

1 **Plant extracts for the management of Black Shank and Fusarium Wilt of**
2 **Tobacco: A Comprehensive review**

3 Leilei Li¹, Rasheed Akbar^{2,3}, Amir Abdullah Khan³, Babar Iqbal³, Sardar Ali¹, Shah Masaud
4 Khan⁴, Ijaz Hussain⁴, Abid Farid², Jianfan Sun^{2,5*}

5 ¹Bijie Tobacco Company of Guizhou Province, Bijie 551700, Guizhou Province, China

6 ²The Institute of Environment and Ecology, School of Environment and Safety Engineering,
7 Jiangsu University, China

8 ³Department of Entomology, Faculty of Physical and Applied Sciences, The University of Haripur,
9 Haripur Khyber Pakhtunkhwa 22062, Pakistan.

10 ⁴Department of Plant Breeding and Genetics, Faculty of Physical and Applied Sciences, The
11 University of Haripur, Haripur Khyber Pakhtunkhwa 22062, Pakistan.

12 ⁴Department of Horticulture, Faculty of Physical and Applied Sciences, The University of Haripur,
13 Haripur Khyber Pakhtunkhwa 22062, Pakistan.

14 ⁵Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou
15 University of Science and Technology, Suzhou 215009, China

16 *Corresponding author: zxsjf@ujs.edu.cn

17

18

19 **Abstract**

20 Tobacco (*Nicotiana tabacum* L.) is severely affected by soil-borne pathogens such as
21 *Phytophthora nicotianae* and *Fusarium oxysporum* f. sp. *nicotianae*, causing major yield
22 losses. Fungicide resistance and restrictions on synthetic pesticides necessitate eco-friendly
23 alternatives. Plant extracts rich in compounds such as curcumin, allicin, and thymol exhibit
24 antifungal and plant defense-inducing activity but face challenges of instability and
25 variable field performance. Recent advances in nanotechnology, including chitosan- and
26 lipid-based carriers, improve stability, bioavailability, and targeted delivery, while
27 synergistic use with biocontrol agents (*Trichoderma*, *Pseudomonas*) enhances disease
28 suppression. Despite these developments, regulatory hurdles, cost, and low farmer
29 adoption limit large-scale application. This review highlights the potential of nano-
30 formulated plant extracts and integrated biocontrol strategies for sustainable management
31 of tobacco diseases and emphasizes the need for standardized protocols, farmer education,
32 and supportive policies to enable commercialization. Integrating biotechnology and
33 nanotechnology offers a promising path for long-term crop protection.

34 **Keywords:** *Phytophthora nicotianae*; *Fusarium oxysporum*; botanical fungicides; nano-
35 encapsulation; sustainable agriculture

36 **1. Introduction**

37 Tobacco (*Nicotiana tabacum* L.) is a commercially significant crop cultivated widely across many
38 regions of the world, and is valued mostly for its financial returns (Santos et al., 2025). However
39 the production of *N. tabacum* meet major threats from soil-borne diseases, including Black Shank
40 and Fusarium Wilt (Ping sun et al., 2025). According to (Gai & Wang, 2024), these soil borne

41 diseases not only affect the leaf quality but also reduce the overall yields leading to considerable
42 economic losses for growers (Gai & Wang, 2024). In the past, chemical insecticides and soil
43 fumigation have been key components of the control of these diseases, but these methods. There
44 has been some degree of control thanks to these techniques, the limitations of traditional methods
45 have been brought to light by increased environmental concerns, the advent of pesticide-resistant
46 disease strains, and customer demand for tobacco products without residue (Abdullah & Zahoor,
47 2023). In light of these challenges, there has been a growing interest in sustainable,
48 environmentally friendly disease management strategies. Among these, the use of plant extracts
49 has emerged as a promising alternative due to their bioactive properties, low environmental
50 persistence, and biodegradability.

51 Black shank is still one of the most harmful tobacco diseases, and it is brought on by the oomycete
52 pathogen *Phytophthora nicotianae* Breda de Haan (Cochran et al., 2024). Black lesions on the
53 stems, drooping of the leaves, and eventually the collapse of the entire plant are the usual
54 symptoms of the diseases (Han et al., 2024). The disease is particularly challenging to eradicate
55 because *P. nicotianae* prefers warm, wet soil conditions and develops hardy oospores that can
56 remain for long periods of time in the soil. Despite the use of cultural measures like crop rotation
57 and the adoption of resistant cultivars, they have only partially succeeded, particularly in
58 environments that are conducive to the development of disease (Pandey et al., 2025). Likewise,
59 tobacco growers face a serious threat from Fusarium Wilt, which is brought on by *Fusarium*
60 *oxysporum* f. sp. *nicotianae* (Xie et al., 2024). The symptoms of this disease including, vascular
61 discoloration, leaf yellowing, wilting, and ultimately plant death (Vasić et al., 2025;Lucas, 1975).
62 The Fusarium pathogen, like Black Shank, is showed remarkably resilient to environmental
63 changes. It may live for years in plant debris and soil, and its ability to infect a huge variety of

64 plant hosts makes management attempts even more challenging (Naqvi et al., 2025). The efficacy
65 of chemical control methods against Fusarium Wilt has only been average, and the development
66 of strains resistant to fungicides makes controlling the disease more difficult (Fei et al., 2025).

67 Traditional chemical control methods have a number of drawbacks, even with their track record
68 of efficacy (Akbar et al., 2024a; Akbar & Khan, 2021). Overuse of chemicals like metalaxyl,
69 mefenoxam, and chloroneb has resulted in the selection of resistant disease strains, making
70 treatments less and less effective over time (Akbar et al., 2024b) (Lucas et al., 2015). Furthermore,
71 the pollution of the environment brought on by the application of pesticides has emerged as a major
72 worldwide issue. Pesticide residues frequently find their way into water and soil systems, where
73 they harmfully impact organisms that are not their intended targets and contribute to long-term
74 ecological imbalances (Ali et al., 2021). Many countries are enforcing stricter laws for the use of
75 pesticides in agricultural products, especially those intended for export markets, which restricts
76 the variety of chemicals that growers can choose from (Sandeep et al., 2024). Last but not least,
77 smallholder and resource-constrained farmers frequently cannot afford the high costs involved in
78 the development, registration, and use of novel chemical fungicides (Khoza et al., 2025). These
79 complex drawbacks highlight the pressing need for sustainable, alternative approaches to disease
80 management that are safe for the environment.

81 Plant extracts are becoming more and more popular as a potential remedy for the issues posed by
82 chemical pesticides (Akbar et al., 2022) . Several secondary metabolites, including phenolics,
83 alkaloids, flavonoids, terpenoids, and essential oils, are produced by plants and many of them have
84 strong antibacterial and antifungal qualities (Manzoor et al., 2025). Plant extracts, in contrast to
85 synthetic fungicides, frequently contain several modes of action, which greatly minimize the
86 possibility that diseases would become resistant (lawal et al., 2025). The antifungal effectiveness

87 of plant extracts against a variety of phytopathogens has been shown in several research. For
88 example, extracts from turmeric (*Curcuma longa*), ginger (*Zingiber officinale*), garlic (*Allium*
89 *sativum*), and neem (*Azadirachta indica*) have exhibited potent inhibitory effects on soil-borne
90 fungus (Ali et al., 2025; Kim et al., 2024; Cao et al., 2024; Kapooria, 2024). Usually, these extracts
91 cause spore germination inhibition, membrane integrity degradation, and disruption of fungal cell
92 wall formation, which results in pathogen death (Zhang et al., 2024). Compared to traditional
93 chemical fungicides, plant extracts have a various numbers of advantages. First of all, they
94 decompose quickly in the environment without leaving behind harmful residues because they are
95 biodegradable (Akbar et al., 2024). Secondly, it is in general accepted that plant-based pesticides
96 are safer for non-target microorganism, humans, and other animals. This safety profile is in line
97 with customer desires for agricultural goods that are residue-free and organic. Thirdly, integrated
98 pest management (IPM) techniques are very compatible with plant extracts. Their application can
99 be integrated with biological, mechanical, and cultural control techniques to produce
100 comprehensive and long-lasting disease management programs. Given these qualities, there is
101 increasing hope regarding the potential of plant extracts to manage tobacco disease in the future,
102 especially in the fight against soil-borne diseases like *F. oxysporum* and *P. nicotianae*.

103 The results of previous research showed that the application of plant extracts against Fusarium
104 Wilt and Black Shank infections have been promising. Both in laboratory and greenhouse tests,
105 for example, extracts from *Azadirachta indica*, *Ocimum sanctum*, *M. micrantha*, *Senna alata*,
106 *Datura metel*, and *Allium sativum* have been found to considerably lesser disease incidence (Haile,
107 2025; Rifnas, 2025). Plant extracts may be a useful part of integrated disease management,
108 according to these studies. However, several knowledge gaps remain in spite of the encouraging
109 results. The majority of research to date has been carried out in carefully regulated lab settings,

110 and field applications are still difficult to move to. The efficacy of plant extracts in field conditions
111 can be strongly impacted by variables like pathogen variety, environmental variability, and host
112 plant reactions.

113 Moreover, there is a pressing need to better understand the specific modes of action of plant-
114 derived compounds against *P. nicotianae* and *F. oxysporum*. Although broad mechanisms like
115 membrane disruption have been suggested, there aren't enough in-depth molecular research.
116 Standardizing extraction techniques is another important challenge. Variability in efficacy is
117 frequently caused by variations in the plant components utilized, solvent systems, extraction
118 methods, and quantities of active ingredients (Sharma et al., 2025). The commercialization of bio
119 pesticides based on plant extracts is hampered by this lack of standardization. Furthermore, not
120 enough research has been done on the possible phytotoxic effects of certain plant extracts on
121 tobacco plants. For plant extracts to be successfully embraced by farmers, it is imperative that they
122 do not adversely affect plant growth or production. Lastly, to optimize the effectiveness of plant
123 extracts in actual agricultural contexts, practical elements of field application, such as the creation
124 of stable formulations, efficient delivery systems, and suitable treatment schedules, must be
125 methodically addressed.

126 A thorough analysis of the body of research on the application of plant extracts to the control of
127 Fusarium Wilt and Black Shank in tobacco is urgently needed in light of these factors. A review
128 of this kind can synthesize existing knowledge, pinpoint important research gaps, and offer tactical
129 guidance for upcoming studies. Hence, the goals of this review are to: (1) summarize the major
130 findings about the use of plant extracts against Fusarium Wilt and Black Shank of tobacco, (2)
131 examine the mechanisms of action behind the antifungal activities of plant extracts, (3) discuss
132 about the difficulties and restrictions related to their practical application, and (4) determine the

133 future research directions required for the creation of efficient plant extract-based disease
134 management strategies.. Through this comprehensive synthesis, we aim to contribute valuable
135 insights into the promising but underutilized domain of plant-based disease management strategies
136 for tobacco. By highlighting the potential and limitations of plant extracts, this review aspires to
137 support the broader goal of promoting sustainable agricultural practices that are both
138 environmentally sound and economically viable.

139 **2. Major Diseases of Tobacco: Black Shank and Fusarium Wilt**

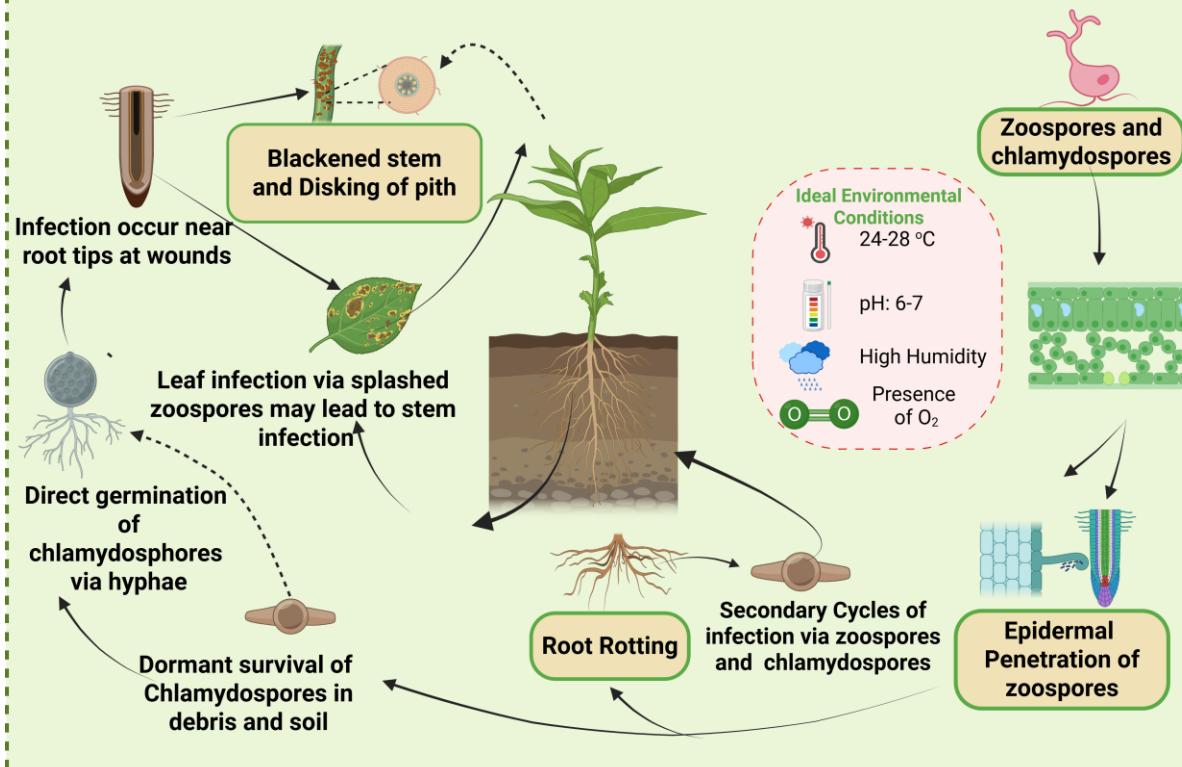
140 **2.1 Black Shank (Caused by *Phytophthora nicotianae*)**

141 **Black Shank of Tobacco**

142 One of the most significant and dangerous diseases affecting tobacco (*Nicotiana tabacum* L.)
143 plants is black shank (Pandey, 2023). It is brought on by the fungus *Phytophthora parasitica* var.
144 Nicotianae, which is found in most areas where tobacco is grown (Zhang et al., 2024; Zhang et al.,
145 2003). *P. nicotianae* belongs to the Kingdom Chromista, phylum Oomycota, class Oomycetes, and
146 order Peronosporales. Ten different clades were found within the genus *Phytophthora* in recent
147 studies that used genetic markers like beta-tubulin, elongation factor 1 alpha, enolase, heat shock
148 protein 90, 60S ribosomal protein L10, 28S ribosomal DNA, and tigA (Yan et al., 2024). The white
149 hyphae (filaments) of *P. nicotianae* are branched and range in diameter from 3 to 11 micrometers
150 (Pandey, 2023). The hyphae may appear fluffier and turn pale yellow as they mature. Although
151 the hyphae lack septa, or partitions, older cultures may produce pseudosepta, or seeming partitions.
152 As they age, the hyphae develop oil globules and turn granular (Gupta & Chugh, 2022). The
153 sporangia (structures that produce spores) of this fungus are oval, lemon-shaped, pear-shaped,
154 sympodial (occurring in pairs), and span between 18 and 61 by 14 and 39 micrometers. Sporangia

155 are pale yellow to transparent and develop from the hyphae on short pedicels (Mondal et al., 2020).
156 With an apical papilla, these sporangia can generate five to thirty zoospores, which are tiny, mobile
157 spores that range in size from seven to eleven micrometers (Delmas et al., 2014). There are several
158 varieties of spores seen in *P. nicotianae*. The concave side of biflagellate zoospores has flagella
159 attached to it (Kasteel et al., 2023). Typically measuring 30 μm in diameter and ranging from 14
160 to 43 μm in length, chlamydospores are spherical or ovoid in shape and non-papillate (Scanu et
161 al., 2021). At first, they have thin walls and are hyaline, but as they become older, they thicken
162 and change from yellow to brown. Perpendicular to the vegetative hyphae, chlamydospores
163 develop on short lateral hyphae. Oospores, which are spherical to pyriform and hyaline to pale
164 yellow in appearance, have been observed in laboratory settings but do not have a strong
165 environmental record (Nam et al., 2022). The structures that surround the oosphere are called
166 oogonia, and they are hyaline to pale yellow in color. The developing oospore, which is normally
167 23–30 μm in diameter, is the result of fertilization (Tsai & Thines, 2025).

168 One type of plant pathogen that is frequently seen in tropical and subtropical areas with high
169 humidity and warm temperatures is *P. nicotianae* (Bahadur & Dutta, 2023). Temperatures
170 between 28 and 32°C and pH values between 5.7 and 7.0 are usually ideal for their growth. For
171 optimal infection, they also need a temperature of at least 20°C (Pandey, 2023). When there is
172 enough oxygen and water in the environment, sporangia can grow and form; the ideal temperature
173 range is between 24 and 28°C. Within 48 hours of the mycelium developing, sporangia may
174 emerge (Benigno et al., 2025). When sporangia germinate, they will create secondary sporangia
175 at the same temperature. A tiny projection known as a papilla will allow kidney-shaped zoospores
176 with two flagella to emerge from the sporangia (Crouch et al., 2022). Within 72 hours of landing
177 on a host's tissue, these zoospores will swim in circles and germinate to generate new sporangia,


178 which will then produce another generation of zoospores (Moreira et al., 2023). Plant pathogen *P.*
179 *nicotianae* is a polycyclic disease-causing agent that mostly targets the roots of its host plant but
180 can also infect leaves and flowers (Volynchikova & Kim, 2022). Its classification as a
181 hemibiotrophic pathogen indicates that, throughout its disease cycle, it undergoes both biotrophic
182 (living off a host) and necrotrophic (producing death in the host) stages (Rajarammohan, 2021).
183 The pathogen *P. nicotianae* first establishes a mutually advantageous association with its host. But
184 after a while, it kills the host cells and goes into a phase when it feeds on the dead host tissue. The
185 necrotrophic phase is the term for this stage (Singh et al., 2024). The amount of zoospores in soil
186 is correlated with the severity of the infection, which occurs when asexually generated, multi-
187 nucleated sporangia release zoospores, which are mobile and lack a cell wall (Del Castillo-
188 González et al., 2024). The zoospores attract to certain compounds in the soil and go to the root
189 tissue, where they develop into a cyst on the plant. The development of a germ tube, which
190 ultimately becomes an appressorium, is crucial to the *P. nicotianae* disease cycle (Legrifi et al.,
191 2023). The pathogen may penetrate and infect host cells thanks to these structures, which causes
192 the host cells to die. Additionally, *P. nicotianae* can persist in the soil for long periods of time as
193 chlamydospores, which can infect subsequent growth seasons (Bag et al., 2023). To try to stop this
194 infection from spreading, management techniques frequently focus on the development of germ
195 tubes (Delai et al., 2024).

