155 (Chang, 2010; Park et al., 2010; Rosenzweig et al., 2011; Alahmady et al., 2013; Tillinghast et al.,
156 2012; Wang and Yu, 2012), and underground detention tanks (Todeschini et al., 2012). In this
157 study, SWMM inputs explicitly incorporate the dominant land use characteristics of subcatchment
158 II, including residential (39.01%) and industrial (14.30%) areas with corresponding
159 imperviousness values of 40.78% and 18.01%. Soil classifications obtained from COSA (2010)

160 indicate that KuD, MuB, and AuB account for 35.48%, 23.28%, and 19.89% of the watershed,
161 respectively, and were used to parameterize infiltration and hydrologic properties in SWMM.

162 The SWMM model configuration incorporated land use (specific imperviousness) and soil type
163 distributions of subcatchment II as defined in the COSA (2010) GIS dataset. Watershed
164 geometries, channel dimensions, slopes, and Manning's roughness coefficients for both pervious
165 and impervious surfaces were parameterized using field observations (UCRA, 2013). Rainfall
166 hyetographs for each event were constructed from monitored precipitation data, establishing the
167 hydrologic and hydraulic framework for simulating runoff generation and conveyance prior to
168 model calibration.

169 Stormwater samples and flow measurements were collected during storm events from July 2010
170 to March 2012 using ISCO 6712 automatic samplers (UCRA, 2013). At the primary monitoring
171 station, cumulative rainfall exhibited a mean of 25.65 mm, with maximum, minimum, and median
172 values of 94.74 mm, 0.25 mm, and 21.34 mm, respectively. Runoff volumes were estimated from
173 measured flow depths using channel geometry (width = 6.71 m), Manning's roughness coefficient
174 ($n = 0.05$), channel slope (0.01), and rectangular cross-section assumptions. Event scale runoff
175 volumes (10^3 m^3) averaged 348.9, with maximum, minimum, and median values of 1,280.8, 0.001,
176 and 204.6, respectively.

177 Out of the 22 monitored storm events, six events with rainfall exceeding 15 mm and complete
178 15 minute rainfall runoff records were selected for model verification to ensure adequate

179 hydrologic response for assessing municipal water supply potential. The largest of these events
180 occurred on August 13, 2011, corresponding to an estimated 25~50 year return interval, and was
181 used to place additional emphasis on matching simulated and observed peak flows.

182 During calibration, key hydrologic parameters were adjusted within physically realistic bounds
183 to improve agreement between simulated and observed hydrographs. Manning's n, depression
184 storage values, and infiltration parameters were iteratively refined while maintaining the surveyed
185 channel geometry to ensure physically consistent model behavior.

186 The water quality module was calibrated by adjusting buildup and washoff coefficients for Total
187 Suspended Solids (TSS), Total Phosphorus (TP), Total Nitrogen (TN), and 5 day BOD (BOD₅)
188 so that simulated event mean concentrations matched those measured by the ISCO 6712 automatic
189 sampler. The resulting calibrated parameter set was then uniformly applied to all six verification
190 events to maintain consistency across simulations.

191 Peak flow, total runoff volume, MRE (Eq. 1), R² (Eq. 2), and NSE(Eq. 3) (Nash and Sutcliffe,
192 1970) were used to evaluate the agreement between measured and simulated hydrographs (Table
193 1).

194

$$195 \quad MRE = \frac{1}{n} \sum_{i=1}^n \frac{Q_{i,obs} - Q_{i,sim}}{Q_{i,obs}} \quad \text{Eq. (1)}$$

196

$$R^2 = \left(\frac{\sum_i^n (Q_{i,obs} - \bar{Q}_{i,obs})(Q_{i,sim} - \bar{Q}_{i,sim})}{\sqrt{\sum_{i=1}^n (Q_{i,obs} - \bar{Q}_{i,obs})^2} \sqrt{\sum_{i=1}^n (Q_{i,sim} - \bar{Q}_{i,sim})^2}} \right)^2 \quad \text{Eq. (2)}$$

197

$$NSE = 1 - \frac{\sum_i^n (Q_{i,obs} - Q_{i,sim})^2}{\sum_i^n (Q_{i,obs} - \bar{Q}_{i,obs})^2} \quad \text{Eq. (3)}$$

198

199 Where $Q_{i,obs}$ = observed flow, $\bar{Q}_{i,obs}$ = mean of observed flow, $Q_{i,sim}$ = simulated flow,
 200 $\bar{Q}_{i,sim}$ = mean of simulated flow, and N = number of data points

201

202 In this study, verification metrics including MRE, R^2 , and NSE were computed using rainfall–
 203 runoff data collected by ISCO 6712 automatic samplers from July 2010 to March 2012. Six storm
 204 events with rainfall exceeding 15 mm and complete 15 minute monitoring records were selected
 205 to ensure meaningful hydrologic response during model verification. Although a formal parameter
 206 by parameter sensitivity analysis was not performed, hydrologic sensitivity was assessed through
 207 scenario-based simulations that varied the initial storage volume of the proposed retention pond
 208 (0%, 25%, 50%, and 100%) and the orifice release sizes (0.5%, 1%, and 2% of total pond storage).
 209 These scenario evaluations provide insight into the model’s responsiveness to operational
 210 conditions and complement the verification analysis.

