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Abstract

Tobacco (Nicotiana tabacum L.) is severely affected by soil-borne pathogens such as
Phytophthora nicotianae and Fusarium oxysporum f. sp. nicotianae, causing major yield
losses. Fungicide resistance and restrictions on synthetic pesticides necessitate eco-friendly
alternatives. Plant extracts rich in compounds such as curcumin, allicin, and thymol exhibit
antifungal and plant defense-inducing activity but face challenges of instability and
variable field performance. Recent advances in nanotechnology, including chitosan- and
lipid-based carriers, improve stability, bioavailability, and targeted delivery, while
synergistic use with biocontrol agents (7richoderma, Pseudomonas) enhances disease
suppression. Despite these developments, regulatory hurdles, cost, and low farmer
adoption limit large-scale application. This review highlights the potential of nano-
formulated plant extracts and integrated biocontrol strategies for sustainable management
of tobacco diseases and emphasizes the need for standardized protocols, farmer education,
and supportive policies to enable commercialization. Integrating biotechnology and

nanotechnology offers a promising path for long-term crop protection.

Keywords: Phytophthora nicotianae; Fusarium oxysporum; botanical fungicides; nano-

encapsulation; sustainable agriculture

1. Introduction

Tobacco (Nicotiana tabacum L.) is a commercially significant crop cultivated widely across many
regions of the world, and is valued mostly for its financial returns (Santos et al., 2025). However
the production of N. tabacum meet major threats from soil-borne diseases, including Black Shank

and Fusarium Wilt (Ping sun et al., 2025). According to (Gai & Wang, 2024), these soil borne
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diseases not only affect the leaf quality but also reduce the overall yields leading to considerable
economic losses for growers (Gai & Wang, 2024). In the past, chemical insecticides and soil
fumigation have been key components of the control of these diseases, but these methods. There
has been some degree of control thanks to these techniques, the limitations of traditional methods
have been brought to light by increased environmental concerns, the advent of pesticide-resistant
disease strains, and customer demand for tobacco products without residue (Abdullah & Zahoor,
2023). In light of these challenges, there has been a growing interest in sustainable,
environmentally friendly disease management strategies. Among these, the use of plant extracts
has emerged as a promising alternative due to their bioactive properties, low environmental

persistence, and biodegradability.

Black shank is still one of the most harmful tobacco diseases, and it is brought on by the oomycete
pathogen Phytophthora nicotianae Breda de Haan (Cochran et al., 2024). Black lesions on the
stems, drooping of the leaves, and eventually the collapse of the entire plant are the usual
symptoms of the diseases (Han et al., 2024). The disease is particularly challenging to eradicate
because P. nicotianae prefers warm, wet soil conditions and develops hardy oospores that can
remain for long periods of time in the soil. Despite the use of cultural measures like crop rotation
and the adoption of resistant cultivars, they have only partially succeeded, particularly in
environments that are conductive to the development of disease (Pandey et al., 2025). Likewise,
tobacco growers face a serious threat from Fusarium Wilt, which is brought on by Fusarium
oxysporum f. sp. nicotianae (Xie et al., 2024). The symptoms of this disease including, vascular
discoloration, leaf yellowing, wilting, and ultimately plant death (Vasi¢ et al., 2025;Lucas, 1975).
The Fusarium pathogen, like Black Shank, is showed remarkably resilient to environmental

changes. It may live for years in plant debris and soil, and its ability to infect a huge variety of
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plant hosts makes management attempts even more challenging (Naqvi et al., 2025). The efficacy
of chemical control methods against Fusarium Wilt has only been average, and the development

of strains resistant to fungicides makes controlling the disease more difficult (Fei et al., 2025).

Traditional chemical control methods have a number of drawbacks, even with their track record
of efficacy (Akbar et al., 2024a; Akbar & Khan, 2021). Overuse of chemicals like metalaxyl,
mefenoxam, and chloroneb has resulted in the selection of resistant disease strains, making
treatments less and less effective over time (Akbar et al., 2024b) (Lucas et al., 2015). Furthermore,
the pollution of the environment brought on by the application of pesticides has emerged as a major
worldwide issue. Pesticide residues frequently find their way into water and soil systems, where
they harmfully impact organisms that are not their intended targets and contribute to long-term
ecological imbalances (Ali et al., 2021). Many countries are enforcing stricter laws for the use of
pesticides in agricultural products, especially those intended for export markets, which restricts
the variety of chemicals that growers can choose from (Sandeep et al., 2024). Last but not least,
smallholder and resource-constrained farmers frequently cannot afford the high costs involved in
the development, registration, and use of novel chemical fungicides (Khoza et al., 2025). These
complex drawbacks highlight the pressing need for sustainable, alternative approaches to disease

management that are safe for the environment.

Plant extracts are becoming more and more popular as a potential remedy for the issues posed by
chemical pesticides (Akbar et al., 2022) . Several secondary metabolites, including phenolics,
alkaloids, flavonoids, terpenoids, and essential oils, are produced by plants and many of them have
strong antibacterial and antifungal qualities (Manzoor et al., 2025). Plant extracts, in contrast to
synthetic fungicides, frequently contain several modes of action, which greatly minimize the

possibility that diseases would become resistant (lawal et al., 2025). The antifungal effectiveness
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of plant extracts against a variety of phytopathogens has been shown in several reserch. For
example, extracts from turmeric (Curcuma longa), ginger (Zingiber officinale), garlic (Allium
sativum), and neem (Azadirachta indica) have exhibited potent inhibitory effects on soil-borne
fungus (Ali et al., 2025; Kim et al., 2024; Cao et al., 2024; Kapooria, 2024). Usually, these extracts
cause spore germination inhibition, membrane integrity degradation, and disruption of fungal cell
wall formation, which results in pathogen death (Zhang et al., 2024). Compared to traditional
chemical fungicides, plant extracts have a various numbers of advantages. First of all, they
decompose quickly in the environment without leaving behind harmful residues because they are
biodegradable (Akbar et al., 2024). Secondly, it is in general accepted that plant-based pesticides
are safer for non-target microorganism, humans, and other animals. This safety profile is in line
with customer desires for agricultural goods that are residue-free and organic. Thirdly, integrated
pest management (IPM) techniques are very compatible with plant extracts. Their application can
be integrated with biological, mechanical, and cultural control techniques to produce
comprehensive and long-lasting disease management programs. Given these qualities, there is
increasing hope regarding the potential of plant extracts to manage tobacco disease in the future,
especially in the fight against soil-borne diseases like F. oxysporum and P. nicotianae.

The results of previous research showed that the application of plant extracts against Fusarium
Wilt and Black Shank infections have been promising. Both in laboratory and greenhouse tests,
for example, extracts from Azadirachta indica, Ocimum sanctum, M. micrantha, Senna alata,
Datura metel, and Allium sativum have been found to considerably lesser disease incidence (Haile,
2025; Rifnas, 2025). Plant extracts may be a useful part of integrated disease management,
according to these studies. However, several knowledge gaps remain in spite of the encouraging

results. The majority of research to date has been carried out in carefully regulated lab settings,
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and field applications are still difficult to move to. The efficacy of plant extracts in field conditions
can be strongly impacted by variables like pathogen variety, environmental variability, and host
plant reactions.