196 *P. nicotianae* reproduces mostly asexually, while it can occasionally reproduce sexually by fusing
197 male and female gametangia (Berbeć, 2024). Both A1 and A2 mating types must be present for
198 sexual reproduction to produce thick-walled oospores (Babarinde et al., 2024). But the uneven
199 distribution of these mating types in the environment raises the possibility that oospore production
200 may not play a major role in the pathogen's life cycle and that worries about virulence and

201 pathogenicity changes brought on by sexual reproduction may be exaggerated (Meng et al., 2014).
202 At any stage of growth, the virus can infect the tobacco plant's roots, stems, and leaves, among
203 other areas. This may drastically lower the tobacco crop's output and quality (Sun et al., 2024).
204 Tobacco plants may become stunted and fall before their leaves are developed enough to be
205 harvested if they contract Black Shank disease early in the growing season (Bahadur & Dutta,
206 2023). *P. nicotianae* can infect tobacco plants at any stage of growth, although it usually affects
207 plants between 6 and 8 weeks of age (He et al., 2022). According to Tong et al. (2024), Within 48
208 hours of the pathogen being introduced, black shank signs can be seen, and the plant may die
209 within a week of infection. Its main symptoms include root and crown rot, consistent wilting, and
210 chlorosis of the leaves, which result in water-soaked lesions on stem tissue that are 15 to 20
211 centimeters above the soil line (Sapkota et al., 2022). Root necrosis may also be seen as the
212 condition progresses (Zhou et al., 2023). The defining signs of black shank are brown to black
213 vascular disking and pith necrosis (Cochran et al., 2024). On older foliage, a large, concentric,
214 round, dark-brown lesion that is 7 to 8 cm in diameter may also develop as a result of the inoculum
215 being dispersed by rain splash (Cochran et al., 2024). Since other tobacco diseases like Fusarium
216 Wilt and Granville Wilt might exhibit similar symptoms, the macroscopic symptoms mentioned
217 above should be utilized in concert with microscopic inspection and molecular characterisation to
218 accurately detect *P. nicotianae* infection. Plant tissue exhibiting signs of illness, water, or soil can
219 all harbor *P. nicotiana* as shown in **Figure 1**. *Ageratina adenophora*, *Ageratum houstonianum*,
220 *Parthenium hysterophorus*, and *Xanthium strumarium*, these invasive species demonstrated
221 antifungal activity against *Phytophthora capsici* (Han et al., 2024). While not specifically tested
222 against *Phytophthora nicotianae*, their potential to inhibit *Phytophthora* species suggests they could
223 be further investigated for black shank management. The methanolic extracts of these plants

224 generally exhibit stronger inhibitory effects compared to aqueous extracts(Han et al., 2024),
225 indicating that the active compounds are more soluble in organic solvents. *Ipomoea carnea*:
226 Although tested against different fungal pathogens (*Fusarium solani*, *Alternaria*
227 *solani*,and*Colletotrichum circinans*)(Tao et al., 2021), the antifungal properties of*Ipomoea*
228 *carnea*suggest potential for broader applications, warranting further research against*P. nicotiana*e.
229 *Parthenium hysterophorus*: Whole plant is used for organic and inorganic pollutant removal and
230 Cr(VI) remediation(Zhu et al., 2024). *Prosopis juliflora*and*Leucaena leucocephala*: These
231 invasive plants, commonly found in Egypt, have shown antifungal activity against*Fusarium*
232 *solani*, *Alternaria solani*,and*Colletotrichum circinans*(Tao et al., 2021). Their water-based extracts
233 exhibited antifungal properties, suggesting a readily accessible method for potential application.
234 Further research is often needed to optimize their use in integrated disease management
235 strategies(Naqvi et al., 2024) as shown in **Table 1**.

Black shank (*Phytophthora nicotianae*) life cycle in tobacco

236

237 **Figure 1:** Life cycle and pathogenesis of *P. nicotianae* causing Black Shank disease in tobacco.

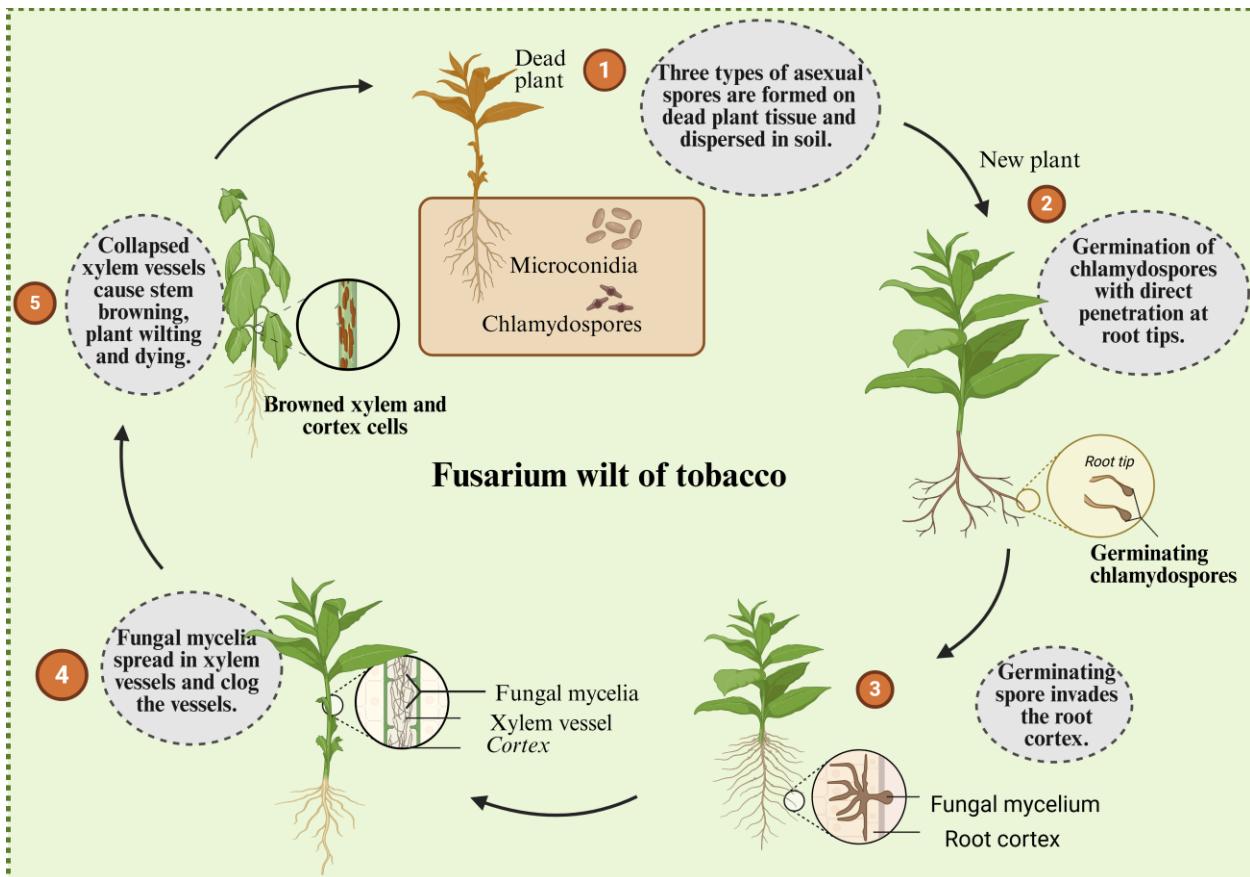
239 **Table1.** List of plant species used against Black Shank of Tobacco

S. No	Plant	Active ingredients	Mechanism	Reference
1	<i>Sophora flavescens</i>	Matrine and oxymatrine	Part of a mixed plant extract that, combined with fungicides, successfully controlled black shank in greenhouse experiments.	Alsarhan et al. (2014)
2	<i>Forsythia suspense</i>	forsythiaside A, arctigenin	Part of a mixed plant extract that, combined with fungicides, successfully controlled black shank in greenhouse experiments.	Alsarhan et al. (2014)
3	<i>Nicotiana plumbaginifolia</i>	Nicotine	Contains the <i>NpPP2-B10</i> gene, which, when transferred to <i>Nicotiana tabacum</i> , promotes resistance to <i>P. nicotianae</i> .	Deaton et al. (1982)
4	<i>Tagetes erecta L.</i>)	lutein, β -carotene	Rotation with marigold reduces disease incidence in continuously cropped tobacco fields, influencing soil microbial communities.	Boro et al. (2024)
5	<i>Sophora flavescens, Forsythia suspense,</i>	Oxymatrine, sophocarpine	Induces PR proteins (PR-1, PR-4, and PR-5) in tobacco plants, enhancing resistance against black shank and tobacco. The extract, alone or combined with fungicides, shows successful disease control in both non-continuously and continuously cropped land.	Wang et al. (2018)
6	<i>Syringa oblata</i>	syringic acid, caffeic acid derivative	Inhibits mycelial growth of <i>P. nicotianae</i> in a dose-dependent manner, disrupting extracellular pH and electrolyte leakage. Minimum inhibitory concentration (MIC) of eugenol is 200 μ g/mL.	Zhu et al. (2024)

7	<i>Zanthoxylum bungeanum</i> Maxim.	berberine, chelerythrine	Increases soil organic matter, hydrolysable nitrogen, available potassium, and total phosphorus while decreasing pH, promoting plant growth (increased plant height, root length, and dry weight. Acts as a bio-fumigation material against tobacco black shank.	Dhuldhaj et al. (2023)
8	<i>Azadirachta indica</i>	azadirachtin, nimbin, nimbiden	Disrupts fungal membrane integrity; inhibits mycelial growth and spore germination.	Mahmoud et al. (2011)
9	<i>Allium sativum</i>	Allicin	Increases mycelial membrane permeability; causes cell death in <i>P. nicotianae</i>	Wang et al. (2019)
10	<i>Syzygium aromaticum</i>	Eugenol, β -Caryophyllene	Damages mycelial membranes, inhibiting growth & spore germination	Jing et al. (2017)

241 **2.2 Fusarium Wilt (Caused by *Fusarium oxysporum* f. sp.*nicotianae*)**

242 In many countries throughout the world, Fusarium wilt, a disease brought on by the *F. oxysporum*
243 species complex, causes significant damages (Engalycheva et al., 2024). In 1916, Maryland had
244 the first documented incidence of the disease in the United States. In the states of Connecticut and
245 Massachusetts, it had developed into the most serious and destructive disease affecting broadleaf
246 cigar wrapper tobacco by the 1980s and early 1990s (Pandey, 2023). About 20% of the tobacco
247 producing areas were affected by the disease, which caused significant damage and led to the
248 removal of badly infected fields from tobacco production (Liang et al., 2024). The three species of
249 *F. oxysporum* f. sp. *nicotianae*, f. sp. *batatas*, and f. sp. *vasinfectum* are the fungus that causes wilt
250 in tobacco plants (Berruezo et al., 2021). These species were distinguished by their effects on
251 cotton, sweet potatoes, and tobacco, among other hosts. It was discovered that four races of the
252 fungus *F. oxysporum* were harmful to tobacco (Berruezo et al., 2018). According to recent studies
253 using cluster analysis, the pathogen consists of at least three different isolate groups, which may
254 show distinct lineages from tobacco and sweet potatoes (Paul et al., 2020). All isolates that were
255 initially discovered in tobacco are included in one of these clusters, *F. oxysporum* f. sp. *Nicotianae*
256 (Rahman et al., 2021). Sweet potato isolates from North Carolina and Louisiana (Race 0) or
257 California (Race 1) make up the second and third clusters of *F. oxysporum* f. sp. *batatas*. No
258 disease was caused by Race 0 of *F. oxysporum* f. sp. *batatas* in flue-cured tobacco or resistant
259 sweet potatoes, however Race 1 caused wilt in resistant sweet potatoes but had no effect on
260 tobacco. This shows the variability of the tobacco wilt pathogen. The symptoms of Fusarium wilt
261 in tobacco plants include leaf yellowing, drying, and death. These symptoms can occur in a vertical
262 pattern, usually on one side of the plant or the mid vein of the leaf (Wang et al., 2022). The vascular
263 tissue of the plant becomes characteristically chocolate-brown discolored due to the disease, and


264 this discoloration may extend to the top of the plant (Dell'Olmo et al., 2023). The outside of the
265 green stem gradually shows similar darkening. The leaves will curl on the stalk rather than rot,
266 which will cause the stalk to bend over at the bud and give it a characteristic "crookneck" look
267 (Pandey, 2023). The plant will eventually become dry and necrotic as a whole. Sandy loam soils
268 and warm weather increase the disease's severity (Abbas et al., 2022). Plant resistance, cleanliness,
269 crop rotation, nutrition, nematode control, and fumigation or bio fumigation are some of the
270 strategies used to prevent Fusarium wilt in tobacco. But not all approaches work the same way
271 (Haruna et al., 2024). According to El-Aswad et al. (2023), recently there are no chemical
272 management for *F. oxysporum*. f. sp. *nicotianae* in soil that are completely effective. The quality
273 and look of wrapper leaves are negatively impacted by the phase-out of the most effective
274 fumigants, methyl bromide and chloropicrin (Villarino et al., 2021), but fumigation of soil may
275 result in a little decrease in the severity of disease. Moreover, fumigation with metam sodium does
276 not reduce cotton wilt induced by soil borne Fusarium or *F. oxysporum* f. sp. *Vasinflectum*
277 (McDonald et al., 2021). In the crop residue Chlamydospores may also resistant to fumigation. In
278 Connecticut, fumigation has produced mixed outcomes, especially when tobacco is planted in the
279 same area over time. However, it may indirectly limit disease manifestation by affecting plant
280 parasitic nematodes. The recent study by (Lal et al., 2024), The development and broad use of
281 tobacco cultivars resistant to Fusarium wilt has shown to be the most effective strategy for
282 managing the disease on a global scale. The broadleaf cigar wrapper varieties including 'B2' and
283 'C9' resistant to Fusarium wilt pathogen were introduced in Connecticut (LaMondia, 2013). This
284 resistance is caused by several genes building up for increased effectiveness (Sadeghpour et al.,
285 2024). These resistant cultivars may still exhibit wilt signs in severe environments since they are
286 not totally immune to Fusarium infection (Lal et al., 2024). Broadleaf tobacco resistant to wilt has

287 often been found to contain *F. oxysporum*, and this resistance has been found to be associated with
288 the pathogen's slower migration inside the plant's vascular tissues. Moreover, within 24 hours of
289 inoculation, resistant plants exhibited rapid reactions, such as the development of vesicles to block
290 xylem, the deposition of callose, and the production of lipoidal material (Chen et al., 2024;
291 LaMondia, 2013). Chlamydospores spread through soil on agricultural equipment that moves
292 between fields, and the habit of utilizing tobacco stalks for fertilizer and rubbish disposal are two
293 of the many factors contributing to the pathogen's rapid spread. Studies have revealed that *F.*
294 *oxysporum* is resistant to composting, in contrast to many other plant diseases (Bouchtaoui et al.,
295 2024). These days, tobacco stalks are either buried or dispersed in non-tobacco areas rather than
296 remaining on tobacco fields. By implementing sanitation procedures, such as removing soil clumps
297 from field equipment before moving it to another field, the wilt pathogen and other soil-borne
298 illnesses, like tobacco cyst nematodes, can be prevented throughout their spread as shown in
299 **Figure 2.** Despite these precautions, *F. oxysporum* continues to spread between farms more rapidly
300 and extensively than expected (Ismaila et al., 2023); (Wichuk et al., 2011). Wounding roots
301 through close cultivation, hoeing, or drip tape irrigation creates holes for infection and increases
302 Fusarium wilt (Bhumarkar et al., 2021). Reducing injury lowers the incidence and severity of wilt.
303 Beyond merely generating new infection sites from wounds, tobacco cyst nematodes (*Globodera*
304 *tabacum*) and root knot worms (*Meloidogyne* spp.) also create Fusarium wilt (Khan & Sharma,
305 2020). Prior to fungal exposure, plants with nematode infestations showed higher rates and severity
306 of wilt than those exposed concurrently. It was discovered that an infestation of *G. tabacum* caused
307 more wilt than an equivalent amount of *Meloidogyne hapla*. In field tests, early season nematode
308 control reduced the frequency and intensity of Fusarium wilt in tobacco (Makunde et al., 2023).
309 By modifying the pH and nitrogen levels of the soil, several Fusarium wilt infections have

310 successfully managed (Habte & Dobo, 2025). The incidence and severity of the diseases in
311 tomatoes and chrysanthemums have been related to factors such soil pH, lime, calcium, and
312 nitrogen sources (Valenzuela, 2024). Calcium was the most successful nutritional component
313 studied for controlling Fusarium wilt in tobacco, according to (Okiro et al., 2025). Since calcium
314 controls the synthesis of callose, a plant defense mechanism against vascular wilt pathogens, its
315 deficiency has been connected to the onset of the diseases. Calcium is thought to be the most easily
316 manipulated nutrient in Connecticut broadleaf tobacco cultivation (Daunoras et al., 2024)
317 (LaMondia, 2015). Although fusarium wilt can develop in soil with varying pH values, the illness
318 may be affected if the pH is raised to above 6.4. However, soils with a pH of 5.6 to 6.0 might
319 develop severe black root rot (Šišić et al., 2025). Although Fusarium wilt in susceptible broadleaf
320 tobacco can be suppressed by applying substantial amounts of gypsum to the soil, this effect was
321 minimal at low disease incidence levels. The 13,400 kg/ha of gypsum needed to minimize wilt is
322 far more than tobacco growers typically use (340–560 kg/ha), and it may have detrimental
323 agronomic impacts like slower crop growth (LaMondia, 2015). Without a vulnerable host, the
324 fungus in a field lasts for several years. Based on the chlamydospores' survival, crop rotation's
325 ability to reduce the density of Fusarium wilt pathogens in the soil varies widely (Garzón-Nivia et
326 al., 2025; Obiazikwor et al., 2025) and the pathogen's capacity to infect other plant species that are
327 not impacted as well as the roots of resistant crops (Nowicki et al., 2025). It is necessary to assess
328 how resistant plants and rotation crops affect the soil's pathogen populations over time for each
329 unique pathosystem and crop..

