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CCER valuation under emission uncertainty: a dual
framework of compliance optimization and regime-

switching GBM

Abstract: This paper develops an integrated framework to value China Certified Emission
Reductions (CCER) in the context of the national emissions trading system. At the micro level, we
refine the income approach by endogenizing firms' CCER purchase decisions under emission
uncertainty, offset caps and residual value risk, deriving a closed-form marginal willingness-to-pay
schedule linked to firm-specific emission distributions, allowance allocations and policy parameters.
At the macro level, we model carbon prices with a three-regime switching geometric Brownian
motion calibrated to Beijing carbon market and electricity data, and price CCER as a real-option-like
asset with state-dependent CEA-CCER spreads and guarantee-type payoffs. Comparing the two
layers, we show how income-based benchmarks and regime-switching option values differ yet can

be aligned to inform CCER pricing, contract design and policy reform in China's carbon market.

Keywords: CCER valuation; Carbon assets; Income approach; Regime-switching GBM; Real

options.
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1 Introduction

China's national carbon emission trading system incorporates the China Certified Emission
Reduction (CCER) mechanism as a key supplementary instrument for achieving carbon peaking and
neutrality targets at reduced costs. Regulated enterprises may substitute CCER for Carbon Emission
Allowances (CEA) up to specified proportions when offsetting verified emissions, which should in
theory lower aggregate abatement costs while channeling investment toward low-carbon projects. Yet
CCER's actual economic value emerges from the interplay of multiple factors: firm-level emission
uncertainty, quota allocation methodologies, caps on offsetting ratios, policy-driven sunset clauses
governing CCER eligibility, and carbon market prices that swing with macroeconomic cycles and
regulatory shifts. These institutional and market features reveal that CCER functions neither as a
riskless compliance instrument nor as a straightforward derivative of CEA prices; both enterprises
and regulators require valuation frameworks capable of reconciling micro-level compliance
incentives with macro-level price movements.

Current CCER valuation practices display fragmentation across two dimensions. Income
approach studies concentrate on the expected cost savings CCER delivers relative to CEA, yet these
analyses commonly take CCER purchase volumes as given and overlook maturity and residual value
risks, thereby constraining their capacity to represent firms' actual procurement decisions under
uncertainty. Market approach studies deploy stochastic models for carbon prices but frequently treat
CCER as a scaled replica of CEA, failing to explicitly embed compliance constraints, offset ratios,
or policy validity windows. A disconnect has thus emerged between enterprise-centered analysis that
proves intuitive but static and market-centered modeling that remains dynamic yet weakly anchored

to the compliance architecture. This paper seeks to close that gap by developing an integrated
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framework: it merges a micro-level income approach grounded in firms' optimal CCER demand with
a macro-level market approach that captures CEA and CCER price evolution via regime switching
(Hussain et al., 2021) and geometric Brownian motion (Li, W. et al., 2021; Liu, Y. et al., 2023a; Liu,
Y. etal., 2023b), pricing CCER as a real-option-like asset.

From this integrated perspective, the paper advances three principal innovations. First, at the
micro level, it refines the income approach by endogenizing CCER purchase quantities as solutions
to compliance cost minimization problems under stochastic emissions, regulatory ceilings, and
uniform residual values. This yields a closed-form marginal willingness-to-pay curve that directly
links firm-specific emission distributions, quota allocations, and policy parameters to CCER
valuation. Second, at the macro level, the paper introduces a three-state regime-switching geometric
Brownian motion model calibrated using Beijing carbon market data and electricity consumption
growth patterns. It jointly models CEA and CCER prices under regime-dependent drift rates,
volatilities, and spread ratios, valuing CCER through discounted risk-neutral expectations based on
guarantee-type payoffs that reflect compliance substitutability and residual value floors. Third, the
paper juxtaposes micro- and macro-level findings, employing shared calibration inputs such as
expected CEA settlement prices and CCER residual values to conduct a consistent cross-comparison
of valuation outcomes. Results demonstrate that the income approach's benchmark value and regime-
switching real option valuation together furnish a foundation for CCER pricing, contract design, and

policy formulation.

2 Literature review

We take the literature review via two aspects, one is about carbon asset, another is about asset
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pricing especially for intangible assets.

2.1 Review on the researches about carbon asset

Recent work on carbon assets has started to connect climate policy, corporate decision-making,
and financial market behavior, shedding light on both transition risks and emerging valuation
challenges. Research at the sectoral and policy level shows that concentrated ownership of power-
sector assets vulnerable to stranding creates vested interests capable of slowing or blocking ambitious
climate measures, pointing to governance obstacles and distributional tensions in decarbonization
pathways (Chevallier et al., 2021; von Dulong, 2023). Analyses of corporate carbon footprints across
complete value chains find that embedded emissions in listed firms vary dramatically between
upstream and downstream operations, altering how investors assess risk exposure and meet disclosure
obligations (Langley et al., 2021; Zhang et al., 2023). Firm-level data indicate that equity markets
now price corporate carbon emissions more systematically, with valuations reflecting both total
emissions and the perceived credibility of decarbonization plans (Zhang, 2025; Chen and Lai, 2025).
On the asset-pricing front, researchers increasingly model carbon allowances and credits as
contingent claims: option frameworks price carbon assets and support digital tools for dynamic
hedging and project evaluation (Liu et al., 2022), while real-options techniques measure the economic
value of operational choices such as continuing or shutting down emission-intensive power plants
under tightening carbon limits (Liu et al., 2021). Where macro-finance meets climate, carbon pricing
emerges as a driver of structural change toward greener growth trajectories, redirecting capital flows
from high-carbon sectors (Langley et al., 2021; Mengesha and Roy, 2025), yet climate and policy
uncertainty propagate forcefully across energy and carbon markets, with asymmetric causal

connections running among economic policy uncertainty, oil price volatility, clean energy indices,
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carbon futures and green bonds (Wang X. et al., 2022; Siddique et al., 2023). Empirical studies further
reveal pronounced spillovers linking fossil fuel, renewable and carbon markets during overlapping
climate and energy shocks, implying that carbon assets sit within larger energy-finance networks
rather than standing alone (Su et al., 2023; Dong and Yoon, 2023). Meanwhile, the relaunch of China's
CCER market has spurred methodological and project-level advances: feasibility assessments of
methane-reduction approaches in oil and gas production highlight a new category of carbon assets
with substantial mitigation leverage (Wang et al., 2025), and integrated carbon asset management
platforms and trading tactics seek to help listed enterprises revalue assets and pursue sustainable
development goals (Chen and Lai, 2025). Taken together, these studies suggest that carbon assets are
shifting from a narrow compliance tool into a diverse financial and strategic asset class whose worth
hinges on policy architecture, technology trajectories, cross-market linkages and firm-level
organizational capacity (Chevallier et al., 2021; Liu et al., 2022; Mengesha and Roy, 2025). Beyond
energy and finance, valuation-relevant impacts of carbon-related assets and practices now extend into
material-production industries including agriculture and chemicals, covering soil carbon
sequestration, inorganic soil carbon behavior, and biochar-derived carbon materials (Nazir et al.,

2023; Raza et al., 2024; Mahmood et al., 2025).
2.2 Review on the researches about intangible asset pricing

A growing body of research on intangible asset pricing examines how non-physical drivers such
as information, expectations, environmental performance and intellectual capital increasingly shape
asset values. At the measurement and reporting level, surveys and meta-analyses point to persistent
gaps between the economic significance of intangibles and their treatment in financial statements,

documenting conceptual and empirical obstacles in valuing items such as R&D, data, and
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organizational capital (Van Criekingen et al., 2022; Jeny and Moldovan, 2022; Barker et al., 2022).
Firm-level studies build on these observations to show that intangible resources can forecast future
performance and ought to be priced by investors, with deep learning models extracting value-relevant
signals from complex intangible asset profiles (Pechlivanidis et al., 2022). Related work broadens the
concept of intangibles to include environmental attributes: carbon emissions and carbon risk enter
asset pricing models as non-traditional factors, with mounting evidence that emissions and climate
exposures affect stock returns and capital costs, especially in emerging markets (van Benthem et al.,
2022; Wang H. et al., 2022; Bolton and Kacperczyk, 2024). Time-varying investor preferences for
green attributes and evolving policy signals further influence how environmental performance gets
rewarded in asset prices, suggesting that such performance has itself become a priced intangible
(Dutta, 2022; Alessi et al., 2023). Where macro-policy meets asset valuation, studies of risk-adjusted
carbon prices and retrospective evaluations of carbon pricing schemes reveal that expectations about
future regulation and abatement costs embed themselves into long-run asset values, effectively
converting regulatory trajectories into a form of priced intangible risk (Van den Bremer and Van der
Ploeg, 2021; Green, 2021). On the methodological front, advances in behavioral and computational
finance demonstrate that even nominal price illusions and data monetization practices introduce new
intangible dimensions into pricing: behavioral biases in nominal valuation distort asset prices in ways
traditional factors miss, while datasets themselves become tradable intangible assets whose prices
can be learned via deep learning-based monetization frameworks (Yang and Yang, 2022; Hao et al.,
2025). Taken together, this literature argues that modern asset pricing must systematically incorporate
a wide spectrum of intangibles spanning accounting-based intellectual capital, proprietary data,

environmental quality and policy expectations, deploying richer models and machine learning
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techniques to connect these largely off-balance-sheet attributes to observed returns (Van Criekingen
et al., 2022; Pechlivanidis et al., 2022; Alessi et al., 2023).

These studies collectively demonstrate that carbon assets and other intangibles are increasingly
priced through their interactions with policy, firm behavior and market expectations, yet existing
research tends to separate micro compliance analyses from macro market models. Drawing on these
insights, this paper treats CCER as a carbon-related intangible asset and constructs an integrated
valuation framework that connects optimal firm-level CCER demand under emission and policy
uncertainty with regime-switching GBM-based pricing of CEA and CCER, bridging income-based

and market-based perspectives to inform CCER pricing, contract design and policy.

