
 

 

CCER valuation under emission uncertainty: a dual 1 

framework of compliance optimization and regime-2 

switching GBM1 3 

Hua Tang1,2, Yue Liu3, Jiayi Wang3, Jiawen Liu3, Wangfei Luo4, Tianbai Wang5 4 

(1 School of Management, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China; 2 Business 5 

School of Wenzhou University, Wenzhou City, 325035, Zhejiang, PR China; PR China; 3 School of 6 

Finance and Economics, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China; 3 School of 7 

Finance and Economics, Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China; 4 School of 8 

Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China; 5 China 9 

School of Banking and Finance UIBE, University of International Business and Economics, 10 

Beijing,100029, PR China) 11 

 12 

Supported by the grant from the Major Program of the National Social Science Fund of China 13 

(22&ZD136).  14 

 

1 Corresponding author' email address: Jiayi Wang: 15139253806@163.com 

Other co-authors' email addresses: Hua Tang : tanghua@edu.wzu.cn ; Yue Liu: liuy0080@e.ntu.edu.sg; Jiawen 

Liu: 18951131673@163.com; Wangfei Luo: lwf20041225@126.com; Tianbai Wang: postboxfly@163.com 

mailto:15139253806@163.com
mailto:liuy0080@e.ntu.edu.sg;
mailto:18951131673@163.com
mailto:lwf20041225@126.com


 

 

CCER valuation under emission uncertainty: a dual 15 

framework of compliance optimization and regime-16 

switching GBM 17 

Abstract: This paper develops an integrated framework to value China Certified Emission 18 

Reductions (CCER) in the context of the national emissions trading system. At the micro level, we 19 

refine the income approach by endogenizing firms' CCER purchase decisions under emission 20 

uncertainty, offset caps and residual value risk, deriving a closed-form marginal willingness-to-pay 21 

schedule linked to firm-specific emission distributions, allowance allocations and policy parameters. 22 

At the macro level, we model carbon prices with a three-regime switching geometric Brownian 23 

motion calibrated to Beijing carbon market and electricity data, and price CCER as a real-option-like 24 

asset with state-dependent CEA-CCER spreads and guarantee-type payoffs. Comparing the two 25 

layers, we show how income-based benchmarks and regime-switching option values differ yet can 26 

be aligned to inform CCER pricing, contract design and policy reform in China's carbon market. 27 
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1 Introduction 36 

China's national carbon emission trading system incorporates the China Certified Emission 37 

Reduction (CCER) mechanism as a key supplementary instrument for achieving carbon peaking and 38 

neutrality targets at reduced costs. Regulated enterprises may substitute CCER for Carbon Emission 39 

Allowances (CEA) up to specified proportions when offsetting verified emissions, which should in 40 

theory lower aggregate abatement costs while channeling investment toward low-carbon projects. Yet 41 

CCER's actual economic value emerges from the interplay of multiple factors: firm-level emission 42 

uncertainty, quota allocation methodologies, caps on offsetting ratios, policy-driven sunset clauses 43 

governing CCER eligibility, and carbon market prices that swing with macroeconomic cycles and 44 

regulatory shifts. These institutional and market features reveal that CCER functions neither as a 45 

riskless compliance instrument nor as a straightforward derivative of CEA prices; both enterprises 46 

and regulators require valuation frameworks capable of reconciling micro-level compliance 47 

incentives with macro-level price movements. 48 

Current CCER valuation practices display fragmentation across two dimensions. Income 49 

approach studies concentrate on the expected cost savings CCER delivers relative to CEA, yet these 50 

analyses commonly take CCER purchase volumes as given and overlook maturity and residual value 51 

risks, thereby constraining their capacity to represent firms' actual procurement decisions under 52 

uncertainty. Market approach studies deploy stochastic models for carbon prices but frequently treat 53 

CCER as a scaled replica of CEA, failing to explicitly embed compliance constraints, offset ratios, 54 

or policy validity windows. A disconnect has thus emerged between enterprise-centered analysis that 55 

proves intuitive but static and market-centered modeling that remains dynamic yet weakly anchored 56 

to the compliance architecture. This paper seeks to close that gap by developing an integrated 57 



 

 

framework: it merges a micro-level income approach grounded in firms' optimal CCER demand with 58 

a macro-level market approach that captures CEA and CCER price evolution via regime switching 59 

(Hussain et al., 2021) and geometric Brownian motion (Li, W. et al., 2021; Liu, Y. et al., 2023a; Liu, 60 

Y. et al., 2023b), pricing CCER as a real-option-like asset. 61 

From this integrated perspective, the paper advances three principal innovations. First, at the 62 

micro level, it refines the income approach by endogenizing CCER purchase quantities as solutions 63 

to compliance cost minimization problems under stochastic emissions, regulatory ceilings, and 64 

uniform residual values. This yields a closed-form marginal willingness-to-pay curve that directly 65 

links firm-specific emission distributions, quota allocations, and policy parameters to CCER 66 

valuation. Second, at the macro level, the paper introduces a three-state regime-switching geometric 67 

Brownian motion model calibrated using Beijing carbon market data and electricity consumption 68 

growth patterns. It jointly models CEA and CCER prices under regime-dependent drift rates, 69 

volatilities, and spread ratios, valuing CCER through discounted risk-neutral expectations based on 70 

guarantee-type payoffs that reflect compliance substitutability and residual value floors. Third, the 71 

paper juxtaposes micro- and macro-level findings, employing shared calibration inputs such as 72 

expected CEA settlement prices and CCER residual values to conduct a consistent cross-comparison 73 

of valuation outcomes. Results demonstrate that the income approach's benchmark value and regime-74 

switching real option valuation together furnish a foundation for CCER pricing, contract design, and 75 

policy formulation. 76 

2 Literature review 77 

We take the literature review via two aspects, one is about carbon asset, another is about asset 78 



 

 

pricing especially for intangible assets. 79 

2.1 Review on the researches about carbon asset 80 

Recent work on carbon assets has started to connect climate policy, corporate decision-making, 81 

and financial market behavior, shedding light on both transition risks and emerging valuation 82 

challenges. Research at the sectoral and policy level shows that concentrated ownership of power-83 

sector assets vulnerable to stranding creates vested interests capable of slowing or blocking ambitious 84 

climate measures, pointing to governance obstacles and distributional tensions in decarbonization 85 

pathways (Chevallier et al., 2021; von Dulong, 2023). Analyses of corporate carbon footprints across 86 

complete value chains find that embedded emissions in listed firms vary dramatically between 87 

upstream and downstream operations, altering how investors assess risk exposure and meet disclosure 88 

obligations (Langley et al., 2021; Zhang et al., 2023). Firm-level data indicate that equity markets 89 

now price corporate carbon emissions more systematically, with valuations reflecting both total 90 

emissions and the perceived credibility of decarbonization plans (Zhang, 2025; Chen and Lai, 2025). 91 

On the asset-pricing front, researchers increasingly model carbon allowances and credits as 92 

contingent claims: option frameworks price carbon assets and support digital tools for dynamic 93 

hedging and project evaluation (Liu et al., 2022), while real-options techniques measure the economic 94 

value of operational choices such as continuing or shutting down emission-intensive power plants 95 

under tightening carbon limits (Liu et al., 2021). Where macro-finance meets climate, carbon pricing 96 

emerges as a driver of structural change toward greener growth trajectories, redirecting capital flows 97 

from high-carbon sectors (Langley et al., 2021; Mengesha and Roy, 2025), yet climate and policy 98 

uncertainty propagate forcefully across energy and carbon markets, with asymmetric causal 99 

connections running among economic policy uncertainty, oil price volatility, clean energy indices, 100 



 

 

carbon futures and green bonds (Wang X. et al., 2022; Siddique et al., 2023). Empirical studies further 101 

reveal pronounced spillovers linking fossil fuel, renewable and carbon markets during overlapping 102 

climate and energy shocks, implying that carbon assets sit within larger energy-finance networks 103 

rather than standing alone (Su et al., 2023; Dong and Yoon, 2023). Meanwhile, the relaunch of China's 104 

CCER market has spurred methodological and project-level advances: feasibility assessments of 105 

methane-reduction approaches in oil and gas production highlight a new category of carbon assets 106 

with substantial mitigation leverage (Wang et al., 2025), and integrated carbon asset management 107 

platforms and trading tactics seek to help listed enterprises revalue assets and pursue sustainable 108 

development goals (Chen and Lai, 2025). Taken together, these studies suggest that carbon assets are 109 

shifting from a narrow compliance tool into a diverse financial and strategic asset class whose worth 110 

hinges on policy architecture, technology trajectories, cross-market linkages and firm-level 111 

organizational capacity (Chevallier et al., 2021; Liu et al., 2022; Mengesha and Roy, 2025). Beyond 112 

energy and finance, valuation-relevant impacts of carbon-related assets and practices now extend into 113 

material-production industries including agriculture and chemicals, covering soil carbon 114 

sequestration, inorganic soil carbon behavior, and biochar-derived carbon materials (Nazir et al., 115 

2023; Raza et al., 2024; Mahmood et al., 2025). 116 

2.2 Review on the researches about intangible asset pricing 117 

A growing body of research on intangible asset pricing examines how non-physical drivers such 118 

as information, expectations, environmental performance and intellectual capital increasingly shape 119 

asset values. At the measurement and reporting level, surveys and meta-analyses point to persistent 120 

gaps between the economic significance of intangibles and their treatment in financial statements, 121 

documenting conceptual and empirical obstacles in valuing items such as R&D, data, and 122 



 

 

organizational capital (Van Criekingen et al., 2022; Jeny and Moldovan, 2022; Barker et al., 2022). 123 

Firm-level studies build on these observations to show that intangible resources can forecast future 124 

performance and ought to be priced by investors, with deep learning models extracting value-relevant 125 

signals from complex intangible asset profiles (Pechlivanidis et al., 2022). Related work broadens the 126 

concept of intangibles to include environmental attributes: carbon emissions and carbon risk enter 127 

asset pricing models as non-traditional factors, with mounting evidence that emissions and climate 128 

exposures affect stock returns and capital costs, especially in emerging markets (van Benthem et al., 129 

2022; Wang H. et al., 2022; Bolton and Kacperczyk, 2024). Time-varying investor preferences for 130 

green attributes and evolving policy signals further influence how environmental performance gets 131 

rewarded in asset prices, suggesting that such performance has itself become a priced intangible 132 

(Dutta, 2022; Alessi et al., 2023). Where macro-policy meets asset valuation, studies of risk-adjusted 133 

carbon prices and retrospective evaluations of carbon pricing schemes reveal that expectations about 134 

future regulation and abatement costs embed themselves into long-run asset values, effectively 135 

converting regulatory trajectories into a form of priced intangible risk (Van den Bremer and Van der 136 

Ploeg, 2021; Green, 2021). On the methodological front, advances in behavioral and computational 137 

finance demonstrate that even nominal price illusions and data monetization practices introduce new 138 

intangible dimensions into pricing: behavioral biases in nominal valuation distort asset prices in ways 139 

traditional factors miss, while datasets themselves become tradable intangible assets whose prices 140 

can be learned via deep learning-based monetization frameworks (Yang and Yang, 2022; Hao et al., 141 

2025). Taken together, this literature argues that modern asset pricing must systematically incorporate 142 

a wide spectrum of intangibles spanning accounting-based intellectual capital, proprietary data, 143 

environmental quality and policy expectations, deploying richer models and machine learning 144 



 

 

techniques to connect these largely off-balance-sheet attributes to observed returns (Van Criekingen 145 

et al., 2022; Pechlivanidis et al., 2022; Alessi et al., 2023). 146 

These studies collectively demonstrate that carbon assets and other intangibles are increasingly 147 

priced through their interactions with policy, firm behavior and market expectations, yet existing 148 

research tends to separate micro compliance analyses from macro market models. Drawing on these 149 

insights, this paper treats CCER as a carbon-related intangible asset and constructs an integrated 150 

valuation framework that connects optimal firm-level CCER demand under emission and policy 151 

uncertainty with regime-switching GBM-based pricing of CEA and CCER, bridging income-based 152 

and market-based perspectives to inform CCER pricing, contract design and policy. 153 