Moreover, there is a pressing need to better understand the specific modes of action of plant-
derived compounds against P. nicotianae and F. oxysporum. Although broad mechanisms like
membrane disruption have been suggested, there aren't enough in-depth molecular research.
Standardizing extraction techniques is another important challenge. Variability in efficacy is
frequently caused by variations in the plant components utilized, solvent systems, extraction
methods, and quantities of active ingredients (Sharma et al., 2025). The commercialization of bio
pesticides based on plant extracts is hampered by this lack of standardization. Furthermore, not
enough research has been done on the possible phytotoxic effects of certain plant extracts on
tobacco plants. For plant extracts to be successfully embraced by farmers, it is imperative that they
do not adversely affect plant growth or production. Lastly, to optimize the effectiveness of plant
extracts in actual agricultural contexts, practical elements of field application, such as the creation
of stable formulations, efficient delivery systems, and suitable treatment schedules, must be

methodically addressed.

A thorough analysis of the body of research on the application of plant extracts to the control of
Fusarium Wilt and Black Shank in tobacco is urgently needed in light of these factors. A review
of this kind can synthesize existing knowledge, pinpoint important research gaps, and offer tactical
guidance for upcoming studies. Hence, the goals of this review are to: (1) summarize the major
findings about the use of plant extracts against Fusarium Wilt and Black Shank of tobacco, (2)
examine the mechanisms of action behind the antifungal activities of plant extracts, (3) discuss

about the difficulties and restrictions related to their practical application, and (4) determine the
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future research directions required for the creation of efficient plant extract-based disease
management strategies.. Through this comprehensive synthesis, we aim to contribute valuable
insights into the promising but underutilized domain of plant-based disease management strategies
for tobacco. By highlighting the potential and limitations of plant extracts, this review aspires to
support the broader goal of promoting sustainable agricultural practices that are both

environmentally sound and economically viable.

2. Major Diseases of Tobacco: Black Shank and Fusarium Wilt

2.1 Black Shank (Caused byPhytophthora nicotianae)

Black Shank of Tobacco

One of the most significant and dangerous diseases affecting tobacco (Nicotiana tabacum L.)
plants is black shank (Pandey, 2023). It is brought on by the fungus Phytophthora parasitica var.
Nicotianae, which is found in most areas where tobacco is grown (Zhang et al., 2024; Zhang et al.,
2003). P. nicotianae belongs to the Kingdom Chromista, phylum Oomycota, class Oomycetes, and
order Peronosporales. Ten different clades were found within the genus Phytophthora in recent
studies that used genetic markers like beta-tubulin, elongation factor 1 alpha, enolase, heat shock
protein 90, 60S ribosomal protein L10, 28S ribosomal DNA, and tigA (Yan et al., 2024). The white
hyphae (filaments) of P. nicotianae are branched and range in diameter from 3 to 11 micrometers
(Pandey, 2023). The hyphae may appear fluffier and turn pale yellow as they mature. Although
the hyphae lack septa, or partitions, older cultures may produce pseudosepta, or seeming partitions.
As they age, the hyphae develop oil globules and turn granular (Gupta & Chugh, 2022). The
sporangia (structures that produce spores) of this fungus are oval, lemon-shaped, pear-shaped,

sympodial (occurring in pairs), and span between 18 and 61 by 14 and 39 micrometers. Sporangia
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are pale yellow to transparent and develop from the hyphae on short pedicels (Mondal et al., 2020).
With an apical papilla, these sporangia can generate five to thirty zoospores, which are tiny, mobile
spores that range in size from seven to eleven micrometers (Delmas et al., 2014). There are several
varieties of spores seen in P. nicotianae. The concave side of biflagellate zoospores has flagella
attached to it (Kasteel et al., 2023). Typically measuring 30 um in diameter and ranging from 14
to 43 um in length, chlamydospores are spherical or ovoid in shape and non-papillate (Scanu et
al., 2021). At first, they have thin walls and are hyaline, but as they become older, they thicken
and change from yellow to brown. Perpendicular to the vegetative hyphae, chlamydospores
develop on short lateral hyphae. Oospores, which are spherical to pyriform and hyaline to pale
yellow in appearance, have been observed in laboratory settings but do not have a strong
environmental record (Nam et al., 2022). The structures that surround the oosphere are called
oogonia, and they are hyaline to pale yellow in color. The developing oospore, which is normally

23-30 um in diameter, is the result of fertilization (Tsai & Thines, 2025).

One type of plant pathogen that is frequently seen in tropical and subtropical areas with high
humidity and warm temperatures is P. nicotianae (Bahadur & Dutta, 2023). Temperatures
between 28 and 32°C and pH values between 5.7 and 7.0 are usually ideal for their growth. For
optimal infection, they also need a temperature of at least 20°C (Pandey, 2023). When there is
enough oxygen and water in the environment, sporangia can grow and form; the ideal temperature
range is between 24 and 28°C. Within 48 hours of the mycelium developing, sporangia may
emerge (Benigno et al., 2025). When sporangia germinate, they will create secondary sporangia
at the same temperature. A tiny projection known as a papilla will allow kidney-shaped zoospores
with two flagella to emerge from the sporangia (Crouch et al., 2022). Within 72 hours of landing

on a host's tissue, these zoospores will swim in circles and germinate to generate new sporangia,
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which will then produce another generation of zoospores (Moreira et al., 2023). Plant pathogen P.
nicotianae is a polycyclic disease-causing agent that mostly targets the roots of its host plant but
can also infect leaves and flowers (Volynchikova & Kim, 2022). Its classification as a
hemibiotrophic pathogen indicates that, throughout its disease cycle, it undergoes both biotrophic
(living off a host) and necrotrophic (producing death in the host) stages (Rajarammohan, 2021).
The pathogen P. nicotianae first establishes a mutually advantageous association with its host. But
after a while, it kills the host cells and goes into a phase when it feeds on the dead host tissue. The
necrotrophic phase is the term for this stage (Singh et al., 2024). The amount of zoospores in soil
is correlated with the severity of the infection, which occurs when asexually generated, multi-
nucleated sporangia release zoospores, which are mobile and lack a cell wall (Del Castillo-
Gonzalez et al., 2024). The zoospores attract to certain compounds in the soil and go to the root
tissue, where they develop into a cyst on the plant. The development of a germ tube, which
ultimately becomes an appressorium, is crucial to the P. nicotianae disease cycle (Legrifi et al.,
2023). The pathogen may penetrate and infect host cells thanks to these structures, which causes
the host cells to die. Additionally, P. nicotianae can persist in the soil for long periods of time as
chlamydospores, which can infect subsequent growth seasons (Bag et al., 2023). To try to stop this
infection from spreading, management techniques frequently focus on the development of germ

tubes (Delai et al., 2024).