330 Recent studies as shown in **Table 2**, have demonstrated the efficacy of various plant extracts in
331 controlling *Fusarium* wilt pathogens across different crops. *Datura metel* leaf extract completely
332 inhibited mycelial growth of *F. oxysporum* f. sp. *cubense* in banana at 10% concentration (Hassan

333 et al., 2022). For tomato pathogens, *Aloe vera* extracts significantly inhibited growth and
334 sporulation of *F. oxysporum* f. sp. *Lycopersici* (FOL) under both laboratory and greenhouse
335 conditions (Al-Gallas et al., 2021), while clove (*Syzygium aromaticum*) essential oils reduced
336 fungal growth and spore populations (He et al., 2021). Extracts from *Eucalyptus camaldulensis*,
337 *Chromolaena odorata*, *Bidens pilosa*, and *Wedelia trilobata* also showed effective control of *F.*
338 *oxysporum* in tomatoes (Al-Gallas et al., 2021). In chickpea, neem (*Azadirachta indica*)
339 suppressed *F. oxysporum* f. sp. *ciceri* activity *in vitro* (Meena et al., 2021), and garlic (*Allium*
340 *sativum*) induced physiological and biochemical defenses against *Fusarium* wilt in both chickpea
341 and tomato (Selva Amala et al., 2024). Other effective botanicals included resins
342 from *Commiphora swynnertonii* and latex from *Synadenium glaucescens* against tomato wilt
343 (Fenollosa & Munné-Bosch, 2020), as well as *Monsonia burkeana* and *Moringa oleifera* extracts
344 (Jamil et al., 2021). *Xanthium strumarium* demonstrated efficacy against *F. oxysporum* in
345 pomegranate (Powell et al., 2024), while combined neem and willow (*Salix babylonica*) extracts
346 reduced tomato wilt severity by inducing antioxidant enzymes (Farag Hanaa et al., 2011). These
347 findings highlight the potential of plant-derived solutions for integrated *Fusarium* wilt
348 management.

350 **Figure 2:** Disease cycle and pathogenesis of *Fusarium* wilt in tobacco.

Table 2: Antifungal effects of plant extracts against *Fusarium oxysporum* pathogens in different crops.

Plant Extract Source	Target Crop	Pathogen	Observed Effect	References
<i>Datura metel</i> (leaf extract)	Banana	<i>F. oxysporum</i> f. sp. <i>cubense</i>	Complete inhibition of mycelial growth at 10% concentration.	Hassan et al. (2022)
<i>Aloe vera</i>	Tomato	<i>F. oxysporum</i> f.sp. <i>lycopersici</i>	Inhibited growth and sporulation of FOL under laboratory and greenhouse conditions.	Al-Gallas et al. (2021)
<i>Syzygium aromaticum</i>)	Tomato	<i>F. oxysporum</i> f.sp. <i>lycopersici</i>	Essential oils from clove also significantly reduced growth and spore population	He et al. (2021)
<i>Eucalyptus camaldulensis, Chromolaena odorata, Bidens pilosa, Wedelia trilobata</i>	Tomato	<i>F. oxysporum</i>	Effective control of <i>F. oxysporum</i> in vitro and in tomatoes.	Al-Gallas et al. (2021)
<i>Azadirachta indica</i> (Neem)	Chickpea	<i>F. oxysporum</i> f. sp. <i>ciceri</i>	Suppressed activity of <i>F. oxysporum</i> f. sp. <i>ciceri</i> under in-vitro conditions.	(Meena et al. (2021)
<i>Allium sativum</i>	Chickpea, Tomato	<i>F. oxysporum</i> f. sp. <i>ciceri</i> , <i>F. oxysporum</i> f. sp. <i>lycopersici</i>	Used as inducers on physiological and biochemical activities in tomato against <i>Fusarium</i> wilt.	Selva Amala et al. (2024)

<i>Commiphora swynnertonii</i> (resins), <i>Syn adenium glaucescens</i> (Tomato	<i>F. oxysporum</i> f. sp. <i>Lycopersici</i>	Extracts were effective against <i>F. oxysporum</i> f. sp. <i>Lycopersici</i>	Fenollosa & Munné-Bosch (2020)
<i>Monsonia burkeana</i> , <i>Moringa oleifera</i>	Tomato	<i>F. oxysporum</i> sp. <i>Lycopersici</i>	f. Extracts were effective against <i>F. oxysporum</i> f. sp. <i>Lycopersici</i>	Jamil et al. (2021)
<i>Xanthium strumarium</i>	Pomegranate	<i>F. oxysporum</i>	Effective against pomegranate isolated pathogenic fungi.	Powell et al. (2024)
<i>Neem</i> (<i>Azadirachta indica</i>) and <i>willow</i> (<i>Salix babylonica</i>)	Tomato	<i>F. oxysporum</i>	Reduced Fusarium wilt disease in tomato seedlings, induced antioxidant defensive enzymes.	Farag Hanaa et al. (2011)

354 **3. Current Management Strategies**

355 Current tobacco management of Fusarium Wilt and Black Shank depends on an integrated strategy
356 that combines biological, cultural, and chemical control techniques. Still, each approach has
357 important drawbacks that jeopardize sustainability and long-term effectiveness. According to
358 Sapkota et al. (2023), fungicides continue to be the main line of defense against these debilitating
359 diseases. Metalaxyl and fosetyl-Al are frequently applied to manage Black Shank, while
360 benzimidazoles (like carbendazim) and triazoles (like tebuconazole) are used to manage Fusarium
361 Wilt. But there are concerning trends in resistance as a result of the overuse of these fungicides.
362 More than 60% of *P. nicotianae* populations in important tobacco-growing regions are resistant to
363 metalaxyl, according to recent surveys, making the fungicide useless in many places (Clement et
364 al., 2025; Van Jaarsveld et al., 2002). Also, benzimidazole resistance has grown widely in *F.*
365 *oxysporum* f. sp. *nicotianae*, with resistance frequencies above 80% reported in China and Brazil
366 (El-Nagar et al., 2023). In addition to their resistance, chemical fungicides can contaminate soil
367 and water, harm beneficial microorganisms without their intended target, and threaten the health
368 of farmers. The EU's prohibition on methyl bromide and impending limitations on phosphonates
369 are just two examples of how regulatory bodies are regulating synthetic fungicides more and more,
370 which further reduces the range of alternatives (Nader et al., 2020). Crop rotation and resistant
371 cultivars are examples of cultural methods that provide some partial solutions but are difficult to
372 apply. Although switching tobacco to non-host crops (such maize or sorghum) can decrease the
373 pathogen burden, this strategy is compromised by the long-term survival of *F. oxysporum*
374 chlamydospores (decades) and *P. nicotianae* (up to 5 years in soil) (Ristaino et al., 2021). Although
375 resistant tobacco cultivars have been developed (such as Black Shank's "K 326"), resistance
376 frequently breaks off in 5–10 years due to pathogen adaptation (McCorkle et al., 2018). According

377 to Mavroeidis et al. (2024), resistant cultivars may degrade leaf quality, which is essential for
378 commercial viability. *Trichoderma harzianum* and *Pseudomonas fluorescens* are biological agents
379 showed promising results in laboratory condition but they exhibit different results in field, this is
380 due to environmental sensitivity and competition with native microbiota (Ayaz et al., 2023).
381 Although *Trichoderma spp.* can lower the incidence of Black Shank by 30 to 50% in greenhouse
382 experiments, their effectiveness is greatly diminished in field condition with varying moisture and
383 temperature (Naorem et al., 2023). Similarly, efficacy rates for Bacillus-based bio fungicides vary
384 from 20% to 70% depending on the location, and they frequently fall short of commercial-scale
385 consistency (Barros-Rodríguez et al., 2024).

386 **3.1 Plant Extracts as Sustainable Alternatives: A Path toward Eco-Friendly Disease
387 Management**

388 Research on plant-derived antimicrobials as sustainable substitutes for traditional disease
389 management techniques has increased due to the rising limitations of these methods for preventing
390 *Fusarium* Wilt and Black Shank in tobacco (Deressa & Diriba, 2023). Plant extracts contain
391 complex combinations of bioactive compounds that attack pathogens through several processes
392 concurrently, greatly minimizing the possibility of resistance development, in contrast to
393 manufactured fungicides that target single metabolic pathways (Ayaz et al., 2019). Alkaloids,
394 flavonoids, terpenoids, and phenolic compounds are among the hundreds of secondary metabolites
395 that have been discovered by recent developments in phytochemical research to have strong
396 antifungal effects against both *Fusarium oxysporum* and *Phytophthora nicotianae* (Deressa &
397 Diriba, 2023). For example, *P. nicotianae* zoospores' cell membrane viability is damaged by
398 curcumin from turmeric (*Curcuma longa*), which also prevents mycelial growth by interfering
399 with mitochondrial activity (Wang et al., 2019). Plant extracts' mechanisms of action go beyond

simply suppressing pathogens; they can also cause tobacco plants to develop systemic resistance (Yang et al., 2024). Plants are primed for improved immune responses by compounds like thymol from thyme (*Thymus vulgaris*) and allicin from garlic (*Allium sativum*), which have been demonstrated to activate the salicylic acid defense system and upregulate pathogenesis-related (PR) proteins (Anisimova et al., 2021). Because plant extracts have both direct antibacterial activity and host defense potentiation, they are very useful for integrated disease management. Field experiments in China's main tobacco-growing regions showed that neem (*A. indica*) kernel extract and chitosan together decreased the incidence of Black Shank by 68–72%, which is similar to synthetic fungicides but without the hazards of resistance (Ibrahim et al., 2023). Plant extract formulations have historically presented difficulties that are being addressed by recent technological advancements. Utilizing biodegradable carriers like as lignin and chitosan, nanoencapsulation strategies have greatly increased the stability and bioavailability of volatile chemicals (Deng et al., 2023). Oregano (*Origanum vulgare*) essential oil Nano emulsions, for example, retained 85% antifungal activity after 30 days of field exposure, but unformulated oil only exhibited 35% (Hosny et al., 2021). Additionally, developments in extraction methods, including supercritical fluid extraction and ultrasound-assisted extraction, have reduced processing time and energy usage while increasing active compounds yields (Khadhraoui et al., 2021).

Plant-based disease management has significant positive effects on the environment. According to life cycle assessments, botanical pesticides decompose entirely in soil in 2-4 weeks and have carbon footprints that are three to five times lower than those of synthetic counterparts (Yin et al., 2023; Ristaino et al., 2021). In response to the increased consumer demand for "clean label" products, this quick degradation removes residual problems in cured tobacco leaves. Most significantly, local production of plant extract formulations employing native species in tobacco-

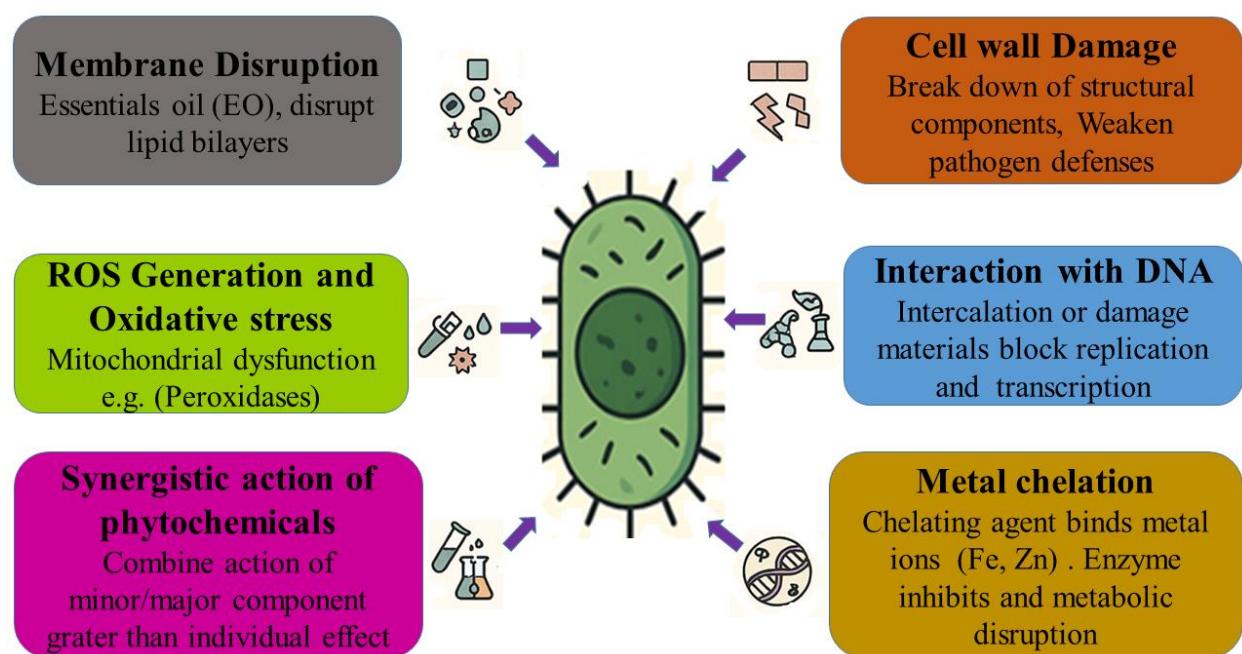
423 growing countries can open up new business prospects for smallholder farmers (Ouma, 2024).
424 Considering these benefits, there are still issues with obtaining regulatory permissions, maximizing
425 application timing, and standardizing extract potency. Next-generation botanical fungicides are
426 being developed more quickly, though, because to the fusion of traditional ethnobotanical
427 knowledge with contemporary analytical methods (such as metabolomics and machine learning).
428 Plant extracts have the potential to evolve from additional treatments to essential elements of
429 sustainable tobacco production systems across the globe as resistance to traditional fungicides
430 keeps growing and regulatory demands increase.

431 **3.2 Modes of action of plant extracts**

432 Plant extract or botanicals act against microorganisms are even less known. These mechanisms
433 rely on the composition of botanicals, which is multifactor dependent (Radulovic et al., 2013). A
434 few studies reveal that the major components are mainly responsible for the biological activity of
435 botanicals, but others conclude that several components act in synergy (Amenu, 2014;
436 Chaachouay, 2025). Furthermore, as botanicals contain a mixture of diverse components, their
437 antifungal activity is probably not attributable to a single mechanism. The main mechanisms
438 reported so far are membrane disruption, metal chelation, interaction with DNA, and induction of
439 plant defense reactions (Redondo-Blanco et al., 2020). Several studies report that EO or some of
440 their components are able to disrupt cell wall and membrane integrity and to easily penetrate into
441 the cells (Yap al., 2021). This disruption causes mitochondrial membrane damage, which induces
442 changes in the electron transport chain. Consequently, free radicals are produced, and they oxidize
443 and damage lipids, proteins, and DNA. In contact with reactive oxygen species (ROS), EO
444 phenolic compounds are oxidized and release reactive phenoxy radicals (Hajam et al., 2023). The
445 induction of plant defenses by EO has also been investigated as shown in **Figure 3**. Thyme oil

446 application on tomato roots efficiently triggered peroxidase accumulation in roots, which are well-
447 known to be part of the plant defense mechanisms (Saltos-Rezabala et al., 2022). Similarly, Farooq
448 et al. (2024) found evidence of the induction of plant defense responses against *F. oxysporum* f.
449 sp. *lycopersici* using different plant extracts. Although the antimicrobial mechanisms of action of
450 botanicals have been carefully studied for their pharmaceutical or food preservative uses, less
451 information is available concerning their use to control plant pathogenic microorganisms (Oulahal
452 et al., 2012

453 **3.3 Molecular Modes of Action of Plant Extracts**


454 Plant extracts possess inherent complexity, making it difficult to attribute their bioactivity to a
455 single mechanism; yet, growing evidence highlights both particular molecular targets and
456 synergistic interactions among their phytochemical components. Principal molecules frequently
457 dictate primary function; nevertheless, minor components can substantially enhance effectiveness
458 through synergistic interactions (Amenu, 2014; Chaachouay, 2025). A fundamental antibacterial
459 process involves the degradation of microbial cell membranes. Terpenoids, such as carvacrol (from
460 oregano) and thymol (from thyme), integrate into lipid bilayers due to their lipophilic properties,
461 causing destabilization of plasma membranes, ion leakage (K^+ , H^+), ATP depletion, and ultimately
462 cell lysis (Bakkali et al., 2008; Yap et al., 2021).

463 This membrane disruption frequently impacts organelles, particularly mitochondria, hence
464 disrupting the electrochemical gradient and impairing the electron transport chain (ETC). The
465 resultant surplus of reactive oxygen species (ROS), including superoxide anions (O_2^-) and
466 hydrogen peroxide (H_2O_2), exceeds microbial antioxidant defenses such as catalase and
467 glutathione, resulting in lipid peroxidation, protein carbonylation, and DNA strand breaks (Camele

468 et al., 2019). Phenolics exacerbate this stress by generating phenoxy radicals by microbial
469 oxidation, hence perpetuating oxidative chain damage (Hajam et al., 2023).