211 Runoff to precipitation ratios for the six verification events ranged from 33.03% to 92.17% for
 212 observed data and from 43.22% to 84.90% for simulated data. These ranges indicate that the
 213 Green-Ampt infiltration model is appropriate for representing infiltration behavior in the study

214 watershed, consistent with the applicability of the Green-Ampt formulation to semi-arid soils.
215 Based on MRE values, four storm events from 2010~2011 were slightly overpredicted, whereas
216 two events from 2012 were underpredicted. Differences between simulated and observed peak
217 flows ranged from -3.1% (storm event 3) to +41.8% (storm event 5). R^2 varied from 0.80 (storm
218 event 4) to 0.90 (storm events 3 and 6), and NSE values ranged from 0.59 (storm event 5) to 0.92
219 (storm event 3), indicating generally strong model performance.

220 After completion of the hydrologic verification, the water quality component of the SWMM
221 model was developed using the Event Mean Concentration (EMC) approach. Monitoring data were
222 available in the form of EMCs for TSS, TP, TN, and BOD_5 ; therefore, these values were used as
223 direct inputs for pollutant buildup and washoff simulations. Because no BMPs capable of pollutant
224 removal were present during the monitoring period, the predicted concentrations represent
225 untreated stormwater and are expected to be similar to the measured EMC values. Table 2
226 summarizes the concentration data for the six storm events used in this study.

227 The largest pollutant loads were observed during the August 13, 2011 storm event, which
228 produced 18.71 tons of TSS, 1.09 tons of BOD_5 , 0.34 tons of TN, and 0.083 tons of TP across the
229 two monitoring stations. Across all sampled events, the average BOD_5 concentration was 15.65
230 mg/L (ranging from 7.5 to 27.1 mg/L), whereas the mean TSS concentration was 105 mg/L

231 (ranging from 31 to 163 mg/L). These results provide the baseline pollutant loads against which
232 the performance of the proposed retention pond BMP scenarios can be evaluated.

233

234 **Best Management Practice (BMP) Evaluation**

235

236 The recommended structural control facility at this site is designed to manage runoff from a 1
237 year frequency storm and provide approximately 0.23×10^6 m³ of active storage to support
238 supplemental municipal water supply. The system is configured as a wet retention pond
239 incorporating a controlled release weir and spillway. The total storage capacity is 0.36×10^6 m³ at
240 the spillway elevation and 0.23×10^6 m³ at the controlled release elevation, allowing staged outflow
241 management under varying hydrologic conditions.

242 It is important to clarify that the storage values of 0.23×10^6 m³ and 0.36×10^6 m³ reported by
243 UCRA (2013) represent long-term, system scale storage capacities for the entire COSA watershed,
244 intended to enhance drought resilience and municipal water supply security. These volumes
245 incorporate multi facility, basin-wide water management objectives and do not reflect the
246 geometric capacity of any single retention structure. In contrast, the 14.324×10^3 m³ used in this
247 study represents the event-based design volume of the proposed retention pond for the 1 year, 12
248 hour design storm at Subcatchment II(a). Because these values describe fundamentally different
249 spatial and temporal design scales system level versus single facility, long-term versus event-based

250 they are not contradictory but instead complementary within the broader BMP planning
251 framework.

252 The proposed retention pond is positioned at the outlet of subcatchment II(a), directly upstream
253 of both the existing stormwater structural control facility and the downstream monitoring station.
254 This location was selected because subcatchment II(a), owing to its substantially higher
255 impervious area, contributes the dominant portion of runoff reaching the monitoring point.

256 For the 1 year, 12 hour Type II design storm, the calibrated SWMM model produced a peak
257 flow of $3.92 \text{ m}^3/\text{s}$ and a total runoff volume of $12.099 \times 10^3 \text{ m}^3$. These values informed the design
258 of a $14.324 \times 10^3 \text{ m}^3$ retention pond equipped with a sediment forebay. Operational storage
259 capacities of $0.23 \times 10^6 \text{ m}^3$ at the controlled release elevation and $0.36 \times 10^6 \text{ m}^3$ at the spillway
260 elevation were established. The controlled release system - consisting of an orifice and a weir -
261 was designed to provide hydraulic retention times of up to 11 hours, improving both flow
262 attenuation and pollutant removal efficiency.

263 A schematic layout depicting the spatial configuration of the retention pond relative to
264 subcatchment II(a), the existing SWSC, and the downstream monitoring station has been added as
265 Figure 3 to enhance clarity and support interpretation of the system design.