3 Micro-level CCER valuation:from the firms’ perspective

3.1 Theoretical analysis and model construction

This section constructs an improved CCER valuation model grounded in optimal enterprise
purchasing decisions under emission uncertainties, regulatory constraints, and policy-induced
invalidation risk. Unlike earlier discrete and continuous distribution models where CCER quantity
enters exogenously and unit value represents average cost savings per ton, the present framework
endogenizes purchased CCER quantity as the solution to a cost minimization problem and derives
the associated willingness to pay as a theoretically grounded estimate of marginal value. This
approach preserves the intuitive cost-difference logic inherent in the income method while directly
tying CCER value to firm-specific emission risk, incorporating residual value and the potential for
excess CCER to lose validity after the compliance window, and permitting heterogeneous enterprise

characteristics such as size, quota allocation and volatility to generate differentiated CCER
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valuations.

We consider a representative compliance enterprise i facing uncertain annual carbon emissions
in the target year (for instance, 2024). Let E denote its random annual emissions (tonnes of CO2
equivalent). Consistent with the empirical setting in the previous section, E is modeled from
historical data (2017-2023) and is assumed to follow a continuous distribution with mean uy and
variance o7, with cumulative distribution function Fg(-) well-defined;in applications a normal or
lognormal specification can be used, or an empirically estimated non-parametric distribution.

The enterprise holds or expects to receive an annual allocation of carbon emission allowances
(CEA) denoted by A, and may purchase a quantity O of CCER to offset emissions in the same
compliance period. The maximum proportion of emissions that can be offset with CCER is capped at

" where Q™" can be set as

0. (5% in the Chinese system), which implies an upper bound Q <Q
apor, more conservatively, as a(ug + zog) for a chosen safety quantile z. Throughout the analysis
we treat O as a continuous decision variable in [0,0""].

At the beginning of the compliance period (or at an intermediate time before the deadline), the
firm chooses O and pays pcQ, where p_. is the unit market price of CCER. We assume that the
CEA price at the time of final compliance is stochastic but that the firm can form an expectation p,
of the average marginal cost of acquiring additional CEA close to the settlement date, inferred from
historical trading data or from a separate market-approach model (e.g., GBM or LSTM). The
regulatory frame-work typically stipulates a penalty F per tonne of uncovered emissions; for
analytic clarity we assume F > py, so that a rational firm will always purchase CEA to achieve full

coverage before paying penalties, and compliance behavior can be summarized as ‘buy CEA until the

emission shortfall is fully covered’.
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Given a realization of E, the firm’s compliance balance at the end of the period is A + Q. If
E > A + Q, the firm must purchase additional CEA on the spot market to cover the shortfall E —
A — Q at expected marginal cost py(E —A — Q), ignoring second-order price feedback from
individual trades. If instead E < A + @, the firm ends the period with surplus compliance assets A +
Q — E. Because CCER eligibility in the Chinese national trading system is subject to strict temporal
limitations (for example, credits registered before March 14, 2017 are usable only until December 31,
2024 and CCER trading effectively ceases after the compliance submission deadline), surplus CCER
face significant expiration and liquidity risks, whereas surplus CEA generally remain valid and
tradable in subsequent periods or can be sold back to the market.

To capture these asymmetries while keeping the model tractable, we postulate that surplus
compliance assets at the end of the period are valued at a residual price v;.°°. A more detailed
specification could distinguish between surplus CEA and CCER, for example assigning CEA a
residual value close to p, and CCER a value (1 — 8)Ap, based on a survival probability (1 — 8)
and a resale discount factor A€[0,1]in voluntary markets. For parsimony, we aggregate these effects
into a single effective residual value v[®°, interpreted as the expected liquidation value per tonne of
surplus compliance asset, net of policy invalidation and market illiquidity; typically v;* < p, and,
for CCER approaching their sunset date, it can be substantially lower.

Under these assumptions, for a given CCER purchase quantity ( and a particular realization of
emissions E, the firm’s random total cost of compliance can be written as

TC(Q; E) =pcQ + pa(E — A— Q)4—vi(A+Q — E), (3.1)
where (x), = max{x, 0}. Here p.Q is the certain upfront cost of purchasing Q tonnes of CCER,

pa(E — A — Q).is the cost of "filling the gap with CEA" when realized emissions exceed A + Q,
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and —v;®°(A+ Q — E), reflects the residual value of surplus compliance assets when E < A + Q.

Given CCER purchase quantity O, the firm’s expected total compliance cost is

E[TC(Q; E)] = pcQ + E[pa(E —A - Q)4 ] — E[ve"(A+ Q — E),], (3.2)
where the expectation is taken over E ~ fz(e). The firm’s decision problem is
Q"= argos(ggglmaXE[TC(Q; E)], (3.3)
which formalizes, within the income-approach framework, the strategic decision of ‘how many
CCER to buy’ under emission and price uncertainty.

To derive the first-order condition for an interior solution, differentiate (3.2) with respect to Q.
Since TC(Q; E) depends on Q only through p.Q and the positive-part terms, and (E — A —
Qs ., A+Q—-E), are almost everywhere differentiable in 0 ,we
have %(E—A—Q)+= —1¢g>a+0} and %(A +Q —E)y = l{gcasqy » Where 1gy denotes the
indicator function. Substituting and using linearity of expectation gives

% E[TC(Q; E)]:PCJFE[—ﬁA ligsaroy — v¢*° 1{E<A+Q}]
= pc — P, P(E>A+Q) — v p(E<4+0), (3.4)
where we used ]E[I{E>A+Q}] =P(E>A+Q) and ]E[I{E<A+Q}] = P(E < A+ Q). The second term
represents the expected marginal saving in CEA "gap-filling" cost, and the third term captures the
change in expected residual value from buying one more tonne of CCER.
Setting (3.4) equal to zero at Q* yields
pc=p,P(E>A+Q)+ve*p(E <A+ Q). (3.5)

For a continuous emission distribution we have P(E > A+ Q") +P(E <A+ Q) = 1.

Rearranging (3.5) gives the key pricing relation
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b, - v

- ) ——
CCER unit price atQ* residual value benchmark

(marginal willingness-to-pay) when CCER mainly end as surplus

(Pa — vc*) P(E>A+0Q7)

compliance—use premium probability of an emission shortfall
over pure residual value after buying Q* tonnes of CCER

(3.6)

The marginal willingness-to-pay at Q* is thus a weighted average of the expected marginal CEA

cost p, and the residual value v[®°, with the weight on p, given by the shortfall probability

P(E > A + Q7). When this probability is high, p. is close to p,; when it is low,p, moves toward
res

To obtain an explicit pricing formula, assume E ~ N (,uE, a,f), with (ug, 9€) estimated from

historical firm-level data. The shortfall probability can then be expressed via the standard normal

CDF ®(-) as

P(E>A+Q)=1—<D(A+Q—‘”E).

OE

(3.7)
Substituting (3.7) into (3.6) yields the central CCER price-quantity relation
~ A+Q—Uug
* — res res
pc(Q) = U + (Pa — v¢*) [1 - q)( oF )]
N——— —— N— —
firm—level marginal residual value in  incremental value of CCER probability of a shortfall
illi —to— surplus states as a compliance instrument
willingness—to=payat Q P P after purchasing Q tonnes of CCER
(3.8)

For small Q such that A + Q < ug, the standardized term (A + Q — ug)/9Eis very negative,
®(-) is close to 0, and the shortfall probability is close to 1, so p;:(Q)=p,4 and CCER are almost
fully valued at the expected marginal CEA price; as Q increases and A+(Q approaches or exceeds
Ug ;the shortfall probability declines and p;(Q) decreases smoothly from p, toward v;*°,

reflecting the transition from ‘insurance against costly shortfalls’ to ‘potentially stranded surplus

assets’.
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Thus, (3.8) can be interpreted as a firm-level demand curve for CCER: for each Q € [0, Q™*],
it gives the marginal price that leaves the firm indifferent between buying an additional tonne of
CCER and relying instead on spot CEA purchases or accepting surplus risk. Coupled with (3.3), the
most relevant income-based valuations at the firm level are p;(Q*) (marginal value at the optimum)
andp (Q™**)(marginal value when the regulatory offset ratio is fully used). Aggregating such firm-
specific marginal values,for example via emission-weighted averages, yields a market-level
theoretical CCER price range under the improved income-approach framework.

In implementation: (1) For each firm,estimate (ug, P€)from historical emissions and determine
its expected allowance allocation A under national ETS rules,then compute Q™ = aug. (2)
Specify p, from observed or modeled CEA prices at compliance, and calibrate v/®° using policy
information on CCER validity and expected liquidity. (3) For eachQon a grid in [0, Q™%*],compute
P(E> A+ Q) via (3.7) and then p;(Q) via (3.8). (4) Solve (3.3) for Q*, obtain p;(Q*) or

pe(Q™M), and aggregate across firms to form a market reference price.

3.2 Numerical implementation and discussion on the results

The numerical implementation proceeds as follows (the Matlab implementation for the income-
approach model is provided in Appendix B). The model first sets the key global parameters a =
0.05,p4 = 115 CNY/t and v,..; = 30 CNY/t, where a is the maximum CCER offset ratio, p, is
the expected marginal CEA settlement price, and v,.s is the residual (floor) value of CCER.
Historical daily CEA and CCER prices from the Word file are read into the program but are used only

as background, while the pricing model itself is calibrated directly using the fixed values of p, and

vTES .

Firm-level emission data are then imported separately for low-emission firms (Table 2) and



274

275

276

277

2178

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

normal-emission firms (Table 3). For each firm, the Appendix A provides Eypper, Emia and Ejpyer
for annual emissions. The code sets ug=E,,;;q as the firm’s expected emissions and, assuming
(E lower Eupper) is roughly a 90% confidence interval, approximates the standard deviation by %E =
(Eupper — Erower)/(22095) with zpos ~ 1.64 , imposing °F = 10~ to avoid degeneracy. The
allowance allocation is set equal to expected emissions, 4=y, and the maximum CCER usage is
Qmax = Alg -

Based on these inputs, the firm-specific marginal willingness-to-pay function for CCER is

implemented as

Pe(@)=Vrest(Ba — Vres) [1 — @ (FLE)].
where ®(-) is the standard normal cumulative distribution function. In the code this is written as a
vectorized anonymous function pc fun using normcdf. For each firm, the program evaluates
pe(Q)atQ =0,Q = Quax and Q = Q*, where Q" is obtained by minimizing the expected total
compliance cost over Q € [0, Qmaxl,

E[TC(Q; E)] = pc(Q)Q + PAE[(E = T)+] — vy E[(T — E)1], T=A+0Q,

with (x); = max{x,0}. Under the normality assumption for E , the expectations E[(E —
T),] and E[(T — E),] have closed-form expressions involving the standard normal pdf and cdf,
which are implemented in an auxiliary function E7C single. The scalar optimization is carried out
using the Matlab routine fininbnd, yielding the optimal Q*and the associated marginal price p;(Q™*)
for each firm.