470 Besides these broad harmful effects, plant metabolites significantly influence microbial
471 physiology. Flavonoids and tannins chelate essential metals such as Fe^{2+} and Zn^{2+} , thereby
472 inhibiting pathogens from acquiring crucial cofactors for their enzymes (Miklańska-Majdanik et
473 al., 2018). Alkaloids, including berberine, directly intercalate with DNA, obstructing replication
474 and transcription. Conversely, thiol-reactive compounds, such as allicin (derived from garlic),
475 irreversibly inhibit cysteine-dependent enzymes. Plant extracts possess direct antibacterial
476 properties and enhance the body's defenses against infections. For instance, the application of
477 thyme oil to tomato roots induced systemic resistance by enhancing the expression of
478 pathogenesis-related proteins (PRs) and activating critical defense enzymes such as peroxidase
479 (POD) and phenylalanine ammonia-lyase (PAL), which promote phytoalexin biosynthesis (Saltos-
480 Rezabala et al., 2022). Farooq et al. (2024) similarly demonstrated that plant extracts can prime
481 defense mechanisms to combat *Fusarium oxysporum* f. sp. *lycopersici*. While several processes
482 have been explored in food preservation, their implementation in agricultural disease management
483 remains an insufficiently studied yet highly prospective research domain (Oulahal et al., 2012).

484

485

486 **Figure 3:** Mode of action of Plant extracts against pathogenic microorganisms

487 **3.4 Recent research on plant extract interactions with pathogen resistance genes**

488 Recent research has improved our understanding of how plant extracts influence disease
 489 resistance by interacting with microbial virulence factors and host defense pathways.
 490 Xanthomonas species employ type III effectors (T3Es), including Xop proteins, to suppress host
 491 immunity. Recent studies indicate that phytochemicals can modify these interactions, hence
 492 diminishing pathogen pathogenicity (Medina et al., 2017). Plant extracts assist plants in managing
 493 oxidative stress caused by heavy metals, so safeguarding them from environmental stressors and
 494 enhancing their resilience (Mirkov et al., 2020). Pathogenic fungi face oxidative stress from plants
 495 during infection and must maintain redox balance to develop disease, highlighting a critical
 496 vulnerability that can be targeted by bioactive phytochemicals (Park & Son, 2024). Terpenoids,
 497 the primary constituents of essential oils, alter the integrity of lipid bilayers, hence compromising
 498 fungal and bacterial membranes (Konuk & Ergüden, 2020). Moreover, their efficacy can be

499 augmented by synergistic combinations, as demonstrated by the conjunction of oregano oil and
500 blue light, which amplifies bactericidal activity against multidrug-resistant *Pseudomonas*
501 *aeruginosa* by targeting both planktonic and biofilm cells (Lu et al., 2022). The antifungal
502 effectiveness of terpenoids is markedly linked to phenolic –OH groups that induce membrane
503 instability (Konuk & Ergüden, 2020).

504 Besides their antibacterial effects, plant metabolites also influence the host's stress response
505 and the body's ability to combat infections. Thymol enhances the salt tolerance of Chinese cabbage
506 seedlings by augmenting their antioxidant capacity, maintaining redox equilibrium (AsA/DHA
507 and GSH/GSSG ratios), and activating crucial ROS-scavenging enzymes such as SOD, CAT,
508 APX, and POD (Sun et al., 2024). This mechanism prevents oxidative damage and sustains
509 seedling growth during salt stress. Extracts of *Borreria verticillata* and silver nanoparticles exhibit
510 nematicidal properties against *Meloidogyne incognita* in tomatoes, presenting a sustainable
511 alternative to chemical nematicides (Fabiyi & Olatunji, 2024). Hydrocarbons and plant-derived
512 compounds are detrimental to membranes since they accumulate in lipid bilayers, disrupt normal
513 cellular functions, and alter microbial food degradation processes (Sikkema et al., 1995). These
514 findings jointly highlight that plant extracts function as both direct antimicrobials and modulators
515 of pathogen resistance genes, host oxidative stress responses, and environmentally viable crop
516 protection strategies. This expanding body of research indicates their potential utility in integrated
517 disease management and sustainable agriculture.

518
519 **4. Challenges and Future Perspectives**

520 **4.1 Limitations of Plant Extracts**

521 For the management of Black Shank and Fusarium Wilt diseases in tobacco, plant extracts have
522 gained attention as environmentally friendly alternatives (X. ping Sun et al., 2025). However, a
523 number of restrictions hindered them from being used in practice. The chemical composition of
524 plant extracts varies greatly depending on the plant species, growth conditions, harvesting time,
525 and extraction techniques, making this one of the main problems (Raudone & Savickiene, 2024).
526 Because of this inconsistency, antifungal efficacy is frequently unpredictable, which makes it
527 challenging to standardize therapies for trustworthy disease management (Tang et al., 2012).
528 Furthermore, many plant extracts have comparatively weaker direct toxicity against soil-borne
529 infections such as *Fusarium oxysporum* and *Phytophthora nicotianae* than synthetic fungicides,
530 which can limits their efficacy, particularly when disease pressure is high (Mirmajlessi et al.,
531 2024). Since variables like pH, moisture, microbial community dynamics, and organic matter
532 content can change the stability, bioavailability, and activity of bioactive chemicals in plant
533 extracts, the intricate interactions within the soil environment also have an impact on their
534 performance (Adeniji et al., 2024). The sustainable sourcing of raw plant materials, preserving the
535 stability and shelf-life of extracts, and creating affordable formulations appropriate for large-scale
536 agricultural use are additional logistical and financial challenges associated with scaling up the
537 production of plant extracts (Lisboa et al., 2024). Considering their typically good safety profiles,
538 careful assessment of any non-target and environmental consequences is necessary to guarantee
539 sustainable use (Punniyakotti et al., 2024). These problems showed the need for more study to
540 improve formulation stability, refine extraction methods, comprehend soil-plant-pathogen
541 interactions, and successfully incorporate plant extracts into all-encompassing tobacco cultivation
542 disease management programs.

543

544 **4.2 Emerging Technologies to Enhance Efficacy**

545 The effectiveness of plant extracts in controlling Fusarium Wilt and Black Shank infections in
546 tobacco is being quickly improved by emerging technologies, which is viable, eco-friendly
547 substitutes for traditional agrochemicals (Ahmad et al., 2024). According to Dewi et al. (2022),
548 nanotechnology is essential because it enhances the stability, transport, and bioavailability of plant
549 extracts. Polymeric nanoparticles, particularly those based on chitosan, are useful for the targeted
550 use and regulated release of bioactive substances, which improves systemic plant resistance and
551 antifungal activity (Zhou et al., 2024). In addition to directly inhibiting pathogens like
552 *Phytophthora nicotianae* and *Fusarium oxysporum*, metal and metal oxide nanoparticles, like
553 copper oxide (CuO) and silver nanoparticles, have built-in antimicrobial qualities that trigger plant
554 defense mechanisms by producing reactive oxygen species (ROS) and activating antioxidant
555 enzymes (Chen et al., 2022). Sensitive bioactive chemicals are kept safe from environmental
556 stresses by nanoencapsulation and microencapsulation procedures, which enhance their functional
557 stability and regulated release in the field (Guía-García et al., 2022). By changing plant immune
558 signaling pathways (salicylic acid, ethylene, and hypersensitive response) and reshaping the
559 rhizosphere microbial community to suppress pathogen abundance, synergistic strategies that
560 combine plant extracts, nanocarriers, and beneficial microbes such as the co-application of
561 chitooligosaccharides with *Bacillus* strains have shown increased control efficacy. By providing
562 antioxidants and strengthening plant structural defenses at the same time, advanced formulations
563 such as silicon-stabilized hybrid lipid nanoparticles functionalized with quercetin act as
564 nanobiostimulants that increase plant resistance (Gutsch et al., 2023). Early disease detection and
565 the timing and dosage of plant extract applications are optimized by precision agriculture
566 technologies that use UAV-borne hyperspectral remote sensing and machine learning algorithms,

567 maximizing their efficacy while minimizing inputs (Padhiary et al., 2024). By improving the
568 stability, bioavailability, targeted distribution, and effectiveness of plant extracts, decreasing
569 reliance on chemical fungicides, and advancing environmental health, these integrated
570 technologies work together to enhance sustainable tobacco disease control (Ashraf et al., 2021).
571 By improving efficacy through regulated and sustained release mechanisms, emerging
572 technologies such as nano-encapsulation are transforming drug delivery systems (Ayyaril et al.,
573 2023). In order to prevent premature drug degradation and guarantee targeted administration,
574 active pharmacological ingredients are encapsulated into nanoscale carriers such liposomes,
575 polymeric nanoparticles, or dendrimers (Petrovic et al., 2024).

576 A promising strategy to improve sustainable agriculture and disease management is the coupling
577 of nano-encapsulation with biocontrol agents, such as *Trichoderma* fungus and plant extracts
578 (Saberi-Riseh et al., 2021). According to Zhou et al. (2024), nano-encapsulation can shield these
579 delicate biological agents from environmental deterioration, guaranteeing their stability and long-
580 term effectiveness. To maintain a steady inhibitory impact against infections, for example,
581 *Trichoderma* spores or plant-derived bioactive chemicals can be encapsulated in polymeric
582 nanoparticles or lipid-based carriers for gradual and regulated release (Zafar et al., 2024). In
583 addition to increasing the biocontrol agents' field performance and shelf life, this synergistic
584 strategy lessens the requirement for frequent applications (Teixidó et al., 2022). Furthermore, to
585 maximize these compounds' antibacterial and growth-promoting properties, nano-formulations
586 can improve their adherence and targeted distribution to plant roots or foliar surfaces (Mahmood
587 et al., 2024). Farmers can minimize their reliance on chemical pesticides and achieve more
588 efficient, environmentally friendly crop protection by combining nanotechnology with biocontrol
589 techniques (Jaiswal et al., 2022).

590 A new method for improving the absorption and effectiveness of bioactive extracts used in
591 pharmaceuticals and agriculture is the genetic engineering of tobacco plants (Padhiary et al., 2024).
592 Researchers can maximize tobacco's capacity to absorb, produce, and store advantageous
593 substances like antibacterial agents or growth-promoting phytochemicals by altering important
594 genes involved in metabolic pathways (Sun et al., 2024). For example, the potency of the plant
595 extract may be increased by overexpressing transporter proteins or enzymes that promote the
596 accumulation of particular secondary metabolites (Shitan, 2016). Furthermore, CRISPR-Cas9
597 gene editing may be used to inhibit opposing pathways, focusing greater resources on the synthesis
598 of the targeted chemical (Jiang et al., 2021). These genetically modified tobacco extracts may
599 allow for more effective and prolonged delivery of biocontrol chemicals when paired with nano-
600 encapsulation, further enhancing crop protection and production (Chadha, 2020). There is a lot of
601 potential for creating next-generation bio pesticides and plant-based medicines with this creative
602 combination of genetic engineering and nanotechnology. We have compiled examples from
603 contemporary literature about the nano-encapsulation of plant extracts for antifungal applications,
604 highlighting nanocarrier type, particle size, loading/encapsulation efficiency, and asserted efficacy (Table
605 3).

606

607 Table 3. A comparative investigation of nanocarriers utilized for the transport of plant extracts in
608 relation to fungal diseases.

ACCEPTED MANUSCRIPT

Nano carrier type	Plant extract / compound	Particle size (nm)	Encapsulation / Loading efficiency (%)	Antifungal target / efficacy	Reference
Chitosan nanoparticles	Thyme essential oil	80–150 nm	65–85%	Suppressed growth of <i>F. oxysporum</i> and reduced mycelial biomass.	Salem et al., 2020
Liposomes	Clove oil	100–200 nm	70–90%	Enhanced stability, prolonged release, and robust activity against <i>Candida albicans</i> .	Fathi et al., 2021
Solid lipid nanoparticles (SLNs)	Curcumin extract	120–180 nm	75–92%	Inhibited the germination of <i>Aspergillus flavus</i> spores, hence reducing aflatoxin synthesis.	Ghosh et al., 2021
Polymeric nanoparticles (PLGA)	Garlic extract (allicin)	150–250 nm	60–80%	More efficacious against <i>Botrytis cinerea</i> than the free extract	Li et al., 2022
Nanoemulsions	Oregano essential oil	50–120 nm	80–95%	cts against <i>Alternaria alternata</i> and improves absorption and penetration throughout the body.	Ahmad et al., 2022
Silica nanoparticles	Eucalyptus oil	90–200 nm	70–85%	Reduced <i>Rhizoctonia solani</i> infection in tomato seedlings	Mahmoud et al., 2023
Zeolite-based carriers	Cinnamon oil	100–250 nm	65–78%	Prolonged release improved antifungal effectiveness against <i>Penicillium expansum</i> .	Hassan et al., 2023

610 **4.3 CRISPR-Cas9 applications in enhancing plant extract efficacy**

611 CRISPR-Cas9 is an excellent method for enhancing the efficacy of plant extracts through precise
612 genomic modifications. It can enhance crops, increasing their resilience to stress and illnesses.
613 (Gan & Ling, 2022). By targeting critical biosynthetic genes, it can enhance the production of
614 secondary metabolites in medicinal plants. This is typically executed in conjunction with multi-
615 omic approaches to achieve optimal quantity and quality of metabolites (Jeyaraj et al., 2024).
616 CRISPR-Cas9 exhibits superior accuracy and efficiency compared to TALENs and ZFNs. This
617 enables the enhancement of beneficial molecules while reducing undesirable metabolites (Angon
618 and Habiba, 2022). Moreover, altering stress-response and immune genes improves plant
619 resilience to biotic and abiotic stressors, ensures consistent extract production, and fosters
620 sustainable agriculture (Bhattacharjee et al., 2022). Innovative delivery technologies, including
621 virus-based systems and nanoparticles, facilitate the modification of plant genes to enhance their
622 resistance to diseases (Gan & Ling, 2022; Zhou et al., 2023).

623 CRISPR-Cas9 possesses significant potential; yet, it is also associated with challenges like as off-
624 target mutations, delivery obstacles, regulatory concerns, and ethical dilemmas (Mohamed et al.,
625 2024). Researchers are developing methods to enhance the selectivity and efficiency of guide
626 RNAs, ribonucleoprotein complexes, novel promoters, and transformation protocols [Bortesi &
627 Fischer, 2015]. Research indicates that crops can endure higher salinity, modify their lignin and
628 pectin synthesis, and enhance disease resistance (Ly et al., 2024). The integration of CRISPR-Cas9
629 with sustainable methodologies presents a promising approach to enhance the efficacy of plant
630 extracts, elevate crop quality, and bolster food security (Borrelli et al., 2018).

631

632

633 **4.3 Regulatory and Commercialization Hurdles**

634 Significant regulatory obstacles remain in the way of the commercialization of botanical
635 pesticides, such as genetically modified plant extracts and nano-encapsulated biocontrol agents,
636 especially the requirement for approvals from organizations like the Food and Drug
637 Administration (FDA) and the U.S. Environmental Protection Agency (EPA) (Waidyanatha et al.,
638 2024). These products must pass extensive safety, efficacy, and environmental impact evaluations
639 because they are made from natural sources but may also contain innovative delivery systems or
640 genetic alterations (Aware et al., 2022). Under the Federal Insecticide, Fungicide, and Rodenticide
641 Act (FIFRA), the EPA controls pesticides and requires comprehensive information on toxicity,
642 impacts on non-target organisms, and residual levels (Dietz-Pfeilstetter et al., 2021). In the
643 meanwhile, the FDA may impose further measures to guarantee the safety of humans and animals
644 if the product has pharmaceutical applications (Dietz-Pfeilstetter et al., 2021). Small and medium-
645 sized businesses frequently face difficulties due to the drawn-out and expensive approval
646 procedure. Furthermore, different international legislation and public opinion make market entry
647 much more difficult. Stakeholders must make significant investments in preclinical and clinical
648 research, interact with regulatory agencies early on, and guarantee open information regarding the
649 dangers and advantages of the product in order to get beyond these obstacles. Adoption of creative,
650 sustainable pest management techniques may be accelerated by streamlining these procedures
651 through legislative lobbying and standardized international standards. Farmers' awareness and
652 adoption of nano-encapsulated agrochemicals and biocontrol agents continue to be major obstacles
653 to their widespread commercialization, despite the potential advantages of these products (Vishnu
654 et al., 2024). Due to a lack of knowledge about these cutting-edge technology, many farmers
655 especially those in developing nations are skeptical or reluctant to abandon traditional methods

656 (Kuhl, 2020). Misconceptions regarding safety, cost-effectiveness, and application techniques may
657 also arise due to the intricacy of nanotechnology and genetically modified solutions (Saleh &
658 Hassan, 2023).

659 Furthermore, small-scale farmers frequently have limited resources, which makes it challenging
660 for them to invest in more expensive nano-formulated products in the absence of convincing proof
661 of long-term advantages (Yadav et al., 2023). In order to overcome these obstacles, focused
662 education and extension initiatives are required to highlight the benefits of slow-release nano-
663 encapsulation, including decreased labor costs, increased crop yields, and less chemical usage.
664 Governments, agribusinesses, and research organizations working together can help to further
665 support adoption through pilot programs, farmer training, and subsidies. The full potential of these
666 cutting-edge technologies may go untapped in actual agricultural systems in the absence of
667 efficient outreach and financial incentives.

668 **5. Conclusion and Recommendations**

669 In tobacco, plant-derived extracts have shown great promise in the fight against soil-borne diseases
670 such as *Fusarium oxysporum* (Fusarium wilt) and *Phytophthora nicotianae* (Black Shank),
671 providing a sustainable substitute for synthetic fungicides. According to research, bioactive
672 substances found in neem, garlic, turmeric, and other therapeutic plants have immune-stimulating
673 and antifungal qualities that lower pathogen viability and increase plant resilience. Their broad
674 usage is hampered by issues such uneven efficacy, deterioration in field settings, and low farmer
675 uptake.

676

677

678

679 **Recommendations for Improved Implementation:**

- 680 • To improve stability, gradual release, and targeted distribution, research should concentrate
681 on standardizing plant extract quantities and creating formulations that are
682 nanoencapsulated.
- 683 • Integration with Biocontrol Agents: Through synergistic effects, combining plant extracts
684 with helpful microorganisms (*Trichoderma, pseudomonas*) may enhance disease
685 suppression.
- 686 • Genetic enhancement of tobacco, CRISPR-based breeding, or transgenic methods may be
687 investigated to create tobacco cultivars that demonstrate increased sensitivity to
688 treatments with plant extracts.
- 689 • Support for Farmer Education and Policy, to boost adoption among smallholder farmers,
690 governments and agricultural organizations should raise awareness through field
691 experiments, subsidies, and training initiatives.
- 692 • Future research should focus on developing standardized extraction and preparation
693 methods to ensure the consistency, reproducibility, and comparability of studies
694 evaluating the efficacy of plant extracts.
- 695 • To guarantee adherence to organic agricultural laws, more research on residual effects
696 and environmental safety is required.