3 Micro-level CCER valuation:from the firms’ perspective 154 

3.1 Theoretical analysis and model construction 155 

This section constructs an improved CCER valuation model grounded in optimal enterprise 156 

purchasing decisions under emission uncertainties, regulatory constraints, and policy-induced 157 

invalidation risk. Unlike earlier discrete and continuous distribution models where CCER quantity 158 

enters exogenously and unit value represents average cost savings per ton, the present framework 159 

endogenizes purchased CCER quantity as the solution to a cost minimization problem and derives 160 

the associated willingness to pay as a theoretically grounded estimate of marginal value. This 161 

approach preserves the intuitive cost-difference logic inherent in the income method while directly 162 

tying CCER value to firm-specific emission risk, incorporating residual value and the potential for 163 

excess CCER to lose validity after the compliance window, and permitting heterogeneous enterprise 164 

characteristics such as size, quota allocation and volatility to generate differentiated CCER 165 



 

 

valuations. 166 

We consider a representative compliance enterprise i facing uncertain annual carbon emissions 167 

in the target year (for instance, 2024). Let E denote its random annual emissions (tonnes of CO2  168 

equivalent). Consistent with the empirical setting in the previous section, E  is modeled from 169 

historical data (2017–2023) and is assumed to follow a continuous distribution with mean 𝜇𝐸 and 170 

variance 𝜎𝐸
2, with cumulative distribution function 𝐹𝐸(⋅) well-defined;in applications a normal or 171 

lognormal specification can be used, or an empirically estimated non-parametric distribution. 172 

The enterprise holds or expects to receive an annual allocation of carbon emission allowances 173 

(CEA) denoted by 𝐴 , and may purchase a quantity Q  of CCER to offset emissions in the same 174 

compliance period. The maximum proportion of emissions that can be offset with CCER is capped at 175 

α (5% in the Chinese system), which implies an upper bound Q ≤ Q
max

, where Q
max

can be set as 176 

αμ
E
or, more conservatively, as 𝛼(𝜇𝐸 + zσE) for a chosen safety quantile z. Throughout the analysis 177 

we treat Q as a continuous decision variable in [0,Q
max]. 178 

At the beginning of the compliance period (or at an intermediate time before the deadline), the 179 

firm chooses Q and pays 𝑝𝐶𝑄, where p
C

 is the unit market price of CCER. We assume that the 180 

CEA price at the time of final compliance is stochastic but that the firm can form an expectation 𝑝‾𝐴 181 

of the average marginal cost of acquiring additional CEA close to the settlement date, inferred from 182 

historical trading data or from a separate market-approach model (e.g., GBM or LSTM). The 183 

regulatory frame-work typically stipulates a penalty F  per tonne of uncovered emissions; for 184 

analytic clarity we assume 𝐹 ≥ 𝑝‾𝐴, so that a rational firm will always purchase CEA to achieve full 185 

coverage before paying penalties, and compliance behavior can be summarized as ‘buy CEA until the 186 

emission shortfall is fully covered’. 187 



 

 

Given a realization of E, the firm’s compliance balance at the end of the period is 𝐴 + 𝑄. If 188 

𝐸 > 𝐴 + 𝑄, the firm must purchase additional CEA on the spot market to cover the shortfall 𝐸 −189 

𝐴 − 𝑄  at expected marginal cost 𝑝‾𝐴(𝐸 − 𝐴 − 𝑄) , ignoring second-order price feedback from 190 

individual trades. If instead 𝐸 < 𝐴 + 𝑄, the firm ends the period with surplus compliance assets 𝐴 +191 

𝑄 − 𝐸. Because CCER eligibility in the Chinese national trading system is subject to strict temporal 192 

limitations (for example, credits registered before March 14, 2017 are usable only until December 31, 193 

2024 and CCER trading effectively ceases after the compliance submission deadline), surplus CCER 194 

face significant expiration and liquidity risks, whereas surplus CEA generally remain valid and 195 

tradable in subsequent periods or can be sold back to the market. 196 

To capture these asymmetries while keeping the model tractable, we postulate that surplus 197 

compliance assets at the end of the period are valued at a residual price 𝑣𝐶
𝑟𝑒𝑠 . A more detailed 198 

specification could distinguish between surplus CEA and CCER, for example assigning CEA a 199 

residual value close to 𝑝‾𝐴 and CCER a value (1− 𝜃)𝜆𝑝𝐶 based on a survival probability (1− 𝜃) 200 

and a resale discount factor 𝜆∈[0,1]in voluntary markets. For parsimony, we aggregate these effects 201 

into a single effective residual value 𝑣𝐶
𝑟𝑒𝑠, interpreted as the expected liquidation value per tonne of 202 

surplus compliance asset, net of policy invalidation and market illiquidity; typically 𝑣𝐶
𝑟𝑒𝑠 < 𝑝‾𝐴 and, 203 

for CCER approaching their sunset date, it can be substantially lower.  204 

Under these assumptions, for a given CCER purchase quantity Q and a particular realization of 205 

emissions E, the firm’s random total cost of compliance can be written as 206 

TC(𝑄; 𝐸) = 𝑝𝐶𝑄 + 𝑝‾𝐴(𝐸 − 𝐴 − 𝑄)+− 𝑣𝐶
𝑟𝑒𝑠(𝐴 + 𝑄 − 𝐸)+,                           (3.1) 207 

where (𝑥)+ = max{𝑥, 0}. Here 𝑝𝐶𝑄 is the certain upfront cost of purchasing Q tonnes of CCER, 208 

𝑝‾𝐴(𝐸 − 𝐴 − 𝑄)+is the cost of "filling the gap with CEA" when realized emissions exceed 𝐴 + 𝑄, 209 



 

 

and −𝑣𝐶
𝑟𝑒𝑠(𝐴 + 𝑄 − 𝐸)+ reflects the residual value of surplus compliance assets when 𝐸 < 𝐴 + 𝑄. 210 

Given CCER purchase quantity Q, the firm’s expected total compliance cost is 211 

 𝔼[TC(𝑄; 𝐸)] = 𝑝𝐶𝑄 + 𝔼[𝑝‾𝐴(𝐸 − 𝐴 − 𝑄)+] − 𝔼[𝑣𝐶
res(𝐴 + 𝑄 − 𝐸)+],             (3.2) 212 

where the expectation is taken over 𝐸 ∼ 𝑓𝐸(𝑒). The firm’s decision problem is 213 

                                                     𝑄∗ = arg min
0≤𝑄≤𝑄max

𝔼[TC(𝑄; 𝐸)]， (3.3)                                                   214 

which formalizes, within the income-approach framework, the strategic decision of ‘how many 215 

CCER to buy’ under emission and price uncertainty. 216 

To derive the first-order condition for an interior solution, differentiate (3.2) with respect to Q. 217 

Since TC(𝑄; 𝐸) depends on Q  only through 𝑝𝐶𝑄  and the positive-part terms, and (𝐸 − 𝐴 −218 

𝑄)+ , (𝐴 + 𝑄 − 𝐸)+ are almost everywhere differentiable in Q ,we 219 

have  
𝜕

𝜕𝑄
(E−A−Q)+= −1{𝐸>𝐴+𝑄} and 

𝜕

𝜕𝑄
(𝐴 + 𝑄 − 𝐸)+ = 1{𝐸<𝐴+𝑄} , where 1{⋅}  denotes the 220 

indicator function. Substituting and using linearity of expectation gives    221 

              
𝑑

𝑑𝑄
𝔼[TC(𝑄; 𝐸)]=p

C
+E[−𝑝̅𝐴1{𝐸>𝐴+𝑄} − 𝑣𝐶

𝑟𝑒𝑠1{𝐸<𝐴+𝑄}]   222 

                         = 𝑝𝐶 − p̅
A
𝕡(E>A+Q) − 𝑣𝐶

𝑟𝑒𝑠𝕡(E<A+Q),                                      (3.4) 223 

where we used 𝔼[1{𝐸>𝐴+𝑄}] = ℙ(𝐸 > 𝐴 + 𝑄) and 𝔼[1{𝐸<𝐴+𝑄}] = ℙ(𝐸 < 𝐴 + 𝑄). The second term 224 

represents the expected marginal saving in CEA "gap-filling" cost, and the third term captures the 225 

change in expected residual value from buying one more tonne of CCER. 226 

Setting (3.4) equal to zero at 𝑄∗ yields 227 

𝑝𝐶 = p̅
A
ℙ(𝐸 > 𝐴 + Q

∗)+𝑣𝐶
𝑟𝑒𝑠𝕡(𝐸 < 𝐴 + 𝑄∗).                         (3.5)                                                           228 

For a continuous emission distribution we have ℙ(𝐸 > 𝐴 + 𝑄∗) +ℙ(𝐸 < 𝐴 + 𝑄) ≈ 1. 229 

Rearranging (3.5) gives the key pricing relation 230 



 

 

𝑝
𝐶⏟

CCER unit price at𝑄∗

(marginal willingness-to-pay)

= 𝑣𝐶
𝑟𝑒𝑠⏟

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
𝑤ℎ𝑒𝑛 𝐶𝐶𝐸𝑅 𝑚𝑎𝑖𝑛𝑙𝑦 𝑒𝑛𝑑 𝑎𝑠 𝑠𝑢𝑟𝑝𝑙𝑢𝑠

+231 

(𝑝̄𝐴 − 𝑣𝐶
𝑟𝑒𝑠)⏟      

𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒−𝑢𝑠𝑒 𝑝𝑟𝑒𝑚𝑖𝑢𝑚
𝑜𝑣𝑒𝑟 𝑝𝑢𝑟𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

 ℙ(𝐸 > 𝐴 + 𝑄∗)⏟          
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑛 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑠ℎ𝑜𝑟𝑡𝑓𝑎𝑙𝑙
𝑎𝑓𝑡𝑒𝑟 𝑏𝑢𝑦𝑖𝑛𝑔 𝑄∗ 𝑡𝑜𝑛𝑛𝑒𝑠 𝑜𝑓 𝐶𝐶𝐸𝑅

                                                                                                                              232 

                                                                                      (3.6) 233 

The marginal willingness-to-pay at 𝑄∗ is thus a weighted average of the expected marginal CEA 234 

cost  𝑝‾𝐴  and the residual value 𝑣𝐶
𝑟𝑒𝑠 , with the weight on 𝑝̅A  given by the shortfall  probability 235 

ℙ(𝐸 > 𝐴 + 𝑄∗). When this probability is high, 𝑝𝐶 is close to 𝑝̅𝐴; when it is low,𝑝𝐶 moves toward 236 

𝑣𝐶
𝑟𝑒𝑠. 237 

To obtain an explicit pricing formula, assume 𝐸 ∼ 𝒩(𝜇𝐸 , 𝜎𝐸
2), with (𝜇𝐸 , 𝜎𝐸) estimated from 238 

historical firm-level data. The shortfall probability can then be expressed via the standard normal 239 

CDF Φ(⋅) as 240 

                                                      ℙ(𝐸 > 𝐴 + 𝑄) = 1− Φ (
𝐴+𝑄−𝜇𝐸
𝜎𝐸

).                         241 

(3.7)                       242 

Substituting (3.7) into (3.6) yields the central CCER price-quantity relation 243 

                  𝑝𝐶
∗(𝑄)⏟  

firm−level marginal

willingness−to−pay at 𝑄

= 𝑣𝐶
𝑟𝑒𝑠⏟

residual value in
surplus states

+ (𝑝̄𝐴 − 𝑣𝐶
𝑟𝑒𝑠)⏟      

incremental value of CCER
as a compliance instrument

[1− Φ (
𝐴+𝑄−𝜇𝐸
𝜎𝐸

)]
⏟          
 probability of a shortfall

after purchasing 𝑄 tonnes of CCER

            244 

(3.8)                                                                                                                                     245 

For small Q such that 𝐴 + 𝑄 ≪ 𝜇𝐸, the standardized term (𝐴 + 𝑄 − 𝜇𝐸)/𝜎𝐸is very negative, 246 

Φ(⋅) is close to 0, and the shortfall probability is close to 1, so 𝑝𝐶
∗(𝑄)≈ 𝑝‾𝐴 and CCER are almost 247 

fully valued at the expected marginal CEA price; as Q increases and A+Q approaches or exceeds 248 

𝜇𝐸 ,the shortfall probability declines and 𝑝𝐶
∗(𝑄)  decreases smoothly from 𝑝‾𝐴  toward 𝑣𝐶

𝑟𝑒𝑠 , 249 

reflecting the transition from ‘insurance against costly shortfalls’ to ‘potentially stranded surplus 250 

assets’.  251 



 