266 Model simulations were conducted under varying operational conditions, including four initial
267 storage states (dry: 0%, 25%, 50%, and full: 100% of storage capacity) and three orifice sizes.

268 According to UCRA (2013), the precipitation input corresponded to the 1 year, 12 hour design
269 storm (42.2 mm total rainfall, 13.34 m³/s peak flow, and 0.35×10⁶ m³ of runoff).

270 The BMP evaluation represented the proposed retention pond as a storage unit placed
271 immediately upstream of the existing SWSC. Each simulation scenario paired an initial storage
272 condition (0%, 25%, 50%, or 100%) with a specific orifice size to reflect alternative operational
273 strategies. For each scenario, peak flow, total runoff volume, and pollutant loads (TSS, TP, TN,
274 BOD₅) at the downstream monitoring station were extracted and compared against existing
275 condition results. These metrics served to quantify both hydraulic attenuation and pollutant
276 reduction benefits provided by the retention pond.

277 The proposed retention pond is expected to reduce peak flows, improve downstream water
278 quality, and increase the availability of stormwater for municipal or irrigation use. This is
279 consistent with previous BMP evaluations and optimization studies demonstrating that wet
280 detention and retention ponds can simultaneously attenuate peak flows and enhance sediment and
281 nutrient removal (Abduljaleel et al., 2023; Qi et al., 2024; Yang et al., 2023). Subcatchment II(a),
282 which generates most of the runoff due to its higher imperviousness relative to subcatchment II(b),
283 supports the justification for locating the SWSC at this outlet (UCRA, 2013). The retention pond
284 design was based on peak flow and runoff volume estimates derived from the 1 year, 12 hour Type
285 II design storm at 15 minute intervals (Hershfield, 1961; Frederick et al., 1977).

286 Flow regulation is achieved through a combined orifice weir system (Brandes & Barlow, 2012).
287 According to UCRA (2013), pollutant removal performance for TSS, BOD₅, TP, and TN was
288 simulated using removal equations that reflect improved treatment efficiency at hydraulic retention
289 times up to 11 hours. Separate equations were applied to solids related parameters (TSS, BOD₅)
290 and nutrient related parameters (TP, TN), as shown in Eqs. (4~5).

291 Storage Unit:

292 $R = 0.903 + 0.0049 \times HRT$ (for TSS/ BOD₅, for HRT > 1 hour) Eq. 4.

293 $R = 0.511 + 0.00935 \times HRT$ (for TP/TN, for HRT > 1 hour) Eq. 5.

294 Where, R = fraction removal and HRT= hydrologic retention time (hour). For the wet and dry
295 ponds, HRT was greater than 1 hour for the simulations, therefore the equations were focused on
296 removal for HRT > 1 hour.

297 Peak flow, total runoff, pollutant loads, and concentrations were evaluated across all scenarios to
298 assess the effectiveness of the proposed retention pond (Table 3). Simulations were conducted for
299 initial storage volumes of 0%, 25%, 50%, 75%, and 100% to determine how available storage
300 influences hydraulic and water quality performance. As expected, the dry pond condition (0%)
301 provided the greatest reductions in peak flow and pollutant loads due to the maximum available
302 storage. Even under full storage conditions, modest reductions were still observed because
303 simultaneous inflow and outflow increased hydraulic retention time and enhanced pollutant
304 treatment. Overall, the scenarios demonstrated (1) reduced peak flows and associated flood risk

305 mitigation, (2) improved water quality, and (3) increased stormwater availability for supplemental
306 water supply.

307 Table 4 summarizes the combined influence of initial storage volume (0%, 25%, 50%, 75%, and
308 100%) and orifice size (0.5%, 1%, and 2% of the total pond storage) on peak inflow, total runoff
309 volume, and pollutant loadings at the monitoring station. Across all scenarios, peak inflow
310 consistently decreased relative to existing conditions, indicating that the proposed retention pond
311 provides measurable hydraulic attenuation regardless of its initial storage condition. For the dry
312 and 50% initial storage scenarios, the percentage reduction in peak flow was nearly identical across
313 the three orifice sizes, suggesting that available storage volume exerts a stronger influence on peak
314 flow mitigation than the specific orifice diameter when sufficient freeboard is present.

315 Under the full storage condition, however, the 0.5% orifice resulted in a greater reduction in peak
316 flow compared to the 1% and 2% orifices. This is attributed to the extended hydraulic retention
317 time associated with the smaller outlet, which slows the discharge rate and delays the timing of
318 downstream peak flow, even when minimal storage volume is initially available. As expected, total
319 runoff volume was not significantly affected by orifice size in any scenario, because the orifice
320 controls outflow rate rather than volumetric capture. Pollutant loadings (TSS, TP, TN, and BOD₅
321) followed a reduction pattern similar to peak flow, reflecting increased retention time and
322 associated settling and treatment processes within the pond.

