

1 **Nanoscale Zero-Valent Iron Efficient for Remediation of Chromium,**
2 **Nickel, and Cadmium-Contaminated Soils Near Oil Refinery Sites**

3 **Graphical abstract**

6
7
8
9
10
11
12

13
14

15

16 **Nanoscale Zero-Valent Iron Efficient for Remediation of Chromium,**
17 **Nickel, and Cadmium-Contaminated Soils Near Oil Refinery Sites**

18 **Shakar Jamal Aweez^{1*}, and Ismaeel Tahir Ahmad²**

19 ¹Department of Scientific Research Centre, Salahaddin University- Erbil, Erbil, Iraq;
20 shakar.aweez@su.edu.krd

21 ²Department of Soil and Water, College of Agriculture, Salahaddin University-Erbil, Erbil,
22 Iraq. ismaeel.ahmad@su.edu.krd

23 *Correspondence: shakar.aweez@su.edu.krd

24 **Abstract**

25 Pollution of soil with heavy metals is a great environmental threat. This investigation soils
26 affected by the refinery discharges of Gwer Road, Erbil, Iraq, focusing on physicochemical
27 properties of soils, baseline contamination, and nanoscale zero-valent iron remediation. soil
28 samples were taken from southern and northern 50m and 200m distances and 30cm depth.
29 Soil texture, pH, and cation exchange capacity influenced the distribution of heavy metals.
30 Chromium (52.85-79.54 mg.kg⁻¹), nickel (41.10-63.42 mg.kg⁻¹), and cadmium (1.41-1.76
31 mg.kg⁻¹) exceeded Environmental Baseline Standards (EBS), indicating refinery-derived
32 pollution. The study evaluated the remediation potential of green-synthesized nanoscale-
33 zero valent iron(nZVI) nanoparticles from lemon peel extract and commercial nZVI.
34 Nanoparticle characterization using field-emission scanning electron microscopy (FESEM),
35 transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques
36 confirmed the nanoparticle size, core-shell shape, and crystallinity. Application of 0.5 g/kg

37 soil provided 12%, 5%, and 6% removal efficiencies for Cr, Ni, and Cd using green nZVI,
38 compared to 10%, 18%, and 10% using commercial nZVI. Although green nZVI removes
39 chromium similarly, it is sustainable, locally sourced, and cost-effective. Remediation
40 efficacy was influenced by soil properties, baseline contamination, and nanoparticle
41 characteristics. This study represents the first application of green and commercial nZVI for
42 the remediation of refinery-affected soil, providing a sustainable approach for mitigating
43 heavy metal pollution and enhancing industrial site management.

44 **Keywords:** Cadmium, Chromium; Heavy metals; Nickel, Nanoscale zero-valent iron, Oil-
45 refinery impacted soil; Remediation

46 1. Introduction

47 Oil is a contemporary necessity for humanity. However, as oil production rises, the oil
48 industry is becoming one of the most environmentally disastrous enterprises, due to oil
49 extraction, refining, distribution, and storage. The oil industry's environmental impacts
50 include substantial atmospheric pollution emissions, woodland loss, the exclusion of
51 significant land areas from economic use, disruption to the geological integrity of aquifers,
52 and the contamination of surfaces and groundwater by oil products. (Strizhenok and Ivanov,
53 2021). Leakage of crude oil and refined products from pipes, storage tanks, and
54 transportation apparatus further contributes to environmental degradation. Soil quality and
55 fertility are affected by leakage of crude oil as well as processed products, causing soil to
56 become contaminated. (Khalefah et al., 2024)

57 Industrial effluents discharges, and refinery byproducts cause the accumulation of heavy
58 metals into the soil and water systems (Francy *et al.*, 2020; Al-Khafaji and Kareem, 2021).
59 Discharges from refineries comprise total petroleum hydrocarbons (TPH) and heavy metals,
60 which include chromium, vanadium, zinc, iron, nickel, and copper. Additional toxic

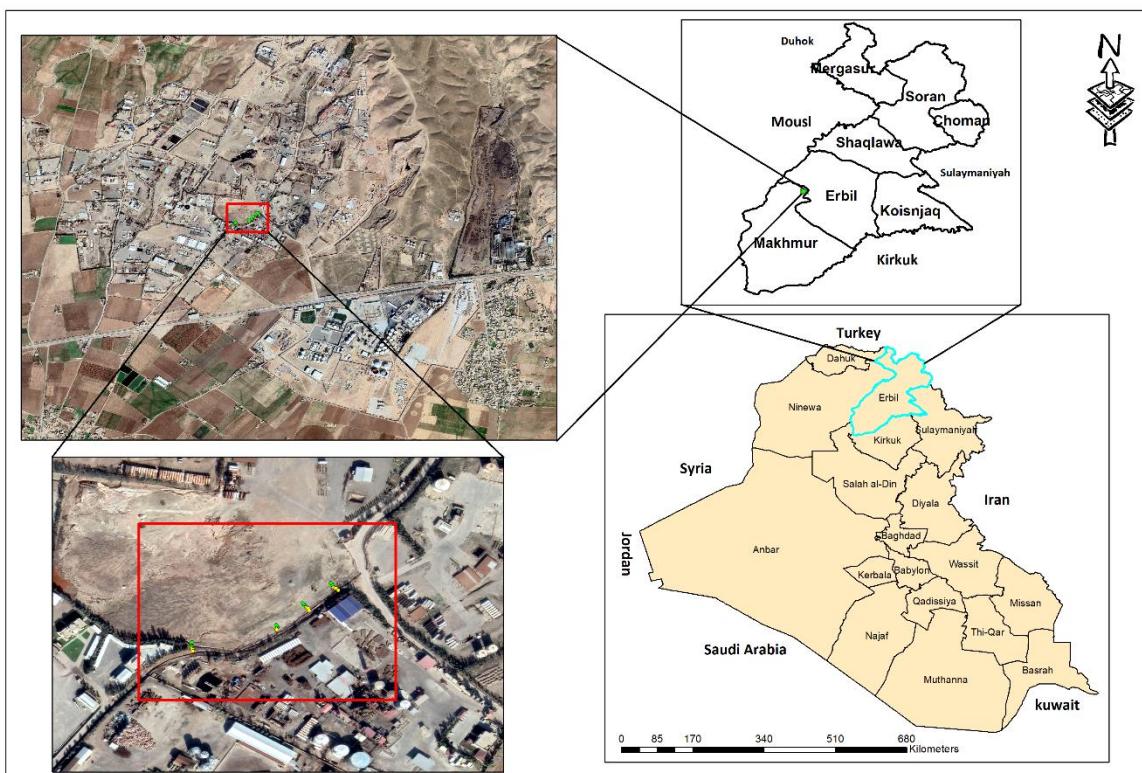
61 pollutants present include oil, grease, phenols, ammonia, sulphides, suspended solids,
62 nitrogen compounds, and cyanides. Heavy metal-contaminated soil is particularly
63 destructive to the soil because it alters physical and chemical properties, and fertility and
64 ecological balance (Mirza and Ahmed, 2023; Kareem and Abdulla, 2023; Xu et al., 2025).
65 The residue of oil refineries contains harmful substances, including lead, cadmium, and
66 mercury, which are important contributors to heavy metal pollution in the environment and
67 neighboring areas. (Samaila et al., 2022)

68 Carbon nanotubes and nanoscale zero-valent iron (nZVI) nanoparticles are commonly used
69 to remediate oil and organic pollutant-contaminated soils. Adsorption and catalytic
70 degradation make them effective. When employed with surfactant foams, nZVI degrades
71 DDT and PCB particularly well. Nanoparticle characteristics, surfactant content, and soil
72 physicochemical qualities all affect metal removal effectiveness and must be improved.(Vu
73 and Mulligan,2023).The nanoscale dimension of these materials results in a large surface
74 area to volume ratio, providing numerous reactive sites that enhance their interaction with
75 environmental contaminants (Aydogan et al., 2022). Nanoparticles are defined as a distinct
76 physical, chemical, and biological property that has a size of 1-100 nm and also comes with
77 a surface charge and quantum effects. These characteristics have led to the fact that
78 nanomaterials have become the most effective and promising agents when it comes to the
79 treatment of heavy metals in polluted soils. (Narkhede et al.,2024). High surface reactivity,
80 many active sites, and eco-friendliness make nZVI useful for immobilizing and removing
81 heavy metals from environmental matrices. (Mousa et al., 2024).