 

Thus, (3.8) can be interpreted as a firm-level demand curve for CCER: for each 𝑄 ∈ [0, 𝑄max],  252 

it gives the marginal price that leaves the firm indifferent between buying an additional tonne of 253 

CCER and relying instead on spot CEA purchases or accepting surplus risk. Coupled with (3.3), the 254 

most relevant income-based valuations at the firm level are 𝑝𝐶
∗(𝑄∗) (marginal value at the optimum) 255 

and𝑝𝐶
∗(𝑄max)(marginal value when the regulatory offset ratio is fully used). Aggregating such firm-256 

specific marginal values,for example via emission-weighted averages, yields a market-level 257 

theoretical CCER price range under the improved income-approach framework. 258 

In implementation: (1) For each firm,estimate (𝜇𝐸 , 𝜎𝐸)from historical emissions and determine 259 

its expected allowance allocation A  under national ETS rules,then compute 𝑄𝑚𝑎𝑥 = 𝛼𝜇𝐸 . (2) 260 

Specify 𝑝‾𝐴 from observed or modeled CEA prices at compliance, and calibrate 𝑣𝐶
𝑟𝑒𝑠 using policy 261 

information on CCER validity and expected liquidity. (3) For each𝑄on a grid in [0, 𝑄𝑚𝑎𝑥],compute 262 

ℙ(𝐸 > 𝐴 + 𝑄)  via (3.7) and then 𝑝𝐶
∗(𝑄)  via (3.8). (4) Solve (3.3) for 𝑄∗ , obtain 𝑝𝐶

∗(𝑄∗)  or 263 

𝑝𝐶
∗(𝑄𝑚𝑎𝑥), and aggregate across firms to form a market reference price. 264 

3.2 Numerical implementation and discussion on the results  265 

The numerical implementation proceeds as follows (the Matlab implementation for the income-266 

approach model is provided in Appendix B). The model first sets the key global parameters 𝛼 =267 

0.05, 𝑝‾𝐴 = 115 CNY/t and 𝑣𝑟𝑒𝑠 = 30 CNY/t, where 𝛼 is the maximum CCER offset ratio, 𝑝‾𝐴 is 268 

the expected marginal CEA settlement price, and 𝑣𝑟𝑒𝑠  is the residual (floor) value of CCER. 269 

Historical daily CEA and CCER prices from the Word file are read into the program but are used only 270 

as background, while the pricing model itself is calibrated directly using the fixed values of 𝑝‾𝐴 and 271 

𝑣𝑟𝑒𝑠 . 272 

Firm-level emission data are then imported separately for low-emission firms (Table 2) and 273 



 

 

normal-emission firms (Table 3). For each firm, the Appendix A provides 𝐸𝑢𝑝𝑝𝑒𝑟, 𝐸𝑚𝑖𝑑 and 𝐸𝑙𝑜𝑤𝑒𝑟 274 

for annual emissions. The code sets 𝜇𝐸=𝐸𝑚𝑖𝑑 as the firm’s expected emissions and, assuming  275 

(𝐸𝑙𝑜𝑤𝑒𝑟 , 𝐸𝑢𝑝𝑝𝑒𝑟) is roughly a 90% confidence interval, approximates the standard deviation by 𝜎𝐸 ≈276 

(𝐸𝑢𝑝𝑝𝑒𝑟 − 𝐸𝑙𝑜𝑤𝑒𝑟)/(2𝑧0.95) with 𝑧0.95 ≈ 1.64 , imposing 𝜎𝐸 ≥ 10
−6

 to avoid degeneracy. The 277 

allowance allocation is set equal to expected emissions, A=μ
E
, and the maximum CCER usage is 278 

𝑄𝑚𝑎𝑥 = 𝛼𝜇𝐸 . 279 

Based on these inputs, the firm-specific marginal willingness-to-pay function for CCER is 280 

implemented as 281 

                                           𝑝𝐶
∗(𝑄)=𝑣𝑟𝑒𝑠+(𝑝‾𝐴 − 𝑣𝑟𝑒𝑠) [1− Φ (

𝐴+𝑄−𝜇𝐸
𝜎𝐸

)], 282 

where Φ(⋅) is the standard normal cumulative distribution function. In the code this is written as a 283 

vectorized anonymous function pc_fun using normcdf. For each firm, the program evaluates 284 

𝑝𝐶
∗(𝑄) at 𝑄 = 0, 𝑄 = 𝑄𝑚𝑎𝑥 and 𝑄 = 𝑄∗ , where𝑄∗ is obtained by minimizing the expected total 285 

compliance cost over 𝑄 ∈ [0, 𝑄𝑚𝑎𝑥], 286 

𝔼[TC(𝑄; 𝐸)] = 𝑝𝐶
∗(𝑄)𝑄 + 𝑝‾𝐴𝔼[(𝐸 − 𝑇)+] − 𝑣𝑟𝑒𝑠𝔼[(𝑇 − 𝐸)+], 𝑇 = 𝐴 + 𝑄,  287 

with (𝑥)+ = max{𝑥, 0}. Under the normality assumption for E , the expectations 𝔼[(𝐸 −288 

𝑇)+] and 𝔼[(𝑇 − 𝐸)+]  have closed-form expressions involving the standard normal pdf and cdf,  289 

which are implemented in an auxiliary function ETC_single. The scalar optimization is carried out 290 

using the Matlab routine fminbnd, yielding the optimal 𝑄∗and the associated marginal price 𝑝𝐶
∗(𝑄∗) 291 

for each firm. 
 

  292 

Using this procedure, the program computes for all 46 firms the mean emissions 𝜇𝐸, emission 293 

volatility 𝜎𝐸  , maximum CCER use 𝑄𝑚𝑎𝑥  and the model-implied marginal CCER prices at 𝑄 =294 

0, 𝑄 = 𝑄𝑚𝑎𝑥 and 𝑄 = 𝑄∗. The numerical results show that: (1) for all firms, the predicted marginal 295 

price at zero CCER usage is identical and equals 𝑝𝐶
∗(0) = 72.50 CNY/t. This is because at 𝑄 = 0 296 



 

 

we have 𝑇 = A = 𝜇𝐸 , so Φ(0) = 0.5  and 𝑝𝐶
∗(0) = 𝑣𝑟𝑒𝑠 + (𝑝𝐴 − 𝑣𝑟𝑒𝑠)(1− Φ(0)) = 30+ (115−297 

30) × 0.5 = 72.5. (2) When firms use CCER up to the policy cap 𝑄𝑚𝑎𝑥 = 𝛼𝜇𝐸 , the marginal 298 

willingness-to-pay falls for all firms to approximately 𝑝𝐶
∗(𝑄𝑚𝑎𝑥) ≈ 47.52 CNY/t,  because 299 

additional CCERs raise the total compliance position 𝑇 = 𝐴 + 𝑄 and reduce the probability that the 300 

firm ends up short and needs to settle at the higher CEA price 𝑝‾𝐴. (3) The optimization results show 301 

that for every firm in the sample, the cost-minimizing choice is 𝑄∗= 𝑄𝑚𝑎𝑥 , so  𝑝𝐶
∗(𝑄∗) =302 

𝑝𝐶
∗(𝑄𝑚𝑎𝑥) ≈ 47.52 CNY/t.  303 

The program also computes emission-weighted average theoretical CCER prices across all firms 304 

(using μ
E
  as weights). The results are (CNY/t) :Mean 𝑝𝐶

∗(𝑄 = 0) = 72.50,  Mean 𝑝𝐶
∗(𝑄 =305 

𝑄𝑚𝑎𝑥) = 47.52, Mean 𝑝𝐶
∗(𝑄 = 𝑄∗) = 47.52. 306 

 307 

         308 

Figure 1: Representative-firm marginal CCER pricing curve and cross-sectional distribution of 309 
optimal marginal CCER prices 310 

Because all firms optimally choose 𝑄∗= 𝑄𝑚𝑎𝑥 , the average optimal marginal price coincides 311 

with the marginal price at the cap. The left graph in Fig 1 illustrates the marginal willingness-to-pay 312 

curve 𝑝𝐶
∗(𝑄) for a representative firm, chosen in the code as the one whose expected emissions are 313 

closest to the sample median, namely the firm with ticker 966, for which (t CO2) 𝜇𝐸 = 657,528, 𝜎𝐸 =314 

40,093.29, 𝐴 = 657,528, 𝑄𝑚𝑎𝑥  = 32,876.40. The horizontal axis of the left graph in Fig 1 plots Q 315 

(in million tonnes CO2) from 0 to 𝑄𝑚𝑎𝑥 , and the vertical axis reports 𝑝𝐶
∗(𝑄) in CNY/t. The curve 316 



 

 

starts at 𝑝𝐶
∗(0) = 72.50 CNY/t  and monotonically declines to 𝑝𝐶

∗(𝑄𝑚𝑎𝑥) ≈ 47.52 CNY/t  as 317 

Q increases, with two horizontal reference lines at 𝑝‾𝐴 = 115 CNY/t and 𝑣𝑟𝑒𝑠 =  30 CNY/t. The 318 

points 𝑄 = 0 , 𝑄 = 𝑄𝑚𝑎𝑥  and 𝑄 = 𝑄∗  are highlighted on the curve; since for this firm 319 

𝑄∗=𝑄𝑚𝑎𝑥= 32,876.40 t CO2, the last two coincide and  𝑝𝐶
∗(𝑄∗) = 𝑝𝐶

∗(𝑄𝑚𝑎𝑥) ≈ 47.52 CNY/t. The 320 

right graph in Fig 1 summarizes the cross-sectional distribution of  𝑝𝐶
∗(𝑄∗) for all 46 firms. The 321 

horizontal axis is 𝑝𝐶
∗(𝑄∗)(CNY/t) and the vertical axis is the number of firms. The descriptive 322 

statistics are: min𝑝𝐶
∗(𝑄∗) = 47.51 CNY/t,  max𝑝𝐶

∗(𝑄∗) = 47.53 CNY/t, mean = 47.52 CNY/t , 323 

median =  47.52 CNY/t, std.  dev. ≈ 0.00CNY/t,indicating an extremely concentrated distribution. 324 

Overall, the numerical results yield three main conclusions. First, when firms hold allowances 325 

equal to their expected emissions, the initial marginal value of CCER at zero usage is exactly halfway 326 

between the residual CCER value and the expected CEA price, that is 𝑝𝐶
∗(0) =

1

2
(𝑝‾𝐴 + 𝑣𝑟𝑒𝑠) =327 

72.5 CNY/t. Second, as firms increase CCER usage up to the regulatory cap, their marginal 328 

willingness-to-pay declines to about 47.52 CNY/t , but remains well above the residual value of 329 

30 CNY/t, which supports a non-trivial economic value of CCER under the given market conditions. 330 

Third, under the current parameterization all firms optimally choose 𝑄∗=𝑄𝑚𝑎𝑥, so the cross-sectional 331 

dispersion of  𝑝𝐶
∗(𝑄∗) is negligible, as illustrated by the right graph in Fig 1.  332 

These findings highlight both the internal consistency and the limitations of the current 333 

calibration. The income-approach model delivers a transparent relationship between the CEA price, 334 

the CCER residual value and firms’ optimal CCER demand, while the near-degeneracy of the cross-335 

sectional distribution suggests that richer heterogeneity in allowance allocation rules, emission 336 

uncertainty and firm-specific constraints, or relaxing the assumption A =𝜇𝐸  for all firms, would 337 

generate a wider and more realistic spread of  𝑝𝐶
∗(𝑄∗) than that shown in the right graph in Fig 1. 338 



 

 