P. nicotianae reproduces mostly asexually, while it can occasionally reproduce sexually by fusing
male and female gametangia (Berbe¢, 2024). Both A1l and A2 mating types must be present for
sexual reproduction to produce thick-walled oospores (Babarinde et al., 2024). But the uneven
distribution of these mating types in the environment raises the possibility that oospore production

may not play a major role in the pathogen's life cycle and that worries about virulence and
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pathogenicity changes brought on by sexual reproduction may be exaggerated (Meng et al., 2014).
At any stage of growth, the virus can infect the tobacco plant's roots, stems, and leaves, among
other areas. This may drastically lower the tobacco crop's output and quality (Sun et al., 2024).
Tobacco plants may become stunted and fall before their leaves are developed enough to be
harvested if they contract Black Shank disease early in the growing season (Bahadur & Dutta,
2023). P. nicotianae can infect tobacco plants at any stage of growth, although it usually affects
plants between 6 and 8 weeks of age (He et al., 2022). According to Tong et al. (2024), Within 48
hours of the pathogen being introduced, black shank signs can be seen, and the plant may die
within a week of infection. Its main symptoms include root and crown rot, consistent wilting, and
chlorosis of the leaves, which result in water-soaked lesions on stem tissue that are 15 to 20
centimeters above the soil line (Sapkota et al., 2022). Root necrosis may also be seen as the
condition progresses (Zhou et al., 2023). The defining signs of black shank are brown to black
vascular disking and pith necrosis (Cochran et al., 2024). On older foliage, a large, concentric,
round, dark-brown lesion that is 7 to 8 cm in diameter may also develop as a result of the inoculum
being dispersed by rain splash (Cochran et al., 2024). Since other tobacco diseases like Fusarium
Wilt and Granville Wilt might exhibit similar symptoms, the macroscopic symptoms mentioned
above should be utilized in concert with microscopic inspection and molecular characterisation to
accurately detect P. nicotianae infection. Plant tissue exhibiting signs of illness, water, or soil can
all harbor P. nicotiana as shown in Figure 1. Ageratina adenophora, Ageratum houstonianum,
Parthenium hysterophorus,andXanthium strumarium, these invasive species demonstrated
antifungal activity againstPhytophthora capsici (Han et al., 2024). While not specifically tested
against Phytophthora nicotianae, their potential to inhibitPhytophthoraspecies suggests they could

be further investigated for black shank management. The methanolic extracts of these plants



224

225

226

227

228

229

230

231

232

233

234

235

generally exhibit stronger inhibitory effects compared to aqueous extracts(Han et al., 2024),
indicating that the active compounds are more soluble in organic solvents. Ipomoea carnea:
Although tested against different fungal pathogens (Fusarium solani, Alternaria
solani,andColletotrichum circinans)(Tao et al., 2021), the antifungal properties oflpomoea
carneasuggest potential for broader applications, warranting further research againstP. nicotianae.
Parthenium hysterophorus: Whole plant is used for organic and inorganic pollutant removal and
Cr(VI) remediation(Zhu et al., 2024). Prosopis julifloraandLeucaena leucocephala: These
invasive plants, commonly found in Egypt, have shown antifungal activity againstFusarium
solani, Alternaria solani,andColletotrichum circinans(Tao et al., 2021). Their water-based extracts
exhibited antifungal properties, suggesting a readily accessible method for potential application.
Further research is often needed to optimize their use in integrated disease management

strategies(Naqvi et al., 2024) as shown in Table 1.
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Figure 1: Life cycle and pathogenesis of P. nicotianae causing Black Shank disease in tobacco.
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239  Tablel. List of plant species used against Black Shank of Tobacco
S. Active ingredients
Plant Mechanism Reference
No
1 Sophora Matrine and oxymatrine | Part of a mixed plant extract that, combined with fungicides, | Alsarhan et al.
flavescens successfully controlled black shank in greenhouse experiments. (2014)
2 | Forsythia forsythiaside A, Part of a mixed plant extract that, combined with fungicides, | Alsarhan et al.
suspense arctigenin successfully controlled black shank in greenhouse experiments. (2014)
3 | Nicotiana Nicotine
Contains theNpPP2-B10gene, which, when transferred toNicotiana | Deaton et al.
plumbaginifoli
, tabacum, promotes resistance toP. nicotianae. (1982)
4 | Tagetes erecta | lutein, B-carotene Rotation with marigold reduces disease incidence in continuously | Boro et al.
L) cropped tobacco fields, influencing soil microbial communities. (2024)
5 Sophora Oxymatrine, Induces PR proteins (PR-1, PR-4, and PR-5) in tobacco plants, | Wang et al.
flavescens,For | sophocarpine enhancing resistance against black shank and tobacco. The extract, | (2018)
sythia alone or combined with fungicides, shows successful disease control
suspense, in both non-continuously and continuously cropped land.
6 | Syringa oblata | syringic acid, caffeic acid | Inhibits mycelial growth ofP. nicotianae in a dose-dependent manner, | Zhu et  al.
derivative disrupting extracellular pH and electrolyte leakage. Minimum | (2024)
inhibitory concentration (MIC) of eugenol is 200pg/mL.
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7 | Zanthoxylum berberine, chelerythrine Increases soil organic matter, hydrolysable nitrogen, available | Dhuldhaj et al.
bungeanum potassium, and total phosphorus while decreasing pH, promoting | (2023)
Maxim. plant growth (increased plant height, root length, and dry weight. Acts
as a bio-fumigation material against tobacco black shank.
8 | Azadirachta azadirachtin, nimbin, Disrupts fungal membrane integrity; inhibits mycelial growth and | Mahmoud et al.
indica nimbidin spore germination. (2011)
9 | Allium sativum | Allicin Increases mycelial membrane permeability; causes cell death in P. | Wang et al.
nicotianae (2019)
10 | Syzygium Eugenol, - Damages mycelial membranes, inhibiting growth & spore |Jing et al
aromaticum Caryophyllene germination (2017)
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2.2 Fusarium Wilt (Caused by Fusarium oxysporumf. sp.nicotianae)

In many countries throughout the world, Fusarium wilt, a disease brought on by the F. oxysporum
species complex, causes significant damages (Engalycheva et al., 2024). In 1916, Maryland had
the first documented incidence of the disease in the United States. In the states of Connecticut and
Massachusetts, it had developed into the most serious and destructive disease affecting broadleaf
cigar wrapper tobacco by the 1980s and early 1990s (Pandey, 2023). About 20% of the tobacco
producing areas were affected by the disease, which caused significant damage and led to the
removal of badly infected fields from tobacco production (Liang et al., 2024). The three species of
F. oxysporium f. sp. nicotianae, f. sp. batatas, and f. sp. vasinfectum are the fungus that causes wilt
in tobacco plants (Berruezo et al., 2021). These species were distinguished by their effects on
cotton, sweet potatoes, and tobacco, among other hosts. It was discovered that four races of the
fungus F. oxysporum were harmful to tobacco (Berruezo et al., 2018). According to recent studies
using cluster analysis, the pathogen consists of at least three different isolate groups, which may
show distinct lineages from tobacco and sweet potatoes (Paul et al., 2020). All isolates that were
initially discovered in tobacco are included in one of these clusters, F. oxysporium f. sp. Nicotianae
(Rahman et al., 2021). Sweet potato isolates from North Carolina and Louisiana (Race 0) or
California (Race 1) make up the second and third clusters of F. oxysporium f. sp. batatas. No
disease was caused by Race 0 of F. oxysporium f. sp. batatas in flue-cured tobacco or resistant
sweet potatoes, however Race 1 caused wilt in resistant sweet potatoes but had no effect on
tobacco. This shows the variability of the tobacco wilt pathogen. The symptoms of Fusarium wilt
in tobacco plants include leaf yellowing, drying, and death. These symptoms can occur in a vertical
pattern, usually on one side of the plant or the mid vein of the leaf (Wang et al., 2022). The vascular