82 Soils surrounding the refinery exhibited localized heavy metal contamination, especially
83 chromium (Cr), nickel (Ni), and cadmium (Cd), exceeding Environmental Baseline
84 Standards (EBS). Contamination patterns varied with distance, direction, and soil texture,
85 highlighting the influence of environmental factors on metal distribution. the contamination

86 variance indicates the role of distributional environmental factors. Despite well-documented
87 refinery-related pollution at this site, no studies have evaluated nanomaterial-based
88 remediation in these soils, creating a critical knowledge gap. This study investigates the
89 remediation efficiency of green-synthesized nanoscale zero-valent iron (nZVI) synthesized
90 using lemon peel extract, which served as a natural reducing and capping agent, compared
91 with commercial nZVI for the removal of Cr, Ni, and Cd from refinery-contaminated soils
92 along Gwer Road, Erbil, Iraq. This study presents a cost-effective and eco-friendly
93 nanomaterial synthesized from plant-derived residues and represents the first site-specific
94 comparative application of green and commercial nZVI in a refinery-affected soil site,
95 providing a sustainable framework for heavy metal remediation and providing both scientific
96 and practical significance for environmental management.

97 **2. Materials and Methods**


98 **2.1 Soil Sampling**

99 Soil samples were collected in April 2024 near oil refineries along Gwer Road, roughly 15
100 kilometers from Erbil city. Samples were taken from two locations and two different
101 distances (0.5 and 1.5 m) with an auger at a depth of 30 cm. This covered area is affected by
102 refinery residues (see Table 1 and Figure 1). The samples were placed in labeled plastic bags
103 and transported to the laboratory for analysis.

104 **Table 1.** GPS reading of the study sites.

105

Site	Latitude N	Longitude E
Site 1(50m)	36° 8'32.01"	43°46'32.84"
Site 1(200m)	36° 8'30.95"	43°46'30.93"
Site2(50m)	36° 8'30.97"	43°46'29.07"
Site2(200m)	36° 8'28.88"	43°46'25.09"

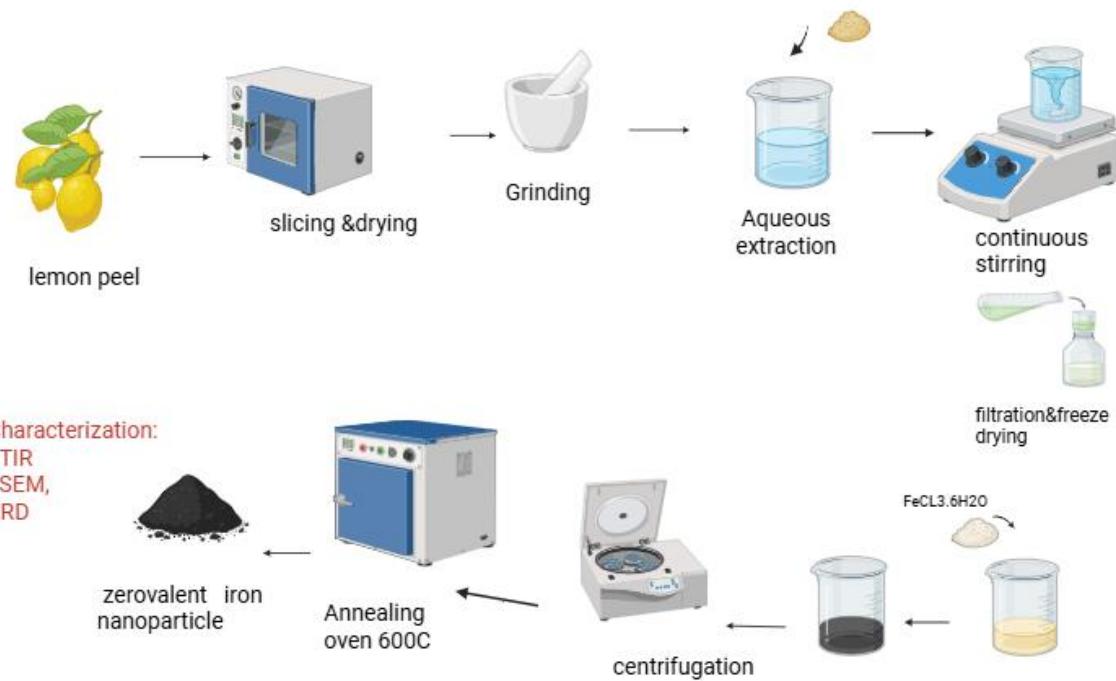
108 **Figure 1.** The geographical location of the study area of polluted soils, as shown from a
 109 satellite image

110 2.2 Soil Characterization

111 The soil samples were air-dried at room temperature for 72 hours, then gently crushed with
 112 a wooden rod, and sieved through a 2 mm mesh to remove any coarse fragments. Soil
 113 physicochemical properties were determined with standard procedures. Soil pH was
 114 measured using a HANNA pH meter (EDGE) in a 1:2.5 soil to water suspension. Organic
 115 matter content was estimated using the Walkley–Black method. Soil particle size distribution
 116 was determined using a hydrometer, and cation exchange capacity was determined using the
 117 ammonium acetate (NH_4OAc) method. Heavy metals (Cr, Ni, Cd) total concentrations in
 118 both treated and untreated soils were determined using X-ray fluorescence (XRF Rigaku
 119 NEX CG). All analyses were performed in triplicate, and to ensure precision and

120 consistency, the quality control included procedural blanks, duplicates, and standard
121 reference materials. (Aweez et al., 2021; Mirza and Ahmed, 2023; Kareem and Abdulla,
122 2023).

123 2.3 Green Zero valent iron nZVI Materials


124 2.3.1 Plant Material and Extract

125 Lemon peel (*Citrus Limonium*) biomass was harvested in Alwa, Erbil city. The samples were
126 rinsed with distilled water, dried in an oven at 70 °C for 48 hours, and crushed to a fine
127 powder. The powder was refined using double-distilled water, dried at 65 °C, and stored at
128 4 °C until required. To obtain the extract, 100 g of the powder was combined with 1000 mL
129 of distilled water. The mixture was boiled for 5 minutes, left to cool, and then filtered three
130 times using Whatman No. 1 paper to obtain a clear aqueous extract the method described by
131 (Madivoli et al., 2019; Sun et al., 2022).

132 2.3.2 Synthesis of Green Zero-Valent Iron Nanoparticles

133 Green nZVI was produced by mixing equal quantities of 0.1 M $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ solution and
134 lemon peel extract, with continuous vortexing for 3 minutes at room temperature. The
135 formation of nZVI was signified by a color transition from yellow to black. The
136 nanoparticles were separated using centrifugation at 6000 rpm, rinsed with a 1:1 ethanol-
137 water solution, and subsequently dried at 60 °C (Madivoli et al., 2019; Sun et al., 2022).

138 Figure 2 shows the synthesis process.

139

140 **Figure 2.** Synthesis of green Zero-Valent iron nanoparticles (nZVI)

141

142 2.3.3 Characterization of nanoscale zero-valent iron (nZVI)

143 The morphology, size, and crystallinity of nZVI were analyzed using FESEM, TEM, and
 144 XRD techniques. FESEM revealed mainly spherical particles with a uniform distribution,
 145 TEM showed the interior structure and nanoscale features, while XRD confirmed a metallic
 146 Fe⁰ core, which is essential for enhanced reactivity (Madivoli *et al.*, 2019; Sun *et al.*, 2022).

147 2.4 Nano-Remediation Experiment

148 To experiment, 100 grams of soil were mixed with either 0.5 grams of green nZVI or
 149 commercial nZVI. Seven milliliters of distilled water were then added to achieve a moisture
 150 content of 7.9%. The mixtures were then incubated at 25 °C for seven days to promote metal
 151 reduction (Felix *et al.*, 2018; Sun *et al.*, 2022; Abdullah and Darwesh, 2023).

152 2.5 Contaminant Removal Rate

153 The percentage removal rate of contamination serves to distinguish the volume of eliminated
154 contaminants by comparing the initial and final heavy metal concentrations in treated soil.
155 (Francy *et al.*, 2020).

156
$$R = (C_i - C_f) / C_i * 100$$

157 Where:

158 R signifies the removal rate (%)
159 C_i defines the original contamination concentration,
160 C_f represents the final contamination concentration.

161 **2.6 Data Analysis**

162 All analyses were performed in triplicate, and results were expressed as mean \pm standard
163 deviation. Statistical comparisons were conducted using one-way ANOVA, and significant
164 differences between means were considered at $p \leq 0.05$. And graph pad Prism is used for
165 graph production. (Karim and Goran,2023; Mirza and Ahmed, 2023)

166 **3. Results**

167 3.1 Physicochemical properties of the soils according to distances (50m and 200m), and
168 directions (south and north) from the oil refinery

169 Table 2 indicates that the physicochemical characteristics and heavy metal concentrations of
170 soils collected at two distances (50 m and 200 m) and in two directions (south and north)
171 relative to the refinery. Soil texture varied with proximity at 50 m, soils were predominantly
172 sandy clay loam (SCL) and clay loam (CL), whereas at 200 m, sandy loam (SL) textures
173 dominated, indicating a gradual increase in coarser fractions with distance from the source
174 of contamination. Soil pH values ranged from 6.25 ± 0.05 to 7.93 ± 0.04 , showing slightly
175 acidic to neutral conditions near the refinery (50 m) and nearly neutral to weakly alkaline
176 conditions farther away (200 m). Northern samples generally exhibited slightly higher pH

177 than southern ones. The cation exchange capacity (CEC) ranged from 20.25 ± 0.35 to 83.23 ± 0.80 cmolc.kg⁻¹ with the highest values recorded in northern soils at 200 m. Lower CEC values in southern soils at 50 m.