4 Macro-level CCER valuation: from the market’s perspective 339 

In this section, we employ the market approach to model carbon prices through a regime-340 

switching geometric Brownian motion (GBM). Compared to a single-regime GBM, this framework 341 

is capable of capturing structural shifts in economic activity, energy demand, and regulatory policies, 342 

thereby depicting the nonlinear, state-dependent dynamics of CEA and CCER. We treat CEA prices 343 

as the underlying asset in a risk-neutral regime-switching GBM and value CCER as a real option, 344 

while considering observable price boundaries, offset substitutability with CEA, and policy-mandated 345 

offset ratio constraints. 346 

4.1 Theoretical analysis of the value-relevance of CCER and CEA 347 

For compliance enterprises, one unit of CCER can either offset one ton of verified emissions on 348 

the compliance date or be sold on the secondary market before its expiration, thus representing a 349 

flexible right. Holding CCER units with an expiration date of T at time zero grants the holder the 350 

right to choose between compliance use and market sale, with the higher benefit prevailing at or 351 

before time T . Let 𝑃𝑡
𝐴  and 𝑃𝑡

𝐶   be CEA and CCER prices at time 𝑡 , and 𝑟  the continuously 352 

compounded risk-free rate. Empirically 𝑃𝑡
𝐶  is usually below 𝑃𝑡

𝐴 and bounded below by a residual 353 

value 𝑣𝑟𝑒𝑠 , so a basic restriction is 0 ≤ 𝑣𝑟𝑒𝑠 ≤ 𝑃𝑡
𝐶 ≤ 𝑃𝑡

𝐴. 354 

We approximate the marginal compliance value of one CCER at 𝑇 by an increasing function 355 

𝑓(𝑃𝑇
𝐴) of the settlement CEA price. Under full subtitutability and ignoring firm-specific 356 

constraints,we use 𝑓(𝑃𝑇
𝐴) = min{𝑃𝑇

𝐴, 𝑝‾𝐴
𝑚𝑎𝑥}, where 𝑝‾𝐴

𝑚𝑎𝑥 is an effective cap on the CEA settlement 357 

price. The time-zoo CCER value under the risk-neutral measure ℚ is 𝑉0
𝐶 = 𝑒−𝑟𝑇𝔼ℚ[𝑓(𝑃𝑇

𝐴)], which 358 

is constrained to satisfy 𝑣𝑟𝑒𝑠 ≤ 𝑉0
𝐶 ≤ 𝑉0

𝐴,  where 𝑉0
𝐴  is the risk-neutral value of one CEA unit. 359 



 

 

Calibration of 𝑓(⋅) is chosen so that the implied ratio 𝜃𝑡 = 𝑃𝑡
𝐶/𝑃𝑡

𝐴 lies in the empirical band 𝜃 ≤360 

𝜃𝑡 ≤ 𝜃. 361 

In the Beijing CCER market, Table 1 indicates that 𝜃𝑡 is typically between 0.56 and 1.08, with 362 

𝑃𝑡
𝐶 ≤ 𝑃𝑡

𝐴  and a common range around 0.6 to 0.7. To reflect this structure, we specify a state-363 

dependent pricing kernel 𝑃𝑡
𝐶 = 𝜃(𝛼𝑡)𝑃𝑡

𝐴, where 𝛼𝑡 is an unobserved economic regime and 𝜃(𝛼𝑡) 364 

is the CCER-CEA price ratio in regime 𝛼𝑡. Given the regime-switching process for 𝑃𝑡
𝐴 , CCER 365 

prices are thus driven jointly by 𝑃𝑡
𝐴 and the regime index 𝛼𝑡. 366 

Regime uncertainty is modeled by a continuous-time finite-state Markov chain (𝛼𝑡)𝑡≥0 with 367 

state space ℳ = {𝑒1, 𝑒2, … , 𝑒𝑚},  representing different macro or regulatory conditions. For more 368 

details of Markov chain's modelling and applications, we refer to (Zheng et al., 2020; Ni et al., 2024; 369 

Xu et al., 2024). The "regime" can be understood as a combination of high, medium, and low levels 370 

of temperature and industrial activity, or more broadly as a state defined by temperature, coal prices, 371 

industrial added value growth rates, and regulatory policy dynamics. This Markov chain determines 372 

the drift rate, volatility, and spread ratio 𝜃(⋅)  of the CEA price process, and therefore transmits 373 

regime shifts into CCER valuation. 374 

4.2 Modeling CEA and CCER prices with regime-switching geometric Brownian 375 

motion 376 

We now specify a regime-switching geometric Brownian motion (GBM) for CEA and CCER 377 

prices. Let (𝐵𝑡)𝑡≥0 be a standard Brownian motion and (𝛼𝑡)𝑡≥0 a continuous-time Markov chain 378 

on ℳ = {𝑒1, … , 𝑒𝑚} with generator 𝑄 = (𝑞𝑖𝑗)1≤𝑖,𝑗≤𝑚
, where 𝑞𝑖𝑗 ≥ 0 for 𝑖 ≠ 𝑗 and 𝑞𝑖𝑖 = −∑𝑗≠𝑖379 

𝑞𝑖𝑗 .  The filtered probability space is (𝛺,ℱ, (ℱ𝑡)𝑡≥0,ℙ),  with filtration generated by 𝐵𝑡  and 𝛼𝑡 . 380 



 

 

Under ℙ, the CEA price (𝑃𝑡
𝐴)𝑡≥0 follows 381 

 d𝑃𝑡
𝐴 = 𝜇𝐴(𝛼𝑡)𝑃𝑡

𝐴d𝑡 + 𝜎𝐴(𝛼𝑡)𝑃𝑡
𝐴d𝐵𝑡, 0 ≤ 𝑡 ≤ 𝑇,                    (4.1) 382 

with regime-specific drift 𝜇𝐴(𝑖)  and volatility 𝜎𝐴(𝑖) > 0. The solution is 𝑃𝑇
𝐴 =383 

𝑃0
𝐴exp (∫ (𝜇𝐴(𝛼𝑢) −

1

2
𝜎𝐴

2(𝛼𝑢))
𝑇

0
𝑑𝑢 + ∫ 𝜎𝐴

𝑇

0
(𝛼𝑢)𝑑𝐵𝑢). 384 

To price under no arbitrage, we move to a risk-neutral measure ℚ  such that 𝑒−𝑟𝑡𝑃𝑡
𝐴  is a 385 

martingale. Let 𝜆𝑡 = (𝜇𝐴(𝛼𝑡) − 𝑟)/𝜎𝐴(𝛼𝑡)  and define 
dℚ

dℙ
= exp (−∫ 𝜆𝑢

𝑇

0
𝑑𝐵𝑢 −  

1

2
∫ 𝜆𝑢

2𝑇

0
𝑑𝑢). 386 

Then 𝐵̃𝑡 = 𝐵𝑡 + ∫ 𝜆𝑢
𝑡

0
𝑑𝑢 is a ℚ-Brownian motion and 387 

                                              𝑑𝑃𝑡
𝐴 = 𝑟𝑃𝑡

𝐴𝑑𝑡 + 𝜎𝐴(𝛼𝑡)𝑃𝑡
𝐴𝑑𝐵̃𝑡,     (4.2)                                            388 

or equivalently  𝑃𝑇
𝐴 = 𝑃0

𝐴𝑒𝑥𝑝 (∫ (𝑟 −
1

2
𝜎𝐴

2(𝛼𝑢))
𝑇

0
𝑑𝑢 + ∫ 𝜎𝐴

𝑇

0
(𝛼𝑢)𝑑𝐵̃𝑢). We keep the generator Q 389 

unchanged under ℚ,which is standard and sufficient for pricing here. 390 

To link CEA and CCER prices by regime, we introduce 𝜃(𝑖) ∈ [𝜃, 𝜃], 𝑖 = 1, … ,𝑚, calibrated 391 

from CCER/CEA price ratios. When 𝛼𝑡 = 𝑒𝑖, we set 392 

        𝑃𝑡
𝐶 = 𝜃(𝛼𝑡)𝑃𝑡

𝐴,                                  (4.3) 393 

so that in regime i the CCER price is a fixed fraction 𝜃(𝑖) of the CEA price. Combining (4.2) and 394 

(4.3) and using Ito’s formula, for fixed regime i we obtain  395 

                                 d𝑃𝑡
𝐶 = 𝜃(𝑖)d𝑃𝑡

𝐴 = 𝑟𝑃𝑡
𝐶d𝑡 + 𝜎𝐶(𝑖)𝑃𝑡

𝐶d𝐵̃𝑡, 𝜎𝐶(𝑖) = 𝜎𝐴(𝑖),， 396 

so (𝑃𝑡
𝐶)𝑡≥0 also follows a regime-switching GBM under ℚ: d𝑃𝑡

𝐶 = 𝑟𝑃𝑡
𝐶d𝑡 + 𝜎𝐶(𝛼𝑡)𝑃𝑡

𝐶d𝐵̃𝑡. 397 

For valuation, let 𝑔(⋅)  be the marginal compliance value of one CCER at maturity T  as a 398 

function of  𝑃𝑇
𝐴 . A simple specification with full substitutability and a floor is 𝑔(𝑃𝑇

𝐴) =399 

max{𝑣res, 𝜃eff𝑃𝑇
𝐴} with 𝜃eff ∈ [𝜃, 𝜃]. The time-zero value of a CCER unit is 400 

                                    𝑉0
𝐶 = 𝑒−𝑟𝑇𝔼ℚ[𝑔(𝑃𝑇

𝐴)|𝑃0
𝐴 = 𝑝0

𝐴, 𝛼0 = 𝑒𝑖],                             (4.4) 401 

where 𝑃0
𝐴 is the current CEA price and 𝑒𝑖 the current regime. Due to regime switches, 𝑃𝑇

𝐴 is not 402 



 

 

lognormal and (4.4) has in general no closed form. Two standard numerical approaches are therefore 403 

used: a system of coupled PDEs, or Monte Carlo simulation (see Hu et al., 2020; Liang et al., 2022 404 

for more applications). 405 

For the PDE approach, define 𝑣𝑖(𝑝, 𝑡) as the value at time t of one CCER when 𝑃𝑡
𝐴 = 𝑝 and 406 

𝛼𝑡 = 𝑒𝑖, 𝑖 = 1, … ,𝑚. Then 𝑣 = (𝑣1, … , 𝑣𝑚) solves, on (𝑝, 𝑡) ∈ (0,∞) × [0, 𝑇)  
 

407 

                      
∂𝑣𝑖
∂𝑡
+

1

2
𝜎𝐴

2(𝑖)𝑝2
∂2𝑣𝑖
∂𝑝2

+ 𝑟𝑝
∂𝑣𝑖
∂𝑝

− 𝑟𝑣𝑖 +∑𝑞𝑖𝑗

𝑚

𝑗=1

𝑣𝑗 = 0,                              (4.5) 408 

with terminal condition 𝑣𝑖(𝑝, 𝑇) = 𝑔(𝑝). Numerical schemes such as finite differences can be used 409 

to obtain 𝑣𝑖(𝑝0
𝐴, 0),  so that 𝑉0

𝐶 = 𝑣𝑖(𝑝0
𝐴, 0). For Monte Carlo,one simulates N paths of (𝑃𝑡

𝐴, 𝛼𝑡) 410 

under ℚ on [0, 𝑇] using (4.2) and the Markov chain with generator 𝑄. For each path 𝑘, record 411 

𝑃𝑇
𝐴,(𝑘)

 and compute 𝑔(𝑃𝑇
𝐴,(𝑘)); then 𝑉̂0

𝐶 = 𝑒−𝑟𝑇
1

𝑁
∑ 𝑔𝑁
𝑘=1 (𝑃𝑇

𝐴,(𝑘)),which converges to 𝑉0
𝐶as 𝑁 →412 

∞.  Alternatively, one may simulate 𝑃𝑡
𝐶   directly via (4.3) and use a payoff ℎ(𝑃𝑇

𝐶),  for instance 413 

ℎ(𝑃𝑇
𝐶) = max{𝑃𝑇

𝐶 − 𝐾𝐶 , 𝑣𝑟𝑒𝑠} with a strike 𝐾𝐶 ,  and then compute 𝑉̃0
𝐶 = 𝑒−𝑟𝑇𝔼ℚ[ℎ(𝑃𝑇

𝐶)]. With 414 

suitable choices of g and h consistent with (4.3), the two formulations are equivalent. 415 

Calibration proceeds in two steps. First, regimes are identified from exogenous 416 

variables such as daily temperature and industrial added value growth, for example by 417 

partitioning the (𝑥, 𝑦)-plane with 𝑦 = 𝑥 + 𝑐1 and 𝑦 = 𝑥 + 𝑐2 and assigning each day to a 418 

regime.The transition rates 𝑞𝑖𝑗  are then estimated from empirical holding times and 419 

transition counts. Second, given regime labels, regime-specific drifts 𝜇𝐴(𝑖) and volatilities 420 

𝜎𝐴(𝑖) are estimated from CEA log returns, and the spread parameters 𝜃(𝑖) from paired 421 