tissue of the plant becomes characteristically chocolate-brown discolored due to the disease, and
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this discoloration may extend to the top of the plant (Dell’Olmo et al., 2023). The outside of the
green stem gradually shows similar darkening. The leaves will cure on the stalk rather than rot,
which will cause the stalk to bend over at the bud and give it a characteristic "crookneck" look
(Pandey, 2023). The plant will eventually become dry and necrotic as a whole. Sandy loam soils
and warm weather increase the disease's severity (Abbas et al., 2022). Plant resistance, cleanliness,
crop rotation, nutrition, nematode control, and fumigation or bio fumigation are some of the
strategies used to prevent Fusarium wilt in tobacco. But not all approaches work the same way
(Haruna et al., 2024). According to El-Aswad et al. (2023), recently there are no chemical
management for F. oxysporium. f. sp. nicotianae in soil that are completely effective. The quality
and look of wrapper leaves are negatively impacted by the phase-out of the most effective
fumigants, methyl bromide and chloropicrin (Villarino et al., 2021), but fumigation of soil may
result in a little decrease in the severity of disease. Moreover, fumigation with metam sodium does
not reduce cotton wilt induced by soil borne Fusarium or F. oxysporum f. sp. Vasinfectum
(McDonald et al., 2021). In the crop residue Chlamydospores may also resistant to fumigation. In
Connecticut, fumigation has produced mixed outcomes, especially when tobacco is planted in the
same area over time. However, it may indirectly limit disease manifestation by affecting plant
parasitic nematodes. The recent study by (Lal et al., 2024), The development and broad use of
tobacco cultivars resistant to Fusarium wilt has shown to be the most effective strategy for
managing the disease on a global scale. The broadleaf cigar wrapper varieties including 'B2' and
'C9' resistant to Fusarium wilt pathogen were introduced in Connecticut (LaMondia, 2013). This
resistance is caused by several genes building up for increased effectiveness (Sadeghpour et al.,
2024). These resistant cultivars may still exhibit wilt signs in severe environments since they are

not totally immune to Fusarium infection (Lal et al., 2024). Broadleaf tobacco resistant to wilt has
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often been found to contain F. oxysporum, and this resistance has been found to be associated with
the pathogen's slower migration inside the plant's vascular tissues. Moreover, within 24 hours of
inoculation, resistant plants exhibited rapid reactions, such as the development of vesicles to block
xylem, the deposition of callose, and the production of lipoidal material (Chen et al., 2024;
LaMondia, 2013). Chlamydospores spread through soil on agricultural equipment that moves
between fields, and the habit of utilizing tobacco stalks for fertilizer and rubbish disposal are two
of the many factors contributing to the pathogen's rapid spread. Studies have revealed that F.
oxysporum 1is resistant to composting, in contrast to many other plant diseases (Bouchtaoui et al.,
2024). These days, tobacco stalks are either buried or dispersed in non-tobacco areas rather than
remaining on tobacco fields. By implementing sanitation procedures, such as removing soil clumps
from field equipment before moving it to another field, the wilt pathogen and other soil-borne
illnesses, like tobacco cyst nematodes, can be prevented throughout their spread as shown in
Figure 2. Despite these precautions, F. oxysporum continues to spread between farms more rapidly
and extensively than expected (Ismaila et al., 2023); (Wichuk et al., 2011). Wounding roots
through close cultivation, hoeing, or drip tape irrigation creates holes for infection and increases
Fusarium wilt (Bhumarkar et al., 2021). Reducing injury lowers the incidence and severity of wilt.
Beyond merely generating new infection sites from wounds, tobacco cyst nematodes (Globodera
tabacum) and root knot worms (Meloidogyne spp.) also create Fusarium wilt (Khan & Sharma,
2020). Prior to fungal exposure, plants with nematode infestations showed higher rates and severity
of wilt than those exposed concurrently. It was discovered that an infestation of G. tabacum caused
more wilt than an equivalent amount of Meloidogyne hapla. In field tests, early season nematode
control reduced the frequency and intensity of Fusarium wilt in tobacco (Makunde et al., 2023).

By modifying the pH and nitrogen levels of the soil, several Fusarium wilt infections have
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successfully managed (Habte & Dobo, 2025). The incidence and severity of the diseases in
tomatoes and chrysanthemums have been related to factors such soil pH, lime, calcium, and
nitrogen sources (Valenzuela, 2024). Calcium was the most successful nutritional component
studied for controlling Fusarium wilt in tobacco, according to (Okiro et al., 2025). Since calcium
controls the synthesis of callose, a plant defense mechanism against vascular wilt pathogens, its
deficiency has been connected to the onset of the diseases. Calcium is thought to be the most easily
manipulated nutrient in Connecticut broadleaf tobacco cultivation (Daunoras et al., 2024)
(LaMondia, 2015). Although fusarium wilt can develop in soil with varying pH values, the illness
may be affected if the pH is raised to above 6.4. However, soils with a pH of 5.6 to 6.0 might
develop severe black root rot (Sisi¢ et al., 2025). Although Fusarium wilt in susceptible broadleaf
tobacco can be suppressed by applying substantial amounts of gypsum to the soil, this effect was
minimal at low disease incidence levels. The 13,400 kg/ha of gypsum needed to minimize wilt is
far more than tobacco growers typically use (340-560 kg/ha), and it may have detrimental
agronomic impacts like slower crop growth (LaMondia, 2015). Without a vulnerable host, the
fungus in a field lasts for several years. Based on the chlamydospores' survival, crop rotation's
ability to reduce the density of Fusarium wilt pathogens in the soil varies widely (Garzon-Nivia et
al., 2025; Obiazikwor et al., 2025) and the pathogen's capacity to infect other plant species that are
not impacted as well as the roots of resistant crops (Nowicki et al., 2025). It is necessary to assess
how resistant plants and rotation crops affect the soil's pathogen populations over time for each

unique pathosystem and crop..

Recent studies as shown in Table 2, have demonstrated the efficacy of various plant extracts in
controlling Fusarium wilt pathogens across different crops. Datura metel leaf extract completely

inhibited mycelial growth of F. oxysporum f. sp. cubense in banana at 10% concentration (Hassan
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et al., 2022). For tomato pathogens, Aloe vera extracts significantly inhibited growth and
sporulation of F. oxysporum f. sp. Lycopersici (FOL) under both laboratory and greenhouse
conditions (Al-Gallas et al., 2021), while clove (Syzygium aromaticum) essential oils reduced
fungal growth and spore populations (He et al., 2021). Extracts from Eucalyptus camaldulensis,
Chromolaena odorata, Bidens pilosa, andWedelia trilobataalso showed effective control ofF.
oxysporumin tomatoes (Al-Gallas et al., 2021). In chickpea, neem (Azadirachta indica)
suppressedF. oxysporumf. sp.ciceri activityin vitro(Meena et al., 2021), and garlic (Allium
sativum) induced physiological and biochemical defenses againstFusarium wilt in both chickpea
and tomato (Selva Amala et al, 2024). Other effective botanicals included resins
from Commiphora swynnertoniiand latex fromSynadenium glaucescensagainst tomato wilt
(Fenollosa & Munné-Bosch, 2020), as well as Monsonia burkeana and Moringa oleifera extracts
(Jamil et al., 2021).Xanthium strumarium demonstrated efficacy against F. oxysporumin
pomegranate (Powell et al., 2024), while combined neem and willow (Salix babylonica) extracts
reduced tomato wilt severity by inducing antioxidant enzymes (Farag Hanaa et al., 2011). These
findings highlight the potential of plant-derived solutions for integrated Fusarium wilt

management.
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Figure 2: Disease cycle and pathogenesis of Fusarium wilt in tobacco.
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Table 2: Antifungal effects of plant extracts against Fusarium oxysporum pathogens in different crops.