180 **Table 2.** Physicochemical properties of the soils according to distances (50m and 200m),
181 and directions (south and north) from the oil refinery (CL: clay loam, SCL: silty clay loam,
182 SL: silty loam)

Soil Characteristics	Sample	Distance	South	North
			point	
Soil texture	50	0.5	SCL	SCL
		1.5	SCL	CL
	200	0.5	SCL	SL
		1.5	SCL	SL
pH	50	0.5	7.13 ± 0.05	7.22 ± 0.03
		1.5	6.25 ± 0.05	7.23 ± 0.02
	200	0.5	7.93 ± 0.04	7.92 ± 0.03
		1.5	7.56 ± 0.05	7.82 ± 0.04
Cation Exchange Capacity (CEC)cmol(c).kg ⁻¹	50	0.5	33.33 ± 0.50	20.33 ± 0.3
		1.5	25.54 ± 0.40	20.25 ± 0.3
	200	0.5	44.65 ± 0.60	60.34 ± 0.7
		1.5	23.07 ± 0.45	83.23 ± 0.8
		1.5	52.85 ± 0.80	54.32 ± 1.2

183

184

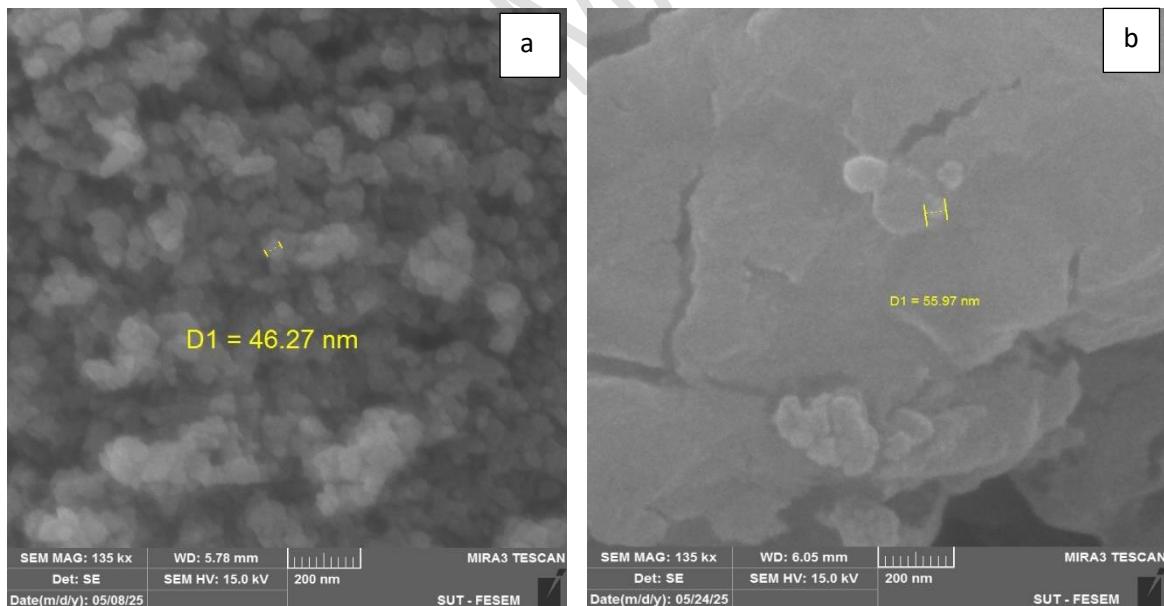
185 3.2 Heavy metal concentration of the soils according to distances (50m and 200m), and
186 directions (south and north) from the oil refinery

187 Table 3 presents the concentrations of chromium (Cr), nickel (Ni), and cadmium (Cd) in
188 soils collected at two distances (50 m and 200 m) and two directions (south and north) from
189 the refinery. Heavy metal concentrations varied spatially, reflecting the influence of both
190 distance and wind dispersion patterns. Chromium (Cr) concentrations ranged from $52.85 \pm$
191 0.80 to $83.23 \pm 3.29 \text{ mg. kg}^{-1}$, nickel (Ni) from 41.10 ± 0.83 to $63.42 \pm 1.65 \text{ mg. kg}^{-1}$, and
192 cadmium (Cd) from 1.41 ± 0.03 to $1.76 \pm 0.03 \text{ mg. kg}^{-1}$. The highest Cr and Ni values were
193 recorded in soils located 50 m from the refinery, particularly at northern sampling points,
194 whereas concentrations declined noticeably at 200 m. In contrast, Cd concentrations showed
195 minimal variation with distance and direction, suggesting a more uniform distribution of this
196 metal within the study area.

197 **Table 3.** Heavy metal Concentration depending on the distances (50m and 200m) and
198 directions (south and north) of the oil refinery

Sample Point	Distance	Direction(m)	Cr($\text{mg} \cdot \text{kg}^{-1}$)	Ni ($\text{mg} \cdot \text{kg}^{-1}$)	Cd($\text{mg} \cdot \text{kg}^{-1}$)
50	0.5	South	79.54 ± 0.37	55.69 ± 1.49	1.73 ± 0.08
50	1.5	North	83.23 ± 3.29	52.33 ± 0.80	1.64 ± 0.02
50	0.5	South	63.45 ± 0.62	41.10 ± 0.83	1.74 ± 0.05
50	1.5	North	78.79 ± 1.29	63.42 ± 1.65	1.76 ± 0.03
200	0.5	South	63.41 ± 1.00	42.95 ± 0.77	1.41 ± 0.03
200	1.5	North	56.12 ± 1.10	46.17 ± 0.11	1.53 ± 0.03
200	0.5	South	52.85 ± 0.80	45.09 ± 0.87	1.47 ± 0.06

200 1.5 North 54.32 ± 1.21 45.51 ± 1.07 1.46 ± 0.02

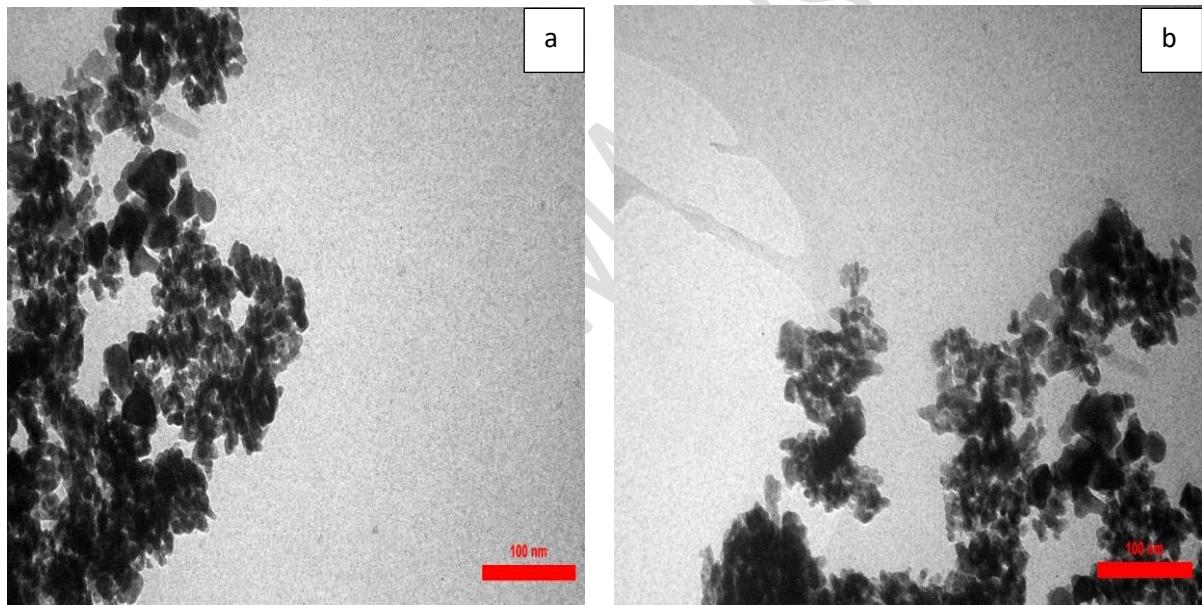

Environmental Bassline Stander (EBS) Hama
& Darwesh (2019)

23 34

1.10

199 3.2 Characterization of nZVI Particles

200 FESEM analysis Figure 3 is a representation of the FESEM images of the nanoparticles.
201 Figure 3(a) shows that the average diameter of particles is about 46.27nm, which shows a
202 uniform dispersion, and consistent shape. Conversely Figure 3(b) shows larger particles with
203 an average size of about 55.97 nm, characterized by a stratified or plate-shaped morphology
204 and smaller nanoparticles and smaller nanoparticle on the surface. The morphologies of the
205 two types of nZVI synthesized in green were mostly spherical and the average diameter of
206 the green nZVI was 26 nm, which indicate the difference in sizes and shapes between the
207 two green and commercial of nanoparticles.