Using this procedure, the program computes for all 46 firms the mean emissions g, emission
volatility %E, maximum CCER use Q,,q, and the model-implied marginal CCER prices at Q =
0,Q = Quax and Q = Q*. The numerical results show that: (1) for all firms, the predicted marginal

price at zero CCER usage is identical and equals p;(0) = 72.50 CNY/t. This is because at Q = 0
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we have T=A=pg, so ©(0) =05 and pz(0) = Vpes + (P, — Vres)(1 — @(0)) =30 + (115 —
30) X 0.5 = 72.5.(2) When firms use CCER up to the policy cap Qqx = @lUg, the marginal
willingness-to-pay falls for all firms to approximately p&(Qmax) = 47.52 CNY/t, because
additional CCERs raise the total compliance position T = A + @ and reduce the probability that the
firm ends up short and needs to settle at the higher CEA price py4. (3) The optimization results show
that for every firm in the sample, the cost-minimizing choice is Q"= Qax » SO Pe(Q¥) =
Pe(Qmax) = 47.52 CNY /.

The program also computes emission-weighted average theoretical CCER prices across all firms

(using p_ as weights). The results are (CNY/t) :Mean pg(Q =0) =72.50, Mean pc(Q =

Qmax) = 47.52, Mean pc(Q = Q%) = 47.52.

Representative Firm (Ticker=966): p.(Q) 0 Distribution of Firm-Level Optimal CCER Marginal Prices
120 : . : . : . ‘ T ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
110} [N (e) 35
o Vpiar
woor v 30
| ® daial

% ® data2 2 251
= ® data3 =
6 80 5
= e 5 20
g 70} £
e 2151

60 |

. 10+
50 | Q=0
Q=Q
max |-
40 | | 5
20 0 ’—|—\ — L L | —
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 47 .51 47.514 47‘?18 ) 47.522 47.526 47.53
Q (million t CO,)) Po(Q) (CNYH)

Figure 1: Representative-firm marginal CCER pricing curve and cross-sectional distribution of
optimal marginal CCER prices

Because all firms optimally choose Q"= Q,,4x , the average optimal marginal price coincides
with the marginal price at the cap. The left graph in Fig 1 illustrates the marginal willingness-to-pay
curve p-(Q) for a representative firm, chosen in the code as the one whose expected emissions are
closest to the sample median, namely the firm with ticker 966, for which (t CO2) ugz = 657,528,% =
40,093.29,A = 657,528, Qmax = 32,876.40. The horizontal axis of the left graph in Fig 1 plots Q

(in million tonnes CO2) from 0 to Q45 , and the vertical axis reports p;(Q) in CNY/t. The curve
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starts at p;(0) = 72.50 CNY/t and monotonically declines to p;(Qmax) = 47.52CNY/t as
0 increases, with two horizontal reference lines at p, = 115 CNY/t and v,,; = 30 CNY/t. The
points Q =0, Q = Qpax and Q = Q" are highlighted on the curve; since for this firm
Q" =Qmax=32,876.40 t CO2, the last two coincide and p;(Q*) = pr(Qmax) = 47.52 CNY /t. The
right graph in Fig 1 summarizes the cross-sectional distribution of p;(Q*) for all 46 firms. The
horizontal axis is p*(Q*)(CNY/t) and the vertical axis is the number of firms. The descriptive
statistics are: minps(Q*) = 47.51 CNY/t, maxp;(Q*) = 47.53 CNY/t, mean =47.52 CNY/t ,
median = 47.52 CNY/t, std. dev.= 0.00CNY /tindicating an extremely concentrated distribution.

Overall, the numerical results yield three main conclusions. First, when firms hold allowances
equal to their expected emissions, the initial marginal value of CCER at zero usage is exactly halfway
between the residual CCER value and the expected CEA price, that is p;(0) = %(ﬁA + Vpps) =
72.5 CNY/t.Second, as firms increase CCER usage up to the regulatory cap, their marginal
willingness-to-pay declines to about 47.52 CNY/t, but remains well above the residual value of
30 CNY/t, which supports a non-trivial economic value of CCER under the given market conditions.
Third, under the current parameterization all firms optimally choose Q*=Q,4x, S0 the cross-sectional
dispersion of p;(Q™) is negligible, as illustrated by the right graph in Fig 1.

These findings highlight both the internal consistency and the limitations of the current
calibration. The income-approach model delivers a transparent relationship between the CEA price,
the CCER residual value and firms’ optimal CCER demand, while the near-degeneracy of the cross-
sectional distribution suggests that richer heterogeneity in allowance allocation rules, emission
uncertainty and firm-specific constraints, or relaxing the assumption 4 =uj for all firms, would

generate a wider and more realistic spread of p;(Q*) than that shown in the right graph in Fig 1.
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4 Macro-level CCER valuation: from the market’s perspective

In this section, we employ the market approach to model carbon prices through a regime-
switching geometric Brownian motion (GBM). Compared to a single-regime GBM, this framework
is capable of capturing structural shifts in economic activity, energy demand, and regulatory policies,
thereby depicting the nonlinear, state-dependent dynamics of CEA and CCER. We treat CEA prices
as the underlying asset in a risk-neutral regime-switching GBM and value CCER as a real option,
while considering observable price boundaries, offset substitutability with CEA, and policy-mandated

offset ratio constraints.

4.1 Theoretical analysis of the value-relevance of CCER and CEA

For compliance enterprises, one unit of CCER can either offset one ton of verified emissions on
the compliance date or be sold on the secondary market before its expiration, thus representing a
flexible right. Holding CCER units with an expiration date of 7" at time zero grants the holder the
right to choose between compliance use and market sale, with the higher benefit prevailing at or
before time 7. Let P# and Pf be CEA and CCER prices at time t, and r the continuously
compounded risk-free rate. Empirically P¢ is usually below P# and bounded below by a residual
value vy , 50 a basic restriction is 0 < v,.s < PE < PA.

We approximate the marginal compliance value of one CCER at T by an increasing function
f(P#) of the settlement CEA price. Under full subtitutability and ignoring firm-specific
constraints,we use f(P#) = min{P#, p7***}, where p7*** is an effective cap on the CEA settlement

price. The time-zoo CCER value under the risk-neutral measure Q is V§ = e "TEZ[f(P#)], which

is constrained to satisfy v..s < V5 <V, where V;' is the risk-neutral value of one CEA unit.
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Calibration of f(-) is chosen so that the implied ratio 8, = P£/P# lies in the empirical band 6 <
0, <80.

In the Beijing CCER market, Table 1 indicates that 8, is typically between 0.56 and 1.08, with
Pf < P# and a common range around 0.6 to 0.7. To reflect this structure, we specify a state-
dependent pricing kernel P¢ = 6(a,)P#, where a; is an unobserved economic regime and 6(a,)
is the CCER-CEA price ratio in regime a,. Given the regime-switching process for P , CCER
prices are thus driven jointly by P# and the regime index a;.

Regime uncertainty is modeled by a continuous-time finite-state Markov chain (a;);»y with
state space # = {e;, e,,...,en}, representing different macro or regulatory conditions. For more
details of Markov chain's modelling and applications, we refer to (Zheng et al., 2020; Ni et al., 2024;
Xu et al., 2024). The "regime" can be understood as a combination of high, medium, and low levels
of temperature and industrial activity, or more broadly as a state defined by temperature, coal prices,
industrial added value growth rates, and regulatory policy dynamics. This Markov chain determines
the drift rate, volatility, and spread ratio 6(-) of the CEA price process, and therefore transmits

regime shifts into CCER valuation.

4.2 Modeling CEA and CCER prices with regime-switching geometric Brownian

motion

We now specify a regime-switching geometric Brownian motion (GBM) for CEA and CCER

prices. Let (B;):sp be a standard Brownian motion and (@;);sy9 a continuous-time Markov chain

on # = {ey, ..., ey} with generator Q = (qij) where q;;>0 for i #j and q; = — X

1<i,jsm’

qij. The filtered probability space is (2, %, (Z¢)¢0, P), with filtration generated by B, and a;.
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Under P, the CEA price (P#);sy follows

dPA = uy(a)PAdt + o4(a)PAdB, 0<t<T, (4.1)

with regime-specific drift p,(i) and volatility o04(i) > 0. The solution is P# =
Pitexp (f) (ale) - 203 (@) ) du + [[ 0 (@,)dB)

To price under no arbitrage, we move to a risk-neutral measure Q such that e "*P# is a
martingale. Let A, = (us(a;) —1)/04(a;) and define % = exp (— fOT A, dBy, — %foT A2 du).
Then B, =B, + | Ot Ay du is a Q-Brownian motion and

dP# = rPAdt + o, (a,)PAdB,, 4.2)
or equivalently P# = Pflexp ( ) OT (r - %aj (au)) du+ [ OT N (au)df}u).We keep the generator Q
unchanged under Q,which is standard and sufficient for pricing here.

To link CEA and CCER prices by regime, we introduce 6(i) € [Q, 5],1' =1,...,m, calibrated
from CCER/CEA price ratios. When a; = e;, we set

Pf = 6(a,)PA, (4.3)
so that in regime i the CCER price is a fixed fraction 8(i) of the CEA price. Combining (4.2) and
(4.3) and using Ito’s formula, for fixed regime i we obtain

dPf = 6(i)dP# = rPfdt + o (I)PFdB,, oc(i) = a,(i),
so (Pf)sp also follows a regime-switching GBM under Q: dPf = rPfdt + o (a,)PFdB,.