323

324 **Summary and Conclusions**

325

326 This study evaluated the impact of a proposed retention pond located downstream of an existing
327 stormwater structural control on both stormwater quantity and quality. The results show that the
328 pond can increase water availability and reduce peak flows as well as pollutant loads such as TSS,
329 TN, TP, and BOD₅.

330 The SWMM model was verified using six stormwater events, yielding MRE values of -0.23 to
331 0.40, R² values of 0.80 to 0.90, and NSE values of 0.59 to 0.92. The impact of the recommended
332 retention pond was then evaluated under different initial storage volumes and three outlet orifice
333 sizes in terms of peak flow, total runoff volume, and pollutant loads. Depending on the initial
334 storage condition, the pond provided reductions of 2.6~3.3% in peak flow, 0.4~40% in total
335 runoff volume, and 41.4~64.3% in pollutant loads. In particular, when the initial storage was full,
336 the 0.5% orifice size yielded slightly greater peak flow reductions than the larger orifices under
337 the 1 year design storm.

338 In conclusion, the simulation results indicate that the recommended retention pond located
339 between the main flow path and the existing stormwater structural control can serve multiple
340 purposes, including peak-flow reduction for flood control, increased water availability for water
341 conservation, and improved water quality as part of urban stormwater management.

342 Despite the effectiveness demonstrated in this study, several limitations should be
343 acknowledged. First, the SWMM calibration and verification were based on six event-based storm
344 observations, which may not fully capture long-term hydrologic variability. Second, the
345 performance of the proposed retention pond was evaluated under assumed initial storage
346 conditions and outlet configurations; actual field operations may differ depending on maintenance
347 frequency, sedimentation, and real time inflow dynamics. Third, pollutant removal efficiency was
348 assessed primarily through hydraulic retention time and not through detailed water quality
349 modeling that includes chemical or biological processes. Lastly, climate variability and future land
350 use changes were not incorporated into the simulations, which may influence long-term BMP
351 performance. These limitations present opportunities for future studies to incorporate continuous
352 simulations, real time operational data, and expanded water quality modeling frameworks.

353 The numerical findings of this study are consistent with results reported in previous BMP and
354 SWMM based assessments. For mid-range initial storage conditions (25–50%), the modeled peak
355 flow reduction of 18~32% falls within the range of 15~35% documented in prior retention pond
356 evaluations. This mid-range comparison is presented to align with literature values; however,
357 across all simulated scenarios - including dry and full storage conditions - the full range of peak
358 flow reductions observed in this study spans from 2.75% to 74%. Similarly, the simulated
359 reductions in runoff volume and the extended hydraulic retention time (up to 11 hours) are
360 comparable to values documented in earlier studies of storage based BMPs in semi-arid

361 watersheds. These consistencies reinforce the validity of the modeling approach and demonstrate
362 that the proposed retention pond performs within or above the efficiency range commonly reported
363 in the literature.

364 The modeling framework developed in this study also provides a basis for future research and
365 real time implementation. Because the SWMM configuration can incorporate continuous rainfall
366 input and real time sensor data, the proposed retention pond design can be adapted for operational
367 decision support during storm events. Future studies may integrate continuous simulations, climate
368 change projections, and automated control strategies (e.g., real time gate or orifice adjustments) to
369 improve hydraulic performance under variable conditions. Furthermore, linking the model with
370 IoT based monitoring networks or data-driven forecasting tools could support real time pond
371 operation, optimize storage availability, and enhance pollutant removal efficiency. These potential
372 extensions demonstrate that the proposed approach is suitable not only for planning level
373 evaluation but also for real time stormwater management applications.

374

375 **Acknowledgement**

376

377 The author would like to acknowledge the contributions of Larry M. Hauck at Texas Institute
378 for Applied Environmental Research. Portions of this work were adapted from Appendix A (Urban
379 Modeling of San Angelo) of the UCRA (2013) technical report and reorganized for academic

380 presentation in this manuscript. This research was supported by the Daegu University Research
381 Grant, 2024.

382

383 **Data Availability Statement**

384

385 The data that support the findings of this study are available from the UCRA. Restrictions apply
386 to the availability of these data, which were used under license for this study.

387

388 **References**

389

390 Abduljaleel Y., Ahiablame L. and Melesse A. (2023), Improving detention ponds for effective
391 stormwater management and water quality enhancement under future climate change: a
392 simulation study using the PCSWMM model, *Scientific Reports*, 13

393 Abi Aad M.P., Suidan M.T. and Shuster W.D. (2010), Modeling techniques of best management
394 practices: Rain barrels and rain gardens using EPA SWMM-5, *Journal of Hydrologic
395 Engineering*, 15(6), 434–443.