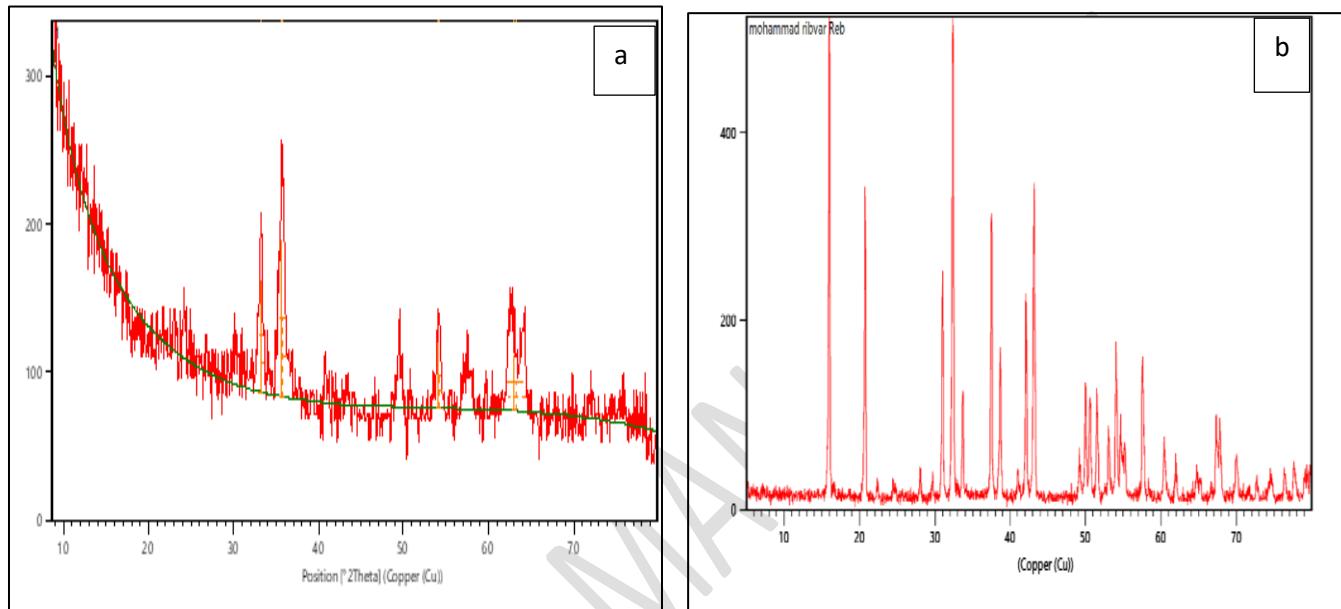


209 **Figure 3.** FESEM images of nanoscale zero valent-iron (nZVI) particles: (a) from green
210 nanoparticle; (b) commercial nanoparticle.

211

212 TEM analysis

213 Figures 4(a) and 4(b) are TEM images that show aggregates of black nanoparticles at
214 different geometries with diverse sizes. The main aggregates of the particles exhibit an
215 average size of approximately 100 nm. It can be observed that there is a considerable degree
216 of aggregation, which might be attributed to the high surface energy of the nanoparticles,
217 leading to clustering of the nanoparticles during the sample preparation. Subsequent analysis
218 by TEM shows that the nanoparticles have densely packed atomic structures, meaning that
219 they are either crystalline or semicrystalline, and they are probably made of metals or metal
220 oxides.


221
222 **Figure 4.** TEM image of nanoscale zero-valent iron (nZVI) particles (a)from green
223 nanoparticles ;(b) Commercial nanoparticles.

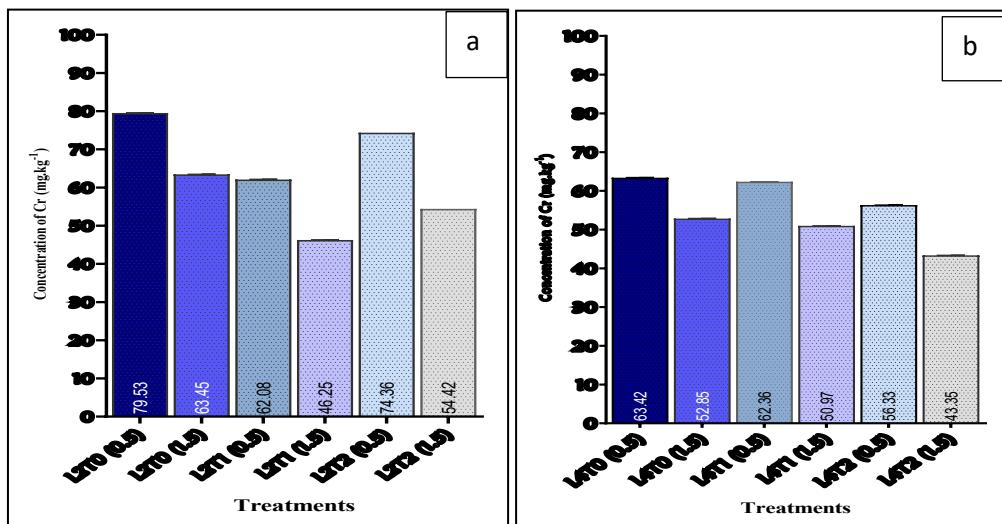
224 XRD analysis

225 Figure 5 illustrates the X-ray diffraction (XRD) patterns of the produced nanoparticles.
226 Figure 5(a) displays a combination of broad and sharp peaks, with a prominent peak at $2\theta =$
227 25° , demonstrating the existence of nanocrystalline domains and indicating a largely
228 amorphous character along with reduced particle size. Additional peaks at about $2\theta = 30^\circ$,

229 35°, and 40° are associated with distinct crystallographic planes. Conversely, Figure 5(b)
230 displays distinct, sharp diffraction peaks at 2θ angles of 15°, 22°, 33°, and 36°, which
231 correspond to the (111), (200), and (220) planes of cubic structures. These observations
232 collectively confirm the crystalline structure of the nanomaterials.

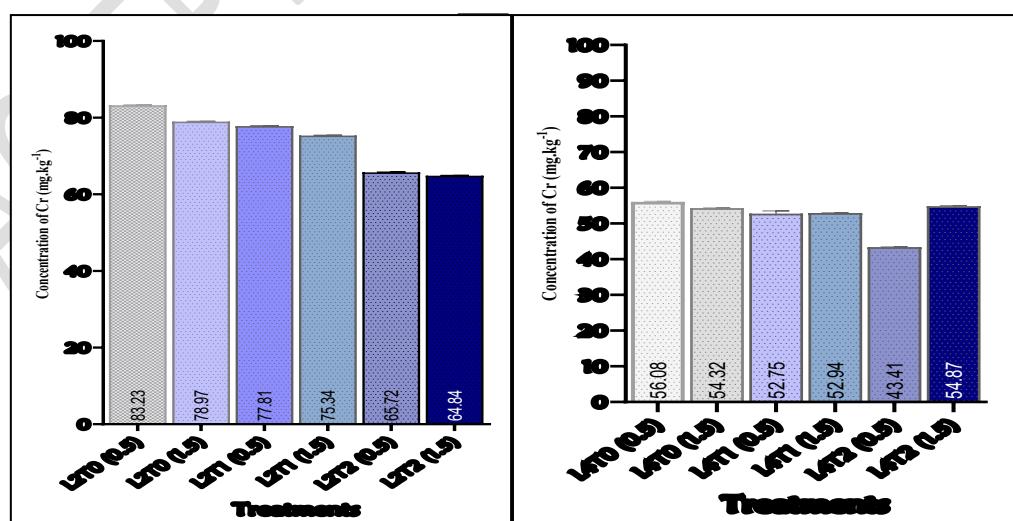
233

234 **Figure 5.**XRD image of nanoscale zero-valent iron(nZVI)particles:(a) green
235 nanoparticles;(b) commercial nanoparticles.