CEA-CCER prices,subject to 𝜃 ≤ 𝜃(𝑖) ≤ 𝜃.  Once {𝑄, 𝜇𝐴(𝑖), 𝜎𝐴(𝑖), 𝜃(𝑖)}𝑖=1
𝑚

  and r  are 422 

calibrated, the regime-switching GBM fully specifies the joint dynamics of CEA and CCER 423 



 

 

prices under ℚ , and thus yields a CCER value 𝑉0
𝐶  that reflects regime uncertainty, 424 

empirical spreads and the real options nature of CCER.               425 

4.3 Numerical implementation and discussion on the results 426 

This subsection uses the Matlab code (refer to Appendix C) to implement a three-regime Markov 427 

switching GBM for CEA and CCER and to price a guarantee-type payoff 𝐸[max(𝐶𝐶𝐸𝑅𝑇 , 𝐾)] under 428 

the risk-neutral measure. Daily 2023 CEA and CCER prices from Beijing Green Exchange are 429 

combined with monthly year-on-year electricity growth. The monthly growth rates are mapped to the 430 

daily grid; empirical quantiles of both electricity growth and CEA price define three regimes: regime 431 

1 (low growth, low price), regime 3 (high growth, high price), and regime 2 (intermediate). If any 432 

regime is too small, its days are merged into the middle regime. 433 

Within each regime 𝑠 ∈ {1,2,3}, the drift and volatility of daily CEA log returns are estimated 434 

as sample mean and standard deviation, giving 𝜇𝐴(𝑠) and 𝜎𝐴(𝑠). The Markov transition matrix P 435 

is built from observed one-step regime switches. For CCER, an equilibrium relation 𝑆𝑡
𝐶 ≈ 𝜃𝑠𝑆𝑡

𝐴 is 436 

assumed, where 𝜃𝑠 is the average CCER/CEA ratio in regime 𝑠, truncated to [0.5,1.0]. In simulation, 437 

𝑆𝑡
𝐶 = 𝜃𝑠𝑆𝑡

𝐴 times an idiosyncratic lognormal shock (Rasool et al., 2020; Shabbir et al., 2020; Zhang 438 

et al., 2020; Hussain et al., 2021; Yan et al., 2022). The daily standard deviation of this CCER-specific 439 

noise is set at 0.10√Δt with 𝑍𝑡 ∼ 𝑁(0,1), which generates realistic short-run deviations between 440 

CCER and CEA while preserving long-run co-movement through 𝜃𝑠. 441 

Under the risk-neutral measure, CEA in regime 𝑠  follows a GBM with drift 𝑟 −
1

2
𝜎𝑠

2  and 442 

volatility 𝜎𝑠  ,with annual risk-free rate r = 0.0435  and time step Δt = 1/252.  At each step,the 443 

regime is updated using P , then CEA is evolved by the corresponding GBM, and CCER is obtained 444 



 

 

as 𝜃𝑠𝑆𝑡
𝐴  times the idiosyncratic shock. The code simulates joint paths of CEA and CCER over 445 

𝑇𝑡𝑟𝑎𝑑𝑒 = 80 trading days from end-2023 levels, with initial prices 𝑆0
𝐴 = 111.38 CNY  and 446 

𝑆0
𝐶 = 72.00 CNY .The initial regime is the observed last-day regime. The guarantee level is 𝐾 =447 

72.00 CNY. 448 

 449 
Figure 2: Simulated CEA (solid) and CCER (dashed) price paths over 80 trading days under a three-450 

regime switching GBM, with background color bands indicating low, medium, and high demand-451 

price regimes 452 

Figure 2 illustrates five simulated paths over 80 days. Solid lines are CEA, dashed lines  CCER. 453 

The background bands show the simulated regimes: blue for regime 1, green for regime 2, red for 454 

regime 3. Regimes evolve endogenously according to P. CEA and CCER co-move at the regime 455 

scale, with higher growth of both prices and higher volatility in red bands, and flatter or downward 456 

behavior in blue bands. Regime-specific 𝜎𝐴(𝑠)  generates time-varying volatility.   The larger 457 

CCER idiosyncratic noise 0.10√Δt produces visible but transient deviations of CCER from 𝜃𝑠𝑆𝑡
𝐴, 458 

consistent with CCER’s lower liquidity and project heterogeneity. The paths combine long-run co-459 

movement, regime-dependent risk and short-run spread fluctuations. 460 



 

 

On this joint dynamics, the value of a single-maturity payoff max(𝐶𝐶𝐸𝑅𝑇 , 𝐾)  with T = 80 461 

days is approximated by Monte Carlo: PV = 𝑒−𝑟𝑇𝔼ℚ[max(𝐶𝐶𝐸𝑅𝑇 , 𝐾)]  with 20,000 paths. The 462 

output is PV ≈ 80.4027 CNY  per unit CCER, compared with spot 𝑆0
𝐶 = 72.00 CNY  and 463 

𝐾 =  72.00 CNY . Since max(𝐶𝐶𝐸𝑅𝑇 , 𝐾)  equals one CCER plus a European call with strike 𝐾 ,   464 

the excess PV− 𝑆0
𝐶 ≈ 8.4 CNY reflects option value from regime-driven upside and the floor at 𝐾. 465 

To illustrate how the guarantee value varies with initial CEA 𝑆0
𝐴 and maturity T, a grid is set 466 

with 𝑆0
𝐴 from 80.00 to 160.00 CNY (25 points) and T from 10 to 80 trading days (step 10). At each 467 

grid point (𝑆0
𝐴, 𝑇), 15,000 paths of the joint process are simulated,the payoff max(𝐶𝐶𝐸𝑅𝑇 , 𝐾2) is 468 

computed and discounted. The guarantee level is 𝐾2 = 𝐾𝑏𝑎𝑠𝑒 + 𝛼follow𝜃mid(𝑆0
𝐴 − 𝑆0

CEA), where 469 

𝐾𝑏𝑎𝑠𝑒 = 72.00 CNY, 𝜃𝑚𝑖𝑑 = 0.6257 is the middle-regime ratio,𝑆0
CEA = 111.38 CNY is the current 470 

CEA price, and 𝛼follow  = 0.30. Thus only 30 percent of deviations of 𝑆0
𝐴 from 𝑆0

𝐶𝐸𝐴 feed into the 471 

floor, which weakens the almost linear dependence that would occur under 𝐾2 = 𝜃mid𝑆0
𝐴. 472 

 

473 

Figure 3: Discounted expected value surface 𝐸[max(𝐶𝐶𝐸𝑅𝑇 , 𝐾2)] per unit CCER under the regime-474 

switching GBM, as a function of initial CEA price and maturity, with the guarantee level defined as 475 

a baseline plus a partially adjusting component 476 



 

 

Figure 3 reports the discounted expectation 𝔼ℚ[max(𝐶𝐶𝐸𝑅𝑇 , 𝐾2)]𝑒
−𝑟𝑇  on this grid (with 477 

simple interpolation). Along the T direction, holding 𝑆0
𝐴 fixed, values increase with maturity because 478 

the process has more chances to enter high-demand regimes and the time value of the floor-contract 479 

outweighs discounting. Along 𝑆0
𝐴, each maturity slice is upward-sloping but nonlinear: with 𝐾2 =480 

𝐾𝑏𝑎𝑠𝑒 + 0.30 𝜃mid(𝑆0
𝐴 − 𝑆0

CEA), the floor adjusts slower than the expected terminal CCER level as 481 

𝑆0
𝐴  rises, so the marginal impact of 𝑆0

𝐴  gradually declines at high initial prices. In the low 𝑆0
𝐴 482 

region, values remain clearly above 𝐾𝑏𝑎𝑠𝑒 even at short horizons,indicating a nontrivial probability 483 

of regime-driven recovery before maturity. A slice at T  ≈  40  days (black curve) highlights this 484 

nonlineaeity: near 𝑆0
𝐶𝐸𝐴the slope in 𝑆0

𝐴 is steep, then flattens at higher 𝑆0
𝐴,confirming the dampened 485 

pass-through of initial price into guarantee value under the partial-follow rule. 486 

5 Comparison and summary 487 

5.1 Comparing micro-level and macro-level CCER valuation results 488 

This subsection compares the micro-benefit approach in Section 3 with the macro-regime 489 

switching GBM approach in Section 4. By examining the implied marginal or fair CCER price (unit: 490 

yuan/ton) of the model and aligning key calibration items (such as expected CEA settlement prices, 491 

CCER residual values, and observed CEA and CCER spot prices), the two methods are made 492 

comparable. 493 

On the micro side, Section 3 studies a representative compliance enterprise minimizing expected 494 

total compliance cost under uncertain emissions, regulatory caps and residual value risk. The firm 495 

faces random annual emissions E  with mean 𝜇𝐸  and variance 𝜎𝐸
2 , allowance allocation A , 496 

maximum CCER usage 𝑄max = 𝛼𝜇𝐸 ,  expected marginal CEA settlement price 𝑝‾𝐴 , and residual 497 



 

 

value 𝑣𝑟𝑒𝑠 . Total cost equals upfront CCER spending plus expected CEA gap-filling cost minus 498 

expected residual liquidation value. Treating 𝑄 ∈ [0, 𝑄𝑚𝑎𝑥]as continuous, the first-order condition 499 

yields a marginal willingness-to-pay 500 

𝑝𝐶
⋆(𝑄) = 𝑣res + (𝑝‾𝐴 − 𝑣res)[1− Φ((𝐴 + 𝑄 − 𝜇𝐸)/𝜎𝐸)], interpreted as a weighted average of 𝑝‾𝐴  and 501 

𝑣𝑟𝑒𝑠, with the weight on 𝑝‾𝐴 given by the emission shortfall probability after purchasing Q. 502 

Under the baseline calibration with offset ratio 𝛼 = 0.05, 𝑝‾𝐴 = 115 CNY/t, 𝑣𝑟𝑒𝑠 = 30 CNY/t, 503 

allocation 𝐴 = 𝜇
𝐸
, and approximately normal emissions, the model is applied to 46 low- and normal-504 

emission firms. For each, 𝜇𝐸 , 𝜎𝐸 , 𝑄𝑚𝑎𝑥 and 𝑝𝐶
⋆(0), 𝑝𝐶

⋆(𝑄𝑚𝑎𝑥), 𝑝𝐶
⋆(𝑄⋆) are computed. All firms 505 

obtain 𝑄⋆ = 𝑄𝑚𝑎𝑥, that is optimal usage at the cap.At Q = 0, the shortfall probability equals 1/2 so 506 

𝑝𝐶
⋆(0) =

1

2
(𝑝‾𝐴 + 𝑣𝑟𝑒𝑠) = 72.50 CNY/t. At 𝑄𝑚𝑎𝑥  the shortfall probability is much lower and the 507 

marginal value drops to about 47.52 CNY/t. The emission-weighted distribution of 𝑝𝐶
⋆(𝑄⋆) is thus 508 

very concentrated around 47.52 CNY/t. 509 

On the macro side, Section 4 models CEA and CCER via a three-regime switching GBM 510 

calibrated to 2023 Beijing data and electricity growth, with regimes capturing low, medium and high 511 

demand-price environments through a finite-state Markov chain. Within each regime, CEA follows a 512 

risk-neutral GBM; CCER equals a regime-dependent fraction of CEA times an idiosyncratic 513 

lognormal shock with daily standard deviation0.10√Δt,representing CCER-specific noise. CCER is 514 

then valued as a real-option-like asset whose payoff reflects its compliance substitutability and 515 

residual value. 516 

For a single-maturity payoff max(𝐶𝐶𝐸𝑅𝑇 , 𝐾) with T  =  80  days, K  =  72  CNY, r = 0.0435, 517 

and starting prices 𝑆0
𝐴 = 111.38 CNY, 𝑆0

𝐶 = 72.00 CNY,Monte Carlo with 20000 paths gives PV ≈518 

80.40 CNY/t.  The excess over spot is the value of the embedded call on CCER under regime 519 



 

 

uncertainty. Extending to a grid over 𝑆0
𝐴  and T  with a guarantee 𝐾2  anchored at 72 CNY and 520 

partially following 𝑆0
𝐴  yields a surface 𝔼ℚ[max(𝐶𝐶𝐸𝑅𝑇 , 𝐾2)]𝑒

−𝑟𝑇 that increases with T  and 521 

displays nonlinear dependence on 𝑆0
𝐴 . As follows, Table 1 summarizes representative outcomes. 522 