For valuation, let g(-) be the marginal compliance value of one CCER at maturity 7 as a
function of P# . A simple specification with full substitutability and a floor is g(P#) =
Max{V, OeiPf} With O € [Q, 5]. The time-zero value of a CCER unit is

Vi =e TE[g(PP)IP} = pj, ap = €], (4.4)

where P§' is the current CEA price and e; the current regime. Due to regime switches, P# is not
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lognormal and (4.4) has in general no closed form. Two standard numerical approaches are therefore
used: a system of coupled PDEs, or Monte Carlo simulation (see Hu et al., 2020; Liang et al., 2022
for more applications).

For the PDE approach, define v;(p,t) as the value at time t of one CCER when P# = p and

a, =e;,i=1,..,m. Then v = (v,,..,1,) solves,on (p,t) € (0,0) X [0,T)
ov; 1 0°v; ov; -
— +=ai(Dp’ l+rp—l—rvi+Zqijvj =0, (4.5)
p op =

with terminal condition v;(p,T) = g(p). Numerical schemes such as finite differences can be used
to obtain v;(pf,0), so that V¢ = v;(pf, 0).For Monte Carlo,one simulates N paths of (P#, a;)
under Q on [0,T] using (4.2) and the Markov chain with generator Q. For each path k, record
PTA ) and compute g(PTA '(k)); then V¢ = e_rTé N_.g (PTA ’(k)),which converges to Vfas N —
. Alternatively, one may simulate PS¢ directly via (4.3) and use a payoff h(Pf), for instance
h(P§) = max{P§ — K¢, Vyes} With a strike K, and then compute V{ = e "TEY[h(P£)]. With
suitable choices of gand h consistent with (4.3), the two formulations are equivalent.

Calibration proceeds in two steps. First, regimes are identified from exogenous
variables such as daily temperature and industrial added value growth, for example by
partitioning the (x,y)-plane withy =x +¢; and y = x + ¢, and assigning each day to a
regime.The transition rates q;; are then estimated from empirical holding times and
transition counts. Second, given regime labels, regime-specific drifts u,(i)and volatilities
0,(i) are estimated from CEA log returns, and the spread parameters 6(i) from paired
CEA-CCER prices,subject to 6 < 6(i) < 6. Once {Q,u4(i),04(),0()}2%; and r are

calibrated, the regime-switching GBM fully specifies the joint dynamics of CEA and CCER
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prices under Q, and thus yields a CCER value V£ that reflects regime uncertainty,

empirical spreads and the real options nature of CCER.
4.3 Numerical implementation and discussion on the results

This subsection uses the Matlab code (refer to Appendix C) to implement a three-regime Markov
switching GBM for CEA and CCER and to price a guarantee-type payoff E[max(CCERy,K)] under
the risk-neutral measure. Daily 2023 CEA and CCER prices from Beijing Green Exchange are
combined with monthly year-on-year electricity growth. The monthly growth rates are mapped to the
daily grid; empirical quantiles of both electricity growth and CEA price define three regimes: regime
1 (low growth, low price), regime 3 (high growth, high price), and regime 2 (intermediate). If any
regime is too small, its days are merged into the middle regime.

Within each regime s € {1,2,3}, the drift and volatility of daily CEA log returns are estimated
as sample mean and standard deviation, giving u,(s) and a,(s). The Markov transition matrix P
is built from observed one-step regime switches. For CCER, an equilibrium relation S& ~ 6,52 is
assumed, where 6 isthe average CCER/CEA ratio in regime s, truncated to [0.5,1.0]. In simulation,
S = 6,54 times an idiosyncratic lognormal shock (Rasool et al., 2020; Shabbir et al., 2020; Zhang
etal., 2020; Hussain et al., 2021; Yan et al., 2022). The daily standard deviation of this CCER-specific
noise is set at 0.10v/At with Z, ~ N(0,1), which generates realistic short-run deviations between
CCER and CEA while preserving long-run co-movement through 6.

Under the risk-neutral measure, CEA in regime s follows a GBM with drift r — %O’sz and
volatility o, ,with annual risk-free rate »=0.0435 and time step At = 1/252. At each step,the

regime is updated using P , then CEA is evolved by the corresponding GBM, and CCER is obtained
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as 0,S# times the idiosyncratic shock. The code simulates joint paths of CEA and CCER over
Trrage = 80 trading days from end-2023 levels, with initial prices S = 111.38 CNY and
Sy =72.00 CNY.The initial regime is the observed last-day regime. The guarantee level is K =

72.00 CNY.

Sample paths of CEA (solid) and CCER (dashed) under regime-switching GBM

CEA paths
= = = -CCER paths

120
M0~

100

Price (CNY)
w
=

80

70 [

60

Trading day
Figure 2: Simulated CEA (solid) and CCER (dashed) price paths over 80 trading days under a three-
regime switching GBM, with background color bands indicating low, medium, and high demand-
price regimes

Figure 2 illustrates five simulated paths over 80 days. Solid lines are CEA, dashed lines CCER.
The background bands show the simulated regimes: blue for regime 1, green for regime 2, red for
regime 3. Regimes evolve endogenously according to P. CEA and CCER co-move at the regime
scale, with higher growth of both prices and higher volatility in red bands, and flatter or downward
behavior in blue bands. Regime-specific 0,(s) generates time-varying volatility. ~ The larger
CCER idiosyncratic noise 0.10vAt produces visible but transient deviations of CCER from 6,57,
consistent with CCER’s lower liquidity and project heterogeneity. The paths combine long-run co-

movement, regime-dependent risk and short-run spread fluctuations.
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On this joint dynamics, the value of a single-maturity payoff max(CCER;,K) with T=80
days is approximated by Monte Carlo: PV = e "TE%[max(CCERy, K)] with 20,000 paths. The
output is PV = 80.4027 CNY per unit CCER, compared with spot S; =72.00 CNY and
K= 72.00 CNY. Since max(CCERy,K) equals one CCER plus a European call with strike K,
the excess PV — S§ ~ 8.4 CNY reflects option value from regime-driven upside and the floor at K.

To illustrate how the guarantee value varies with initial CEA S7' and maturity 7, a grid is set
with S7' from 80.00 to 160.00 CNY (25 points) and T from 10 to 80 trading days (step 10). At each
grid point (SZ,T), 15,000 paths of the joint process are simulated,the payoff max(CCERy,K,) is
computed and discounted. The guarantee level is K, = Kpgse + XtoliowBmid (S(‘,‘1 - SOCEA), where
Kpase = 72.00 CNY, 6,4 = 0.6257 is the middle-regime ratio, S5 = 111.38 CNY is the current
CEA price, and a0 = 0.30. Thus only 30 percent of deviations of Sf' from S§E4 feed into the

floor, which weakens the almost linear dependence that would occur under K, = 6,,i4S4.

CCER value surface under regime-switching GBM: discounted E[max(CCER.I., KZ)]
1110

Slice at T = 40

1 105

1 100

Discountad E[ max(CCER., K,)] (CNY)
©
o
I

120

110 60

100
90 80 80

Initial CEA price sh (CNY) . .
o Maturity T (trading days)

Figure 3: Discounted expected value surface E[max(CCERy, K,)] per unit CCER under the regime-

switching GBM, as a function of initial CEA price and maturity, with the guarantee level defined as
a baseline plus a partially adjusting component
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Figure 3 reports the discounted expectation EQ[max(CCERr,K,)]e™™" on this grid (with
simple interpolation). Along the T direction, holding S7' fixed, values increase with maturity because
the process has more chances to enter high-demand regimes and the time value of the floor-contract
outweighs discounting. Along S7', each maturity slice is upward-sloping but nonlinear: with K, =
Kpase +0.30 Hmid(S(‘f - SgEA), the floor adjusts slower than the expected terminal CCER level as
S#' rises, so the marginal impact of SZ' gradually declines at high initial prices. In the low SZ'
region, values remain clearly above Kj .. even at short horizons,indicating a nontrivial probability
of regime-driven recovery before maturity. A slice at 7 = 40 days(black curve) highlights this

CEA

nonlineaeity: near S5E4the slopein S is steep, then flattens at higher S',confirming the dampened

pass-through of initial price into guarantee value under the partial-follow rule.
5 Comparison and summary

5.1 Comparing micro-level and macro-level CCER valuation results

This subsection compares the micro-benefit approach in Section 3 with the macro-regime
switching GBM approach in Section 4. By examining the implied marginal or fair CCER price (unit:
yuan/ton) of the model and aligning key calibration items (such as expected CEA settlement prices,
CCER residual values, and observed CEA and CCER spot prices), the two methods are made
comparable.

On the micro side, Section 3 studies a representative compliance enterprise minimizing expected
total compliance cost under uncertain emissions, regulatory caps and residual value risk. The firm
faces random annual emissions E with mean g and variance o7, allowance allocation 4,

maximum CCER usage Q.. = aug, expected marginal CEA settlement price p,, and residual
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value v,.,. Total cost equals upfront CCER spending plus expected CEA gap-filling cost minus
expected residual liquidation value. Treating Q € [0, Q,,qx]as continuous, the first-order condition
yields a marginal willingness-to-pay
Pe(Q) = Vs + (P4 — vres)[l — CD((A +Q - ,uE)/aE)],interpreted as a weighted average of p, and
Vres, With the weight on p, given by the emission shortfall probability after purchasing Q.

Under the baseline calibration with offset ratio @ = 0.05,p4 = 115 CNY/t, v,..c = 30 CNY//t,
allocation A = u,, and approximately normal emissions, the model is applied to 46 low- and normal-
emission firms. For each, g , 0z , Qmax and pi(0), PE(Qmax), Pe(Q™) are computed. All firms
obtain Q* = Q,uqx, thatis optimal usage at the cap.At Q =0, the shortfall probability equals 1/2 so
pe(0) = %(ﬁA + Vpps) = 72.50 CNY /t.At Qpax the shortfall probability is much lower and the
marginal value drops to about 47.52 CNY/t. The emission-weighted distribution of p;(Q™) is thus
very concentrated around 47.52 CNY/t.