Plant Extract Source Target Crop

Pathogen

Observed Effect

References

Datura metel(leaf extract) Banana

F. oxysporumf. sp.cubense

Complete inhibition of mycelial

growth at 10% concentration.

Hassan et al. (2022)

Inhibited growth and sporulation

F.
Aloe vera Tomato of FOL wunder laboratory and Al-Gallas et al. (2021)
oxysporumf.sp.lycopersici o
greenhouse conditions.
. Essential oils from clove also
Syzygium aromaticum) Tomato ' significantly reduced growth and He et al. (2021)
oxysporumf.sp.lycopersici )
spore population
Eucalyptus

camaldulensis,Chromola

Effective control ofF.

Tomato F. oxysporum oxysporumin  vitro and in Al-Gallas et al. (2021)
ena odorata,Bidens
tomatoes.
pilosa,Wedelia trilobata
Suppressed activit of F.
Azadirachta _ PP Y -
Chickpea F. oxysporumf. sp.ciceri oxysporumf. sp.ciceriunder in- (Meena et al. (2021)
indica(Neem) ‘ .
vitro conditions.
Used as inducers on physiological
Chickpea, F. oxysporumf. sp.ciceri,. and biochemical activities in Selva Amala et al
Allium sativum . .
Tomato oxysporumf. sp.lycopersici ~ tomato against Fusarium wilt. (2024)
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. F. oxysporum f. sp. Extracts were effective againstF. Fenollosa & Munné-
swynnertonii(resins),Syn ~ Tomato
Lycopersici oxysporumf. sp.Lycopersici Bosch (2020)
adenium glaucescens(
Monsonia
F. oxXysporum f. Extracts were effective against F.
burkeana,Moringa Tomato Jamil et al. (2021)
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3. Current Management Strategies

Current tobacco management of Fusarium Wilt and Black Shank depends on an integrated strategy
that combines biological, cultural, and chemical control techniques. Still, each approach has
important drawbacks that jeopardize sustainability and long-term effectiveness. According to
Sapkota et al. (2023), fungicides continue to be the main line of defense against these debilitating
diseases. Metalaxyl and fosetyl-Al are frequently applied to manage Black Shank, while
benzimidazoles (like carbendazim) and triazoles (like tebuconazole) are used to manage Fusarium
Wilt. But there are concerning trends in resistance as a result of the overuse of these fungicides.
More than 60% of P. nicotianae populations in important tobacco-growing regions are resistant to
metalaxyl, according to recent surveys, making the fungicide useless in many places (Clement et
al., 2025; Van Jaarsveld et al., 2002). Also, benzimidazole resistance has grown widely in F.
oxysporum f. sp. nicotianae, with resistance frequencies above 80% reported in China and Brazil
(El-Nagar et al., 2023). In addition to their resistance, chemical fungicides can contaminate soil
and water, harm beneficial microorganisms without their intended target, and threaten the health
of farmers. The EU's prohibition on methyl bromide and impending limitations on phosphonates
are just two examples of how regulatory bodies are regulating synthetic fungicides more and more,
which further reduces the range of alternatives (Nader et al., 2020). Crop rotation and resistant
cultivars are examples of cultural methods that provide some partial solutions but are difficult to
apply. Although switching tobacco to non-host crops (such maize or sorghum) can decrese the
pathogen burden, this strategy is compromised by the long-term survival of F. oxysporum
chlamydospores (decades) and P. nicotianae (up to 5 years in soil) (Ristaino et al., 2021). Although
resistant tobacco cultivars have been developed (such as Black Shank's "K 326"), resistance

frequently breaks off in 5-10 years due to pathogen adaptation (McCorkle et al., 2018). According
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to Mavroeidis et al. (2024), resistant cultivars may degrade leaf quality, which is essential for
commercial viability. Trichoderma harzianumandPseudomonas fluorescens are biological agents
showed promising results in laboratory condition but they exhibit different results in field, this is
due to environmental sensitivity and competition with native microbiota (Ayaz et al., 2023).
Although Trichoderma spp. can lower the incidence of Black Shank by 30 to 50% in greenhouse
experiments, their effectiveness is greatly diminished in field condition with varying moisture and
temperature (Naorem et al., 2023). Similarly, efficacy rates for Bacillus-based bio fungicides vary
from 20% to 70% depending on the location, and they frequently fall short of commercial-scale

consistency (Barros-Rodriguez et al., 2024).

3.1 Plant Extracts as Sustainable Alternatives: A Path toward Eco-Friendly Disease

Management

Research on plant-derived antimicrobials as sustainable substitutes for traditional disease
management techniques has increased due to the rising limitations of these methods for preventing
Fusarium Wilt and Black Shank in tobacco (Deresa & Diriba, 2023). Plant extracts contain
complex combinations of bioactive compounds that attack pathogens through several processes
concurrently, greatly minimizing the possibility of resistance development, in contrast to
manufactured fungicides that target single metabolic pathways (Ayaz et al., 2019). Alkaloids,
flavonoids, terpenoids, and phenolic compounds are among the hundreds of secondary metabolites
that have been discovered by recent developments in phytochemical research to have strong
antifungal effects against both Fusarium oxysporum and Phytophthora nicotianae (Deresa &
Diriba, 2023). For example, P. nicotianae zoospores' cell membrane viability is damaged by
curcumin from turmeric (Curcuma longa), which also prevents mycelial growth by interfering

with mitochondrial activity (Wang et al., 2019). Plant extracts' mechanisms of action go beyond
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simply suppressing pathogens; they can also cause tobacco plants to develop systemic resistance
(Yang et al., 2024). Plants are primed for improved immune responses by compounds like thymol
from thyme (Thymus vulgaris) and allicin from garlic (Allium sativum), which have been
demonstrated to activate the salicylic acid defense system and upregulate pathogenesis-related
(PR) proteins (Anisimova et al., 2021). Because plant extracts have both direct antibacterial
activity and host defense potentiation, they are very useful for integrated disease management.
Field experiments in China's main tobacco-growing regions showed that neem (4. indica) kernel
extract and chitosan together decreased the incidence of Black Shank by 68—72%, which is similar
to synthetic fungicides but without the hazards of resistance (Ibrahim et al., 2023). Plant extract
formulations have historically presented difficulties that are being addressed by recent
technological advancements. Utilizing biodegradable carriers like as lignin and chitosan,
nanoencapsulation strategies have greatly increased the stability and bioavailability of volatile
chemicals (Deng et al., 2023). Oregano (Origanum vulgare) essential oil Nano emulsions, for
example, retained 85% antifungal activity after 30 days of field exposure, but unformulated oil
only exhibited 35% (Hosny et al., 2021). Additionally, developments in extraction methods,
including supercritical fluid extraction and ultrasound-assisted extraction, have reduced processing

time and energy usage while increasing active compounds yields (Khadhraoui et al., 2021).