Table 1:  Comparison between micro-level and macro-level CCER valuation results 523 

 Micro-level income approach 

(firm perspective) 

Macro-level market approach 

(regime-switching GBM) 

Modeling focus Expected total compliance 

cost minimization for a 

representative firm or firm 

sample 

Risk-neutral pricing of 

CCER as a real option-like 

asset under state-dependent 

price dynamics 

Main uncertainty 

source 

Firm-level emission risk 

(𝜇𝐸 , 𝜎𝐸)  with prices and 

residual value exogenous 

Stochastic CEA and CCER 

prices driven by a 

three-regime switching GBM 

Decision variable or 

contract type 

CCER purchase quantity 

𝑄 ∈ [0, 𝑄max]  chosen once 

per period 

Holding CCER and possibly a 

guarantee-type contract 

max(CCER𝑇 , 𝐾)  or 

max(CCER𝑇 , 𝐾2) 

Representative price 𝑝𝐶
⋆(0) = 72.50; PV ≈ 80.40 at T = 80 days 

levels (CNY/t) 𝑝𝐶
⋆(𝑄max) ≈ 47.52; 

𝑝𝐶
⋆(𝑄⋆) ≈ 47.52  

and  𝐾 = 72;  CCER spot at 

𝑡 = 0: 72.00 

Treatment of residual 

or floor value 

Time structure 

Constant residual value 𝑣res 

at period end 

One-period static compliance 

decision 

Floor K  or 𝐾2   at 

maturity under regime 

uncertainty 

Multi-period stochastic 

evolution over up to 80 

trading days 

The micro model produces CCER values between 𝑣𝑟𝑒𝑠 and 𝑝‾𝐴 , with precise levels driven by 524 

shortfall probabilities. Under the condition of homogeneous parameters and A = μ
E
, the marginal 525 

value converges around 47.52 CNY/t at the upper limit and is 72.50 CNY/t at zero usage, which 526 

can serve as a conservative benchmark from a static performance perspective. When applied to 527 

contracts with clear lower limits, macro models typically yield higher valuations as they price the 528 

upside potential and time value of flexibility in favorable regimes; the guaranteed rights with an 529 



 

 

exercise price of K=72 CNY reach approximately 80.40 CNY/t, which is higher than the spot price 530 

and the micro-level marginal value. 531 

This difference reflects different economic roles. In the micro-scenario, CCER hedges the 532 

specific emission risks of enterprises within a single compliance cycle; once the enterprise 533 

comfortably meets the compliance requirements, the valuation of additional CCER approaches 𝑣𝑟𝑒𝑠. 534 

In the macro-scenario, CCER is a tradable asset exposed to macro-regime shifts, with valuation using 535 

the complete risk-neutral distribution of future prices, and the right-tail state is amplified due to the 536 

lower bound. Therefore, earnings-based valuation is suitable for internal compliance analysis and 537 

conservative reference pricing, while regime-switching GBM is more suitable for pricing structured 538 

CCER products and evaluating the risk-return characteristics of CCER positions. 539 

5.2 Summary and future research 540 

This article constructs a comprehensive CCER valuation framework that combines the micro-541 

level income approach with the macro-level regime-switching GBM, linking compliance behavior 542 

with market price dynamics. 543 

At the micro level, a representative enterprise with uncertain emissions, fixed allowances and a 544 

binding CCER cap chooses CCER purchase quantity Q to minimize expected total compliance cost, 545 

decomposed into CCER expenditure, contingent CEA gap-filling cost and residual value of surplus 546 

assets. Under a continuous emission distribution, an explicit marginal willingness-to-pay 𝑝𝐶
⋆(𝑄) is 547 

derived as a convex combination of expected CEA price and residual value, with weights given by 548 

shortfall probabilities. Calibration to firm data under a baseline with 𝐴 = 𝜇
𝐸
  and homogeneous 549 

parameters shows optimal use at the cap and marginal values clustering near 47.52 CNY/t , with 550 



 

 

𝑝𝐶
⋆(0) = 72.50 CNY/t. 551 

At the macro level, CEA and CCER follow a three-regime switching GBM calibrated to 2023 552 

Beijing data and electricity growth. Regimes imply state-dependent drift- s and volatilities; CCER is 553 

a regime-dependent fraction of CEA with idiosyncratic noise. CCER is valued as a real-option-like 554 

asset. For max(𝐶𝐶𝐸𝑅𝑇 , 𝐾) with T =  80 days and K  equal to spot, Monte Carlo yields about 555 

80.40 CNY/t , above spot and micro-level marginal values. A grid over initial CEA prices and 556 

maturities with 𝐾2  defined as a baseline plus partial adjustment generates a value surface that 557 

increases with T and responds nonlinearly to 𝑆0
𝐴, highlighting the interaction between regimes,price 558 

risk and contract design. 559 

The two layers achieve the following objectives together: (1) they connect firm-specific 560 

emission risk and regulatory parameters to CCER valuations and optimal purchase quantities; (2) 561 

they embed CCER pricing within a regime-sensitive risk-neutral framework that captures empirical 562 

features including regime-dependent volatility and CEA-CCER spreads; (3) they demonstrate how 563 

guarantee-type structures alter CCER value and link compliance instruments with CCER-based 564 

financial products. 565 

Future research could relax the micro-model assumptions on allocation, offset ratios and residual 566 

values to accommodate richer heterogeneity, and expand the macro model by incorporating time-567 

varying transition intensities, jump processes or stochastic volatility, alongside a more granular CEA-568 

CCER spread process. A particularly promising direction involves tighter coupling of the two layers, 569 

where macro price dynamics generate endogenous inputs for the micro model while firm-level CCER 570 

demand feeds back into the market model, thereby enabling analysis of the feedback mechanisms 571 

among compliance behavior, policy design and price formation in support of carbon peaking and 572 



 

 

neutrality objectives. 573 
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 697 

Appendix A 698 

Table 2 Annual carbon emission data for low-emission enterprises (tons) 699 

Ticker symbol 1im  
2im  

3im  Ticker symbol 1im  
2im  

3im  

603388 5969 5427 4884 603778 5469 4972 4475 



 

 

002431 14559 13236 11912 300008 27852 25320 22788 

300536 20967 19061 17155 600072 26117 23743 21368 

000037 7867 7152 6437 603717 20927 19025 17122 

000993 8405 7641 6876 000711 18504 16822 15140 

Source: CSMAR Database 700 

Table 3 Annual carbon emission data for normal-emission enterprises (tons) 701 

Ticker 

symbol 
1jm  

2jm  
3jm  

Ticker 

symbol 
1jm  

2jm  
3jm  

Ticker 

symbol 
1jm  

2jm  
3jm  

600011 9076451 8251319 7426187 600025 839682 763347 687012 603828 109891 99901 89911 

600795 3927170 3570155 3213139 000959 6749599 6135999 5522399 002542 530198 481998 433799 

601991 5552 259 5047508 4542757 000761 4723905 4294459 3865013 002564 716273 651157 586042 

600027 6756622 6142383 5528145 600126 1990390 1809445 1628501 002628 138814 126195 113575 

600023 3795945 3450859 3105773 000778 196041 178219 160397 002663 68298 62089 55880 

000539 2368211 2152919 1937627 600307 1431482 1301347 1171213 002761 10519590 9563263 8606937 

600021 1540961 1400873 1260786 600782 4447745 4043405 3639064 002775 72117 65561 59005 

000027 2276119 2069199 1862279 000709 3706154 3369231 3032308 002140 498744 453404 408063 

002608 2132345 1938495 1744646 600569 2818325 2562113 2305902 300055 65169 59245 53320 

600578 1708917 1553561 1398205 600282 4746223 4314748 3883274 300237 52063 47330 42597 

600575 1445654 1314231 1182808 601005 1693446 1539496 1385546 300517 95146 86496 77847 

600157 1533348 1393952 1254557 000825 3723184 3384713 3046241 000862 62357 56688 51019 

000543 1126340 1023946 921551 600117 557233 506575 455918 300649 104958 95417 85875 

600642 2127118 1933743 1740369 000717 2052221 1865655 1679090 300712 95242 86584 77925 

600863 584866 531697 478527 600019 21523775 19567068 17610361 600039 7472533 6793212 6113891 

000600 534253 485685 437116 000932 5453736 4957942 4462148 002116 500880 455345 409811 

000767 1034726 940660 846594 600507 1269384 1153986 1038587 600133 799036 726396 653757 

000966 723281 657528 591775 000898 5667263 5152057 4636852 600170 14171007 12882733 11594460 

001896 782009 710918 639826 600010 3162971 2875428 2587885 600248 15423990 14021809 12619628 

600780 425868 387153 348437 600022 4586444 4169495 3752545 600284 1135404 1032186 928967 

600509 583520 530472 477425 600231 1027681 934255 840830 600463 61704 56094 50485 

000690 452755 411595 370436 601003 4383901 3985365 3586828 600491 114836 104396 93956 

600744 691180 628346 565511 600808 3801689 3456081 3110473 600502 5764712 5240647 4716582 

000899 170012 154556 139101 600295 1641085 1491896 1342706 600512 526711 478828 430946 

000531 238187 216534 194881 000655 137061 124601 112141 600606 29341384 26673985 24006587 

600396 249379 226708 204037 600581 1509440 1372218 1234997 600667 1620650 1473318 1325987 

002893 82005 74550 67095 000629 484185 440168 396152 600820 6238700 5671545 5104391 

600969 204230 185664 167098 603878 161881 147165 132448 600846 431993 392721 353449 

000791 95916 87197 78477 000923 190663 173330 155997 600853 753134 684667 616201 

000601 317822 288929 260036 000708 8055406 7323096 6590786 600970 2317066 2106424 1895782 

600483 885339 804853 724368 601969 47961 43601 39241 601117 7972458 7247689 6522920 

000883 1542108 1401917 1261725 002110 4542493 4129539 3716585 601186 70552790 64138900 57725010 

600900 1554752 1413411 1272070 002075 355375 323068 290761 601390 37510749 34100681 30690613 

601985 3887484 3534076 3180668 600477 483255 439323 395391 601611 3506691 3187901 2869111 

600886 1218380 1107618 996856 600496 1036042 941856 847670 601618 33385953 30350867 27315780 

601669 26125183 23750167 21375150 601968 462657 420597 378537 601668 122315835 111196213 100076592 



 

 

600821 158991 144538 130084 002756 377439 343127 308814 601669 26125183 23750167 21375150 

600452 97359 88508 79657 200761 3740889 3400808 3060727 601789 945971 859974 773977 

600995 124867 113515 102164 900936 1575137 1431943 1288748 601800 29555593 26868721 24181849 

600116 1005080 913709 822338 002132 64877 58979 53081 603316 101724 92477 83229 

600505 37156 33779 30401 002135 328280 298436 268593 603637 102229 92935 83642 

000692 192555 175050 157545 002318 280555 255050 229545 603098 233934 212667 191400 

600644 149033 135484 121936 002443  287503 261366 235229 603843 680770 618882 556994 

000040 108142 98311 88480 002478 162868 148062 133255 603955 46973 42703 38432 

000537 299017 271833 244650 002541 1520498 1382271 1244044 603959 92167 83788 75409 

600167    98361 89419 80477 000629 484185 440168 396152 000032 1708014 1552740 1397466 

600982 712794 647995 583195 000708 3270983 2973621 2676259 603929 101247 92043 82838 

600236 274713 249739 224765 000709 3706154 3369231 3032308 002047 166202 151093 135983 

600101 84140 76490 68841 000717 2052221 1865655 1679090 002081 449608 408735 367861 

002039 36605 33277 29949 000961 9579035 8708214 7837393 002163 196604 178730 160857 

600163 183816 167106 150395 600022 4586444 4169495 3752545 002325 149391 135810 122229 

600674 50586 45988 41389 600894 433825 394386 354948 002375 585633 532393 479154 

601619 60570 55064 49557 002743 318579 289617 260656 002482 56893 51721 46549 

000875 755307 686642 617978 000928 1605125 1459205 1313284 002620 129069 117335 105602 

002479 524052 476411 428770 000628 691222 628383 565545 002713 285503 259548 233594 

600098 2634239 2394763 2155286 600939 3477904 3161731 2845558 002789 101022 91838 82654 

002256 681601 619637 557673 000010 247465 224968 202471 002811 86688 78807 70926 

002015 1129772 1027065 924359 000065 1761791 1601628 1441466 002822 645172 586520 527868 