On the macro side, Section 4 models CEA and CCER via a three-regime switching GBM
calibrated to 2023 Beijing data and electricity growth, with regimes capturing low, medium and high
demand-price environments through a finite-state Markov chain. Within each regime, CEA follows a
risk-neutral GBM; CCER equals a regime-dependent fraction of CEA times an idiosyncratic
lognormal shock with daily standard deviation0.10v/At,representing CCER-specific noise. CCER is
then valued as a real-option-like asset whose payoff reflects its compliance substitutability and
residual value.

For a single-maturity payoff max(CCERy, K) with T = 80 days, K = 72 CNY, r=0.0435,
and starting prices S§' = 111.38 CNY, S§ = 72.00 CNY,Monte Carlo with 20000 paths gives PV ~

80.40 CNY/t. The excess over spot is the value of the embedded call on CCER under regime
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uncertainty. Extending to a grid over S7' and T with a guarantee K, anchored at 72 CNY and

partially following S7' yields a surface EY[max(CCERy,K,)]e™"T that increases with T and

displays nonlinear dependence on S§' . As follows, Table 1 summarizes representative outcomes.

Table 1: Comparison between micro-level and macro-level CCER valuation results
Micro-level income approach ~ Macro-level market approach
(firm perspective) (regime-switching GBM)
Modeling focus Expected total compliance Risk-neutral pricing of

Main uncertainty
source

Decision variable or

contract type

Representative price
levels (CNY/t)

Treatment of residual
or floor value

Time structure

cost minimization for a
representative firm or firm
sample

Firm-level emission risk
(ug, og) with prices and
residual value exogenous

CCER purchase quantity
Q € [0,Q,.x] chosen once
per period

pe(0) = 72.50;
P (Qmax) = 47.52;
pi(0*) ~ 47.52

Constant residual value v,
at period end

One-period static compliance
decision

CCER as a real option-like
asset under state-dependent
price dynamics

Stochastic CEA and CCER
prices driven by a
three-regime switching GBM

Holding CCER and possibly a
guarantee-type contract
max(CCER, K) or
max(CCER7, K>)

PV ~ 80.40 at T'= 80 days

and K = 72; CCER spot at
t =0:72.00

Floor K or K, at

maturity under  regime

uncertainty

Multi-period stochastic
evolution over up to 80
trading days

The micro model produces CCER values between v,,s and p, , with precise levels driven by

shortfall probabilities. Under the condition of homogeneous parameters and A = p, the marginal

value converges around 47.52 CNY/t at the upper limit and is 72.50 CNY/t at zero usage, which

can serve as a conservative benchmark from a static performance perspective. When applied to

contracts with clear lower limits, macro models typically yield higher valuations as they price the

upside potential and time value of flexibility in favorable regimes; the guaranteed rights with an
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exercise price of K=72 CNY reach approximately 80.40 CNY/t, which is higher than the spot price
and the micro-level marginal value.

This difference reflects different economic roles. In the micro-scenario, CCER hedges the
specific emission risks of enterprises within a single compliance cycle; once the enterprise
comfortably meets the compliance requirements, the valuation of additional CCER approaches v;..s.
In the macro-scenario, CCER is a tradable asset exposed to macro-regime shifts, with valuation using
the complete risk-neutral distribution of future prices, and the right-tail state is amplified due to the
lower bound. Therefore, earnings-based valuation is suitable for internal compliance analysis and
conservative reference pricing, while regime-switching GBM is more suitable for pricing structured

CCER products and evaluating the risk-return characteristics of CCER positions.

5.2 Summary and future research

This article constructs a comprehensive CCER valuation framework that combines the micro-
level income approach with the macro-level regime-switching GBM, linking compliance behavior
with market price dynamics.

At the micro level, a representative enterprise with uncertain emissions, fixed allowances and a
binding CCER cap chooses CCER purchase quantity ( to minimize expected total compliance cost,
decomposed into CCER expenditure, contingent CEA gap-filling cost and residual value of surplus
assets. Under a continuous emission distribution, an explicit marginal willingness-to-pay p;(Q) is
derived as a convex combination of expected CEA price and residual value, with weights given by
shortfall probabilities. Calibration to firm data under a baseline with A = . and homogeneous

parameters shows optimal use at the cap and marginal values clustering near 47.52 CNY/t, with
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pe(0) = 72.50 CNY/t.

At the macro level, CEA and CCER follow a three-regime switching GBM calibrated to 2023
Beijing data and electricity growth. Regimes imply state-dependent drift- s and volatilities; CCER is
a regime-dependent fraction of CEA with idiosyncratic noise. CCER is valued as a real-option-like
asset. For max(CCER;,K)with T= 80 days and K equal to spot, Monte Carlo yields about
80.40 CNY/t, above spot and micro-level marginal values. A grid over initial CEA prices and
maturities with K, defined as a baseline plus partial adjustment generates a value surface that
increases with T and responds nonlinearly to S#', highlighting the interaction between regimes,price
risk and contract design.

The two layers achieve the following objectives together: (1) they connect firm-specific
emission risk and regulatory parameters to CCER valuations and optimal purchase quantities; (2)
they embed CCER pricing within a regime-sensitive risk-neutral framework that captures empirical
features including regime-dependent volatility and CEA-CCER spreads; (3) they demonstrate how
guarantee-type structures alter CCER value and link compliance instruments with CCER-based
financial products.

Future research could relax the micro-model assumptions on allocation, offset ratios and residual
values to accommodate richer heterogeneity, and expand the macro model by incorporating time-
varying transition intensities, jump processes or stochastic volatility, alongside a more granular CEA-
CCER spread process. A particularly promising direction involves tighter coupling of the two layers,
where macro price dynamics generate endogenous inputs for the micro model while firm-level CCER
demand feeds back into the market model, thereby enabling analysis of the feedback mechanisms

among compliance behavior, policy design and price formation in support of carbon peaking and
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neutrality objectives.
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Appendix A

Table 2 Annual carbon emission data for low-emission enterprises (tons)

Ticker symbol m, m, m Ticker symbol m, m, m

603388 5969 5427 4884 603778 5469 4972 4475




002431 14559 13236 11912 300008 27852 25320 22788

300536 20967 19061 17155 600072 26117 23743 21368

000037 7867 7152 6437 603717 20927 19025 17122

000993 8405 7641 6876 000711 18504 16822 15140

7 O O Source: CSMAR Database
701 Table 3 Annual carbon emission data for normal-emission enterprises (tons)
Ticker Ticker Ticker
m m, m m m, mg m, m, my

symbol symbol symbol
600011 9076451 8251319 7426187 600025 839682 763347 687012 603828 109891 99901 89911
600795 3927170 3570155 3213139 000959 6749599 6135999 5522399 002542 530198 481998 433799
601991 5552259 5047508 4542757 000761 4723905 4294459 3865013 002564 716273 651157 586042
600027 6756622 6142383 5528145 600126 1990390 1809445 1628501 002628 138814 126195 113575
600023 3795945 3450859 3105773 000778 196041 178219 160397 002663 68298 62089 55880
000539 2368211 2152919 1937627 600307 1431482 1301347 1171213 002761 10519590 9563263 8606937
600021 1540961 1400873 1260786 600782 4447745 4043405 3639064 002775 72117 65561 59005
000027 2276119 2069199 1862279 000709 3706154 3369231 3032308 002140 498744 453404 408063
002608 2132345 1938495 1744646 600569 2818325 2562113 2305902 300055 65169 59245 53320
600578 1708917 1553561 1398205 600282 4746223 4314748 3883274 300237 52063 47330 42597
600575 1445654 1314231 1182808 601005 1693446 1539496 1385546 300517 95146 86496 77847
600157 1533348 1393952 1254557 000825 3723184 3384713 3046241 000862 62357 56688 51019
000543 1126340 1023946 921551 600117 557233 506575 455918 300649 104958 95417 85875
600642 2127118 1933743 1740369 000717 2052221 1865655 1679090 300712 95242 86584 77925
600863 584866 531697 478527 600019 21523775 19567068 17610361 600039 7472533 6793212 6113891
000600 534253 485685 437116 000932 5453736 4957942 4462148 002116 500880 455345 409811
000767 1034726 940660 846594 600507 1269384 1153986 1038587 600133 799036 726396 653757
000966 723281 657528 591775 000898 5667263 5152057 4636852 600170 14171007 12882733 11594460
001896 782009 710918 639826 600010 3162971 2875428 2587885 600248 15423990 14021809 12619628
600780 425868 387153 348437 600022 4586444 4169495 3752545 600284 1135404 1032186 928967
600509 583520 530472 477425 600231 1027681 934255 840830 600463 61704 56094 50485
000690 452755 411595 370436 601003 4383901 3985365 3586828 600491 114836 104396 93956
600744 691180 628346 565511 600808 3801689 3456081 3110473 600502 5764712 5240647 4716582
000899 170012 154556 139101 600295 1641085 1491896 1342706 600512 526711 478828 430946
000531 238187 216534 194881 000655 137061 124601 112141 600606 29341384 26673985 24006587
600396 249379 226708 204037 600581 1509440 1372218 1234997 600667 1620650 1473318 1325987
002893 82005 74550 67095 000629 484185 440168 396152 600820 6238700 5671545 5104391
600969 204230 185664 167098 603878 161881 147165 132448 600846 431993 392721 353449
000791 95916 87197 78477 000923 190663 173330 155997 600853 753134 684667 616201
000601 317822 288929 260036 000708 8055406 7323096 6590786 600970 2317066 2106424 1895782
600483 885339 804853 724368 601969 47961 43601 39241 601117 7972458 7247689 6522920

000883 1542108 1401917 1261725 002110 4542493 4129539 3716585 601186 70552790 64138900 57725010

600900 1554752 1413411 1272070 002075 355375 323068 290761 601390 37510749 34100681 30690613
601985 3887484 3534076 3180668 600477 483255 439323 395391 601611 3506691 3187901 2869111
600886 1218380 1107618 996856 600496 1036042 941856 847670 601618 33385953 30350867 27315780

601669 26125183 23750167 21375150 601968 462657 420597 378537 601668 122315835 111196213 100076592



600821 158991 144538 130084 002756 377439 343127 308814 601669 26125183 23750167 21375150