236 3.3 Remediation of polluted soil

237 3.3.1. Remediation of Chromium (Cr)concentration in the crude oil stream's surrounding
238 soils at different distances from two different locations

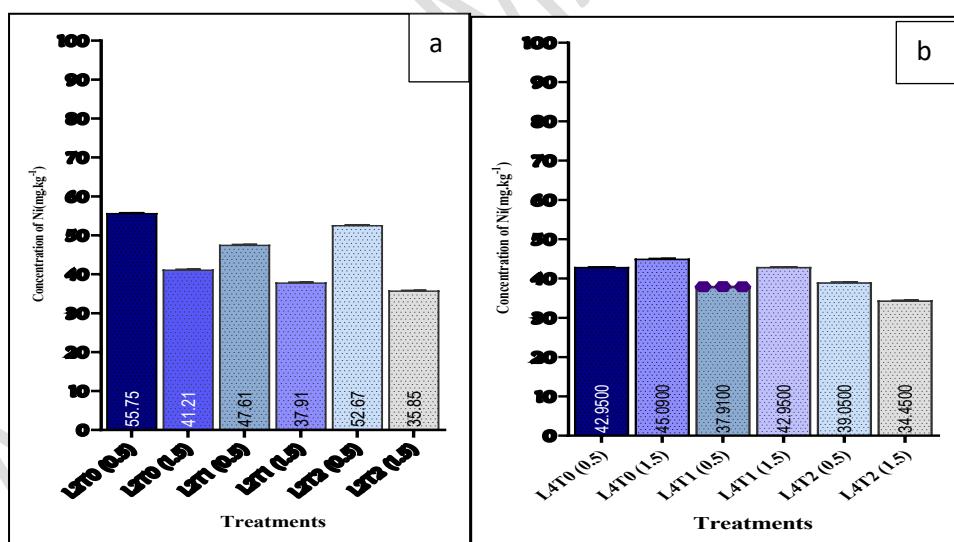
239 Figures 6 (a & b) illustrate the chromium (Cr) contents in soils sampled at varying
240 distances from two areas affected by crude oil. Data analysis demonstrated that the
241 utilization of nZVI significantly ($p \leq 0.05$) effects chromium concentrations in the
242 contaminated soils. The maximum chromium concentrations were measured at 79.53, 64.42,
243 83.23, and 55.8 mg.kg⁻¹ at sample locations S1L1D1T0, S1L2D1T0, S2L1D1T0, and
244 S2L2D1T0, respectively. The minimum concentrations recorded were 46.25, 43.35, 64.49,


245 and 52.92 mg.kg^{-1} at S1L1D2T1, S1L2D2T2, and S2L1D2T2, respectively. These results
246 indicate a consistent north to south variation in Cr reduction subsequent nZVI treatment.

247

255

256 **Figures 6.** (a &b) Remediation of contaminated soil using green and chemically
257 synthesized nZVI particles (dosage: 0.5 g/kg of soil): (a) Cr concentration L2(50m) from
258 source; (b) Cr concentration L4 (200m) from source, south location. distance (0.5), (1.5),
259 T0: without treatment, T1: green nanoparticle treatment, T2: commercial nanoparticle
260 treatment.

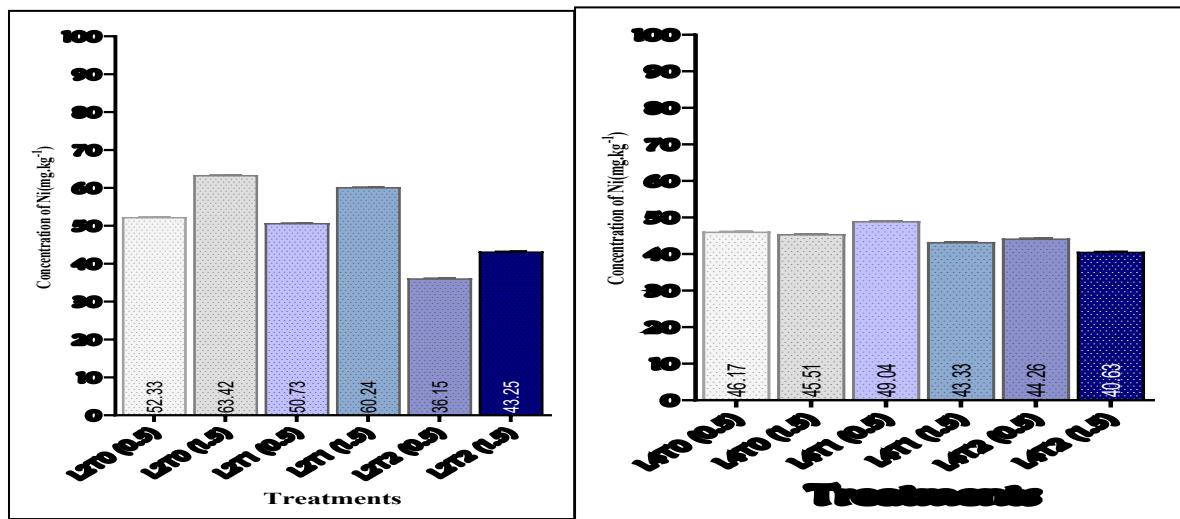


261
262 **Figures 6.** (a &b) Remediation of polluted soil utilized green and commercial synthesize n
263 ZVI particles (dosage:0.5g/kg of soil) :(a) Cr concentration L2 (50m) from source; (b) Cr
264
265
266
267
268
269

270 concentration from source L4 (200m), north location, distance (0.5), (1.5), T0: without
271 treatment, T1: green nanoparticle treatment, T2: commercial nanoparticle treatment.

272 3.3.2. Remediation of Nickel (Ni) content in the crude oil stream's surrounding soils at
273 different distances from two different directions

274 Figures 7 (a & b) illustrate the nickel (Ni) concentrations in soils sampled at varying
275 distances from two crude oil-contaminated sites. Data analysis demonstrated that the
276 utilization of nZVI considerably ($p \leq 0.05$) decreased Ni concentrations in contaminated
277 soils. The maximum nickel concentrations were 55.69, 45.09, 63.42, and 45.87 $\text{mg} \cdot \text{kg}^{-1}$ at
278 sample locations S1L1D1T0, S1L2D2T0, S2L1D2T0, and S2L2D1T0, respectively. The
279 minimum concentrations were 35.84, 34.45, 35.86, and 40.61 $\text{mg} \cdot \text{kg}^{-1}$ at S1L1D2T2,
280 S1L2D2T2, S2L1D1T2, and S2L2D2T1, respectively. These results indicate a consistent
281 north-to-south variation in Ni reduction following nZVI treatment.



282 283 284 285 286 287 288 289 290 **Figures 7 (a&b)** Remediation of contaminated soil utilized Green and commercial
synthesized n ZVI particles (dosage:0.5 g/kg of soil) :(a) Ni concentration L2 (50m) from
source ;(b) Ni concentration L4(200m) from source, south location distance T0: without
treatment, T1: green nanoparticle treatment, T2: commercial nanoparticle treatment.

291

292

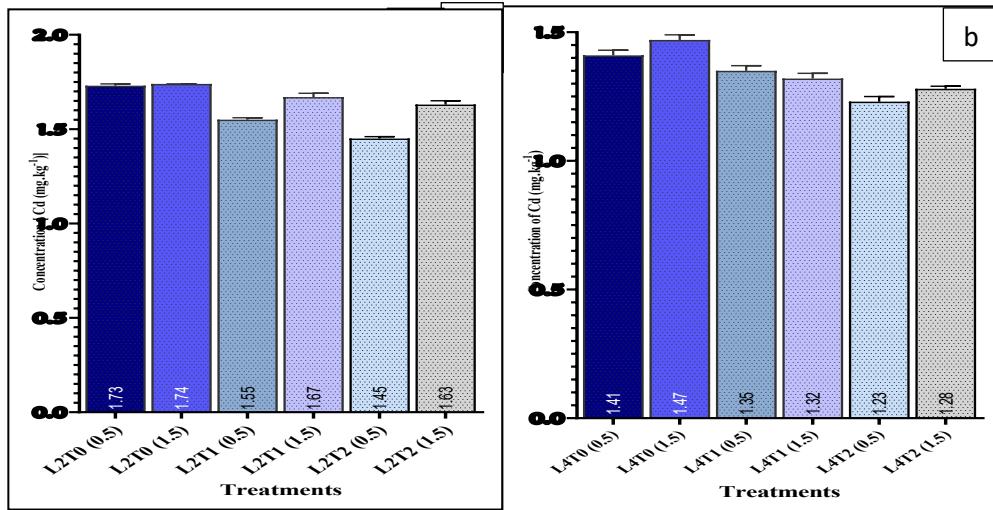
293

301

302 **Figures 7. (a&b)** Remediation of polluted soil utilizes green and commercial synthesized
303 nZVI particles (dosage:0.5 g/kg of soil): (a)Ni concentration L2 (50m) from source ;(b) Ni
304 concentration L4 (200m) from source, north location. Distance (0.5), (1.5), T0: without
305 treatment, T1: green nanoparticles, T2: commercial nanoparticles treatment.