396 Alahmady K.K., Stevens K. and Atkinson S. (2013), Effects of hydraulic detention time, water
397 depth, and duration of operation on nitrogen and phosphorus removal in a flow-through

398 duckweed bioremediation system, *Journal of Environmental Engineering*, 139(2), 160–166.

399 Brandes D. and Barlow W.T. (2012), New method for modeling thin-walled orifice flow under
400 partially submerged conditions, *Journal of Irrigation and Drainage Engineering*, 138(10), 924–
401 928.

402 Chang N. (2010), Hydrological connections between low-impact development, watershed best
403 management practices, and sustainable development, *Journal of Hydrologic Engineering*, 15(6),
404 384–385.

405 City of San Angelo (COSA). (2010), The GIS land use/land cover dataset provided electronically
406 by the COSA Drafting and Survey Division.

407 Frederick R.H., Myers V.A. and Auciello E.P. (1977), Five to 60 minute precipitation frequency
408 for the eastern and central United States, Technical Memorandum NWS HYDRO-35, NOAA,
409 National Weather Service, Silver Spring, MD, pp. 1–36.

410 Hershfield D.M. (1961), Rainfall frequency atlas of the United States for durations from 30
411 minutes to 24 hours and return periods from 1 to 100 years, Technical Report 40, U.S. Weather
412 Bureau, U.S. Department of Commerce, Washington, D.C., pp. 1–60.

413 Huber W.C. and Dickinson R.E. (1988), *Storm Water Management Model User's Manual*, Version
414 4, EPA/600/3-88/001, U.S. Environmental Protection Agency, Athens, GA.

415 Landon, M. E., Mitchell, C. E., Taguchi, V. J. and Hunt, W. F. III (2025), Assessing the water
416 quality impact of floating treatment wetlands strategically placed in stormwater retention ponds,

417 *Journal of Environmental Management*, **374**, 124084, <https://doi.org/10.1016/j.jenvman.2025.124084>

419 Nash J.E. and Sutcliffe J.V. (1970), River flow forecasting through conceptual models. Part I – A
420 discussion of principles, *Journal of Hydrology*, **10**(3), 282–290.

421 Park M.H., Ridgeway I.K., Swamikannu X. and Stenstrom M.K. (2010), Evaluation of stormwater
422 BMPs for implementing industrial stormwater permitting strategy, *Water Science and
423 Technology*, **62**(11), 2558–2563.

424 Qi M., Lehmann A. and Huang H. (2024), A SWMM-based evaluation of the impacts of LID and
425 detention basin retrofits on urban flooding, *Urban Water Journal*, **22**(1), 51–65.

426 Rosenzweig B.R., Smith J.A., Baek M.L. and Jaffe P.R. (2011), Monitoring nitrogen loading and
427 retention in an urban stormwater detention pond, *Journal of Environmental Quality*, **40**(2), 598–
428 609.

429 Rossman L.A. (2009), *Storm Water Management Model User's Manual Version 5.0*, EPA/600/R-
430 05/040, Water Supply and Water Resources Division, National Risk Management Research
431 Laboratory, Cincinnati, OH.

432 Sabbagh, M., Browne, D., Pickering, L., Lintern, A. and Winfrey, B. (2025), Urban stormwater
433 bioretention reduces runoff and improves water quality: A global meta-analysis of field studies,
434 *Journal of Hydrology*, **663**, 134163, <https://doi.org/10.1016/j.jhydrol.2025.134163>.

435 Sehrawat, S. and Shekhar, S. (2025), Integrating Low impact development practices with GIS and

436 SWMM for enhanced urban drainage and flood mitigation: A case study of Gurugram, India,

437 *Urban Governance*, 5(2), 240–255, <https://doi.org/10.1016/j.ugj.2025.05.004>.

438 Surendran, R., Pavan Kalyan, B. and Krishnan, S. (2024), Comparative study of SVM and decision

439 tree techniques for predicting hydroponic tomato growth and yield using deep water culture,

440 *Proceedings of the International Conference on Innovation and Intelligence for Informatics,*

441 *Computing, and Technologies (3ICT 2024)*, Sakhir, Bahrain, pp. 705–710, <https://doi.org->

442 /10.1109/3ICT64318.2024.10824383.

443 Tillinghast E.D., Jennings G.D. and D'Arconte P. (2012), Increasing stream geomorphic stability

444 using storm water control measures in a densely urbanized watershed, *Journal of Hydrologic*

445 *Engineering*, 17(2), 1381–1388.

446 Todeschini S., Papiri S. and Ciaponi C. (2012), Performance of stormwater detention tanks for

447 urban drainage systems in northern Italy, *Journal of Environmental Management*, 101, 33–45.

448 United States Environmental Protection Agency (USEPA). (2002), *National Water Quality*

449 *Inventory: 2000 Report*, Office of Water, EPA-841-R-02-001, Washington, DC.