600452 97359 88508 79657 200761 3740889 3400808 3060727 601789 945971 859974 773977
600995 124867 113515 102164 900936 1575137 1431943 1288748 601800 29555593 26868721 24181849
600116 1005080 913709 822338 002132 64877 58979 53081 603316 101724 92477 83229
600505 37156 33779 30401 002135 328280 298436 268593 603637 102229 92935 83642
000692 192555 175050 157545 002318 280555 255050 229545 603098 233934 212667 191400
600644 149033 135484 121936 002443 287503 261366 235229 603843 680770 618882 556994
000040 108142 98311 88480 002478 162868 148062 133255 603955 46973 42703 38432
000537 299017 271833 244650 002541 1520498 1382271 1244044 603959 92167 83788 75409
600167 98361 89419 80477 000629 484185 440168 396152 000032 1708014 1552740 1397466
600982 712794 647995 583195 000708 3270983 2973621 2676259 603929 101247 92043 82838
600236 274713 249739 224765 000709 3706154 3369231 3032308 002047 166202 151093 135983
600101 84140 76490 68841 000717 2052221 1865655 1679090 002081 449608 408735 367861
002039 36605 33277 29949 000961 9579035 8708214 7837393 002163 196604 178730 160857
600163 183816 167106 150395 600022 4586444 4169495 3752545 002325 149391 135810 122229
600674 50586 45988 41389 600894 433825 394386 354948 002375 585633 532393 479154
601619 60570 55064 49557 002743 318579 289617 260656 002482 56893 51721 46549
000875 755307 686642 617978 000928 1605125 1459205 1313284 002620 129069 117335 105602
002479 524052 476411 428770 000628 691222 628383 565545 002713 285503 259548 233594
600098 2634239 2394763 2155286 600939 3477904 3161731 2845558 002789 101022 91838 82654
002256 681601 619637 557673 000010 247465 224968 202471 002811 86688 78807 70926
002015 1129772 1027065 924359 000065 1761791 1601628 1441466 002822 645172 586520 527868
601016 232664 211513 190362 000090 2343598 2130543 1917489 002830 83769 76153 68538
600149 36910 33555 30199 000498 5430569 4936881 4443193 002856 71940 65400 58860
000722 31110 28282 25454 002307 997813 907102 816392 300117 70924 64476 58028
000591 303997 276361 248725 002051 113708 103371 93034 300621 755394 686722 618050
300335 63694 57904 52114 002060 949279 862981 776683 600193 94218 85652 77087
000155 231426 210387 189348 002061 3041286 2764805 2488325 601886 1443949 1312681 1181413
600979 85830 78027 70224 002062 940424 854931 769438 603030 131737 119761 107785
7 O 2 Source: CSMAR Database

703 Appendix B

%
% Income—Approach CCER Valuation (LaTeX-based, Word-data only)
%
clear; clc; close all;

%% 1. Global parameters

alpha =0.05; % Max CCER offset ratio
pA_bar = 115; % Expected marginal CEA settlement price (CNY/t)
v_res =30; % Residual value of CCER (CNY/t), must be < pA_bar

% Historical daily prices from Word data (for reference only, not used later)
aprice = [ ...
138.00 110.40 90.00 72.00 59.00 51.47 61.80 74.20 74.20 74.20 ...
89.00 74.00 106.80 86.00 102.00 115.64 138.50 111.00 92.22 73.80 75.00 ...
88.77 106.60 125.00 149.64 144.30 131.75 134.00 124.00 100.90 121.00 ...
130.12 139.00 127.00 127.00 121.77 142.00 121.88 127.00 120.00 130.00 ...
127.00 130.00 132.53 122.50 133.50 128.00 128.00 123.03 124.00 127.50 ...
119.18 123.57 123.77 121.28 123.00 130.29 121.35 115.13 125.25 124.94 ...
124.17 127.93 125.17 121.38 117.72 126.25 123.03 116.89 105.28 120.71 ..
118.88 118.44 121.37 124.41 113.92 119.90 115.96 119.96 113.01 109.92 ...
118.49 109.91 108.16 121.72 116.00 103.32 100.00 110.00 109.00 110.00 ...
114.34 95.00 85.06 102.00 107.00 115.00 116.00 112.00 111.38]';

cprice = ...



95.00 95.00 95.00 109.00 88.00 80.00 90.00 90.89 47.00 78.00 ...

80.00 80.00 56.40 90.00 80.00 82.00 80.00 80.00 80.00 80.34 80.00 75.00 ...
80.00 80.00 86.96 80.00 80.01 84.81 88.00 65.64 80.00 69.70 81.40 80.00 ...
69.38 70.50 80.44 83.90 78.23 86.00 86.99 80.00 80.00 74.77 77.63 74.50 ...
75.00 80.10 85.40 80.00 74.00 70.42 78.00 79.51 79.14 85.00 80.00 75.00 ...
65.00 65.00 74.60 65.01 70.00 90.00 70.00 72.00 72.00 72.00]';

%% 2. Firm-level emission data from Word (appendix tables)

% 2.1 Low-emission firms (Table 2)
% Columns: [Ticker, E_upper, E_mid, E_lower]
low_tab=1] ...
603388 5969 5427 4884; ...
2431 14559 13236 11912; ... % keep numeric consistency for leading zero tickers
300536 20967 19061 17155; ...
37 7867 7152 6437; ...
993 8405 7641 6876; ...
603778 5469 4972 4475; ...
300008 27852 25320 22788; ...
600072 26117 23743 21368; ...
603717 20927 19025 17122; ...
711 18504 16822 15140];

ticker_low = low_tab(:,1);

E up_low =low_tab(:,2);
E _mid_low =Ilow_tab(:,3);
E lo_low =low_tab(:,4);

zband =1.64; % ~90% CI
muE_low =E_mid_low; % mean emissions
sigmaE_low = (E_up_low - E_lo_low) / (2*zband);
sigmaE_low(sigmaE_low <= 0) = le-6;

A_low =muE_low; % allowance = mean emissions
Qmax_low = alpha * muE_low; % max CCER usage

% 2.2 Normal-emission firms (Table 3)

% Columns: [Ticker, E_upper, E_mid, E_lower]

norm_tab = ...
600011 9076451 8251319 7426187, ...
600795 3927170 3570155 3213139; ...
601991 5552259 5047508 4542757, ...
600027 6756622 6142383 5528145; ...
600023 3795945 3450859 3105773; ...
539 2368211 2152919 1937627; ...
600021 1540961 1400873 1260786; ...
27 2276119 2069199 1862279; ...
2608 2132345 1938495 1744646; ...
600578 1708917 1553561 1398205; ...
600575 1445654 1314231 1182808; ...
600157 1533348 1393952 1254557 ...
543 1126340 1023946 921551; ...
600642 2127118 1933743 1740369; ...
600863 584866 531697 478527, ...
600 534253 485685 437116; ...
767 1034726 940660 846594; ...
966 723281 657528 591775; ...
1896 782009 710918 639826; ...
600780 425868 387153 348437; ...
600509 583520 530472 477425; ...
690 452755 411595 370436; ...
600744 691180 628346 565511; ...
899 170012 154556 139101; ...
531 238187 216534 194881; ...
600396 249379 226708 204037, ...
2893 82005 74550 67095; ...
600969 204230 185664 167098; ...
791 95916 87197 78477, ...
601 317822 288929 260036; ...
600483 885339 804853 724368; ...
883 1542108 1401917 1261725; ...
600900 1554752 1413411 1272070 ...
601985 3887484 3534076 3180668; ...
600886 1218380 1107618 996856; ...
601669 26125183 23750167 21375150];

ticker_norm = norm_tab(:,1);

E up norm  =norm_tab(:,2);
E_mid_norm =norm_tab(:,3);
E_lo_norm  =norm_tab(:,4);
muE_norm =E _mid_norm;

sigmaE_norm = (E_up_norm - E_lo_norm) / (2*zband);
sigmaE_norm(sigmaE_norm <= 0) = le-6;

A_norm =muE_norm;
Qmax_norm = alpha * muE_norm;

%% 3. CCER marginal willingness-to-pay function (LaTeX-based)



pe_fun = @(Q, muE, sigmaE, A) ...
v_res + (pA_bar - v_res) .* (1 - normcdf( (A + Q - muE) ./ sigmaE ));

phi = @(x) exp(-0.5*x."2) ./ sqrt(2*pi);
%% 4. Merge samples and compute firm-level results

ticker_all = [ticker low; ticker norm];

muE_all =[muE_low; muE_norm];
sigma_all = [sigmaE_low; sigmaE_norm];
A_all =[A_low; A_norm];

Qmax_all =[Qmax_low; Qmax_norm];
Nfirm = numel(ticker_all);
Qstar_all = zeros(Nfirm,1);

pC_QO_all = zeros(Nfirm, 1);

pC_Qmax_all = zeros(Nfirm,1);
pC_Qstar_all = zeros(Nfirm,1);

% Representative firm: median mu_E
[~,idx_med] = min(abs(muE_all - median(muE_all)));

idx_rep = idx_med;

nQgrid =50;

Qgrid_rep = linspace(0, Qmax_all(idx_rep), nQgrid);

pc_rep = pc_fun(Qgrid_rep, muE_all(idx_rep), sigma_all(idx_rep), A_all(idx_rep));
fprintf('================ CCER Valuation (Firm-Level) =======—==—===—====\n");
fprintf('Global parameters:\n');

fprintf(" alpha = %.4f (max CCER offset ratio)\n', alpha);

fprintf(' pA_bar =%.2f CNY/t (expected marginal CEA settlement price)\n', pA_bar);
fprintf("  v_res =%.2f CNY/t (residual value of CCER)\n\n', v_res);

fprintf('Firm-level parameters and key prices:\n');
fprintf('%-10s %-14s %-14s %-14s %-14s %-14s %-14s\n, ...
'Ticker',)mu_E','sigma_E','Qmax','/pC(Q=0)",'pC(Qmax)','/pC(Q*)');

for i = 1:Nfirm
muE i =muE_all(i);
sig_i = sigma_all(i);
A =A_all(i);
Qmax_i=Qmax_all(i);