306

307 3.3.3 Remediation of cadmium (Cd) content in the crude oil stream's surrounding soils at
308 different distances from two different directions


309 Figures 8. (a & b) illustrate the cadmium contents in soils sampled at varying distances
310 from two areas affected by crude oil. Data analysis demonstrated that the utilization of nZVI
311 markedly ($p < 0.05$) diminished Cd concentrations in contaminated soils. The maximum Cd
312 concentrations recorded were 1.73, 1.47, 1.76, and 1.53 mg/kg at S1L1D1T0, S1L2D2T0,
313 S2L1D2T0, and S2L2D1T0, respectively. The minimum values recorded were 1.44, 1.23,
314 1.41, and 1.41 mg.kg⁻¹ at S1L1D1T2, S1L2D1T2, S2L1D1T2, and S2L2D2T1, respectively.

315 The results demonstrate a consistent north-south variation in nickel reduction following to
316 nZVI treatment.

317

318

319

320

321 Figures 8. (a&b). Remediation of polluted soil utilize green and commercial synthesized n
322 ZVI particles (dosage:0.5g/kg of soil) :(a) Cd concentration from location L2 (50m); (b) Cd
323 concentration from location L4 (200m) from south location distance (0.5), (1.5), T0: without
324 treatment, T1: green nanoparticle treatment, T2: commercial nanoparticle treatment.

325

326

327

328

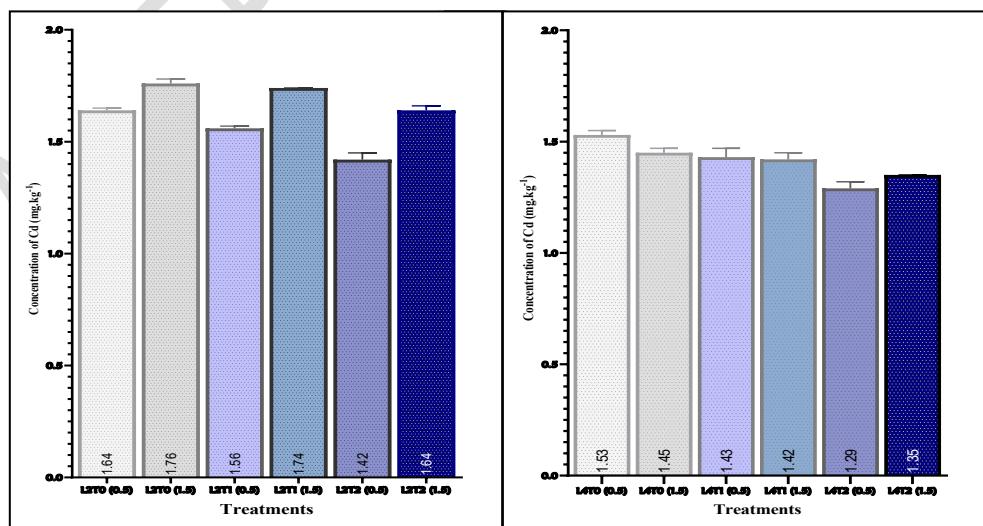
329

330

331

332

333


334

335

336

337

338

339 Figures 8. (a&b). Remediation of polluted soil utilized green and commercial n ZVI particles
340 (dosage:0.5g/kg of soil) :(a) Cd concentration at distance(50m) ;(b) Cd concentration at
341 distance(200m) from the north location, T0: without treatment, T1: green nanoparticle
342 treatment, T2: commercial nanoparticle treatment.

343

344 3.4 Efficiency Removal Rate

345 Table 4 illustrates the efficacy of heavy metal removal utilizing both green and commercial
346 nanoparticles. The higher removal efficiencies recorded were (27%, 21%, 15%, 33%, 10%,
347 and 17%) at sample locations (S1P1D2T1, S2P1D1T2, S1P1D1T1, S2P1D2T1, S1P1D1T1,
348 and S1P1D1T2,) respectively. The lower removal efficiencies recorded were (3%, 4%, 1%,
349 4%, 2%, and 4%) at (S2P2D2T1, S2P2D2T2, S2P2D1T1, S2P2D1T2, S2P1D2T1, and
350 S2P2D2T2) respectively. Green-synthesized nZVI achieved average removal efficiencies of
351 (12%, 5%, and 6%) for Cr, Ni, and Cd, respectively, whereas commercial nZVI obtained
352 (10%, 18%, and 10%) for the same metals. Efficiency removal rate of both green(T1) and
353 commercial (T2) n ZVI treatments significantly reduced concentration of Cr, Ni, and Cd in
354 oil-polluted soils (Table 3). Green nZVI showed similar Cr removal to commercial nZVI,
355 while commercial nZVI achieved higher reductions for Ni and Cd.

356

357 **Table 3.** The efficiency of nZVI particles in removing heavy metals from oil-polluted soils

Removal Efficiency of Nanoparticles (RE)

Location	Sample point	Distances	Cd					
			Cr Green	Cr Commer	Ni Green %	Ni Commer %	Cd Green	Cd Commer
			%	%	%	%	%	%

		P1(50)	D1(0.5)	22%	7 %	6 %	15 %	10 %	17 %	
S1		P2(200)	D2(1.5)	27%	14 %	12 %	8 %	4 %	6 %	
			D1(0.5)	15%	6 %	1 %	12 %	4 %	12 %	
S2		P1(50)	D2(1.5)	8%	9 %	4 %	18 %	10 %	13 %	
			D1(0.5)	7%	21 %	3 %	32 %	5 %	14 %	
		P2(200)	D2(1.5)	5%	18 %	5 %	33 %	2 %	8 %	
			D1(0.5)	6%	4 %	1 %	7 %	6 %	9 %	
			D2(1.5)	3 %	4 %	4 %	16 %	3 %	4 %	
			Average Removal efficiency	12%	10%	5%	18%	6%	10%	

358

359 **4. Discussion**

360 4.1. Physicochemical properties

361 Soils revealed clear spatial variation in relation to the refinery.

362 Soils at 50 m soils shows pH value of 6.25-7.23, which is a sign of slightly acidic to neutral
 363 environment. This could be as a result of petroleum residues which is credible considering
 364 that soil pH is reduced because organic acid is formed as a result of breaking hydrocarbons.

365 In comparison, Soil at 200 m exhibited higher pH values (7.567.93) and these are nearer to
 366 the neutral level and slightly alkaline (7.93) implying a reduced effect by the refinery
 367 emissions. There is great variability in the cation exchange capacity (CEC). The values of

368 CEC of the soils in the south at 50m, 20.25 to 83.23 cmolc.kg⁻¹, are rather low and this is
 369 probably caused by the decomposition of organic matter as well as the effects of
 370 contamination on clay and organic matter. Comparatively, the soils in the north with 200 m
 371 distance from source have a greater CEC of 83.23 cmolc.kg⁻¹ because they have a fine
 372 texture with a smaller pollutant load, which increases exchange capacity because of the low

373 content of clay. The results indicate that the soil texture clay loam (CL) and sandy clay loam
 374 (SCL) at 50 m contained more metals and had less variation in CEC, whereas sandy loam

375 (SL) at 200 m allowed the movement and exchange of ions. These findings agree with those
376 that indicating that contamination of petroleum hydrocarbons decreases the pH level and
377 increases the electrical conductivity of the soil. (Sharma and Vashishtha,2021; Ogbeide and
378 Eriyamremu,2023).

379 4.2. Morphological and Structural Characterization of nZVI

380 FESEM images (Figure 3a, b) demonstrate the differences in particle sizes and morphologies
381 between the green-synthesized and commercial nZVI. The nZVI generated by the 'green
382 synthesis' process and stabilized by phytochemicals from plant extracts predominantly
383 included spherical nanoparticles, with an average size of 26 nm. The biomolecules,
384 polyphenols, and flavonoids were also useful as natural reducing and capping agents, which
385 controlled the nucleation and growth of Fe 0 nanoparticles and prevented aggregation.
386 Commercial nZVI, by contrast, had larger particles, 46 -56 nm, with irregularly layered or
387 plate-like morphologies, which do not imply the presence of organic stabilizers, and imply
388 that growth and aggregation of particles is unimpeded. The FESEM results were confirmed
389 with TEM analysis (Figure 4a, b), which showed black nanoparticle aggregates of irregular
390 shapes with mean cluster sizes of about 100 nm. The size aggregates of dimension were
391 likely to be generated during the drying and preparation of the sample, by surface energy,
392 through magnetic interactions, and by aggregation of smaller particles. The TEM/FESEM
393 analysis quantitative analysis of the images (n=100) showed that the particles had an average
394 size of 25.9 ± 13.0 nm ($D_{50} = 25$ nm), indicating there is reasonable homogeneity in size.
395 The XRD technique has been used to establish the crystalline nature of the two variations of
396 nZVI (Figure 5a, b). The synthesised nZVI exhibited with green methods was relatively
397 broader and had less strong diffraction peaks with a pronounced peak at $2\theta = 25^\circ$, which
398 corresponded to amorphous nanocrystalline domains of smaller crystallite sizes.
399 Supplementary peaks were observed at 30° , 35° , and 40° , indicating partial oxidation to Fe