697

698 **Credit authorship contribution statement**

699 **R A and J S:** Writing-original draft, Visualization, Validation, Software, Methodology,
700 Investigation, Formal analysis, Data curation, Conceptualization. **BI and A. A. K:** Writing-review
701 & editing, Supervision, Resources, Project administration, Methodology, Funding acquisition,
702 Formal analysis, Conceptualization, Data curation. **S A and LL:** Writing review & editing, funding
703 acquisition, Formal analysis, Conceptualization, Data curation. **S.M.K and IH** Writing-review &
704 editing, Software, Methodology, Data curation, Formal analysis, Validation.

705 **Declaration of competing interest:**

706 The authors declare that they have no known competing financial interests or personal
707 relationships that could have appeared to influence the work reported in this paper.

708

709 **Acknowledgments**

710 The National Natural Science Foundation of China (31971427), the Priority Academic Program
711 Development of Jiangsu Higher Education Institutions (PAPD), and the Key Laboratory of
712 Tropical Medicinal Resource Chemistry of the Ministry of Education (No. supported this study
713 RDZH2019003), and the Jiangsu Collaborative Innovation Center of Technology and Material of
714 Water Treatment.

715 **Conflict of Interest**

716 The authors declare no conflicts of interest.

717

718

719

720 **References**

721 Abbas, A., Mubeen, M., Sohail, M. A., Solanki, M. K., Hussain, B., Nosheen, S., Kashyap, B. K.,
722 Zhou, L., Fang, X., 2022. Root rot a silent alfalfa killer in China: Distribution,
723 fungal, and oomycete pathogens, impact of climatic factors and its management.
724 *Front. in Microbiol.* 13. <https://doi.org/10.3389/fmicb.2022.961794>.

725 Abdullah, S., & Zahoor, I., 2023. Biopesticides: A Green Substitute to Chemical Pesticide. *Int. J.*
726 *Chem. Biochem. Sci.* 24(4), 141–156.

727 Adeniji, A., Huang, J., Li, S., Lu, X., Guo, R., 2024. Hot viewpoint on how soil texture, soil
728 nutrient availability, and root exudates interact to shape microbial dynamics and
729 plant health. *Plant and Soil.* <https://doi.org/10.1007/s11104-024-07020-y>.

730 Ahmad, Z., Niyazi, S., Firdoos, A., Wang, C., Manzoor, M. A., Ramakrishnan, M., Upadhyay, A.,
731 Ding, Y., 2024. Enhancing plant resilience: Nanotech solutions for sustainable
732 agriculture. *Heliyon.* 10(23). <https://doi.org/10.1016/j.heliyon.2024.e40735>.

733 Ali, J., Hussain, A., Siddique, M., Ikram, M., Zahoor, M., Ullah, R., Ibrahim, M. A., Gulfam, N.,
734 Shah, A. B., 2025. Application of *Azadirachta indica* (Neem) organic crude
735 macerated extracts against postharvest decay of fruits caused by *Penicillium*
736 *expansum*, *Colletotrichum gloeosporioides* and *Botrytis cinerea*. *Notulae Botanicae*
737 Horti Agrobotanici Cluj-Napoca. 53(1), 1–21.
738 <https://doi.org/10.15835/nbha53114086>.

739 Ali, S., Ullah, M. I., Sajjad, A., Shakeel, Q., Hussain, A., 2021. Environmental and Health Effects
740 of Pesticide Residues. https://doi.org/10.1007/978-3-030-54719-6_8.

741 Alsarhan, A., Sultana, N., Al-Khatib, A., Rafiq, M. A. K., 2014. Review on Some Malaysian
742 Traditional Medicinal Plants with Therapeutic Properties. *J. Basic Appl. Sci.* 10,
743 149–159.

744 Akbar, R., Brekhna F., Tariq A., Amjad A., Asmat U., Imtiaz A. K., Jianfan, S., 2024. Evaluating
745 the Efficacy of Plant Extracts in Managing the Bruchid Beetle, *Callosobruchus*
746 *maculatus* (Coleoptera: Bruchidae. *Insects.* 15(9), 691.

747 Akbar, R., Afzal, S., Sun, J., Faheem, B., Bibi, R., Azad, R., Farid, A., Ahmad, H. I., Ataya, F. S.,
748 Khan, M. A., Khan, I. A., Usman, A., Alkenani, N. A., 2024. Efficacy of Various
749 Plant Extracts and Synergism Against Domestic Species of Rice Weevil Sitophilous

750 Oryzae (Curculionidae: Coleoptera). Polish J. Envir. Studies. 33(3), 3033–3044.
751 <https://doi.org/10.15244/pjoes/175595>

752 Akbar, R., Khan, I. A., 2021. Toxicity of five plant extracts against callosobruchus maculatus fab.
753 (Coleoptera Bruchidae) a major insect pest of stored pulses. Fres. Envir. Bulletin.
754 30(5), 5098–5107.

755 Akbar, R., Khan, I. A., Alajmi, R. A., Ali, A., Faheem, B., Usman, A., Ahmed, A. M., El-Shazly,
756 M., Farid, A., Giesy, J. P., Aboul-Soud, M. A. M., 2022. Evaluation of Insecticidal
757 Potentials of Five Plant Extracts against the Stored Grain Pest, *Callosobruchus*
758 *maculatus* (Coleoptera: Bruchidae). Insects. 13(11).
759 <https://doi.org/10.3390/insects13111047>.

760 Akbar, R., Manzoor, S., Azad, R., Makai, G., Rahim, J., Sheikh, U. A. A., Ali, A., Aziz, T., Ahmad,
761 H. I., Ahmed, M., Du, D., Jianfan, S., 2024. Botanical Pesticides: Role of *Ricinus*
762 *communis* in Managing *Bactrocera zonata* (Tephritidae: Diptera). Insects. 15(12).
763 <https://doi.org/10.3390/insects15120959>.

764 Akbar, R., Sun, J., Bo, Y., Khattak, W. A., Khan, A. A., Jin, C., Zeb, U., Ullah, N., Abbas, A.,
765 Liu, W., Wang, X., Khan, S. M., Du, D., 2024. Understanding the Influence of
766 Secondary Metabolites in Plant Invasion Strategies: A Comprehensive Review.
767 Plants. 13(22), 3162. <https://doi.org/10.3390/plants13223162>.

768 Al-Gallas, N., Khadraoui, N., Hotzel, H., Tomaso, H., El-Adawy, H., Neubauer, H., Belghouthi,
769 K., Ghedira, K., Gautam, H. K., Kumar, B., Laouini, D., Zarrouk, S., Abbassi, M.
770 S., Aissa, R. B., 2021. Quinolone resistance among *Salmonella* Kentucky and
771 Typhimurium isolates in Tunisia: first report of *Salmonella* Typhimurium ST34 in
772 Africa and qnrB19 in Tunisia. J. Appl. Microbiol. 130(3), 807–818.
773 <https://doi.org/10.1111/jam.14822>.

774 Angon, P. B., Habiba, U., 2022. Application of the CRISPR/Cas9 Gene-editing System and Its
775 Participation in Plant and Medical Science. Current Applied Science and
776 Technology. 23(3). <https://doi.org/10.55003/cast.2022.03.23.003>

777 Arroyo, R., López, S., Romo, E., Montoya, G., Hoz, L., Pedraza, C., Garfias, Y., & Arzate, H.,
778 2020. Carboxy-Terminal Cementum Protein 1-Derived Peptide 4 (cemp1-p4)
779 Promotes Mineralization through wnt/β-catenin Signaling in Human Oral Mucosa

780 Stem Cells. International Journal of Molecular Sciences. 21(4), 1307.
781 <https://doi.org/10.3390/ijms21041307>

782 Ahmad, S., Khan, M., Jamal, Q. M. S., Alghamdi, S. (2022). Oregano oil nanoemulsions as eco-
783 friendly antifungal agents against *Alternaria alternata*. *Journal of Cleaner
784 Production*, 365, 132759. <https://doi.org/10.1016/j.jclepro.2022.132759>

785 Anisimova, O. K., Shchennikova, A. V., Kochieva, E. Z., Filyushin, M. A., 2021. Pathogenesis-
786 related genes of pr1, pr2, pr4 and pr5 families are involved in the response to
787 fusarium infection in garlic (*Allium sativum* L.). *Int. J. Mol. Sci.* 22(13), 6688.
788 <https://doi.org/10.3390/ijms22136688>.

789 Amenu, D., 2014. Antimicrobial activity of medicinal plant extracts and their synergistic effect on
790 some selected pathogens. *American J. Ethno medicine*. 1(1), 18-29.
791 <http://www.ajethno.com>.

792 Ashraf, S. A., Siddiqui, A. J., Elkhalifa, A. E. O., Khan, M. I., Patel, M., Alreshidi, M., Moin, A.,
793 Singh, R., Snoussi, M., Adnan, M., 2021. Innovations in nanoscience for the
794 sustainable development of food and agriculture with implications on health and
795 environment. *Sci. of the Total Environ.*, 768.
796 <https://doi.org/10.1016/j.scitotenv.2021.144990>.

797 Aware, C. B., Patil, D. N., Suryawanshi, S. S., Mali, P. R., Rane, M. R., Gurav, R. G., & Jadhav,
798 J. P., 2022. Natural bioactive products as promising therapeutics: A review of natural
799 product-based drug development. *South African J. Bot.* 151, 512–528.
800 <https://doi.org/10.1016/j.sajb.2022.05.028>.

801 Ayaz, M., Li, C. H., Ali, Q., Zhao, W., Chi, Y. K., Shafiq, M., Ali, F., Yu, X. Y., Yu, Q., Zhao, J.
802 T., Yu, J. W., Qi, R. De, & Huang, W. K., 2023. Bacterial and Fungal Biocontrol
803 Agents for Plant Disease Protection: Journey from Lab to Field, Current Status,
804 Challenges, and Global Perspectives. *Molecules*. 28(18).
805 <https://doi.org/10.3390/molecules28186735>.

806 Ayaz, M., Ullah, F., Sadiq, A., Ullah, F., Ovais, M., Ahmed, J., Devkota, H. P., 2019. Synergistic
807 interactions of phytochemicals with antimicrobial agents: Potential strategy to
808 counteract drug resistance. *Chemico-Biological Interactions*. 308, 294–303.
809 <https://doi.org/10.1016/j.cbi.2019.05.050>.

810 Ayyaril, S. S., Shanableh, A., Bhattacharjee, S., Rawas-Qalaji, M., Cagliani, R., Shabib, A. G.,
811 Imran khan, M., 2023. Recent progress in micro and nano-encapsulation techniques
812 for environmental applications: A review. *Results in Engineering.* 18.
813 <https://doi.org/10.1016/j.rineng.2023.101094>.

814 Babarinde, S., Burlakoti, R. R., Peters, R. D., Al-Mughrabi, K., Novinscak, A., Sapkota, S., &
815 Prithiviraj, B. (2024). Genetic structure and population diversity of *Phytophthora*
816 infestans strains in Pacific western Canada. *Appl. Microbiol. Biotechn.* 108(1).
817 <https://doi.org/10.1007/s00253-024-13040-6>.

818 Bačová, A., Cooke, D. E. L., Milenković, I., Májek, T., Nagy, Z., Corcobado, T., Randall, E.,
819 Keillor, B., Cock, P. J. A., Jung, M. H., Jung, T., Tomšovský, M., 2024. Hidden
820 *Phytophthora* diversity unveiled in tree nurseries of the Czech Republic with
821 traditional and metabarcoding techniques. *Europ. J. Plant Pathology.* 170(1), 131–
822 156. <https://doi.org/10.1007/s10658-024-02886-1>.

823 Bag, T. K., Dutta, P., Hubballi, M., Kaur, R., Mahanta, M., Chakraborty, A., Das, G., Kataky, M.,
824 Waghunde, R., 2023. Destructive *Phytophthora* on orchids: current knowledge and
825 future perspectives. *Front. Microbiol.* 14.
826 <https://doi.org/10.3389/fmicb.2023.1139811>.

827 Bahadur, A., Dutta, P., 2023. Diseases of Tobacco (*Nicotiana* spp.) and their Integrated
828 Management. *Diseases of Commercial Crops and Their Integrated Management*,
829 237–254. <https://doi.org/10.1201/9781032627908-16>.

830 Barros-Rodríguez, A., Pacheco, P., Peñas-Corte, M., Fernández-González, A. J., Cobo-Díaz, J. F.,
831 Enrique-Cruz, Y., Manzanera, M., 2024. Comparative Study of Bacillus-Based Plant
832 Biofertilizers: A Proposed Index. *Biology*, 13(9), 668.
833 <https://doi.org/10.3390/biology13090668>

834 Benigno, A., Aglietti, C., Cacciola, S. O., Moricca, S., 2025. Morphological, Molecular and
835 Pathological Characterization of *Phytophthora pseudocryptogea* Associated with
836 *Rosmarinus officinalis* Dieback in Tuscany, Central Italy. *Microorganisms*, 13(3).
837 <https://doi.org/10.3390/microorganisms13030567>.

838 Berbeć, A., 2024. A Century of Interspecific Hybridization and Introgression in Tobacco. A
839 Century of Interspecific Hybridization and Introgression in Tobacco.
840 <https://doi.org/10.1007/978-3-031-54964-9>.

872 greenhouse. Plant Disease, 88(1), 11–16.
873 <https://doi.org/10.1094/PDIS.2004.88.1.11>.

874 Cao, Y., Ghani, M. I., Ahmad, N., Bibi, N., Ghafoor, A., Liu, J., Gou, J., Zou, X., 2024. Garlic
875 stalk waste and arbuscular mycorrhizae mitigate challenges in continuously
876 monocropping eggplant obstacles by modulating physiochemical properties and
877 fungal community structure. BMC Plant Biology, 24(1), 1065.
878 <https://doi.org/10.1186/s12870-024-05710-4>.

879 Cong Gan, W., & P.K. Ling, A., 2022. CRISPR/Cas9 in plant biotechnology: applications and
880 challenges. BioTechnologia. 103(1), 81–93.
881 <https://doi.org/10.5114/bta.2022.113919>

882 Chadha, S., 2020. Recent advances in nano-encapsulation technologies for controlled release of
883 biostimulants and antimicrobial agents. *Advances in Nano-Fertilizers and Nano-*
884 *Pesticides in Agriculture: A Smart Delivery System for Crop Improvement*, 29–55.
885 <https://doi.org/10.1016/B978-0-12-820092-6.00002-1>.

886 Chen, J., Ni, Wu, L., Tong, Song, K., Zhu, Y. Song, Ding, W., 2022. Nonphytotoxic copper oxide
887 nanoparticles are powerful “nanoweapons” that trigger resistance in tobacco against
888 the soil-borne fungal pathogen Phytophthora *nicotianae*. J. Integrative Agric. 21(11),
889 3245–3262. <https://doi.org/10.1016/j.jia.2022.08.086>.

890 Chen, J., Xu, X., Liu, W., Feng, Z., Chen, Q., Zhou, Y., Sun, M., Gan, L., Zhou, T., Xuan, Y.,
891 2024. Plasmodesmata Function and Callose Deposition in Plant Disease Defense.
892 Plants. 13(16). <https://doi.org/10.3390/plants13162242>.

893 Clement, W. J. J., Kalpana, K., Aiyathan, K. E. A., Ramakrishnan, M., Kandan, A., Manonmani,
894 K., Yesuraja, I., Sabarinathan, K. G., Mini, M. L., Shanthi, M., Rajangam, J.,
895 Punitha, A., 2025. Exploring the Perilous Nature of Phytophthora: Insights into Its
896 Biology, Host Range, Detection, and Integrated Management Strategies in the Fields
897 of Spices and Plantation Crops. Plant Path. J. 41(2), 121–139.
898 <https://doi.org/10.5423/PPJ.RW.07.2024.0108>.

899 Cochran, S., Quesada-Ocampo, L. M., Kerns, J. P., Thiessen, L. D., 2024. Phytophthora
900 *nicotianae*: A Quick Diagnostic Guide for Black Shank of Tobacco. Plant Health
901 Progress, 25(3), 327–333. <https://doi.org/10.1094/PHP-10-23-0085-DG>.

902 Crouch, J. A., Davis, W. J., Shishkoff, N., Castroagudín, V. L., Martin, F., Michelmore, R., Thines,
903 M., 2022. Peronosporaceae species causing downy mildew diseases of Poaceae,
904 including nomenclature revisions and diagnostic resources. *Fungal Systematics and*
905 *Evolution*, 9, 43–86. <https://doi.org/10.3114/fuse.2022.09.05>

906 Chaachouay, N., 2025. Synergy, additive effects, and antagonism of drugs with plant bioactive
907 compounds. *Drugs and Drug Candidates*. 4(1), 4.