% Marginal prices at Q=0 and Q=Qmax
pC_QO_all(i) = pc_fun(0, muE_1i, sig i, A_i);
pC_Qmax_all(i) = pc_fun(Qmax_i, muE_i, sig_i, A_i);

% Optimal Q* by minimizing expected total cost
obj = @(q) ETC_single(q, muE_i, sig_i, A_i, pA_bar, v_res, phi, @normecdf);
[Qstar_i, ~] = fminbnd(obj, 0, Qmax_i);

Qstar_all(i) = Qstar_i;
pC_Qstar_all(i) = pc_fun(Qstar_i, muE i, sig_i, A_i);

fprintf('%-10d %-14.2f %-14.2f %-14.2f %-14.2f %-14.2f %-14.2f\n, ...
ticker_all(i), muE_i, sig_i, Qmax_i, ...
pC_QO_all(i), pC_Qmax_all(i), pC_Qstar_all(i));
end

%% 5. Weighted average theoretical CCER prices (mu_E weights)

weight =muE_all / sum(muE _all);
avg_pC_QO0 = sum(weight .* pC_QO_all);
avg_pC_Qmax = sum(weight .* pC_Qmax_all);
avg_pC_Qstar = sum(weight .* pC_Qstar_all);

fprintf("\nWeighted-average theoretical CCER prices (weights = mu_E):\n');
fprintf("'  Mean p_C"*(Q=0) =%.2f CNY/t\n', avg_pC_QO0);

fprintf("  Mean p_C**(Q=Qmax) = %.2f CNY/t\n', avg_pC_Qmax);
fprintf'  Mean p_C"*(Q=Q*) = %.2f CNY/t\n\n', avg_pC_Qstar);

%% 6. Explicit description of Figure 1 (representative firm)

rep_ticker = ticker_all(idx_rep);

rep_muE =muE_all(idx_rep);

rep_sigmaE = sigma_all(idx_rep);

rep_ A =A_all(idx_rep);

rep_Qmax = Qmax_all(idx_rep);

rep_QO =0

rep_Qstar = Qstar_all(idx_rep);

rep_pC_QO0 =pC_QO_all(idx_rep);

rep_pC_Qmax =pC_Qmax_all(idx_rep);

rep_pC_Qstar =pC_Qstar_all(idx_rep);

fprintf('Figure 1 (Representative firm p_C"*(Q) curve):\n');

fprintf('  Representative firm ticker : %d\n', rep_ticker);

fprintf('  Representative firm mu_E :%.2ft CO2\n', rep_muE);
fprintf("  Representative firm sigma_E 1 %.2ft CO2\n', rep_sigmaE);
fprintf("  Representative firm allowance A 1 %.2ft CO2\n', rep_A);

fprintf("  Representative firm Qmax 1 %.2ft CO2\n', rep_Qmax);



fprintf(" Horizontal axis: Q in million t CO2 from %.2f to %.2f\n', ...
rep_Q0/1e6, rep_Qmax/1e6);

fprintf("  Vertical axis: p_C"*(Q) in CNY/t\n');

fprintf("  Curve: p_C"*(Q) for Q in [0, Qmax]\n');

fprintf(" Horizontal reference line: p_A_bar = %.2f CNY/t\n', pA_bar);

fprintf(" Horizontal reference line: v_res =%.2f CNY/t\n', v_res);

fprintf("  Marked point at Q=0 :Q=%2f, p_C™™*0) =%2f CNY/t\n, ...
rep_QO, rep_pC_QO0);

fprintf(" Marked point at Q=Qmax  :Q=%.2f, p_C"*(Qmax)=%.2f CNY/t\n', ...
rep_Qmax, rep_pC_Qmax);

fprintf("  Marked point at Q=Q* Q¥ =%2f, p C"*(Q¥*) =%2fCNY/t\n\n, ...
rep_Qstar, rep_pC_Qstar);

%% 7. Explicit description of Figure 2 (distribution of p_C"*(Q*))

pC_min = min(pC_Qstar_all);
pC_max = max(pC_Qstar_all);
pC_mean = mean(pC_Qstar_all);
pC_median = median(pC_Qstar_all);
pC_std = std(pC_Qstar_all);

fprintf('Figure 2 (Distribution of firm-level optimal marginal CCER prices p_C"*(Q*)):\n");
fprintf(" Sample size (number of firms) : %d\n', Nfirm);

fprintf(" Horizontal axis: p_C"*(Q*) in CNY/t\n');

fprintf("  Vertical axis: number of firms (histogram counts)\n');

fprintf(" Range of p_C"*(Q*) : [%.2f, %.2f] CNY/t\n', pC_min, pC_max);
fprintf("  Mean  of p_C"*(Q¥) 1 %.2f CNY/t\n', pC_mean);

fprintf('  Median of p_C"*(Q*) 1 %.2f CNY/t\n', pC_median);

fprintf("  Std. deviation of p_C"*(Q*) : % 2f CNY/t\n\n', pC_std);

%% 8. Figures (two figures only)

% Figure 1: Representative firm p_C"*(Q) curve

figure;

plot(Qgrid_rep/1e6, pc_rep, 'b-', 'LineWidth', 2); hold on;
yline(pA_bar,'r--','LineWidth',1.5);

yline(v_res,'k-.",'LineWidth',1.5);

xlabel('Q (million t CO_2)');

ylabel('p_C**(Q) (CNY/t)');

title(sprintf('Representative Firm (Ticker=%d): p_C"*(Q)', rep_ticker));
legend('p_C**(Q)','p_A"{bar}",'v_{res}','Location','best');

grid on;

plot(rep_Q0/1e6, rep_pC_QO0,'ko',' MarkerFaceColor','k");
text(rep_QO0/1e6, rep_pC_QO0,"' Q=0','VerticalAlignment','bottom');

plot(rep_Qmax/1e6, rep_pC_Qmax, 'ko','MarkerFaceColor','k');
text(rep_Qmax/1e6, rep_pC_Qmax,' Q=Q_{max}','VerticalAlignment','top');

plot(rep_Qstar/1e6, rep_pC_Qstar, 'ro','MarkerFaceColor','r');
text(rep_Qstar/1e6, rep_pC_Qstar, '  Q=Q"*','VerticalAlignment','bottom');

% Figure 2: Distribution of optimal marginal CCER prices p_C"*(Q¥*)
figure;

histogram(pC_Qstar_all, 'FaceColor',[0.2 0.6 0.8]);
xlabel('p_C"*(Q"*) (CNY/)');

ylabel('"Number of firms');

title('Distribution of Firm-Level Optimal CCER Marginal Prices');
grid on;

%% 9. Auxiliary function: expected total cost for a single firm

function ETC = ETC_single(Q, muE, sigmaE, A, pA_bar, v_res, phi, normcdf handle)
T =A+Q;
a = (T - muE) ./ sigmakE;
Phi_a = normedf handle(a);
phi_a = phi(a);

E_gap_pos =sigmaE .* (phi_a - a .* (1 - Phi_a)); % E[(E - T)_+]
E_surplus_pos = sigmaE .* (phi_a +a .* Phi_a); % E[(T-E)_+]

pC_star =v_res + (pA_bar - v_res) .* (1 - Phi_a);

ETC =pC_star .* Q + pA_bar .* E_gap _pos - v_res .* E_surplus_pos;
end

Appendix C

function main_regime_switching. CCER_smooth_v2
clc; clear; close all;

CEA 2023 = ...

138.00 110.40 90.00 72.00 59.00 51.47 61.80 74.20 74.20 74.20 ...

89.00 74.00 106.80 86.00 102.00 115.64 138.50 111.00 92.22 73.80 75.00 ...
88.77 106.60 125.00 149.64 144.30 131.75 134.00 124.00 100.90 121.00 ...
130.12 139.00 127.00 127.00 121.77 142.00 121.88 127.00 120.00 130.00 ...
127.00 130.00 132.53 122.50 133.50 128.00 128.00 123.03 124.00 127.50 ...
119.18 123.57 123.77 121.28 123.00 130.29 121.35 115.13 125.25 124.94 ...




124.17 127.93 125.17 121.38 117.72 126.25 123.03 116.89 105.28 120.71 ...
118.88 118.44 121.37 124.41 113.92 119.90 115.96 119.96 113.01 109.92 ...
118.49 109.91 108.16 121.72 116.00 103.32 100.00 110.00 109.00 110.00 ...
114.34 95.00 85.06 102.00 107.00 115.00 116.00 112.00 111.38]";

CCER 2023 =] ...
95.00 95.00 95.00 109.00 88.00 80.00 90.00 90.89 47.00 78.00 ...

80.00 80.00 56.40 90.00 80.00 82.00 80.00 80.00 80.00 80.34 80.00 75.00 ...
80.00 80.00 86.96 80.00 80.01 84.81 88.00 65.64 80.00 69.70 81.40 80.00 ...
69.38 70.50 80.44 83.90 78.23 86.00 86.99 80.00 80.00 74.77 77.63 74.50 ...
75.00 80.10 85.40 80.00 74.00 70.42 78.00 79.51 79.14 85.00 80.00 75.00 ...
65.00 65.00 74.60 65.01 70.00 90.00 70.00 72.00 72.00 72.001;

n_days = length(CEA_2023);

80 I
g_yoy =g_yoy/ 100;

month_id = zeros(n_days, 1);

edges = round(linspace(1, n_days+1, 13));

form=1:12
month_id(edges(m):edges(m+1)-1) =m;

end

elec_yoy daily = g_yoy(month_id);

q_elec = quantile(elec_yoy_daily, [0.33 0.66]);
q_price = quantile(CEA_2023, [0.33 0.66]);
elec_low =q_elec(l);

elec_high = q_elec(2);

p_low =q_price(1);

p_high = q_price(2);

state = zeros(n_days,1);

for t=1:n_days
e =elec_yoy_daily(t);
p=CEA_2023(t);
if (e <= elec_low && p <=p_low)
state(t) = 1;
elseif (e >= elec_high && p >= p_high)
state(t) = 3;
else
state(t) = 2;
end
end

fors=1:3
if sum(state==s) <5
warning('State %d has too few observations, merging to middle state.', s);
state(state==s) = 2;
end
end

log_ret CEA = diff(log(CEA_2023));

state_ret = state(2:end);

n_state =3;

mu_A = zeros(n_state, 1);
sig_ A = zeros(n_state, 1);

for s = 1:n_state
idx = (state_ret ==s);
rs  =log_ret CEA(idx);
if isempty(rs)

s = log_ret CEA;

end
mu_A(s) =mean(rs);
sig_A(s) = std(rs);

end

theta_daily = CCER_2023 ./ CEA_2023(1:length(CCER_2023));
state_theta = state(1:length(theta_daily));

theta_state = zeros(n_state,1);
for s = 1:n_state
idx = (state_theta == s);
ths = theta_daily(idx);
if isempty(ths)
ths = theta_daily;




end

theta_state(s) = mean(ths);
end
theta_state = max(theta_state, 0.5);
theta_state = min(theta_state, 1.0);