3 O 4. Commercial nZVI exhibited stronger and pronounced peaks at 15°, 22°, 33°, and 36°, which is consistent with (111), (200), and (220) planes of body-centered cubic Fe⁰, which means that there is an improvement of crystallinity and crystallite size. The crystallite size, determined through the Scherrer equation (K = 0.9, 1.5406 Å), was approximately 22 nm of the green-synthesized nZVI, which is closely related to the TEM analysis, meaning that most of the particles were single-crystalline. While zeta potential and surface area of the BET analysis were not conducted in the present research, the results of the FESEM, TEM, and XRD revealed that the nZVI particles possess a diminutive particle size, a spherical shape, and crystalline Fe⁰ phases, which have been confirmed to increase the heavy-metal adsorption and reduction. Both nZVI commercially available and green-synthesized have surface and structural properties that indicate the aspects of successful remediation, which involve the reduction of Cr, Ni, and Cd in soils that have been polluted. The studies reveal that the synthesis procedure, type of plant extract employed, and the solvent environment have a pronounced effect on the particle size, morphology, and stability, and consequently, they corroborate the current findings. (Boonruam et al., 2020; Abdelfatah et al., 2021; Aydogan et al., 2022; Apriliani, 2022 Elizondo-Villarreal et al., 2022).

416 4.3. Heavy Metal Concentrations

417 The soils located near the refinery exhibited unique but localized patterns of contamination, which were also adjusted by the changes in the spatial distance, directions, and soil textures. 419 The peak concentrations of Cr (52.85–79.54 mg.kg⁻¹) and Ni (41.10–63.42 mg.kg⁻¹) were 420 seen at a distance of 50 m from the refinery, but Cd (1.41–1.76 mg.kg⁻¹) exhibited relatively 421 lower levels. All observed amounts of heavy metals in this study exceeded the 422 Environmental Baseline Standards (EBS) established by Hama and Darwesh (2019) (Cr: 23 423 mg.kg⁻¹, Ni: 34 mg.kg⁻¹, Cd: 1.1 mg.kg⁻¹), indicating significant pollution from refinery

activities. After the treatment, nanoscale zero-valent iron (nZVI) was effective in reducing the level of heavy metals in all sites. The chromium (Cr) concentration decreased to 43.35mg.kg⁻¹. This corresponds to the whole conversion in the hexavalent chromium (Cr⁶⁺) into the trivalent chromium (Cr³⁺) through reactive elemental iron (Fe⁰). Nickel (Ni) and Cadmium (Cd) were reduced to 34.45mg. kg⁻¹ and 1.23mg. kg⁻¹ respectively, likely due to the high adsorption rates to the high surface area of nZVI particles. The great reductions were found near the source of contamination, which showing the effect of the nature of soil, such as the concentration of organic matter, the texture of the soil, and the pH on the nZVI reactivity and the speciation of metals. The reduced Ni and Cd removal efficiency of nZVI green-synthesized compared with commercial nZVI is likely due to the phytochemical capping layer added in the green synthesis. The stability of nanoparticles is increased in this organic coating, but it is also known to decrease the availability of active sites on the surface that can be adsorbed or reduced by the metal. This phytochemical capping coating improvable nanoparticle stability and limits aggregation, but it partially prevents the accessibility of reactive Fe⁰ sites. This leads to the reduction of electron transfer and surface adsorption reactions, especially with divalent metal ions, like Ni²⁺ and Cd²⁺. In contrast, commercially used nZVI does not have organic capping compounds and therefore presents a larger fraction of Fe surfaces and increases its abilities to take part in redox reactions and metal adsorption. The carboxyl, hydroxyl, and carboxyl groups found as part of the plant-derived coating can potentially have a preferential interaction with the species of chromium, thus further decreasing the active sites of Ni²⁺ and Cd²⁺. This selective binding, in combination with steric hindrance caused by the capping layer, lowers the efficiency of the metal removal in systems using green-synthesised nZVI. These findings are consistent with the other research that indicates that green-synthesised nZVI is capable of reducing the levels of Cr and Ni, as well as adsorbing Cd in soils affected by the refinery

449 process, and performance is strongly dependent on soil pH, texture, and the level of organic
450 matter (González-Feijoo et al., 2023). Moreover, variations in plant extract compositions
451 during the synthesis may affect the particle size, the surface area, and surface chemistry, thus
452 changing the selectivity of metal binding (Ali et al., 2023).

453 4.4. Efficiency Removal Rate

454 The redox potential of hexavalent chromium (Cr^{6+}) is very large and thus, its reduction to
455 trivalent chromium (Cr^{3+}) occurs rapidly. In contrast, nickel (II) (Ni^{2+}) and cadmium(II)
456 (Cd^{2+}) are removed largely through the adsorption process since their reduction is unlikely
457 within these conditions, both elements rather react with the iron oxide and hydroxide layers
458 that grow over the surface of nano-particles of zero-valence iron (nZVI) during production.
459 A phytochemical capping layer of a green-synthesized nZVI is based on plant extracts,
460 which increases the colloidal stability but partially covers the Fe^0 sites. This limits direct
461 Fe^0 interactions and electron transfer, reducing the number of available sites for Ni^{2+} and
462 Cd^{2+} adsorption. Commercial nZVI, which possesses little to no surface capping, exposes
463 more Fe^0 sites and, therefore, shows better removal efficiency toward the two metals.
464 Mechanically, the increased removal efficiency of nickel (Ni) compared with cadmium (Cd)
465 may be attributed to the fact that Ni has a smaller ionic radius and is more attracted to the
466 surfaces of iron hydroxide/oxides, which enhances adsorption. The characteristics of soils,
467 such as pH, cation exchange capacity, and the amount of organic matter, also promote Ni
468 binding more than Cd, therefore, thus impacting the differences in the removal efficiency.
469 These findings are consistent with the recent studies that demonstrate green synthetic
470 nanoparticles often show reduced removal of Ni and Cd than chemically synthesized zero-
471 valent iron nanoparticles (nZVI), which is mostly explained by the different surface coating
472 and reactivity (Abdullah and Darwesh, 2023; Francy et al., 2020)

473

474 **5. Conclusion**

475 • The soils near the refinery contained high levels of contamination of chromium
476 ($52.8579.54 \text{ mg.kg}^{-1}$), nickel ($41.1063 \text{ mg.kg}^{-1}$), and cadmium ($1.41-1.76 \text{ mg.kg}^{-1}$), all of which exceed the Environmental Basic Standards (EBS). The extent of
477 contamination differed depending on the distance to the refinery, the soil texture,
478 and the direction of sampling.

479

480 • Both green-synthesized and commercially obtained nanoscale zero-valent iron
481 (nZVI) were effective in lowering concentrations of heavy metals in the
482 contaminated soil.

483 • Green-synthesized nZVI exhibited comparable chromium removal efficiency to
484 commercial nZVI, while reducing 12% of chromium, a nickel removal efficiency of
485 5%, and a cadmium removal efficiency of 6%.

486 • Commercial nZVI eliminated 10 % chromium, 18 % nickel, and 10 % cadmium,
487 and it has better capacity with nickel and cadmium due to the presence of a larger
488 number of exposed Fe^0 reacting sites.

489 • A more sustainable and economical solution is provided with nZVI that is green-
490 synthesized by utilizing plant-based materials that naturally possess stabilizing
491 qualities, whereas the particles are small, morphologically spherical, and contain
492 large Fe^0 cores, which are all essential to enable high reactivity.

493 • Soil characteristics, especially the soil texture, pH, and organic matter, are also very
494 critical in the nanoparticle performance; therefore, site-specific tests in remediation
495 processes are essential.

496

497

498 **Future work**

499 • For incubation, consider a duration of four weeks and evaluate is to be taken
500 where doses greater than (0.5 g kg⁻¹ of the soil) will be measured. The
501 experiments should be done in the field in varying soil moisture and
502 atmospheric conditions.

503 • To enable elimination of the heavy metal concentrations, the characterization
504 of the surfaces of the nanoparticles, such as determining the zeta potential
505 and surface area through the BET, is considered necessary to explain their
506 stability, surface charge, and surface area.

507 • To improve the stability, reactivity, and scalability of green zero-valent iron
508 nanoparticles, alternative plant extracts such as *Punica granatum* and organic
509 amendments are to be used.

510

511 **Acknowledgments:** I would like to express my gratitude to my supervisor, Professor
512 Ismail Ahmad Tahir, for his invaluable direction, guidance, and thorough supervision
513 during the research period. I am also grateful for the technical support and supply of
514 necessary laboratory facilities to Salahaddin University -Erbil, Erbil, Iraq.