450 Upper Colorado River Authority (UCRA). (1996), North Concho River Urban Runoff/Non-Point

451 Source Abatement Master Plan, Texas Commission on Environmental Quality, Austin, TX.

452 Upper Colorado River Authority (UCRA). (2013), UCRA Storm Water Management Plan for the

453 City of San Angelo: Development of Best Management Practices – Structural and Non-

454 Structural Controls, San Angelo, Texas.

455 Venkatraman, M., Surendran, R., Srinivasulu, S. and Vijayakumar, K. (2024), Water quality
456 prediction and classification using attention-based deep differential RecurFlowNet with logistic
457 giant armadillo optimization, *Global NEST Journal*, **27(1)**, 1–13, <https://doi.org/10.30955-gnj.06799>

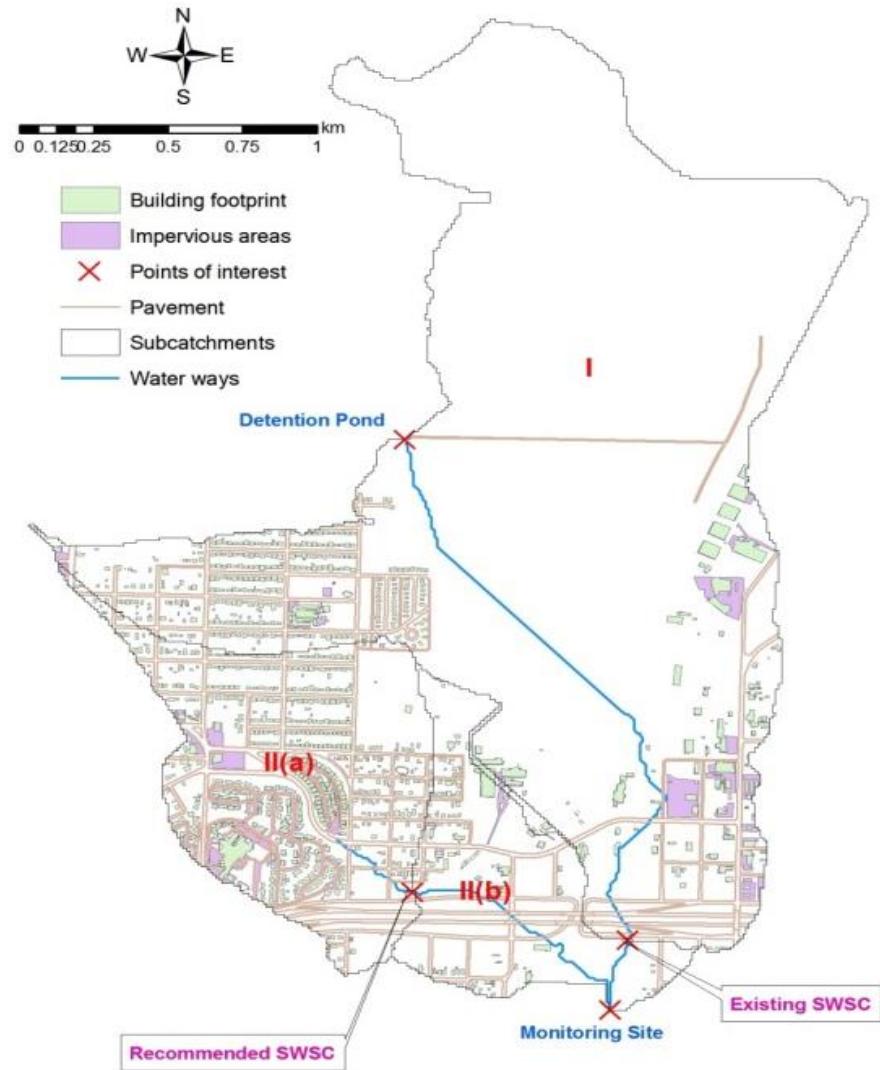
459 Wang L. and Yu J. (2012), Modelling detention basins measured from high-resolution light
460 detection and ranging data, *Hydrological Processes*, **26**(19), 2973–2984.

461 Wong T.H.F. and Geiger W.F. (1997), Adaptation of wastewater surface flow wetland formulae for
462 application in constructed stormwater wetlands, *Ecological Engineering*, **9**(3–4), 187–202.

463 Yang Y., et al. (2023), Surrogate-based multiobjective optimization of detention pond volume in
464 sponge city, *Water*, **15**(15).