Plant-based disease management has significant positive effects on the environment. According to
life cycle assessments, botanical pesticides decompose entirely in soil in 2-4 weeks and have
carbon footprints that are three to five times lower than those of synthetic counterparts (Yin et al.,
2023; Ristaino et al., 2021). In response to the increased consumer demand for "clean label"
products, this quick degradation removes residual problems in cured tobacco leaves. Most

significantly, local production of plant extract formulations employing native species in tobacco-
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growing countries can open up new business prospects for smallholder farmers (Ouma, 2024).
Considering these benefits, there are still issues with obtaining regulatory permissions, maximizing
application timing, and standardizing extract potency. Next-generation botanical fungicides are
being developed more quickly, though, because to the fusion of traditional ethnobotanical
knowledge with contemporary analytical methods (such as metabolomics and machine learning).
Plant extracts have the potential to evolve from additional treatments to essential elements of
sustainable tobacco production systems across the globe as resistance to traditional fungicides
keeps growing and regulatory demands increase.

3.2 Modes of action of plant extracts

Plant extract or botanicals act against microorganisms are even less known. These mechanisms
rely on the composition of botanicals, which is multifactor dependent (Radulovic et al., 2013). A
few studies reveal that the major components are mainly responsible for the biological activity of
botanicals, but others conclude that several components act in synergy (Amenu, 2014;
Chaachouay, 2025). Furthermore, as botanicals contain a mixture of diverse components, their
antifungal activity is probably not attributable to a single mechanism. The main mechanisms
reported so far are membrane disruption, metal chelation, interaction with DNA, and induction of
plant defense reactions (Redondo-Blanco et al., 2020). Several studies report that EO or some of
their components are able to disrupt cell wall and membrane integrity and to easily penetrate into
the cells (Yap al., 2021). This disruption causes mitochondrial membrane damage, which induces
changes in the electron transport chain. Consequently, free radicals are produced, and they oxidize
and damage lipids, proteins, and DNA. In contact with reactive oxygen species (ROS), EO
phenolic compounds are oxidized and release reactive phenoxyl radicals (Hajam et al., 2023). The

induction of plant defenses by EO has also been investigated as shown in Figure 3. Thyme oil
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application on tomato roots efficiently triggered peroxidase accumulation in roots, which are well-
known to be part of the plant defense mechanisms (Saltos-Rezabala et al., 2022). Similarly, Farooq
et al. (2024) found evidence of the induction of plant defense responses against F. oxysporum f.
sp. lycopersici using different plant extracts. Although the antimicrobial mechanisms of action of
botanicals have been carefully studied for their pharmaceutical or food preservative uses, less
information is available concerning their use to control plant pathogenic microorganisms (Oulahal

etal., 2012

3.3 Molecular Modes of Action of Plant Extracts

Plant extracts possess inherent complexity, making it difficult to attribute their bioactivity to a
single mechanism; yet, growing evidence highlights both particular molecular targets and
synergistic interactions among their phytochemical components. Principal molecules frequently
dictate primary function; nevertheless, minor components can substantially enhance effectiveness
through synergistic interactions (Amenu, 2014; Chaachouay, 2025). A fundamental antibacterial
process involves the degradation of microbial cell membranes. Terpenoids, such as carvacrol (from
oregano) and thymol (from thyme), integrate into lipid bilayers due to their lipophilic properties,
causing destabilization of plasma membranes, ion leakage (K*, H"), ATP depletion, and ultimately
cell lysis (Bakkali et al., 2008; Yap et al., 2021).

This membrane disruption frequently impacts organelles, particularly mitochondria, hence
disrupting the electrochemical gradient and impairing the electron transport chain (ETC). The
resultant surplus of reactive oxygen species (ROS), including superoxide anions (O:7) and
hydrogen peroxide (H:0:), exceeds microbial antioxidant defenses such as catalase and

glutathione, resulting in lipid peroxidation, protein carbonylation, and DNA strand breaks (Camele
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et al., 2019). Phenolics exacerbate this stress by generating phenoxyl radicals by microbial
oxidation, hence perpetuating oxidative chain damage (Hajam et al., 2023).

Besides these broad harmful effects, plant metabolites significantly influence microbial
physiology. Flavonoids and tannins chelate essential metals such as Fe?** and Zn?*', thereby
inhibiting pathogens from acquiring crucial cofactors for their enzymes (Miklasinska-Majdanik et
al., 2018). Alkaloids, including berberine, directly intercalate with DNA, obstructing replication
and transcription. Conversely, thiol-reactive compounds, such as allicin (derived from garlic),
irreversibly inhibit cysteine-dependent enzymes. Plant extracts possess direct antibacterial
properties and enhance the body's defenses against infections. For instance, the application of
thyme oil to tomato roots induced systemic resistance by enhancing the expression of
pathogenesis-related proteins (PRs) and activating critical defense enzymes such as peroxidase
(POD) and phenylalanine ammonia-lyase (PAL), which promote phytoalexin biosynthesis (Saltos-
Rezabala et al., 2022). Farooq et al. (2024) similarly demonstrated that plant extracts can prime
defense mechanisms to combat Fusarium oxysporum f. sp. lycopersici. While several processes
have been explored in food preservation, their implementation in agricultural disease management

remains an insufficiently studied yet highly prospective research domain (Oulahal et al., 2012).
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Figure 3: Mode of action of Plant extracts against pathogenic microorganisms

3.4 Recent research on plant extract interactions with pathogen resistance genes

Recent research has improved our understanding of how plant extracts influence disease
resistance by interacting with microbial virulence factors and host defense pathways.
Xanthomonas species employ type III effectors (T3Es), including Xop proteins, to suppress host
immunity. Recent studies indicate that phytochemicals can modify these interactions, hence
diminishing pathogen pathogenicity (Medina et al., 2017). Plant extracts assist plants in managing
oxidative stress caused by heavy metals, so safeguarding them from environmental stressors and
enhancing their resilience (Mirkov et al., 2020). Pathogenic fungi face oxidative stress from plants
during infection and must maintain redox balance to develop disease, highlighting a critical
vulnerability that can be targeted by bioactive phytochemicals (Park & Son, 2024). Terpenoids,
the primary constituents of essential oils, alter the integrity of lipid bilayers, hence compromising

fungal and bacterial membranes (Konuk & Ergiiden, 2020). Moreover, their efficacy can be
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augmented by synergistic combinations, as demonstrated by the conjunction of oregano oil and
blue light, which amplifies bactericidal activity against multidrug-resistant Pseudomonas
aeruginosa by targeting both planktonic and biofilm cells (Lu et al., 2022). The antifungal
effectiveness of terpenoids is markedly linked to phenolic —OH groups that induce membrane

instability (Konuk & Ergiiden, 2020).

Besides their antibacterial effects, plant metabolites also influence the host's stress response
and the body's ability to combat infections. Thymol enhances the salt tolerance of Chinese cabbage
seedlings by augmenting their antioxidant capacity, maintaining redox equilibrium (AsA/DHA
and GSH/GSSG ratios), and activating crucial ROS-scavenging enzymes such as SOD, CAT,
APX, and POD (Sun et al., 2024). This mechanism prevents oxidative damage and sustains
seedling growth during salt stress. Extracts of Borreria verticillata and silver nanoparticles exhibit
nematicidal properties against Meloidogyne incognita in tomatoes, presenting a sustainable
alternative to chemical nematicides (Fabiyi & Olatunji, 2024). Hydrocarbons and plant-derived
compounds are detrimental to membranes since they accumulate in lipid bilayers, disrupt normal
cellular functions, and alter microbial food degradation processes (Sikkema et al., 1995). These
findings jointly highlight that plant extracts function as both direct antimicrobials and modulators
of pathogen resistance genes, host oxidative stress responses, and environmentally viable crop
protection strategies. This expanding body of research indicates their potential utility in integrated

disease management and sustainable agriculture.