601016 232664 211513 190362 000090 2343598 2130543 1917489 002830 83769 76153 68538 

600149 36910 33555 30199 000498 5430569 4936881 4443193 002856 71940 65400 58860 

000722 31110 28282 25454 002307 997813 907102 816392 300117 70924 64476 58028 

000591 303997 276361 248725 002051 113708 103371 93034 300621 755394 686722 618050 

300335 63694 57904 52114 002060 949279 862981 776683 600193 94218 85652 77087 

000155 231426 210387 189348 002061 3041286 2764805 2488325 601886 1443949 1312681 1181413 

600979 85830 78027 70224 002062 940424 854931 769438 603030 131737 119761 107785 

      Source: CSMAR Database 702 

Appendix B 703 

% ================================================================ 704 
%  Income–Approach CCER Valuation (LaTeX-based, Word-data only) 705 
% ================================================================ 706 
clear; clc; close all; 707 
  708 
%% 1. Global parameters 709 
  710 
alpha  = 0.05;     % Max CCER offset ratio 711 
pA_bar = 115;      % Expected marginal CEA settlement price (CNY/t) 712 
v_res  = 30;       % Residual value of CCER (CNY/t), must be < pA_bar 713 
  714 
% Historical daily prices from Word data (for reference only, not used later) 715 
aprice = [ ... 716 
  138.00 110.40 90.00 72.00 59.00 51.47 61.80 74.20 74.20 74.20 ... 717 
  89.00 74.00 106.80 86.00 102.00 115.64 138.50 111.00 92.22 73.80 75.00 ... 718 
  88.77 106.60 125.00 149.64 144.30 131.75 134.00 124.00 100.90 121.00 ... 719 
  130.12 139.00 127.00 127.00 121.77 142.00 121.88 127.00 120.00 130.00 ... 720 
  127.00 130.00 132.53 122.50 133.50 128.00 128.00 123.03 124.00 127.50 ... 721 
  119.18 123.57 123.77 121.28 123.00 130.29 121.35 115.13 125.25 124.94 ... 722 
  124.17 127.93 125.17 121.38 117.72 126.25 123.03 116.89 105.28 120.71 ... 723 
  118.88 118.44 121.37 124.41 113.92 119.90 115.96 119.96 113.01 109.92 ... 724 
  118.49 109.91 108.16 121.72 116.00 103.32 100.00 110.00 109.00 110.00 ... 725 
  114.34 95.00 85.06 102.00 107.00 115.00 116.00 112.00 111.38]'; 726 
  727 
cprice = [ ... 728 



 

 

  95.00 95.00 95.00 109.00 88.00 80.00 90.00 90.89 47.00 78.00 ... 729 
  80.00 80.00 56.40 90.00 80.00 82.00 80.00 80.00 80.00 80.34 80.00 75.00 ... 730 
  80.00 80.00 86.96 80.00 80.01 84.81 88.00 65.64 80.00 69.70 81.40 80.00 ... 731 
  69.38 70.50 80.44 83.90 78.23 86.00 86.99 80.00 80.00 74.77 77.63 74.50 ... 732 
  75.00 80.10 85.40 80.00 74.00 70.42 78.00 79.51 79.14 85.00 80.00 75.00 ... 733 
  65.00 65.00 74.60 65.01 70.00 90.00 70.00 72.00 72.00 72.00]'; 734 
  735 
%% 2. Firm-level emission data from Word (appendix tables) 736 
  737 
% 2.1 Low-emission firms (Table 2) 738 
% Columns: [Ticker, E_upper, E_mid, E_lower] 739 
low_tab = [ ... 740 
  603388 5969 5427 4884; ... 741 
  2431   14559 13236 11912; ...  % keep numeric consistency for leading zero tickers 742 
  300536 20967 19061 17155; ... 743 
  37     7867 7152 6437; ... 744 
  993    8405 7641 6876; ... 745 
  603778 5469 4972 4475; ... 746 
  300008 27852 25320 22788; ... 747 
  600072 26117 23743 21368; ... 748 
  603717 20927 19025 17122; ... 749 
  711    18504 16822 15140]; 750 
  751 
ticker_low = low_tab(:,1); 752 
E_up_low   = low_tab(:,2); 753 
E_mid_low  = low_tab(:,3); 754 
E_lo_low   = low_tab(:,4); 755 
  756 
zband       = 1.64;                         % ~90% CI 757 
muE_low     = E_mid_low;                    % mean emissions 758 
sigmaE_low  = (E_up_low - E_lo_low) / (2*zband); 759 
sigmaE_low(sigmaE_low <= 0) = 1e-6; 760 
  761 
A_low    = muE_low;                         % allowance = mean emissions 762 
Qmax_low = alpha * muE_low;                 % max CCER usage 763 
  764 
% 2.2 Normal-emission firms (Table 3) 765 
% Columns: [Ticker, E_upper, E_mid, E_lower] 766 
norm_tab = [ ... 767 
  600011 9076451 8251319 7426187; ... 768 
  600795 3927170 3570155 3213139; ... 769 
  601991 5552259 5047508 4542757; ... 770 
  600027 6756622 6142383 5528145; ... 771 
  600023 3795945 3450859 3105773; ... 772 
  539    2368211 2152919 1937627; ... 773 
  600021 1540961 1400873 1260786; ... 774 
  27     2276119 2069199 1862279; ... 775 
  2608   2132345 1938495 1744646; ... 776 
  600578 1708917 1553561 1398205; ... 777 
  600575 1445654 1314231 1182808; ... 778 
  600157 1533348 1393952 1254557; ... 779 
  543    1126340 1023946 921551; ... 780 
  600642 2127118 1933743 1740369; ... 781 
  600863 584866 531697 478527; ... 782 
  600    534253 485685 437116; ... 783 
  767    1034726 940660 846594; ... 784 
  966    723281 657528 591775; ... 785 
  1896   782009 710918 639826; ... 786 
  600780 425868 387153 348437; ... 787 
  600509 583520 530472 477425; ... 788 
  690    452755 411595 370436; ... 789 
  600744 691180 628346 565511; ... 790 
  899    170012 154556 139101; ... 791 
  531    238187 216534 194881; ... 792 
  600396 249379 226708 204037; ... 793 
  2893   82005 74550 67095; ... 794 
  600969 204230 185664 167098; ... 795 
  791    95916 87197 78477; ... 796 
  601    317822 288929 260036; ... 797 
  600483 885339 804853 724368; ... 798 
  883    1542108 1401917 1261725; ... 799 
  600900 1554752 1413411 1272070; ... 800 
  601985 3887484 3534076 3180668; ... 801 
  600886 1218380 1107618 996856; ... 802 
  601669 26125183 23750167 21375150]; 803 
  804 
ticker_norm = norm_tab(:,1); 805 
E_up_norm   = norm_tab(:,2); 806 
E_mid_norm  = norm_tab(:,3); 807 
E_lo_norm   = norm_tab(:,4); 808 
  809 
muE_norm    = E_mid_norm; 810 
sigmaE_norm = (E_up_norm - E_lo_norm) / (2*zband); 811 
sigmaE_norm(sigmaE_norm <= 0) = 1e-6; 812 
  813 
A_norm    = muE_norm; 814 
Qmax_norm = alpha * muE_norm; 815 
  816 
%% 3. CCER marginal willingness-to-pay function (LaTeX-based) 817 
  818 



 

 

pc_fun = @(Q, muE, sigmaE, A) ... 819 
    v_res + (pA_bar - v_res) .* (1 - normcdf( (A + Q - muE) ./ sigmaE )); 820 
  821 
phi = @(x) exp(-0.5*x.^2) ./ sqrt(2*pi); 822 
  823 
%% 4. Merge samples and compute firm-level results 824 
  825 
ticker_all = [ticker_low; ticker_norm]; 826 
muE_all    = [muE_low;  muE_norm]; 827 
sigma_all  = [sigmaE_low; sigmaE_norm]; 828 
A_all      = [A_low; A_norm]; 829 
Qmax_all   = [Qmax_low; Qmax_norm]; 830 
  831 
Nfirm        = numel(ticker_all); 832 
Qstar_all    = zeros(Nfirm,1); 833 
pC_Q0_all    = zeros(Nfirm,1); 834 
pC_Qmax_all  = zeros(Nfirm,1); 835 
pC_Qstar_all = zeros(Nfirm,1); 836 
  837 
% Representative firm: median mu_E 838 
[~,idx_med] = min(abs(muE_all - median(muE_all))); 839 
idx_rep     = idx_med; 840 
  841 
nQgrid    = 50; 842 
Qgrid_rep = linspace(0, Qmax_all(idx_rep), nQgrid); 843 
pc_rep    = pc_fun(Qgrid_rep, muE_all(idx_rep), sigma_all(idx_rep), A_all(idx_rep)); 844 
  845 
fprintf('================ CCER Valuation (Firm-Level) ================\n'); 846 
fprintf('Global parameters:\n'); 847 
fprintf('  alpha      = %.4f (max CCER offset ratio)\n', alpha); 848 
fprintf('  pA_bar     = %.2f CNY/t (expected marginal CEA settlement price)\n', pA_bar); 849 
fprintf('  v_res      = %.2f CNY/t (residual value of CCER)\n\n', v_res); 850 
  851 
fprintf('Firm-level parameters and key prices:\n'); 852 
fprintf('%-10s %-14s %-14s %-14s %-14s %-14s %-14s\n', ... 853 
    'Ticker','mu_E','sigma_E','Qmax','pC(Q=0)','pC(Qmax)','pC(Q*)'); 854 
  855 
for i = 1:Nfirm 856 
    muE_i  = muE_all(i); 857 
    sig_i  = sigma_all(i); 858 
    A_i    = A_all(i); 859 
    Qmax_i = Qmax_all(i); 860 
  861 
    % Marginal prices at Q=0 and Q=Qmax 862 
    pC_Q0_all(i)    = pc_fun(0,      muE_i, sig_i, A_i); 863 
    pC_Qmax_all(i)  = pc_fun(Qmax_i, muE_i, sig_i, A_i); 864 
  865 
    % Optimal Q* by minimizing expected total cost 866 
    obj = @(q) ETC_single(q, muE_i, sig_i, A_i, pA_bar, v_res, phi, @normcdf); 867 
    [Qstar_i, ~] = fminbnd(obj, 0, Qmax_i); 868 
  869 
    Qstar_all(i)    = Qstar_i; 870 
    pC_Qstar_all(i) = pc_fun(Qstar_i, muE_i, sig_i, A_i); 871 
  872 
    fprintf('%-10d %-14.2f %-14.2f %-14.2f %-14.2f %-14.2f %-14.2f\n', ... 873 
        ticker_all(i), muE_i, sig_i, Qmax_i, ... 874 
        pC_Q0_all(i), pC_Qmax_all(i), pC_Qstar_all(i)); 875 
end 876 
  877 
%% 5. Weighted average theoretical CCER prices (mu_E weights) 878 
  879 
weight        = muE_all / sum(muE_all); 880 
avg_pC_Q0     = sum(weight .* pC_Q0_all); 881 
avg_pC_Qmax   = sum(weight .* pC_Qmax_all); 882 
avg_pC_Qstar  = sum(weight .* pC_Qstar_all); 883 
  884 
fprintf('\nWeighted-average theoretical CCER prices (weights = mu_E):\n'); 885 
fprintf('  Mean p_C^*(Q=0)    = %.2f CNY/t\n', avg_pC_Q0); 886 
fprintf('  Mean p_C^*(Q=Qmax) = %.2f CNY/t\n', avg_pC_Qmax); 887 
fprintf('  Mean p_C^*(Q=Q*)   = %.2f CNY/t\n\n', avg_pC_Qstar); 888 
  889 
%% 6. Explicit description of Figure 1 (representative firm) 890 
  891 
rep_ticker      = ticker_all(idx_rep); 892 
rep_muE         = muE_all(idx_rep); 893 
rep_sigmaE      = sigma_all(idx_rep); 894 
rep_A           = A_all(idx_rep); 895 
rep_Qmax        = Qmax_all(idx_rep); 896 
rep_Q0          = 0; 897 
rep_Qstar       = Qstar_all(idx_rep); 898 
rep_pC_Q0       = pC_Q0_all(idx_rep); 899 
rep_pC_Qmax     = pC_Qmax_all(idx_rep); 900 
rep_pC_Qstar    = pC_Qstar_all(idx_rep); 901 
  902 
fprintf('Figure 1 (Representative firm p_C^*(Q) curve):\n'); 903 
fprintf('  Representative firm ticker            : %d\n', rep_ticker); 904 
fprintf('  Representative firm mu_E              : %.2f t CO2\n', rep_muE); 905 
fprintf('  Representative firm sigma_E           : %.2f t CO2\n', rep_sigmaE); 906 
fprintf('  Representative firm allowance A       : %.2f t CO2\n', rep_A); 907 
fprintf('  Representative firm Qmax              : %.2f t CO2\n', rep_Qmax); 908 