465

466 List of Figures


467

468 **Fig. 1.** Case Study Area in the City of San Angelo, Texas

469 **Fig. 2.** Overall Workflow of the Methodology

470 **Fig. 3.** Layout of Retention Pond Relative to Existing SWSC

471

472

473

Fig. 1. Case Study Area in the City of San Angelo, Texas

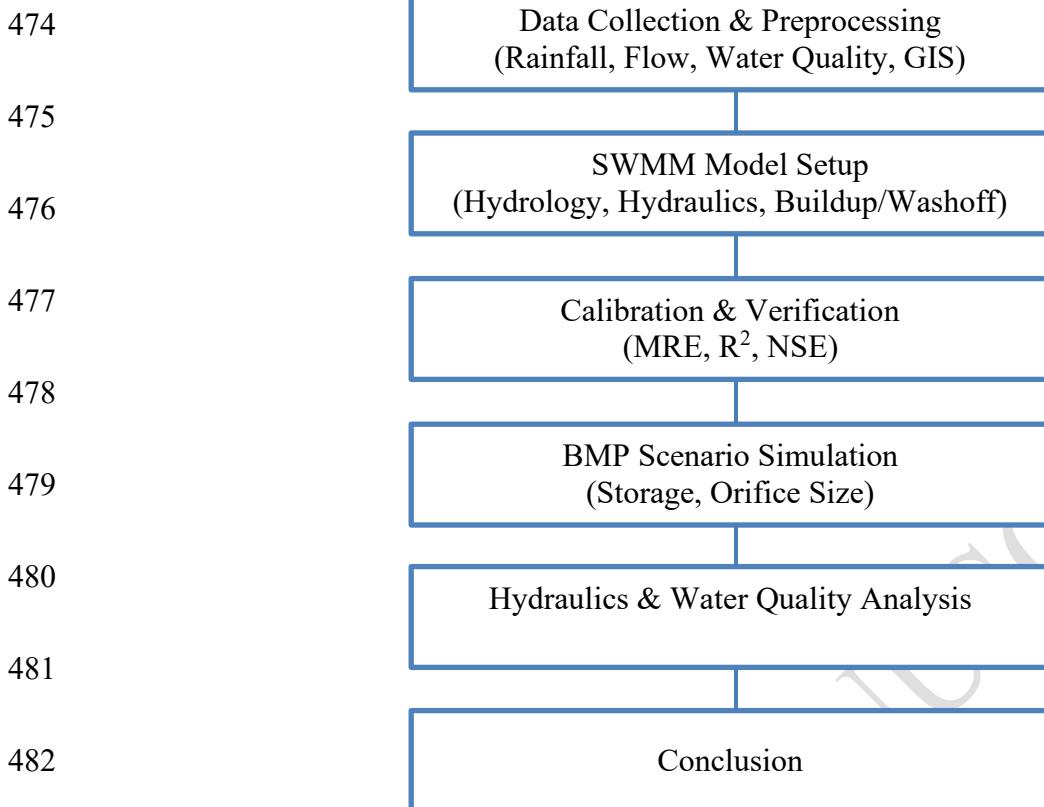


Fig. 2. Overall Workflow of the Methodology

484
485
486
487
488
489
490

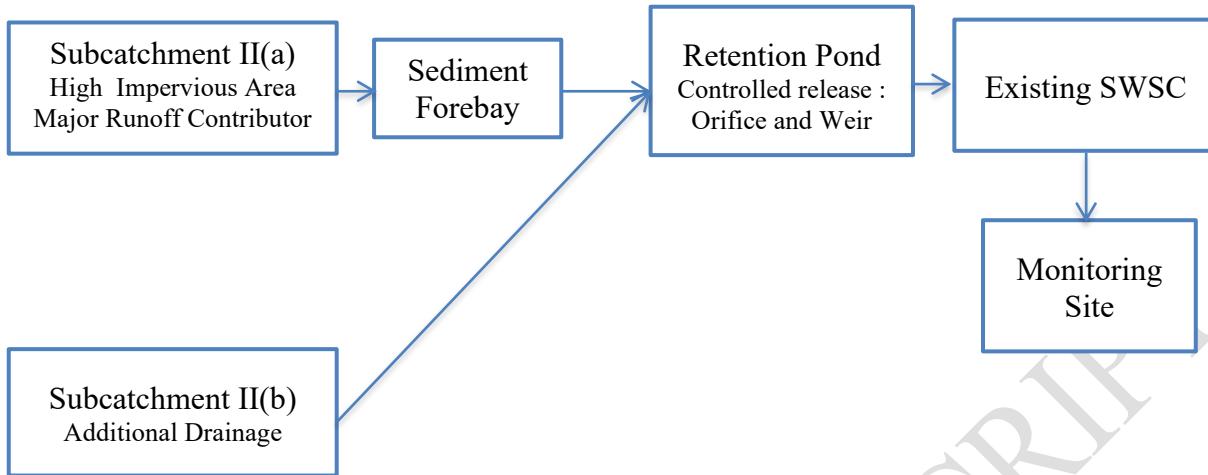


Fig. 3. Layout of Retention Pond Relative to Existing SWSC

491 List of Tables

492

493 **Table 1.** Comparison of Measured and Simulated Runoff Characteristics at a Monitoring Site

494 **Table 2.** Comparison of Measured and Simulated Water Pollutants at a Monitoring Site