P = zeros(n_state);
for s = 1:n_state
idx = find(state(1:end-1) ==s);
if isempty(idx)
P(s,:) = 1/n_state;
else
next_s = state(idx+1);
for j = l:n_state
P(s,j) = sum(next_s == j);
end
P(s,:) = P(s,:) / sum(P(s,:));
end
end

A_pi=[(P'- eye(n_state)); ones(1,n_state) J;
b_pi =[ zeros(n_state,1); 1 ];
pi_stationary = A_pi \ b_pi; %#ok<NASGU>

r_annual = 0.0435;

T trade =280;
dt =1/252;
r_dt =r_annual * dt;

SO_CEA =CEA _2023(end);
S0_CCER = CCER_2023(end);
K =50 CCER;

n_paths = 20000;

n_plot=5;

CEA_path_plot = zeros(T_trade+1, n_plot);
CCER_path_plot = zeros(T_trade+1, n_plot);
Regime path_plot = zeros(T_trade+1, n_plot);

payoff = zeros(n_paths,1);
rng(1234);
for pidx = 1:n_paths

cur_s = state(end);
A =S0_CEA;
C

S_
S

if pidx <=n_plot

CEA_path_plot(1,pidx) =S A;
CCER_path_plot(1,pidx) =S C;
Regime_path_plot(1,pidx) = cur_s;

end

fort=1:T_trade
cur_s = draw_next_state(cur_s, P);
sig  =sig_A(cur_s);
dw = sqrt(dt)*randn;
mu_rn =r_annual - 0.5%sig"2;
S A =S_A¥*exp(mu_rn*dt + sig*dW);
theta = theta_state(cur_s);
eps_c = 0.10*sqrt(dt)*randn;
S C =theta*S_A * exp(eps_c);

if pidx <=n_plot
CEA_path_plot(t+1,pidx) =S A;
CCER_path_plot(t+1,pidx) =S _C
Regime_path_plot(t+1,pidx) = cur_s;
end

s

end
payoff(pidx) = max(S_C, K);
end

PV_CCER_value = exp(-r_dt*T_trade) * mean(payoff);
time_vec = 0:T_trade;

figure('Name','Regime-switching GBM: CEA/CCER sample paths','Color','w','Position’,[ 100 100 900 420]);
hold on;

fori=1:n_plot
plot(time_vec, CEA_path_plot(:,i), -','LineWidth',1.4,'Color',[0 0.447 0.741]);
plot(time_vec, CCER_path_plot(:,i),'--','LineWidth',1.4,'Color',[0.85 0.325 0.098]);
end

ymax_all = max( [CEA_path_plot(:); CCER_path_plot(:)] );
ymin_all = min( [CEA_path_plot(:); CCER_path_plot(:)] );
ylim([ymin_all*0.98, ymax_all*1.02]);




reg_path = Regime path_plot(:,1);

colors =[0.9 0.95 1.0;
0.9 1.00.9;
1.0 0.9 0.9];

fort=1:T_trade
s =reg_path(t);
x_rect = [t-0.5, t+0.5, t+0.5, t-0.5];
y_rect = [ymin_all*0.98, ymin_all*0.98, ymax_all*1.02, ymax_all*1.02];
patch(x_rect, y_rect, colors(s,:), 'EdgeColor','none','FaceAlpha',0.18);
end

fori=1:n_plot
plot(time_vec, CEA_path_plot(:,i), -','LineWidth',1.4,'Color',[0 0.447 0.741]);
plot(time_vec, CCER_path_plot(:,i),-','LineWidth',1.4,'Color',[0.85 0.325 0.098]);
end

xlabel('Trading day');

ylabel('Price (CNY)");

title("Sample paths of CEA (solid) and CCER (dashed) under regime-switching GBM');
grid on;

xlim([0 T_trade]);

legend({'CEA paths','CCER paths'},'Location','northwest');

hold off;

SO_grid = linspace(80, 160, 25);
T_grid =10:10:80;

nS = length(SO_grid);

nT = length(T_grid);

n_path_small = 15000;

K_base = CCER_2023(end);
theta_mid = theta_state(2);
alpha_follow = 0.3;

rng(5678);

S_samples = zeros(nS*nT,1);
T_samples = zeros(nS*nT,1);
P_samples = zeros(nS*nT,1);
idx_sample = 0;

foriT = 1:nT

TT =T grid(iT);

disc = exp(-r_dt*TT);

for iS = 1:nS
idx_sample = idx_sample + 1;
S0a = S0_grid(iS);
K2 =K base + alpha_follow * theta_mid * (SOa - SO_CEA);
payoff2 = zeros(n_path_small,1);
for pidx = 1:n_path_small

cur_s = state(end);

Sa =S0a;
Sc = theta_state(cur_s) * Sa;
fort=1:TT

cur_s = draw_next_state(cur_s, P);
sig  =sig_A(cur_s);

dw = sqrt(dt)*randn;
mu_rn =r_annual - 0.5%sig"2;
Sa = Sa * exp(mu_rn*dt + sig*dW);

theta = theta_state(cur_s);
eps_c2 = 0.10*sqrt(dt)*randn;

Sc = theta * Sa * exp(eps_c2);
end
ScT = Sc;
payoff2(pidx) = max(ScT, K2);

end
price_ij = disc * mean(payoff2);
S_samples(idx_sample) = SOa;
T_samples(idx_sample) = TT;
P_samples(idx_sample) = price_ij;
end
end

[SG_orig, TG_orig] = meshgrid(S0_grid, T_grid);
Price_surface = griddata(S_samples, T_samples, P_samples, SG_orig, TG_orig, 'linear');

figure('Name','CCER value surface: discounted E[max(CCER_T, K2)] (no extra smoothing)',...
'Color','w",'Position,[ 150 150 900 620]);

surf(SG_orig, TG_orig, Price_surface);

xlabel('Initial CEA price S_0"A (CNY)','FontSize',11);

ylabel("Maturity T (trading days)','FontSize',11);

zlabel('Discounted E[ max(CCER_T, K_2) ] (CNY)','FontSize',11);

title('CCER value surface under regime-switching GBM: discounted E[max(CCER_T, K_2)]','FontSize',12);
shading interp;

colormap(parula);




colorbar;
grid on;
view(135, 30);

hold on;
[~, idx_T40] = min(abs(T_grid - 40));
plot3(S0_grid, T_grid(idx_T40)*ones(1,nS), Price_surface(idx_T40,:), ...
'k-','LineWidth',2);
text(SO_grid(end), T_grid(idx_T40), Price_surface(idx_T40,end), ...
' Slice at T \approx 40','Color",'k','FontSize',10);
hold off;

fprintf('= == Regime-Switching CCER Valuation (E[max(CCER_T, K)]) ==
fprintf('Risk-free annual rate r : %.4f\n', r_annual);

fprintf('Simulation horizon (T _trade): %d trading days\n', T_trade);

fprintf('Time step dt (in years) 1 1/252\n\n");

fprintf('--- Figure 1: Sample paths under regime-switching GBM ---\n'");

fprintf('Initial CEA price SO*A 1 %.2f CNY'\n', SO_CEA);

fprintf('Initial CCER price SO"C 1 %.2f CNY\n', SO_CCER);

fprintf('Regimes (1=low, 2=mid, 3=high) are inferred from 2023 data.\n');

fprintf('The figure shows %d simulated CEA (solid) and CCER (dashed) paths,\n', n_plot);
fprintf('with colored background bands indicating regime switches over time.\n');
fprintf('These paths illustrate how CCER prices co-move with CEA prices\n');

fprintf('and how different regimes (low/medium/high demand and price) affect\n');
fprintf('the joint evolution of the two carbon assets.\n\n');

fprintf('--- Single-maturity CCER value at T = %d trading days ---\n', T_trade);
fprintf('Guarantee level K (per unit CCER) : %.2f CNY\n', K);
fprintf('Number of Monte Carlo paths (T = %d) :%d\n', T_trade, n_paths);
fprintf('Discounted E[ max(CCER_T, K) ] (per unit) : %.4f CNY\n\n', PV_CCER_value);

fprintf('--- Figure 2: CCER value surface on the original (S0"A, T) grid ---\n");
fprintf('Grid of initial CEA prices SO*A : from %.2f to %.2f CNY (%d points)\n', ...
min(SO_grid), max(S0_grid), nS);

fprintf('Grid of maturities T : from %d to %d trading days (%d points)\n', ...

min(T_grid), max(T_grid), nT);
fprintf('Monte Carlo paths per (S0*A, T) grid point: %d\n', n_path_small);
fprintf('K2 is defined as K_base + alpha_follow * theta_mid * (S0"A - SO_CEA),\n');
fprintf('where K_base = %.2f, alpha_follow = %.2f, theta_mid = %.4f.\n, ...

K _base, alpha_follow, theta_mid);
fprintf('This breaks the nearly linear dependence on SO"A while preserving\n');
fprintf('the overall guarantee-contract structure E[max(CCER_T, K2)].\n");
fprintf('The 3D surface is plotted directly on this original grid without\n');
fprintf('any additional smoothing beyond the basic griddata interpolation.\n');

“\n);

fprintf{("
end

function next_s = draw_next_state(cur_s, P)
prob = P(cur_s,:);
u = rand;
cumprob = cumsum(prob);
next_s = find(u <= cumprob, 1, 'first');
if isempty(next_s)
next_s = cur_s;
end
end

n');