908 Daunoras, J., Kačergius, A., Gudiukaitė, R., 2024. Role of Soil Microbiota Enzymes in Soil Health
909 and Activity Changes Depending on Climate Change and the Type of Soil
910 Ecosystem. *Biol.* 13(2). <https://doi.org/10.3390/biology13020085>

911 Deaton, W. R., Keyes, G. J., Collins, G. B., 1982. Expressed resistance to black shank among
912 tobacco callus cultures. *Theoretical and Applied Genetics*, 63(1), 65–70.
913 <https://doi.org/10.1007/BF00303493>

914 Del Castillo-González, L., Soudani, S., De La Cruz-Gómez, N., Manzanera, J. A., Berrocal-Lobo,
915 M., 2024. An improved method to study *Phytophthora cinnamomi* Rands zoospores
916 interactions with host. *BMC Plant Biology*. 24(1). <https://doi.org/10.1186/s12870-024-05205-2>

917 Delai, C., Muhae-Ud-Din, G., Abid, R., Tian, T., Liu, R., Xiong, Y., Ma, S., Ghorbani, A., 2024.
918 A comprehensive review of integrated management strategies for damping-off
919 disease in chili. *Fronti. Microbiol.* 15. <https://doi.org/10.3389/fmicb.2024.1479957>

920 Dell'Olmo, E., Tiberini, A., Sigillo, L., 2023. Leguminous Seedborne Pathogens: Seed Health and
921 Sustainable Crop Management. *Plants*, 12(10).
922 <https://doi.org/10.3390/plants12102040>

923 Delmas, C. E. L., Bancal, M. O., Leyronas, C., Robin, M. H., Vidal, T., Launay, M., 2024.
924 Monitoring the phenology of plant pathogenic fungi: why and how? *Biological
925 Reviews*. 99(3), 1075–1084. <https://doi.org/10.1111/brv.13058>

926 Delmas, C. E. L., Mazet, I. D., Jolivet, J., Delière, L., Delmotte, F., 2014. Simultaneous
927 quantification of sporangia and zoospores in a biotrophic oomycete with an
928 automatic particle analyzer: Disentangling dispersal and infection potentials. *J.
929 Microbiol.Methods*. 107, 169–175. <https://doi.org/10.1016/j.mimet.2014.10.012>

930 Deresa, E. M., Diriba, T. F., 2023. Phytochemicals as alternative fungicides for controlling plant
931 diseases: A comprehensive review of their efficacy, commercial representatives,

933 advantages, challenges for adoption, and possible solutions. *Heliyon*. 9(3).
934 <https://doi.org/10.1016/j.heliyon.2023.e13810>

935 Dewi, M. K., Chaerunisa, A. Y., Muhamin, M., Joni, I. M., 2022. Improved Activity of Herbal
936 Medicines through Nanotechnology. *Nanomaterials*, 12(22).
937 <https://doi.org/10.3390/nano12224073>

938 Dhuldhaj, U. P., Singh, R., Singh, V. K., 2023. Pesticide contamination in agro-ecosystems:
939 toxicity, impacts, and bio-based management strategies. *Environ. Sci. Pollution Res.*
940 30(4), 9243–9270. <https://doi.org/10.1007/s11356-022-24381-y>

941 Dietz-Pfeilstetter, A., Mendelsohn, M., Gathmann, A., Klinkenbuß, D., 2021. Considerations and
942 Regulatory Approaches in the USA and in the EU for dsRNA-Based Externally
943 Applied Pesticides for Plant Protection. *Front. Plant Sci.* 12.
944 <https://doi.org/10.3389/fpls.2021.682387>

945 El-Aswad, A. F., Aly, M. I., Alsahaty, S. A., Basyony, A. B. A., 2023. Efficacy evaluation of some
946 fumigants against *Fusarium oxysporum* and enhancement of tomato growth as
947 elicitor-induced defense responses. *Scientific Reports*. 13(1).
948 <https://doi.org/10.1038/s41598-023-29033-w>

949 El-Nagar, A., Elzaawely, A. A., El-Zahaby, H. M., Xuan, T. D., Khanh, T. D., Gaber, M., El-
950 Wakeil, N., El-Sayed, Y., Nehela, Y., 2023. Benzimidazole Derivatives Suppress
951 *Fusarium* Wilt Disease via Interaction with ERG6 of *Fusarium equiseti* and
952 Activation of the Antioxidant Defense System of Pepper Plants. *Journal of Fungi*.
953 9(2). <https://doi.org/10.3390/jof9020244>

954 Engalycheva, I., Kozar, E., Frolova, S., Vetrova, S., Tikhonova, T., Dzhos, E., Engalychev, M.,
955 Chizhik, V., Martynov, V., Shingaliev, A., Dudnikova, K., Dudnikov, M., &
956 Kostanchuk, Y., 2024. *Fusarium* Species Causing Pepper Wilt in Russia: Molecular
957 Identification and Pathogenicity. *Microorganisms*. 12(2).
958 <https://doi.org/10.3390/microorganisms12020343>.

959 Farag Hanaa, R. M., Abdou, Z. A., Salama, D. A., Ibrahim, M. A. R., Sror, H. A. M., 2011. Effect
960 of neem and willow aqueous extracts on *fusarium* wilt disease in tomato seedlings:
961 Induction of antioxidant defensive enzymes. *Annals of Agric. Sci.* 56(1), 1–7.
962 <https://doi.org/10.1016/j.aoas.2011.05.007>

963 Fei, L., Hafeez, R., Zhang, J., Fu, S., Xu, Y., Hao, L., 2025. Investigation of the mechanisms
964 involved in the biocontrol activities of natural products from a marine soil bacterium
965 against rice blast. Pest Manag. Sci. 81(6), 3122-3135.
966 <https://doi.org/10.1002/ps.8684>

967 Fenollosa, E., Munné-Bosch, S., 2020. Reproductive load modulates drought stress response but
968 does not compromise recovery in an invasive plant during the Mediterranean
969 summer. Plant Physiol. Biochem. 155, 221–230.
970 <https://doi.org/10.1016/j.plaphy.2020.07.030>.

971 Farooq, M., Akhtar, S., Imran, S., Dar, A.H., Raza, A., Masroor, A., 2024. Seed Priming with Plant
972 Extracts Gives Enhanced Resistance Against *Alternaria Solani* in Tomato. Pak. J.
973 Phytopathol. 36(2).

974 Fabiyi, O. A., Olatunji, G. A., 2024. Nematicidal potency of silver nanoparticles and extracts from
975 *Borreria verticillata* (L.) G. Mey against *Meloidogyne incognita* on tomato plants.
976 Indian Phytopathology. 77(2), 311–321. <https://doi.org/10.1007/s42360-024-00729-x>

977 Fathi, M., Donsi, F., McClements, D. J., 2021. Encapsulation of essential oils in nanoemulsions
978 and liposomes: A comparative study of stability and antifungal effects. Food
979 Hydrocolloids. 111, 106–244. <https://doi.org/10.1016/j.foodhyd.2020.106244>

981 Gai, Y., Wang, H., 2024. Plant Disease: A Growing Threat to Global Food Security. Agronomy.
982 14(8). <https://doi.org/10.3390/agronomy14081615>

983 Garzón-Nivia, M. A., Martíz Martíz, J., Moya-Elizondo, E. A., Ruiz, B., Cornejo, J. C., Valdés-
984 Gómez, H. A., 2025. Characterization and Identification of *Neocosmospora solani*
985 and *Fusarium oxysporum* Causing Root Necrosis and Wilting of Orange Trees in
986 Chile. Plants. 14(3). <https://doi.org/10.3390/plants14030376>

987 Ghaderi, F., & Karami, S. (2024). *Phytophthora megasperma* and *P. nicotianae* causing root and
988 crown rot in sesame fields in Iran and information on cultivar resistance. Crop
989 Protection. 176. <https://doi.org/10.1016/j.cropro.2023.106481>

990 Guía-García, J. L., Charles-Rodríguez, A. V., Reyes-Valdés, M. H., Ramírez-Godina, F., Robledo-
991 Olivo, A., García-Osuna, H. T., Cerqueira, M. A., Flores-López, M. L., 2022. Micro
992 and nanoencapsulation of bioactive compounds for agri-food applications: A review.
993 Industrial Crops and Products. 186. <https://doi.org/10.1016/j.indcrop.2022.115198>

994 Gupta, R., Chugh, G., 2022. *Plant, Microbes and Diseases*.
995 <https://www.wileyindia.com/catalog/product/view/id/7962/s/plant-microbes-and-diseases/category/2/%0A>.

996

997 Gutsch, A., Berni, R., Hausman, J. F., Sutera, F. M., Dehsorkhi, A., Torabi-Pour, N., Saffie-
998 Siebert, S., Guerriero, G., 2023. A Study on the Use of the Phyto-Courier
999 Technology in Tobacco Leaves Infected by *Agrobacterium tumefaciens*. *Int. J. Mol.*
1000 *Sci.* 24(18). <https://doi.org/10.3390/ijms241814153>

1001 Naal, H., Nabulsi, D., El Arnaout, N., Abdouni, L., Dimassi, H., Harb, R. Saleh, S., 2021.
1002 Prevalence of depression symptoms and associated sociodemographic and clinical
1003 correlates among Syrian refugees in Lebanon. *BMC Public Health*, 21(1), 217.
1004 <https://doi.org/10.1186/s12889-021-10266->

1005 Habte, B., Dobo, B., 2025. The Effect of Compost and Biochar Amendments, as Well as the
1006 Inoculation of Arbuscular Mycorrhizal Fungi and *Trichoderma harzianum*, on the
1007 Control of *Fusarium oxysporum* Pathogen on Tomato (*Solanum lycopersicum* L.) in
1008 the Greenhouse. *Int. J. Agronomy*. 2025(1). <https://doi.org/10.1155/ioa/7330396>

1009 Haile, M. S., 2025. Botanicals for the management of horticultural crop diseases: a systematic
1010 review of the last decade researches. *Arch. Phytopathol. Plant Prot.* 58(4), 223-
1011 250.<https://doi.org/10.1080/03235408.2025.2471622>.

1012 Hajam, Y.A., Lone, R. and Kumar, R., 2023. Role of plant phenolics against reactive oxygen
1013 species (ROS) induced oxidative stress and biochemical alterations. In *Plant*
1014 *phenolics in abiotic stress management* (pp. 125-147). Singapore: Springer Nature
1015 Singapore.

1016 Han, Y., Sun, T., Tang, Y., Yang, M., Gao, W., Wang, L., Sui, C., 2024. Root rot in medicinal
1017 plants: a review of extensive research progress. *Front. Plant Sci.* 15.
1018 <https://doi.org/10.3389/fpls.2024.1504370>

1019 Haruna S. G., Yahuza L., Tijjani I. 2024. Management of *Fusarium* Wilt of Tomato (*Fusarium*
1020 *oxysporum* f. sp. *lycopersici*) and Related Soil-borne Diseases using Eco-friendly
1021 Methods: A Review. *Asian J. Res. in Crop Sci.* 9(1), 154–168.
1022 <https://doi.org/10.9734/ajrcs/2024/v9i1257>

1023 Hassan, M. M., Soliman, M. M., Al-Otaibi, S., El-Shehawi, A. M., Taha, E. K. A., Sayed, S., 2022.
1024 The effectiveness of *Xanthium strumamrium* L. extract and *Trichoderma* spp.

1025 against pomegranate isolated pathogenic fungi in Taif, Saudi Arabia. *J. King Saud*
1026 *University - Science*, 34(6). <https://doi.org/10.1016/j.jksus.2022.102185>

1027 Hassan, H. M., Farouk, A., & Tawfik, W. A., 2023. Zeolite-based nanocarriers for the controlled
1028 release of cinnamon oil against *Penicillium expansum*. *Applied Nanoscience*. 13,
1029 765–777. <https://doi.org/10.1007/s13204-022-02659-7>

1030 He, M., Li, Q., Ma, Y., Zhou, P., Kang, K. and Wu, B., 2025. The positive impact of silicon on the
1031 yield and quality of tobacco. *Frontiers in Plant Science*, 16, p.1641798.

1032 He, Y., Jiang, W., Ding, W., Chen, W., Zhao, D., 2022. Effects of PVY-Infected Tobacco Plants
1033 on the Adaptation of *Myzus persicae* (Hemiptera: Aphididae). *Insects*, 13(12).
1034 <https://doi.org/10.3390/insects13121120>

1035 Hosny K, Asfour H, Rizg W, A Alhakamy N, Sindi A, Alkhalidi H, Abualsunun W, Bakhaidar R,
1036 M Almehmady A, Akeel S, Ali S, Alghaith A, Alshehri S, Khallaf R., 2021. Formulation, Optimization, and Evaluation of Oregano Oil Nanoemulsions for the
1037 Treatment of Infections Due to Oral Microbiota. *Int. J. Nanomedicine*, 5465–5478.

1038 Ibrahim, R. E., Elshopakey, G. E., Abdelwarith, A. A., Younis, E. M., Ismail, S. H., Ahmed, A. I.,
1039 El-Saber, M. M., Abdelhamid, A. E., Davies, S. J., El-Murr, A., Abdel Rahman, A.
1040 N., 2023. Chitosan neem nanocapsule enhances immunity and disease resistance in
1041 nile tilapia (*Oreochromis niloticus*). *Heliyon*. 9(9).
1042 <https://doi.org/10.1016/j.heliyon.2023.e19354>

1043 Ismaila, A. A., Ahmad, K., Siddique, Y., Wahab, M. A. A., Kutawa, A. B., Abdullahi, A., Zobir,
1044 S. A. M., Abdu, A., Abdullah, S. N. A., 2023. Fusarium wilt of banana: Current
1045 update and sustainable disease control using classical and essential oils approaches.
1046 *Horti. Plant J.* 9(1), 1–28. <https://doi.org/10.1016/j.hpj.2022.02.004>.

1047 Jaiswal, D. K., Gawande, S. J., Soumia, P. S., Krishna, R., Vaishnav, A., Ade, A. B., 2022. Biocontrol
1048 strategies: an eco-smart tool for integrated pest and diseases
1049 management. *BMC Microbiol.* 22(1). <https://doi.org/10.1186/s12866-022-02744-2>

1050 Jamil, A., Musheer, N., Ashraf, S., 2021. Antagonistic potential of *Trichoderma harzianum* and
1051 *Azadirachta indica* against *Fusarium oxysporum* f. sp. *capsici* for the management
1052 of chilli wilt. *J. Plant Diseases Protec.* 128(1), 161–172.
1053 <https://doi.org/10.1007/s41348-020-00383-1>

1054

1055 Jeyaraj, G., Alphonse, V., Jayanthi, P., Angelin F, N., Geetanjali A, S., Govindan, G., 2024.
1056 Harnessing the potential of CRISPR/Cas system for enhancing virus resistance in
1057 plants: Targets, strategies, and challenges. *Physiological and Molecular Plant*
1058 *Pathology*. 129, 102202. <https://doi.org/10.1016/j.pmpp.2023.102202>

1059 Jiang, C., Lv, G., Tu, Y., Cheng, X., Duan, Y., Zeng, B., He, B., 2021. Applications of
1060 CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi.
1061 *Front. Microbiol.* 12. <https://doi.org/10.3389/fmicb.2021.638096>

1062 Jin, J., Shi, R., Lewis, R. S., & Shew, H. D., 2021. Rnaseq reveals differential gene expression
1063 contributing to *phytophthora* *nicotianae* adaptation to partial resistance in tobacco.
1064 *Agronomy*. 11(4). <https://doi.org/10.3390/agronomy11040656>

1065 Jing, C., Gou, J., Han, X., Wu, Q., & Zhang, C., 2017. In vitro and in vivo activities of eugenol
1066 against tobacco black shank caused by *Phytophthora* *nicotianae*. *Pest. Biochem.*
1067 *Physio.* 142, 148–154. <https://doi.org/10.1016/j.pestbp.2017.07.001>

1068 Kapooria, R. G., 2024. An Overview of Biological Control of Fruit and Vegetable Diseases. *Biol.*
1069 *Control of Plant Diseases*. 191–221. <https://doi.org/10.1201/9781003578406-8>

1070 Kasteel, M., Ketelaar, T., & Govers, F., 2023. Fatal attraction: How *Phytophthora* zoospores find
1071 their host. *Seminars in Cell and Developmental Biology*. 148–149, 13–21.
1072 <https://doi.org/10.1016/j.semcdb.2023.01.014>

1073 Khadhraoui, B., Ummat, V., Tiwari, B. K., Fabiano-Tixier, A. S., & Chemat, F. (2021). Review
1074 of ultrasound combinations with hybrid and innovative techniques for extraction and
1075 processing of food and natural products. *Ultrasonics Sonochemistry*, 76.
1076 <https://doi.org/10.1016/j.ultsonch.2021.105625>

1077 Khan, A. A, Wang, Y-F, Akbar, R., Alhoqail, W. A 2025., 2025. Mechanistic insights and future
1078 perspectives of drought stress management in staple crops', *Frontiers in Plant*
1079 *Science*, 16, <http://dx.doi.org/10.3389/fpls.2025.1547452>.

1080 Khan, M. R., Sharma, R. K., 2020. Fusarium-nematode wilt disease complexes, etiology and
1081 mechanism of development. *Indian Phytopathol.* 73(4), 615–628.
1082 <https://doi.org/10.1007/s42360-020-00240-z>

1083 Khoza, Tshepiso, Absalom Masenya, Nokuthula Khanyile, S. T., 2025. Alleviating Plant Density
1084 and Salinity Stress in *Moringa oleifera* Using Arbuscular Mycorrhizal Fungi: A
1085 Review. *J. Fungi*. 11(4), 328.