515 **Abbreviations:**

516	Zero valent Iron Nanoparticle	nZVI
517	Transmission Electron Microscope	TEM
518	Field Emission Scanning Electron Microscopy	FESEM
519	X-ray Diffraction	XRD
520	Heavy Metals	HMs
521	Removal efficiency	RE

522 Soil, Point, Distance, Treatment SPDT

523 **Author Contributions:** Shakar Jamal Aweez is the conceptual and design author of the

524 study, the performer of the experimental processes, the data analysis, and the drafting author

525 of the original manuscript. Ismaeel Tahir Ahmad monitored and supervised the author and

526 further participated in the evaluation and improvement of the study.

527 **Financing:** This research was not externally financed.

528 **Data Availability Statement:** The datasets created and processed in the present study can
529 be provided by the respective author in accordance with a reasonable request.

530 **Conflicts of Interest:** The authors declare no conflicts of interest.

531 **Ethical approval:** This study was purely laboratory-based and involved the use of green
532 and commercial nanoparticles to remediate heavy metal-contaminated soil (oil) and did not
533 involve any human or live animal subjects.

534 References

535 Abdullah, Z. & Darwesh, D. A. (2023). Application of nanotechnology for remediation drill
536 cutting soil. *Zanco Journal of Pure and Applied Sciences*, **35**, 121-128.

537 Abdelfatah, A.M., Fawzy, M., Eltaweil, A.S. & El-Khouly, M.E. (2021). Green synthesis of
538 nano-zero-valent iron using *Ricinus communis* seeds extract: Characterization and
539 application in the treatment of methylene blue-polluted water. *ACS Omega*, **6**(39), 25397–
540 25411.

541 AL-Khafaji, B.Y., Kareem, N.Q. (2021). Impact of oil waste discharge from Al-Nassiriya
542 oil refinery upon physical-chemical properties and heavy elements content of vicinity soil.
543 *Univ. Thi-Qar J. Sci.* **8**(2), 11-15. <https://doi.org/10.32792/utq/utjsci.v8i2.806>

544 Al-Obaidy, A.H.M.J. & Shaia, H. (2019). Assessment of oil-polluted soil properties in Thi-
545 Qar Governorate, Iraq. *J. Univ. ThiQar Sci.*, **5**(2), 23–31.

546 Ali, S., Zahid, A. & Shahid, S.T. (2023). Green engineering of iron and iron oxides by
547 different plant extracts. In: *Iron Ores and Iron Oxides – New Perspectives*. In tech Open

548 Apriliani, N. (2022). Green synthesis of nanoscale zero-valent iron and its activity as an
549 adsorbent for Ni (II) and Cr (VI). *Chemistry and Materials*, **1**, 71-76

550 Aweez, S. J., Darwesh, D. and Othman, B. (2021). Application of some single and integrated
551 index equation to assess heavy metal in different soils in Erbil Governorate. *Iraq J. Agric.
552 Sci.*, **52**, 868–875

553 Aydogan, T., Dumanlı, F. T. Ş. & Derun, E. M. (2022). Effect of lemon peel extract
554 concentration on nano-scale Fe/Fe₃O₄ synthesis. *Politeknik Dergisi*, **25**, 1423-1427.

555 Boonruam, P., Soisuwan, S., Wattanachai, P., Morillas, H. & Upasen, S. (2020). Solvent
556 Effect on Zero-Valent Iron Nanoparticles (nZVI) Preparation and Its Thermal Oxidation
557 Characteristic. *ASEAN Engineering Journal*, **10**.

558 Elizondo-Villarreal, N., Verástegui-Domínguez, L., Rodríguez-Batista, R., Gándara-
559 Martínez, E., Alcorta-García, A., Martínez-Delgado, D., Rodríguez-Castellanos, E. A.,
560 Vázquez-Rodríguez, F. & Gómez-Rodríguez, C. (2022). Green synthesis of magnetic
561 nanoparticles of iron oxide using aqueous extracts of lemon peel waste and its application in
562 anti-corrosive coatings. *Materials*, **15**, 8328.

563 Felix, O., Nwaogazie, I. L., Akaranta, O. & Abu, G. O. (2018). Removal of heavy metals in
564 spent synthetic-based drilling mud using nano zero-valent iron (nZVI). *J Sci Res Rep*, **1**-11.

565 Francy, N., Shanthakumar, S., Chiampo, F., & Sekhar, Y. R. (2020). Remediation of lead
566 and nickel contaminated soil using nanoscale zero-valent iron (nZVI) particles synthesized
567 using green leaves: First results. *Processes*, **8**(11), 1453. <https://doi.org/10.3390/pr8111453>

568 González-Feijoo, R., Rodríguez-Seijo, A., Fernández-Calviño, D., Arias-Estevez, M. &
569 Arenas-Lago, D. (2023). Use of three different nanoparticles to reduce Cd availability in
570 soils: effects on germination and early growth of Sinapis alba L. *Plants*, **12**, 801.

571 Hama,R.H., and Darwesh,D.A.(2019).Heavy metals evaluation in soil of agricultural field
572 around a pond of gas plant in the kurdistan Region of iraq.ZANCO Journal of Pure and
573 Applied Science,**31**(5),28-35.

574 Kareem, K. K. H. & Abdulla, S. S. (2023). Determination of heavy metals and total
575 petroleum hydrocarbons in soil samples and plant leaves around oil refineries located on
576 erbil-gwer road. *Science Journal of University of Zakho*, **11**, 492-498.

577 Khalefah O., Omran A., Al-Waily M. (2024). An investigation on the environmental impact
578 of petroleum refinery effluent on soil pollution. *Int. J. Environ. Impacts*, **7**(1), 45-58.

579 Madivoli, E. S., Kareru, P. G., Maina, E. G., Nyabola, A. O., Wanakai, S. I. & Nyang'au, J.
580 O. (2019). Biosynthesis of iron nanoparticles using *Ageratum conyzoides* extracts, their
581 antimicrobial and photocatalytic activity. *SN Applied Sciences*, **1**, 1-11.

582 Mirza, D. K. & Ahmed, I. T. (2023). Impact of crude oil discharge fromoil refineries near
583 gwer road of erbil city on soil physico-chemical Properties and Metal Emancipations.
584 *ZANCO Journal of Pure and Applied Sciences*, **35**, 78-87.

585 Mousa, M.A., AL-Farraj, A.S.F., AL-Wabel, M.I., Ibrahim, Usman, ARA., AL-Swadi, H.A.,
586 Ahmad, M., Rafique, M.I.(2024).The influence of nZVI composites as immobilizing agents
587 on the bioavailability of heavy metals and plant growth in mining-contaminated soil.Global
588 NEST journal,**26**(2),1-12

589 Narkhede, S., Parkhey, P., Dadsena, A., Singhai, A., Phillips, E., Kolla, V. & Sahu, R.(2024).
590 Green Synthesis of Silver Nanoparticles for Arsenic (III) Removal from Contaminated
591 Water.

592 Ogbeide, G.E. & Eriyamremu, G.E. (2023). Physicochemical and microbial alterations in
593 crude oil-contaminated soil samples. *Dutse Journal of Pure and Applied Sciences*, **9**(2a),
594 281–289. <https://doi.org/10.4314/dujopas.v9i2a.28>

595 Samaila B., Kalgo Z., Maidamma B. (2023). Exposure to heavy metals in oil and gas wastes:
596 A systematic review on health hazards assessment and mitigation in Nigeria." *Adv. Res. Med.*
597 *Health Sci.* **1**(1):22-32

598 Sappa, G., Barbieri, M., Viotti, P., Tatti, F. & Andrei, F. (2022). Assessment of zerovalent
599 iron nanoparticle (nZVI) efficiency for remediation of arsenic-contaminated groundwater:
600 two laboratory experiments. *Water*, **14**, 3261.

601 Strizhenok, A. V. & Ivanov, A. V. (2021). Monitoring of air pollution in the area affected
602 by the storage of primary oil refining waste. *Journal of Ecological Engineering*, **22**, 60-67.

603 Sun, J., Luo, Y., Ye, J., Li, C. & Shi, J. (2022). Chromium distribution, leachability, and
604 speciation in a chrome plating site. *Processes*, **10**, 142.

605 Vu, K. A. and Mulligan, C. N. (2023). An overview of the treatment of oil pollutants in soil
606 using synthetic and biological surfactant foam and nanoparticles. *Int. J. Mol. Sci.*, **24**, 1916.
607 <https://doi.org/10.3390/ijms24031916>

608 Xu, X., Ren, J., Wang, N., Huiling, D. and Zeng, M. (2025). Study on the remediation effect
609 of biochar on heavy metals in coal gangue-contaminated soil. *Global NEST J.*, **27**(9).
610 <https://doi.org/10.30955/gnj.07696>