4. Challenges and Future Perspectives

4.1 Limitations of Plant Extracts
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For the management of Black Shank and Fusarium Wilt diseases in tobacco, plant extracts have
gained attention as environmentally friendly alternatives (X. ping Sun et al., 2025). However, a
number of restrictions hindered them from being used in practice. The chemical composition of
plant extracts varies greatly depending on the plant species, growth conditions, harvesting time,
and extraction techniques, making this one of the main problems (Raudone & Savickiene, 2024).
Because of this inconsistency, antifungal efficacy is frequently unpredictable, which makes it
challenging to standardize therapies for trustworthy disease management (Tang et al., 2012).
Furthermore, many plant extracts have comparatively weaker direct toxicity against soil-borne
infections such as Fusarium oxysporum and Phytophthora nicotianae than synthetic fungicides,
which can limits their efficacy, particularly when disease pressure is high (Mirmajlessi et al.,
2024). Since variables like pH, moisture, microbial community dynamics, and organic matter
content can change the stability, bioavailability, and activity of bioactive chemicals in plant
extracts, the intricate interactions within the soil environment also have an impact on their
performance (Adeniji et al., 2024). The sustainable sourcing of raw plant materials, preserving the
stability and shelf-life of extracts, and creating affordable formulations appropriate for large-scale
agricultural use are additional logistical and financial challenges associated with scaling up the
production of plant extracts (Lisboa et al., 2024). Considering their typically good safety profiles,
careful assessment of any non-target and environmental consequences is necessary to guarantee
sustainable use (Punniyakotti et al., 2024). These problems showed the need for more study to
improve formulation stability, refine extraction methods, comprehend soil-plant-pathogen
interactions, and successfully incorporate plant extracts into all-encompassing tobacco cultivation

disease management programs.
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4.2 Emerging Technologies to Enhance Efficacy

The effectiveness of plant extracts in controlling Fusarium Wilt and Black Shank infections in
tobacco is being quickly improved by emerging technologies, which is viable, eco-friendly
substitutes for traditional agrochemicals (Ahmad et al., 2024). According to Dewi et al. (2022),
nanotechnology is essential because it enhances the stability, transport, and bioavailability of plant
extracts. Polymeric nanoparticles, particularly those based on chitosan, are useful for the targeted
use and regulated release of bioactive substances, which improves systemic plant resistance and
antifungal activity (Zhou et al., 2024). In addition to directly inhibiting pathogens like
Phytophthora nicotianae and Fusarium oxysporum, metal and metal oxide nanoparticles, like
copper oxide (CuO) and silver nanoparticles, have built-in antimicrobial qualities that trigger plant
defense mechanisms by producing reactive oxygen species (ROS) and activating antioxidant
enzymes (Chen et al., 2022). Sensitive bioactive chemicals are kept safe from environmental
stresses by nanoencapsulation and microencapsulation procedures, which enhance their functional
stability and regulated release in the field (Guia-Garcia et al., 2022). By changing plant immune
signaling pathways (salicylic acid, ethylene, and hypersensitive response) and reshaping the
rhizosphere microbial community to suppress pathogen abundance, synergistic strategies that
combine plant extracts, nanocarriers, and beneficial microbes such as the co-application of
chitooligosaccharides with Bacillus strains have shown increased control efficacy. By providing
antioxidants and strengthening plant structural defenses at the same time, advanced formulations
such as silicon-stabilized hybrid lipid nanoparticles functionalized with quercetin act as
nanobiostimulants that increase plant resistance (Gutsch et al., 2023). Early disease detection and
the timing and dosage of plant extract applications are optimized by precision agriculture

technologies that use UAV-borne hyperspectral remote sensing and machine learning algorithms,
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maximizing their efficacy while minimizing inputs (Padhiary et al., 2024). By improving the
stability, bioavailability, targeted distribution, and effectiveness of plant extracts, decreasing
reliance on chemical fungicides, and advancing environmental health, these integrated
technologies work together to enhance sustainable tobacco disease control (Ashraf et al., 2021).
By improving efficacy through regulated and sustained release mechanisms, emerging
technologies such as nano-encapsulation are transforming drug delivery systems (Ayyaril et al.,
2023). In order to prevent premature drug degradation and guarantee targeted administration,
active pharmacological ingredients are encapsulated into nanoscale carriers such liposomes,

polymeric nanoparticles, or dendrimers (Petrovic et al., 2024).

A promising strategy to improve sustainable agriculture and disease management is the coupling
of nano-encapsulation with biocontrol agents, such as Trichoderma fungus and plant extracts

(Saberi-Riseh et al., 2021). According to Zhou et al. (2024), nano-encapsulation can shield these
delicate biological agents from environmental deterioration, guaranteeing their stability and long-
term effectiveness. To maintain a steady inhibitory impact against infections, for example,
Trichoderma spores or plant-derived bioactive chemicals can be encapsulated in polymeric
nanoparticles or lipid-based carriers for gradual and regulated release (Zafar et al., 2024). In
addition to increasing the biocontrol agents' field performance and shelf life, this synergistic
strategy lessens the requirement for frequent applications (Teixido et al., 2022). Furthermore, to
maximize these compounds' antibacterial and growth-promoting properties, nano-formulations
can improve their adherence and targeted distribution to plant roots or foliar surfaces (Mahmood
et al., 2024). Farmers can minimize their reliance on chemical pesticides and achieve more
efficient, environmentally friendly crop protection by combining nanotechnology with biocontrol

techniques (Jaiswal et al., 2022).
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A new method for improving the absorption and effectiveness of bioactive extracts used in
pharmaceuticals and agriculture is the genetic engineering of tobacco plants (Padhiary et al., 2024).
Researchers can maximize tobacco's capacity to absorb, produce, and store advantageous
substances like antibacterial agents or growth-promoting phytochemicals by altering important
genes involved in metabolic pathways (Sun et al., 2024). For example, the potency of the plant
extract may be increased by overexpressing transporter proteins or enzymes that promote the
accumulation of particular secondary metabolites (Shitan, 2016). Furthermore, CRISPR-Cas9
gene editing may be used to inhibit opposing pathways, focusing greater resources on the synthesis
of the targeted chemical (Jiang et al., 2021). These genetically modified tobacco extracts may
allow for more effective and prolonged delivery of biocontrol chemicals when paired with nano-
encapsulation, further enhancing crop protection and production (Chadha, 2020). There is a lot of
potential for creating next-generation bio pesticides and plant-based medicines with this creative
combination of genetic engineering and nanotechnology. We have compiled examples from

contemporary literature about the nano-encapsulation of plant extracts for antifungal applications,

highlighting nanocarrier type, particle size, loading/encapsulation efficiency, and asserted efficacy (Table

3).
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Nano carrier

Plant extract /

Particle size

Encapsulation /

Loading Antifungal target / efficacy Reference
type compound (nm) efficiency (%)
. ) Suppressed growth of F. oxysporum

r(f;rig(;)s;r?icles ;Fﬁyme essential 80—-150 nm 65-85% and reduced mycelial biomass. Salem et al., 2020
Enhanced stability, prolonged

Liposomes Clove oil 100-200 nm 70-90% release, and robust activity against ~ Fathi et al., 2021
Candida albicans.