495 **Table 3.** Simulation Results for Different Initial Storage Volume Conditions

496 **Table 4.** Simulation Results for Different Orifice Sizes

Table 1 Comparison of Measured and Simulated Runoff Characteristics at a Monitoring Site

Storm Events Date (mm/dd/yyyy)	1		2		3		4		5		6		
	8/24/2010	Measured	6/21/2011	Measured	Simulated	8/13/2011	Measured	Simulated	10/8/2011	Measured	Simulated	1/24/2012	2/16/2012
Total Rainfall (mm)	46.99	-	19.81	-	114.81	-	79.50	-	49.28	-	57.40	-	-
Mean Runoff (m ³ /s)	0.95	1.16	0.47	0.52	2.35	2.79	0.68	0.95	0.36	0.28	0.43	0.28	-
Runoff S.D (m ³ /s)	1.50	1.57	0.66	0.44	4.22	4.92	1.05	1.21	0.48	0.30	0.63	0.49	-
Runoff Median (m ³ /s)	0.15	0.31	0.14	0.35	0.81	0.37	0.15	0.34	0.12	0.16	0.22	0.11	-
Peak Flow (m ³ /s)	5.41	5.56	2.28	1.74	19.33	18.73	5.15	5.55	2.19	1.27	3.27	2.51	-
Total Volume (m ³)	22,271	48,003	10,950	12,284	114,801	139,845	57,994	81,005	44,084	33,943	75,570	50,128	-
MRE	0.22		0.12		0.19		0.40		-0.23		-0.34		-
R ² Value	0.87		0.84		0.90		0.80		0.88		0.90		-
NSE Value	0.76		0.79		0.92		0.59		0.80		0.88		-

Table 2 Comparison of Measured and Simulated Water Pollutants at a Monitoring Site

Storm Events	1		2		3		4		5		6	
Date (mm/dd/yyyy)	8/24/10		6/22/11		8/13/11		10/10/11		1/26/12		2/19/12	
	Measured	Simulated										
<u>Concentration (mg/l)</u>												
TSS	31	31	137	133	163	163	105	102	125	116	69	69
TP	0.38	0.37	0.73	0.71	0.73	0.73	0.36	0.35	0.25	0.23	0.14	0.14
TN	2.39	2.34	4.25	4.14	4.08	4.08	2.23	2.16	2.09	1.94	2.94	2.93
BOD ₅	21.3	21.0	27.1	26.4	9.5	9.5	9.8	9.5	18.7	17.3	7.5	7.5

Table 3 Simulation Results for Different Initial Storage Volume Conditions

Initial Storage Volume Condition	Storm Water Quantity		Storm Water Pollutant Loadings			
	Peak Flow m ³ /s	Total Volume m ³	TSS kg	TP kg	TN kg	BOD ₅ kg
<u>Existing Condition (No Retention Pond)</u>						
No Storage Volume	3.92	12099.2	2039.55	10.02	86.45	592.53
<u>Recommended Condition (Retention Pond, Volume or Load)</u>						
Dry Condition	3.79	7305.9	730.55	4.50	38.86	212.24
25% Full Condition	3.79	8476.5	743.08	4.91	42.34	215.88
50% Full Condition	3.79	9647.1	755.30	5.31	45.81	219.43
75% Full Condition	3.79	10832.4	768.77	5.63	48.58	223.34
Full Condition	3.81	11987.0	785.52	5.74	49.51	228.21
<u>Recommended Condition (Retention Pond, Percentage)</u>						
Dry Condition	3%	40%	64%	55%	55%	64%
25% Full Condition	3%	30%	64%	51%	51%	64%
50% Full Condition	3%	20%	63%	47%	47%	63%
75% Full Condition	3%	10%	62%	44%	44%	62%
Full Condition	2.75%	0.93%	61.49%	42.73%	42.73%	61.49%

Table 4 Simulation Results for Different Orifice Sizes

Orifice Size	Retention Pond with Orifice								
	0.50%			1%			2%		
Storage Volume	Empty(0%)	50%	Full(100%)	Empty(0%)	50%	Full(100%)	Empty(0%)	50%	Full(100%)
Peak Flow	3.3%	3.3%	2.9%	3.3%	3.3%	2.8%	3.3%	3.3%	2.6%
Total Volume	37.6%	20.2%	1.8%	36.7%	18.8%	0.9%	36.3%	18.4%	0.4%
TSS	64.3%	63.4%	62.2%	63.8%	62.7%	61.2%	63.5%	62.3%	60.8%
TP	54.7%	47.8%	43.9%	53.6%	46.2%	42.2%	53.1%	45.4%	41.4%
TN	54.7%	47.8%	43.9%	53.6%	46.2%	42.2%	53.1%	45.4%	41.4%
BOD ₅	64.3%	63.4%	62.2%	63.8%	62.7%	61.2%	63.5%	62.3%	60.8%