1086 Kim, M., Shim, C., Lee, J., 2024. Effects of Organic Agricultural Materials and Cultivation
1087 Methods on the Control of Ginger Rhizome Rot Disease and Growth in Organic
1088 Ginger Farming. *Agronomy*. 14(10). <https://doi.org/10.3390/agronomy14102285>

1089 Konuk, H. B., Ergüden, B., 2020. Phenolic –OH group is crucial for the antifungal activity of
1090 terpenoids via disruption of cell membrane integrity. *Folia Microbiologica*. 65(4),
1091 775–783. <https://doi.org/10.1007/s12223-020-00787-4>

1092 Kuhl, L., 2020. Technology transfer and adoption for smallholder climate change adaptation:
1093 opportunities and challenges. *Climate and Development*. 12(4), 353–368.
1094 <https://doi.org/10.1080/17565529.2019.1630349>

1095 Lal, D., Dev, D., Kumari, S., Pandey, S., Aparna, Sharma, N., Nandni, S., Jha, R. K., Singh, A.,
1096 2024. Fusarium wilt pandemic: current understanding and molecular perspectives.
1097 *Functional Integrative Genomics*. 24(2). <https://doi.org/10.1007/s10142-024-01319-w>

1099 Ly, L. K., Ho, T. M., Bui, T. P., Nguyen, L. T., Phan, Q., Le, N. T., Khuat, L. T. M., Le, L. H.,
1100 Chu, H. H., Pham, N. B., Do, P. T., 2024. CRISPR/Cas9 targeted mutations of
1101 OsDSG1 gene enhanced salt tolerance in rice. *Functional & Integrative
Genomics*. 24(2). <https://doi.org/10.1007/s10142-024-01347-6>

1103 LaMondia, J. A., 2013. Registration of ‘B2’ Connecticut Broadleaf Cigar-Wrapper Tobacco
1104 Resistant to Fusarium Wilt, Tobacco Mosaic Virus, Cyst Nematodes, and Blue
1105 Mold. *J. Plant Registrations*. 7(1), 58–62.
1106 <https://doi.org/10.3198/jpr2011.12.0656crc>

1107 LaMondia, J. A., 2015. Fusarium wilt of tobacco. *Crop Prot.* 73, 73–77.
1108 <https://doi.org/10.1016/j.cropro.2015.03.003>

1109 lawal, H., Saeed, S. I., Gaddafi, M. S., Kamaruzzaman, N. F., 2025. Green Nanotechnology:
1110 Naturally Sourced Nanoparticles as Antibiofilm and Antivirulence Agents Against
1111 Infectious Diseases. *Int. J. Microbiol.* 2025(1). <https://doi.org/10.1155/ijm/8746754>

1112 Legrifi, I., Taoussi, M., Al Figuigui, J., Lazraq, A., Hussain, T., Lahlali, R., 2023. Oomycetes Root
1113 Rot Caused by *Pythium* spp. and *Phytophthora* spp.: Host Range, Detection, and
1114 Management Strategies, Special Case of Olive Trees. *Journal of Crop Health*. 76(1),
1115 19-47.. <https://doi.org/10.1007/s10343-023-00946-w>

1116 Liang, Y., Qiu, F., Tao, Y., Peng, B., Zeng, X., Zhang, M., Zhang, Q., Li, X., Wei, J., 2024.
1117 Combating *Fusarium oxysporum* in tobacco soils with black soldier fly larvae frass-
1118 based reductive soil disinfection. *Archives of Agronomy and Soil Science*. 70(1),
1119 1–16. <https://doi.org/10.1080/03650340.2024.2432914>

1120 Li, J., Wang, Y., Chen, L., Xu, Y., 2022. PLGA nanoparticles loaded with garlic-derived allicin
1121 enhance antifungal activity against *Botrytis cinerea*. *Frontiers in Plant Science*. 13,
1122 874235. <https://doi.org/10.3389/fpls.2022.874235>

1123 Lisboa, H. M., Pasquali, M. B., dos Anjos, A. I., Sarinho, A. M., de Melo, E. D., Andrade, R.,
1124 Batista, L., Lima, J., Diniz, Y., Barros, A., 2024. Innovative and Sustainable Food
1125 Preservation Techniques: Enhancing Food Quality, Safety, and Environmental
1126 Sustainability. *Sustainability*. 16(18). <https://doi.org/10.3390/su16188223>

1127 Lucas, J. A., Hawkins, N. J., Fraaije, B. A., 2015. The Evolution of Fungicide Resistance.
1128 *Advances in Appl. Microbiol.*, 90, 29–92.
1129 <https://doi.org/10.1016/bs.aambs.2014.09.001>

1130 Lu, M., Wong, K. I., Li, X., Wang, F., Wei, L., Wang, S., & Wu, M. X. (2022). Oregano Oil and
1131 Harmless Blue Light to Synergistically Inactivate Multidrug-Resistant
1132 *Pseudomonas aeruginosa*. *Frontiers in Microbiology*, 13.
1133 <https://doi.org/10.3389/fmicb.2022.810746>

1134 Mahmood, I., Ansari, R. A., Rizvi, R., 2024. Nanotechnology and Plant Disease Management.
1135 *Nanotechnology and Plant Disease Management*. 1–222.
1136 <https://doi.org/10.1201/9781003256762>

1137 Mahmoud, D. A., Hassanein, N. M., Youssef, K. A., Abou Zeid, M. A., 2011. Antifungal activity
1138 of different neem leaf extracts and the nimonol against some important human
1139 pathogens. *Brazilian J. Microbiol.* 42(3), 1007–1016.
1140 <https://doi.org/10.1590/S1517-83822011000300021>

1141 Mahmoud, M., Abd-Elgawad, A., Hassan, A., 2023. Silica nanoparticles loaded with eucalyptus
1142 oil: A novel antifungal nanocarrier for controlling *Rhizoctonia solani*. *Pesticide
1143 Biochemistry and Physiology*. 192, 105205.
1144 <https://doi.org/10.1016/j.pestbp.2022.105205>

1145 Mohamed, H. I., Khan, A., Basit, A., 2024. CRISPR-Cas9 System Mediated Genome Editing
1146 Technology: An Ultimate Tool to Enhance Abiotic Stress in Crop Plants. *Journal of*

1147 Soil Science and Plant Nutrition. 24(2), 1799–1822. <https://doi.org/10.1007/s42729-024-01778-x>

1148

1149 Makunde, P. T., Zeng, Y., Patel, D. J., 2023. Nematode problems in tobacco and their sustainable
1150 management. *Nematode Diseases of Crops and Their Sustainable Management*.
1151 623–640. <https://doi.org/10.1016/B978-0-323-91226-6.00012-2>

1152 Manzoor, S., Akbar, R., Hussain, A., Ali, A., Faheem, B., Zaman, M., Farid, A., Hussain, I., Khan,
1153 I. A., Perveen, K., Bukhari, N. A., Sun, J., 2025. Toxicity effect of *Ricinus communis* methanolic extracts against *Bactrocera cucurbitae* (Diptera: Tephritidae).
1154 *Plant Prot. Sci.* 61(1), 77–88. <https://doi.org/10.17221/46/2024-PPS>

1155

1156 Mavroeidis, A., Stavropoulos, P., Papadopoulos, G., Tsela, A., Roussis, I., Kakabouki, I., 2024.
1157 *Alternative Crops for the European Tobacco Industry: A Systematic Review*. *Plants*.
1158 13(2). <https://doi.org/10.3390/plants13020236>

1159

1160 McCormle, K. L., Stowe, K. D., Lewis, R. S., Shew, D., 2018. Characterization of *phytophthora*
1161 *nicotianae* resistance conferred by the introgressed *Nicotiana rustica* Region, Wz, in
1162 flue-cured tobacco. *Plant Disease*. 102(2), 309–317. <https://doi.org/10.1094/PDIS-03-17-0339-RE>

1163

1164 McDonald, M. R., Collins, B., duToit, L., Adusei-Fosu, K., 2021. Soil amendments and fumigation
1165 for the management of *Fusarium* wilt of bunching spinach in Ontario, Canada. *Crop Prot.* 145. 105646. <https://doi.org/10.1016/j.cropro.2021.105646>.

1166

1167 Meena, P., Chandrawat, B., Ahir, R., Meena, A., Singh, M., 2021. Management of tomato root-
1168 knot wilt complex caused by *Meloidogyne incognita* and *Fusarium oxysporum* f. sp.
1169 *lycopersici* through plant extracts. *Int. J. Chemical Studies*. 9(1), 3100–3103.
<https://doi.org/10.22271/chemi.2021.v9.i1aq.11705>

1170

1171 Meng, Y., Zhang, Q., Ding, W., Shan, W., 2014. *Phytophthora parasitica*: a model oomycete plant
pathogen. *Mycology*. 5(2), 43–51. <https://doi.org/10.1080/21501203.2014.917734>

1172

1173 Mirmajlessi, M., Najdabbasi, N., Sigillo, L., Haesaert, G., 2024. An implementation framework
1174 for evaluating the biocidal potential of essential oils in controlling *Fusarium* wilt in
1175 spinach: from *in vitro* to *in planta*. *Front. in Plant Sci.* 15.
<https://doi.org/10.3389/fpls.2024.1444195>

1176

1177 Medina, C. A., Reyes, P. A., Trujillo, C. A., Gonzalez, J. L., Bejarano, D. A., Montenegro, N. A.,
Jacobs, J. M., Joe, A., Restrepo, S., Alfano, J. R., Bernal, A., 2017. The role of type

1178 III effectors from *Xanthomonas axonopodis* pv. *Manihotis* in virulence and
1179 suppression of plant immunity. *Molecular Plant Pathology*. 19(3), 593–606.
1180 <https://doi.org/10.1111/mpp.12545>

1181 Mirkov, I., Stojković, D., Aleksandrov, A. P., Ivanov, M., Kostić, M., Glamočlija, J., & Soković,
1182 M., 2020. Plant Extracts and Isolated Compounds Reduce Parameters of Oxidative
1183 Stress Induced by Heavy Metals: An up-to-Date Review on Animal Studies. *Current
1184 Pharmaceutical Design*. 26(16), 1799–1815.
1185 <https://doi.org/10.2174/1381612826666200407163408>

1186 Mondal, B., Mondal, C. K., Mondal, P., 2020. Diseases of Cucurbits and Their Management.
1187 *Stresses of Cucurbits: Current Status and Management*. 115–222.
1188 https://doi.org/10.1007/978-981-15-7891-5_3

1189 Moreira, T., Groot Koerkamp, P., Janssen, A., Stomph, T. J., Van der Werf, W., 2023. Breaking
1190 the mould: Developing innovative crop protection strategies with Reflexive
1191 Interactive Design. *Agric. Systems*. 210.
1192 <https://doi.org/10.1016/j.agrsy.2023.103727>

1193 Nader, W., Maier, M., Miebach, M., Linder, G., 2020. Pesticide residue legislations challenge
1194 international trade of food and feed. *Cereal Tech*. 2, 84–99.

1195 Nam, B., Nguyen, T. T. T., Lee, H. B., Park, S. K., Choi, Y. J., 2022. Uncharted Diversity and
1196 Ecology of Saprolegniaceae (Oomycota) in Freshwater Environments.
1197 *Mycobiology*. 50(5), 326–344. <https://doi.org/10.1080/12298093.2022.2121496>

1198 Naorem, A., Jayaraman, S., Dang, Y. P., Dalal, R. C., Sinha, N. K., Rao, C. S., Patra, A. K., 2023.
1199 Soil Constraints in an Arid Environment—Challenges, Prospects, and Implications.
1200 *Agronomy*. 13(1). <https://doi.org/10.3390/agronomy13010220>

1201 Naqvi, S. A. H., Farhan, M., Ahmad, M., Kiran, R., Fatima, N., Shahbaz, M., Akram, M., Sathiya
1202 Seelan, J. S., Ali, A., Ahmad, S., 2024. Deciphering fungicide resistance in
1203 Phytophthora: mechanisms, prevalence, and sustainable management approaches.
1204 *World J. Microbiol. Biotechnol.* 40(10). <https://doi.org/10.1007/s11274-024-04108-6>

1205 Naqvi, S. A. H., Farhan, M., Ahmad, M., Kiran, R., Shahbaz, M., Abbas, A., Hakim, F., Shabbir,
1206 M., Tan, Y. S., Sathiya Seelan, J. S., 2025. Fungicide resistance in Fusarium species:

1208 exploring environmental impacts and sustainable management strategies. *Arch.*
1209 *Microbiol.* 207(2), 31. <https://doi.org/10.1007/s00203-024-04219-6>

1210 Nguyen, V. D. H., Nguyen, T. T. T., Huynh, T. N. P., Ho, H. H., Nguyen, A. T. V., Trinh, L. T.
1211 P., 2024. Effective control of Fusarium wilt on tomatoes using a combination of
1212 phenolic-rich plant extracts. *Eur. J. Plant Path.* <https://doi.org/10.1007/s10658-024-02830-3>

1214 Nowicki, M., Nowakowska, M., Nowak, K., Szczechura, W., Kaminski, P., 2025. Seed priming
1215 and abiotic stress tolerance in carrot: Unraveling the mechanisms of improved
1216 germination. *PLoS ONE.* 20(2 February).
1217 <https://doi.org/10.1371/journal.pone.0318753>

1218 Obiazikwor, O. H., Shah, A., Hardy, G. E. S. J., & Bayliss, K., 2025. The rhizosphere microbiome
1219 can sustainably protect field-grown tomato crops against soil-borne pathogens and
1220 plant parasitic nematodes. *Canadian J. Plant Path.* 47(4), 423-436.
1221 <https://doi.org/10.1080/07060661.2025.2477644>

1222 Okiro, L. A., Mulwa, R. M., Oyoo, M. E., Okwiri Ojwang, P. P., Otieno, S. A., Gaiero, P., da Silva
1223 Pereira, G., Mendes, T., 2025. Evaluation of Genetic Diversity and Genome-Wide
1224 Association Studies of Resistance to Bacterial Wilt Disease in Potato. *Phytopathol.*
1225 115(3), 290–298. <https://doi.org/10.1094/PHYTO-06-24-0188-R>

1226 Ouma, Judith, and P. G. O. (2024). Evaluating Tobacco Farming Practices and Climate Variability
1227 Adaptation Strategies in Uriri Sub-County: Mitigation and Sustainable Agricultural
1228 Solutions. *J. Res. Innov. Implications in Education.* 8(3), 247–258.
1229 <https://doi.org/10.59765/seva9426h>.

1230 Oulahal, N., Degraeve, P., 2022. Phenolic-rich plant extracts with antimicrobial activity: an
1231 alternative to food preservatives and biocides?. *Front. Microbiol.* 12, 753518.

1232 Padhiary, M., Saha, D., Kumar, R., Sethi, L. N., Kumar, A., 2024. Enhancing precision agriculture:
1233 A comprehensive review of machine learning and AI vision applications in all-
1234 terrain vehicle for farm automation. *Smart Agric. Tech.* 8.
1235 <https://doi.org/10.1016/j.atech.2024.100483>

1236 Pandey, A. K., Barbetti, M. J., Kumar, A., Gaulin, E., Le May, C., Pilet-Nayel, M. L., You, M. P.,
1237 & Lamichhane, J. R., 2025. Root Disease Complexes of Arable Crops: Where Do

1238 We Stand and Where Should We Go? Critical Reviews in Plant Sciences.
1239 <https://doi.org/10.1080/07352689.2025.2475671>

1240 Pandey, R., 2023. Controlling Tobacco Diseases: An Overview of Black Shank and Fusarium Wilt.
1241 *Int. J. Appl. Sci. Biotech.* 11(1), 1–7. <https://doi.org/10.3126/ijasbt.v11i1.52440>

1242 Park, J., & Son, H., 2024. Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative
1243 Stress Response and Their Regulatory Mechanisms. *The Plant Pathology Journal*.
1244 40(3), 235–250. <https://doi.org/10.5423/ppj.rw.01.2024.0001>

1245 Paul, N. C., Park, W., Lee, S., Chung, M. N., Lee, H. U., Yang, J. W., 2020. Occurrence of
1246 sweetpotato (*Ipomoea batatas*) wilt and surface rot disease and determining
1247 resistance of selected varieties to the pathogen in Korea. *Plants*. 9(4).
1248 <https://doi.org/10.3390/plants9040497>

1249 Petrovic, S., Bita, B., Barbinta-Patrascu, M. E., 2024. Nanoformulations in Pharmaceutical and
1250 Biomedical Applications: Green Perspectives. *Int. J. Mol. Sci.* 25(11).
1251 <https://doi.org/10.3390/ijms25115842>

1252 Powell, A., Kim, S. H., Hucl, P., Vujanovic, V., 2024. Insights into Wheat Genotype–
1253 *Sphaerodes mycoparasitica* Interaction to Improve Crop Yield and Defence against
1254 *Fusarium graminearum*: An Integration of FHB Biocontrol in Canadian Wheat
1255 Breeding Programmes. *Pathogens*. 13(5).
1256 <https://doi.org/10.3390/pathogens13050372>

1257 Punniyakotti, P., Vinayagam, S., Rajamohan, R., Priya, S. D., Moovendhan, M., & Sundaram, T.,
1258 2024. Environmental fate and ecotoxicological behaviour of pesticides and
1259 insecticides in non-target environments: Nanotechnology-based mitigation
1260 strategies. *J. Environ. Chemical Eng.* 12(5).
1261 <https://doi.org/10.1016/j.jece.2024.113349>

1262 Rahman, M. Z., Ahmad, K., Kutawa, A. B., Siddiqui, Y., Saad, N., Geok Hun, T., Hata, E. M.,
1263 Hossain, M. I., 2021. Biology, diversity, detection and management of *fusarium*
1264 *oxysporum* f. Sp. *niveum* causing vascular wilt disease of watermelon (*citrullus*
1265 *lanatus*): A review. *Agronomy*. 11(7). <https://doi.org/10.3390/agronomy11071310>

1266 Rajarammohan, S., 2021. Redefining Plant-Necrotroph Interactions: The Thin Line Between
1267 Hemibiotrophs and Necrotrophs. *Fronti. Microbiol.* 12.
1268 <https://doi.org/10.3389/fmicb.2021.673518>

1269 Raudone, L., Savickiene, N., 2024. Phytochemical Profiles of Plant Materials: From Extracts to
1270 Added-Value Ingredients. *Plants*. 13(7). <https://doi.org/10.3390/plants13070964>.

1271 Radulovic, N.S., Blagojevic, P.D., Stojanovic-Radic, Z.Z., Stojanovic, N.M., 2013. Antimicrobial
1272 plant metabolites: structural diversity and mechanism of action. *Current medicinal*
1273 *chem.* 20(7), pp.932-952.

1274 Rathnamalala, K., Rifnas, L. M., 2025. Evaluating the Antifungal Effectiveness of Three Plant
1275 Extracts in Controlling Panama Wilt in Banana Plants. *Asian J. Res. in Agric.*
1276 *Forestry*, 11(2), 62–71.

1277 Redondo-Blanco, S., Fernández, J., López-Ibáñez, S., Miguélez, E.M., Villar, C.J. and Lombó, F.,
1278 2020. Plant phytochemicals in food preservation: Antifungal bioactivity: A review. *J. food Prot.* 83(1), pp.163-171.

1279 Ristaino, J. B., Anderson, P. K., Bebber, D. P., Brauman, K. A., Cunniffe, N. J., Fedoroff, N. V.,
1280 Finegold, C., Garrett, K. A., Gilligan, C. A., Jones, C. M., Martin, M. D., MacDonald, G. K., Neenan, P., Records, A., Schmale, D. G., Tateosian, L., Wei, Q.,
1281 2021. The persistent threat of emerging plant disease pandemics to global food
1282 security. *Proceedings of the National Academy of Sciences of the United States of*
1283 *America*. 118(23). <https://doi.org/10.1073/pnas.2022239118>

1284 Saberi-Riseh, R., Moradi-Pour, M., Mohammadinejad, R., & Thakur, V. K., 2021. Biopolymers
1285 for biological control of plant pathogens: Advances in microencapsulation of
1286 beneficial microorganisms. *Polymers*. 13(12).
1287 <https://doi.org/10.3390/polym13121938>.