Solid lipid Inhibited the germination of

nanoparticles Curcumin extract 120-180 nm 75-92% Asp “E o ik avus Spores, hence Ghosh et al., 2021

(SLNs) reducing aflatoxin synthesis.

Polymeric Garlic extract More efficacious against Botrytis

nanoparticles . 150-250 nm 60—-80% cinerea than the free extract Lietal., 2022

(allicin)

(PLGA)
cts against Alternaria alternata and

Nanoemulsions Qregano essential 50-120 nm 80-95% improves absorption and penetration Ahmad et al., 2022

oil throughout the body.

Silica Reduced Rhizoctonia solani Mahmoud et al

nanoparticles Eucalyptus oil 90-200 nm 70-85% infection in tomato seedlings 2003 ?
Prolonged release improved

Zeolite-based Cinnamon oil 100-250 nm 65-78% antifungal effectiveness against Hassan et al., 2023

carriers

Penicillium expansum.
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4.3 CRISPR-Cas9 applications in enhancing plant extract efficacy

CRISPR-Cas9 is an excellent method for enhancing the efficacy of plant extracts through precise
genomic modifications. It can enhance crops, increasing their resilience to stress and illnesses.
(Gan & Ling, 2022). By targeting critical biosynthetic genes, it can enhance the production of
secondary metabolites in medicinal plants. This is typically executed in conjunction with multi-
omic approaches to achieve optimal quantity and quality of metabolites (Jeyaraj et al., 2024).
CRISPR-Cas9 exhibits superior accuracy and efficiency compared to TALENs and ZFNs. This
enables the enhancement of beneficial molecules while reducing undesirable metabolites (Angon
and Habiba, 2022). Moreover, altering stress-response and immune genes improves plant
resilience to biotic and abiotic stressors, ensures consistent extract production, and fosters
sustainable agriculture (Bhattacharjee et al., 2022). Innovative delivery technologies, including
virus-based systems and nanoparticles, facilitate the modification of plant genes to enhance their
resistance to diseases (Gan & Ling, 2022; Zhou et al., 2023).

CRISPR-Cas9 possesses significant potential; yet, it is also associated with challenges like as oft-
target mutations, delivery obstacles, regulatory concerns, and ethical dilemmas (Mohamed et al.,
2024). Researchers are developing methods to enhance the selectivity and efficiency of guide
RNAs, ribonucleoprotein complexes, novel promoters, and transformation protocols [Bortesi &
Fischer, 2015]. Research indicates that crops can endure higher salinity, modify their lignin and
pectin synthesis, and enhance disease resistance (Ly et al., 2024). The integration of CRISPR-Cas9
with sustainable methodologies presents a promising approach to enhance the efficacy of plant

extracts, elevate crop quality, and bolster food security (Borrelli et al., 2018).
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4.3 Regulatory and Commercialization Hurdles

Significant regulatory obstacles remain in the way of the commercialization of botanical
pesticides, such as genetically modified plant extracts and nano-encapsulated biocontrol agents,
especially the requirement for approvals from organizations like the Food and Drug
Administration (FDA) and the U.S. Environmental Protection Agency (EPA) (Waidyanatha et al.,
2024). These products must pass extensive safety, efficacy, and environmental impact evaluations
because they are made from natural sources but may also contain innovative delivery systems or
genetic alterations (Aware et al., 2022). Under the Federal Insecticide, Fungicide, and Rodenticide
Act (FIFRA), the EPA controls pesticides and requires comprehensive information on toxicity,
impacts on non-target organisms, and residual levels (Dietz-Pfeilstetter et al., 2021). In the
meanwhile, the FDA may impose further measures to guarantee the safety of humans and animals
if the product has pharmaceutical applications (Dietz-Pfeilstetter et al., 2021). Small and medium-
sized businesses frequently face difficulties due to the drawn-out and expensive approval
procedure. Furthermore, different international legislation and public opinion make market entry
much more difficult. Stakeholders must make significant investments in preclinical and clinical
research, interact with regulatory agencies early on, and guarantee open information regarding the
dangers and advantages of the product in order to get beyond these obstacles. Adoption of creative,
sustainable pest management techniques may be accelerated by streamlining these procedures
through legislative lobbying and standardized international standards. Farmers' awareness and
adoption of nano-encapsulated agrochemicals and biocontrol agents continue to be major obstacles
to their widespread commercialization, despite the potential advantages of these products (Vishnu
et al., 2024). Due to a lack of knowledge about these cutting-edge technology, many farmers

especially those in developing nations are skeptical or reluctant to abandon traditional methods
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(Kuhl, 2020). Misconceptions regarding safety, cost-effectiveness, and application techniques may
also arise due to the intricacy of nanotechnology and genetically modified solutions (Saleh &

Hassan, 2023).

Furthermore, small-scale farmers frequently have limited resources, which makes it challenging
for them to invest in more expensive nano-formulated products in the absence of convincing proof
of long-term advantages (Yadav et al., 2023). In order to overcome these obstacles, focused
education and extension initiatives are required to highlight the benefits of slow-release nano-
encapsulation, including decreased labor costs, increased crop yields, and less chemical usage.
Governments, agribusinesses, and research organizations working together can help to further
support adoption through pilot programs, farmer training, and subsidies. The full potential of these
cutting-edge technologies may go untapped in actual agricultural systems in the absence of
efficient outreach and financial incentives.

5. Conclusion and Recommendations

In tobacco, plant-derived extracts have shown great promise in the fight against soil-borne diseases
such as Fusarium oxysporum (Fusartum wilt) and Phytophthora nicotianae (Black Shank),
providing a sustainable substitute for synthetic fungicides. According to research, bioactive
substances found in neem, garlic, turmeric, and other therapeutic plants have immune-stimulating
and antifungal qualities that lower pathogen viability and increase plant resilience. Their broad
usage is hampered by issues such uneven efficacy, deterioration in field settings, and low farmer

uptake.
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Recommendations for Improved Implementation:

e Toimprove stability, gradual release, and targeted distribution, research should concentrate
on standardizing plant extract quantities and creating formulations that are
nanoencapsulated.

e Integration with Biocontrol Agents: Through synergistic effects, combining plant extracts
with helpful microorganisms (7richoderma, pseudomonas) may enhance disease
suppression.

¢ Genetic enhancement of tobacco, CRISPR-based breeding, or transgenic methods may be
investigated to create tobacco cultivars that demonstrate increased sensitivity to
treatments with plant extracts.

e Support for Farmer Education and Policy, to boost adoption among smallholder farmers,
governments and agricultural organizations should raise awareness through field
experiments, subsidies, and training initiatives.

e Future research should focus on developing standardized extraction and preparation
methods to ensure the consistency, reproducibility, and comparability of studies
evaluating the efficacy of plant extracts.

e To guarantee adherence to organic agricultural laws, more research on residual effects
and environmental safety is required.
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