1288 Saltos-Rezabala, L.A., Silveira, P.R.D., Tavares, D.G., Moreira, S.I., Magalhães, T.A., Botelho,
1289 D.M.D.S. Alves, E., 2022. Thyme essential oil reduces disease severity and induces
1290 resistance against *Alternaria* *linariae* in tomato plants. *Horticulturae*. 8 (10), p.919.

1291 Sadeghpour, N., Asadi-Gharneh, H. A., Nasr-Esfahani, M., Rahimiardkapan, B., Nasr-Esfahani,
1292 A., Nasr-Esfahani, A., Monazah, M., 2024. Gene markers generating polygenic
1293 resistance in melon–Fusarium wilt–FOM1.2 interaction pathosystem. *Plant Biol.*
1294 27(1), 52-65. <https://doi.org/10.1111/plb.13729>

1295 Saleh, H. M., Hassan, A. I., 2023. Synthesis and Characterization of Nanomaterials for Application
1296 in Cost-Effective Electrochemical Devices. *Sustainability*. 15(14).
1297 <https://doi.org/10.3390/su151410891>

1300 Sandeep, Sharma, S., Sharma, A., Bala, R., Sharma, I., & Sharma, A., 2024. Pesticide biology in
1301 soil: Sorption, leaching, and accumulation. *Pesticides in the Environment*. 49–66.
1302 <https://doi.org/10.1016/b978-0-323-99427-9.00013-6>

1303 Santos, M. P., Lima, T. M., Moura, H. C. P., Conceição, T. A., & Moreira, R. F. C., 2025. A
1304 panorama of recent advances in genetic improvement of tobacco. *Euphytica*. 221(5).
1305 <https://doi.org/10.1007/s10681-025-03516-5>

1306 Sapkota, S., Burlakoti, R. R., Punja, Z. K., Dossett, M., Gerbrandt, E., 2022. Understanding the
1307 root rot and wilting complex of raspberry: current research advances and future
1308 perspectives. *Canadian J. Plant Pathol.*, 44(3), 323–344.
1309 <https://doi.org/10.1080/07060661.2021.2011420>

1310 Sapkota, S., Burlakoti, R. R., Punja, Z. K., Gerbrandt, E. M., 2023. Influence of cultivar,
1311 environmental conditions, and fungicides on development of Phytophthora root rot
1312 and wilt on red raspberry. *Crop Prot.* 172.
1313 <https://doi.org/10.1016/j.cropro.2023.106347>

1314 Scanu, B., Jung, T., Masigol, H., Linaldeddu, B. T., Jung, M. H., Brandano, A., Mostowfizadeh-
1315 Ghalamfarsa, R., Janoušek, J., Riolo, M., Cacciola, S. O., 2021. Phytophthora
1316 heterospora sp. Nov., a new pseudoconidia-producing sister species of *p. palmivora*.
1317 *J. Fungi*. 7(10). <https://doi.org/10.3390/jof7100870>

1318 Selva Amala, A., Parthiban, V. K., Sudha, A., Gopalakrishnan, C., Swarnakumari, N., Anandham,
1319 R. (2024). Antifungal and plant-growth promoting potency of *Trichoderma*
1320 *asperellum* against *Fusarium* wilt on tomato. *J. Plant Pathol.*
1321 <https://doi.org/10.1007/s42161-024-01736-7>

1322 Sharma, M., Singh, V. K., Sharma, M. M., Patil, N., Jain, M., Kaushik, P., 2025. Extensive
1323 assessment of *Datura metel* L. accessions: Geographical origins-based clustering
1324 coupled with morphological and phytochemical profiles to illuminate medicinal
1325 efficacy. *South Afric. J. Botany*. 180, 358–368.
1326 <https://doi.org/10.1016/j.sajb.2025.02.029>

1327 Shitan, N., 2016. Secondary metabolites in plants: Transport and self-tolerance mechanisms.
1328 *Bioscience, Biotechnol. Biochem.* 80(7), 1283–1293.
1329 <https://doi.org/10.1080/09168451.2016.1151344>

1330 Singh, K., Gupta, R., Shokat, S., Iqbal, N., Kocsy, G., Pérez-Pérez, J. M., Riyazuddin, R., 2024.
1331 Ascorbate, plant hormones and their interactions during plant responses to biotic
1332 stress. *Physiologia Plantarum*. 176(4). <https://doi.org/10.1111/ppl.14388>

1333 Šišić, A., Baćanović-Šišić, J., Schmidt, H., Finckh, M. R., 2025. Effect of management system and
1334 pedoclimatic factors on *Fusarium* and *Didymella* communities associated with pea
1335 (*Pisum sativum*) roots in Germany. *Scientific Reports*. 15(1), 2653.
1336 <https://doi.org/10.1038/s41598-025-86018-7>

1337 Sun, G., Liu, Y., Nie, W., Du, Y., Sun, J., Chen, Z., Chai, L., Liu, D., Zhao, Z., Deng, A., Zhang,
1338 Q., Jiang, C., 2024. Multiple Omics investigation into the regulatory mechanisms of
1339 tobacco growth and quality by transplanting period. *Ind. Crops Prod.* 217.
1340 <https://doi.org/10.1016/j.indcrop.2024.118846>

1341 Sun, X. ping, Qiu, H. jiao, Qiu, C. sheng, Wu, Z. ming, Song, X., Tang, L., Liu, D., Cao, Y., Wang,
1342 F., 2025. Research progress on biological prevention and control in tobacco green
1343 production. *Cogent Food Agric.* 11(1).
1344 <https://doi.org/10.1080/23311932.2024.2448595>

1345 Salem, S. S., El-Belely, E. F., Niedbała, G., Alotaibi, M. A., Hassan, S. E. D., Shaheen, T. I., 2020.
1346 Chitosan nanoparticles as a bioactive delivery system for controlling *Fusarium*
1347 *oxysporum* in tomato plants. *International Journal of Biological Macromolecules*,
1348 145, 1262–1271. <https://doi.org/10.1016/j.ijbiomac.2019.10.040>

1349 Sun, C., Chen, J., Wang, L., Li, J., Shi, Z., Yang, L., Yu, X., 2024. Thymol Deploys Multiple
1350 Antioxidative Systems to Suppress ROS Accumulation in Chinese Cabbage
1351 Seedlings under Saline Stress. *Agronomy*, 14(5), 1059.
1352 <https://doi.org/10.3390/agronomy14051059>.

1353 Sikkema, J., de Bont, J. A., Poolman, B., 1995. Mechanisms of membrane toxicity of
1354 hydrocarbons. *Microbiological Reviews*, 59(2), 201–222.
1355 <https://doi.org/10.1128/mr.59.2.201-222.1995>

1356 Tang, B., Bi, W., Tian, M., Row, K. H., 2012. Application of ionic liquid for extraction and
1357 separation of bioactive compounds from plants. *Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences*. 904, 1–21.
1358 <https://doi.org/10.1016/j.jchromb.2012.07.020>

1360 Tao, L., Suohui, T., Yanping, C., Shuhui, Z., Jian, M., Zhijiang, W., Xianwen, Y., 2021. Priming
1361 Effect of Thiamine on the Enhancement of Induced Resistance to the Plant Disease
1362 Phytophthora Nicotianae in Tobacco. 1–15.

1363 Teixidó, N., Usall, J., Torres, R., 2022. Insight into a Successful Development of Biocontrol
1364 Agents: Production, Formulation, Packaging, and Shelf Life as Key Aspects.
1365 Horticulturae, 8(4). <https://doi.org/10.3390/horticulturae8040305>

1366 Tong, Z., Fan, Z., Du, T., Fang, D., Sui, X., Ye, C., Zhu, Q. H., Fan, L., Xiao, B., Shen, E., 2024.
1367 The dynamic transcriptome reveals response patterns to black shank disease in
1368 tobacco (*Nicotiana tabacum* L.). Plant Stress. 14.
1369 <https://doi.org/10.1016/j.stress.2024.100676>

1370 Tripathi, N. N., Vishwakarma, P., 2020. *Fusarium Wilt* of Pulses and Its Management By Plant
1371 Products : a Review. J. Indian bot. Soc. 100, 356–382.

1372 Tsai, I., Thines, M., 2025. Rediscovery of Araiospora Thaxter: new insights into a neglected
1373 chapter of oomycete evolution. Mycological Progress. 24(1).
1374 <https://doi.org/10.1007/s11557-025-02042-x>

1375 Valenzuela, H., 2024. Optimizing the Nitrogen Use Efficiency in Vegetable Crops. Nitrogen. 5(1),
1376 106–143. <https://doi.org/10.3390/nitrogen5010008>

1377 Van Jaarsveld, E., Wingfield, M. J., Drenth, A., 2002. Effect of metalaxyl resistance and cultivar
1378 resistance on control of *Phytophthora nicotianae* in tobacco. Plant Disease. 86(4),
1379 362–366. <https://doi.org/10.1094/PDIS.2002.86.4.362>

1380 Vasić, T., Živković, S., Filipović, S., Mitra, D., Jevremović, D., 2025. *Fusarium oxysporum*, the
1381 cause of *Fusarium* wilt on cucumber (*Cucumis sativus* L.) in Serbia. Biologica
1382 Nyssana. 16(1). <https://doi.org/10.46793/BiolNyss.16.1.9V>

1383 Villarino, M., Larena, I., Melgarejo, P., De Cal, A., 2021. Effect of chemical alternatives to methyl
1384 bromide on soil-borne disease incidence and fungal populations in Spanish
1385 strawberry nurseries: A long-term study. Pest Manag. Sci. 77(2), 766–774.
1386 <https://doi.org/10.1002/ps.6077>

1387 Vishnu, M., Kannan, M., Soundararajan, R. P., Suganthi, A., Subramanian, A., Senthilkumar, M.,
1388 Rameash, K., Madesh, K., Govindaraju, K., 2024. Nano-bioformulations: emerging
1389 trends and potential applications in next generation crop protection. Environ. Sci.
1390 Nano. 11(7), 2831–2860. <https://doi.org/10.1039/d4en00263f>

1391 Volynchikova, E., Kim, K. D., 2022. Biological Control of Oomycete Soilborne Diseases Caused
1392 by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in
1393 Solanaceous Crops. *Mycobiology*. 50(5), 269–293.
1394 <https://doi.org/10.1080/12298093.2022.2136333>

1395 Waidyanatha, S., Collins, B. J., Cristy, T., Embry, M., Gafner, S., Johnson, H., Kellogg, J.,
1396 Krzykwa, J., Li, S., Mitchell, C. A., Mutlu, E., Pickett, S., You, H., Van Breemen,
1397 R., Baker, T. R., 2024. Advancing botanical safety: A strategy for selecting,
1398 sourcing, and characterizing botanicals for developing toxicological tools. *Food and*
1399 *Chemical Toxicol.* 186. <https://doi.org/10.1016/j.fct.2024.114537>

1400 Wang, B., Liu, F., Li, Q., Xu, S., Zhao, X., Xue, P., Feng, X., 2019. Antifungal activity of zedoary
1401 turmeric oil against Phytophthora capsici through damaging cell membrane. *Pest.*
1402 *Biochem. Physiol.* 159, 59–67. <https://doi.org/10.1016/j.pestbp.2019.05.014>

1403 Wang, H., Li, Y., Li, W., Cai, L., Meng, J., Xia, G., Yin, J., Liu, X., 2022. Morphological and
1404 Molecular Identification of *Fusarium ipomoeae* as the Causative Agent of Leaf Spot
1405 Disease in Tobacco from China. *Microorganisms*. 10(10).
1406 <https://doi.org/10.3390/microorganisms10101890>.

1407 Wang, R., Wang, S., Pan, W., Li, Q., Xia, Z., Guan, E., Zheng, M., Pang, G., Yang, Y., & Yi, Z.
1408 (2018). Strategy of tobacco plant against black shank and tobacco mosaic virus
1409 infection via induction of PR-1, PR-4 and PR-5 proteins assisted by medicinal plant
1410 extracts. *Physiol. Mol. Plant Pathol.* 101, 127–145.
1411 <https://doi.org/10.1016/j.pmpp.2017.07.002>.

1412 Wang, Y., Wei, K., Han, X., Zhao, D., Zheng, Y., Chao, J., Gou, J., Kong, F., Zhang, C. S., 2019.
1413 The antifungal effect of garlic essential oil on Phytophthora nicotianae and the
1414 inhibitory component involved. *Biomolecules*. 9(10).
1415 <https://doi.org/10.3390/biom9100632>.

1416 Wen, G., Xie, Z., Yang, Y., Yang, Y., Guo, Q., Liang, G., Dang, J., 2023. NpPP2-B10, an F-Box-
1417 Nictaba Gene, Promotes Plant Growth and Resistance to Black Shank Disease
1418 Incited by *Phytophthora nicotianae* in *Nicotiana tabacum*. *Int. J. Mol. Sci.* 24(8).
1419 <https://doi.org/10.3390/ijms24087353>

1420 Wichuk, K. M., McCartney, D., & Tewari, J. P., 2011. Plant pathogen eradication during
1421 composting: A literature review. *Compost Science and Utilization*. 19(4), 244–266.
1422 <https://doi.org/10.1080/1065657X.2011.10737008>

1423 Xie, Z., Li, H., Gao, C., Wang, J., Zhang, X., Lu, B., Yang, L., Zhang, Y., Gao, J., 2024. Cross
1424 pathogenicity, host range and molecular characteristics of *Fusarium oxysporum*
1425 species complex populations isolated from tobacco in Jilin Province, China. *Plant*
1426 *Pathol.* 74(1), 84-100. <https://doi.org/10.1111/ppa.13999>

1427 Yadav, A., Yadav, K., Abd-Elsalam, K. A., 2023. Exploring the potential of nanofertilizers for a
1428 sustainable agriculture. *Plant Nano Biol.* 5.
1429 <https://doi.org/10.1016/j.plana.2023.100044>

1430 Yan, F., Ma, J., Peng, M., Xi, C., Chang, S., Yang, Y., Tian, S., Zhou, B., Liu, T., 2024. Lactic
1431 acid induced defense responses in tobacco against *Phytophthora nicotianae*.
1432 *Scientific Reports*. 14(1). <https://doi.org/10.1038/s41598-024-60037-2>

1433 Yang, P., Yuan, P., Liu, W., Zhao, Z., Bernier, M. C., Zhang, C., Adhikari, A., Opiyo, S. O., Zhao,
1434 L., Banks, F., Xia, Y., 2024. Plant Growth Promotion and Plant Disease Suppression
1435 Induced by *Bacillus amyloliquefaciens* Strain GD4a. *Plants*. 13(5).
1436 <https://doi.org/10.3390/plants13050672>

1437 Yin, X., Feng, L., & Gong, Y., 2023. Mitigating Ecotoxicity Risks of Pesticides on Ornamental
1438 Plants Based on Life Cycle Assessment. *Toxics*. 11(4).
1439 <https://doi.org/10.3390/toxics11040360>.

1440 Yap, P.S.X., Yusoff, K., Lim, S.H.E., Chong, C.M., Lai, K.S., 2021. Membrane disruption
1441 properties of essential oils—A double-edged sword? *Processes*, 9(4), 595.

1442 Zafar, S., Arshad, M. F., Khan, H., Menahil, R., Iqbal, L., Prabhavathi, S. J., Kumar, M. S., Omar,
1443 A. F., Shaheen, T., 2024. Nanoformulations of plant essential oils for managing
1444 mycotoxins producing fungi: An overview. *Biocatalysis Agric. Biotec.*, 60.
1445 <https://doi.org/10.1016/j.bcab.2024.103314>

1446 Zhang, C., Liu, H., Wang, X., Long, X., Huang, A., Zhang, J., Geng, J., Yang, L., Huang, Z., Dong,
1447 P., Shi, L., 2024. Inhibitory effects and mechanisms of cinnamaldehyde against
1448 *Fusarium oxysporum*, a serious pathogen in potatoes. *Pest Manag. Sci.* 80(7), 3540–
1449 3552. <https://doi.org/10.1002/ps.8058>

1450 Zhang, M. Y., Li, H., Miao, P., Wang, H., Xu, M., Yang, J. X., Yang, J. Y., Kang, Y. Bin., 2024.
1451 Microbial community composition and their activity against Phytophthora
1452 nicotianae at different growth stages of tobacco. Egyptian J. Biolog. Pest Control,
1453 34(1). <https://doi.org/10.1186/s41938-024-00831-2>

1454 Zhang, X. G., Sun, W. X., Guo, L., Yu, J. F., Chang, C. J., 2003. Genetic and pathogenic variation
1455 among tobacco black shank strains of phytophthora Parasitica var. nicotianae from
1456 the main tobacco growing in China. J. Phytopathol. 151(5), 259–266.
1457 <https://doi.org/10.1046/j.1439-0434.2003.00717.x>

1458 Zhou, J., Xu, T., Xu, X., Dai, T., Liu, T., 2023. The New Report of Root Rot on Fatsia japonica
1459 Caused by Phytophthora nicotianae in China. Forests. 14(7).
1460 <https://doi.org/10.3390/f14071459>

1461 Zhou, Q., Xia, Z., Zhang, Y., Sun, Z., Zeng, W., Zhang, N., Yuan, C., Gong, C., Zhou, Y., Xue,
1462 W., 2024. Design of a delivery vehicle chitosan-based self-assembling: controlled
1463 release, high hydrophobicity, and safe treatment of plant fungal diseases. J.
1464 Nanobiotech, 22(1). <https://doi.org/10.1186/s12951-024-02386-8>

1465 Zhu, X., Chen, Y., Jia, M., Dai, H., Zhou, Y., Yang, H., Zhou, P., Du, Y., Wang, G., Bai, Y.,
1466 Wang, N., 2024. Managing tobacco black shank disease using biochar: direct
1467 toxicity and indirect ecological mechanisms. Microbiol. Spectrum.
1468 <https://doi.org/10.1128/spectrum.00149-24>

1469 Zhou, J., Luan, X., Liu, Y., Wang, L., Wang, J., Yang, S., Liu, S., Zhang, J., Liu, H., Yao, D.,
1470 2023. Strategies and Methods for Improving the Efficiency of CRISPR/Cas9 Gene
1471 Editing in Plant Molecular Breeding. Plants, 12(7), 1478.
1472 <https://doi.org/10.3390/plants12071478>.

1473