 

 

fprintf('  Horizontal axis: Q in million t CO2 from %.2f to %.2f\n', ... 909 
        rep_Q0/1e6, rep_Qmax/1e6); 910 
fprintf('  Vertical axis: p_C^*(Q) in CNY/t\n'); 911 
fprintf('  Curve: p_C^*(Q) for Q in [0, Qmax]\n'); 912 
fprintf('  Horizontal reference line: p_A_bar  = %.2f CNY/t\n', pA_bar); 913 
fprintf('  Horizontal reference line: v_res    = %.2f CNY/t\n', v_res); 914 
fprintf('  Marked point at Q=0      : Q = %.2f,   p_C^*(0)    = %.2f CNY/t\n', ... 915 
        rep_Q0, rep_pC_Q0); 916 
fprintf('  Marked point at Q=Qmax   : Q = %.2f,   p_C^*(Qmax) = %.2f CNY/t\n', ... 917 
        rep_Qmax, rep_pC_Qmax); 918 
fprintf('  Marked point at Q=Q*     : Q* = %.2f,  p_C^*(Q*)   = %.2f CNY/t\n\n', ... 919 
        rep_Qstar, rep_pC_Qstar); 920 
  921 
%% 7. Explicit description of Figure 2 (distribution of p_C^*(Q*)) 922 
  923 
pC_min = min(pC_Qstar_all); 924 
pC_max = max(pC_Qstar_all); 925 
pC_mean = mean(pC_Qstar_all); 926 
pC_median = median(pC_Qstar_all); 927 
pC_std = std(pC_Qstar_all); 928 
  929 
fprintf('Figure 2 (Distribution of firm-level optimal marginal CCER prices p_C^*(Q*)):\n'); 930 
fprintf('  Sample size (number of firms)        : %d\n', Nfirm); 931 
fprintf('  Horizontal axis: p_C^*(Q*) in CNY/t\n'); 932 
fprintf('  Vertical axis: number of firms (histogram counts)\n'); 933 
fprintf('  Range of p_C^*(Q*)                   : [%.2f, %.2f] CNY/t\n', pC_min, pC_max); 934 
fprintf('  Mean   of p_C^*(Q*)                  : %.2f CNY/t\n', pC_mean); 935 
fprintf('  Median of p_C^*(Q*)                  : %.2f CNY/t\n', pC_median); 936 
fprintf('  Std. deviation of p_C^*(Q*)          : %.2f CNY/t\n\n', pC_std); 937 
  938 
%% 8. Figures (two figures only) 939 
  940 
% Figure 1: Representative firm p_C^*(Q) curve 941 
figure; 942 
plot(Qgrid_rep/1e6, pc_rep, 'b-', 'LineWidth', 2); hold on; 943 
yline(pA_bar,'r--','LineWidth',1.5); 944 
yline(v_res,'k-.','LineWidth',1.5); 945 
xlabel('Q (million t CO_2)'); 946 
ylabel('p_C^*(Q) (CNY/t)'); 947 
title(sprintf('Representative Firm (Ticker=%d): p_C^*(Q)', rep_ticker)); 948 
legend('p_C^*(Q)','p_A^{bar}','v_{res}','Location','best'); 949 
grid on; 950 
  951 
plot(rep_Q0/1e6, rep_pC_Q0,'ko','MarkerFaceColor','k'); 952 
text(rep_Q0/1e6, rep_pC_Q0, '  Q=0','VerticalAlignment','bottom'); 953 
  954 
plot(rep_Qmax/1e6, rep_pC_Qmax, 'ko','MarkerFaceColor','k'); 955 
text(rep_Qmax/1e6, rep_pC_Qmax, '  Q=Q_{max}','VerticalAlignment','top'); 956 
  957 
plot(rep_Qstar/1e6, rep_pC_Qstar, 'ro','MarkerFaceColor','r'); 958 
text(rep_Qstar/1e6, rep_pC_Qstar, '  Q=Q^*','VerticalAlignment','bottom'); 959 
  960 
% Figure 2: Distribution of optimal marginal CCER prices p_C^*(Q*) 961 
figure; 962 
histogram(pC_Qstar_all, 'FaceColor',[0.2 0.6 0.8]); 963 
xlabel('p_C^*(Q^*) (CNY/t)'); 964 
ylabel('Number of firms'); 965 
title('Distribution of Firm-Level Optimal CCER Marginal Prices'); 966 
grid on; 967 
  968 
%% 9. Auxiliary function: expected total cost for a single firm 969 
  970 
function ETC = ETC_single(Q, muE, sigmaE, A, pA_bar, v_res, phi, normcdf_handle) 971 
    T     = A + Q; 972 
    a     = (T - muE) ./ sigmaE; 973 
    Phi_a = normcdf_handle(a); 974 
    phi_a = phi(a); 975 
  976 
    E_gap_pos     = sigmaE .* (phi_a - a .* (1 - Phi_a)); % E[(E - T)_+] 977 
    E_surplus_pos = sigmaE .* (phi_a + a .* Phi_a);       % E[(T - E)_+] 978 
  979 
    pC_star = v_res + (pA_bar - v_res) .* (1 - Phi_a); 980 
  981 
    ETC = pC_star .* Q + pA_bar .* E_gap_pos - v_res .* E_surplus_pos; 982 
end 983 
 984 

Appendix C 985 

function main_regime_switching_CCER_smooth_v2 986 
clc; clear; close all; 987 
  988 
CEA_2023 = [ ... 989 
138.00 110.40 90.00 72.00 59.00 51.47 61.80 74.20 74.20 74.20 ... 990 
89.00 74.00 106.80 86.00 102.00 115.64 138.50 111.00 92.22 73.80 75.00 ... 991 
88.77 106.60 125.00 149.64 144.30 131.75 134.00 124.00 100.90 121.00 ... 992 
130.12 139.00 127.00 127.00 121.77 142.00 121.88 127.00 120.00 130.00 ... 993 
127.00 130.00 132.53 122.50 133.50 128.00 128.00 123.03 124.00 127.50 ... 994 
119.18 123.57 123.77 121.28 123.00 130.29 121.35 115.13 125.25 124.94 ... 995 



 

 

124.17 127.93 125.17 121.38 117.72 126.25 123.03 116.89 105.28 120.71 ... 996 
118.88 118.44 121.37 124.41 113.92 119.90 115.96 119.96 113.01 109.92 ... 997 
118.49 109.91 108.16 121.72 116.00 103.32 100.00 110.00 109.00 110.00 ... 998 
114.34 95.00 85.06 102.00 107.00 115.00 116.00 112.00 111.38]'; 999 
  1000 
CCER_2023 = [ ... 1001 
95.00 95.00 95.00 109.00 88.00 80.00 90.00 90.89 47.00 78.00 ... 1002 
80.00 80.00 56.40 90.00 80.00 82.00 80.00 80.00 80.00 80.34 80.00 75.00 ... 1003 
80.00 80.00 86.96 80.00 80.01 84.81 88.00 65.64 80.00 69.70 81.40 80.00 ... 1004 
69.38 70.50 80.44 83.90 78.23 86.00 86.99 80.00 80.00 74.77 77.63 74.50 ... 1005 
75.00 80.10 85.40 80.00 74.00 70.42 78.00 79.51 79.14 85.00 80.00 75.00 ... 1006 
65.00 65.00 74.60 65.01 70.00 90.00 70.00 72.00 72.00 72.00]'; 1007 
  1008 
n_days = length(CEA_2023); 1009 
  1010 
g_yoy = [ ... 1011 
2.0  ;   1012 
5.8  ;   1013 
5.9  ;   1014 
8.3  ;   1015 
7.4  ;   1016 
6.4  ;   1017 
6.5  ;   1018 
7.6  ;   1019 
6.8  ;   1020 
5.2  ;   1021 
11.6 ;   1022 
8.0  ]; 1023 
g_yoy = g_yoy / 100; 1024 
  1025 
month_id = zeros(n_days,1); 1026 
edges = round(linspace(1, n_days+1, 13)); 1027 
for m = 1:12 1028 
    month_id(edges(m):edges(m+1)-1) = m; 1029 
end 1030 
elec_yoy_daily = g_yoy(month_id); 1031 
  1032 
q_elec  = quantile(elec_yoy_daily, [0.33 0.66]); 1033 
q_price = quantile(CEA_2023,       [0.33 0.66]); 1034 
elec_low  = q_elec(1); 1035 
elec_high = q_elec(2); 1036 
p_low     = q_price(1); 1037 
p_high    = q_price(2); 1038 
  1039 
state = zeros(n_days,1); 1040 
  1041 
for t = 1:n_days 1042 
    e = elec_yoy_daily(t); 1043 
    p = CEA_2023(t); 1044 
    if (e <= elec_low && p <= p_low) 1045 
        state(t) = 1; 1046 
    elseif (e >= elec_high && p >= p_high) 1047 
        state(t) = 3; 1048 
    else 1049 
        state(t) = 2; 1050 
    end 1051 
end 1052 
  1053 
for s = 1:3 1054 
    if sum(state==s) < 5 1055 
        warning('State %d has too few observations, merging to middle state.', s); 1056 
        state(state==s) = 2; 1057 
    end 1058 
end 1059 
  1060 
log_ret_CEA = diff(log(CEA_2023)); 1061 
state_ret   = state(2:end); 1062 
n_state     = 3; 1063 
mu_A        = zeros(n_state,1); 1064 
sig_A       = zeros(n_state,1); 1065 
  1066 
for s = 1:n_state 1067 
    idx = (state_ret == s); 1068 
    rs  = log_ret_CEA(idx); 1069 
    if isempty(rs) 1070 
        rs = log_ret_CEA; 1071 
    end 1072 
    mu_A(s)  = mean(rs); 1073 
    sig_A(s) = std(rs); 1074 
end 1075 
  1076 
theta_daily = CCER_2023 ./ CEA_2023(1:length(CCER_2023)); 1077 
state_theta = state(1:length(theta_daily)); 1078 
  1079 
theta_state = zeros(n_state,1); 1080 
for s = 1:n_state 1081 
    idx = (state_theta == s); 1082 
    ths = theta_daily(idx); 1083 
    if isempty(ths) 1084 
        ths = theta_daily; 1085 



 

 

    end 1086 
    theta_state(s) = mean(ths); 1087 
end 1088 
theta_state = max(theta_state, 0.5); 1089 
theta_state = min(theta_state, 1.0); 1090 
  1091 
P = zeros(n_state); 1092 
for s = 1:n_state 1093 
    idx = find(state(1:end-1) == s); 1094 
    if isempty(idx) 1095 
        P(s,:) = 1/n_state; 1096 
    else 1097 
        next_s = state(idx+1); 1098 
        for j = 1:n_state 1099 
            P(s,j) = sum(next_s == j); 1100 
        end 1101 
        P(s,:) = P(s,:) / sum(P(s,:)); 1102 
    end 1103 
end 1104 
  1105 
A_pi = [ (P' - eye(n_state)); ones(1,n_state) ]; 1106 
b_pi = [ zeros(n_state,1); 1 ]; 1107 
pi_stationary = A_pi \ b_pi; %#ok<NASGU> 1108 
  1109 
r_annual = 0.0435; 1110 
T_trade  = 80; 1111 
dt       = 1/252; 1112 
r_dt     = r_annual * dt; 1113 
  1114 
S0_CEA  = CEA_2023(end); 1115 
S0_CCER = CCER_2023(end); 1116 
K       = S0_CCER; 1117 
  1118 
n_paths = 20000; 1119 
  1120 
n_plot = 5; 1121 
CEA_path_plot    = zeros(T_trade+1, n_plot); 1122 
CCER_path_plot   = zeros(T_trade+1, n_plot); 1123 
Regime_path_plot = zeros(T_trade+1, n_plot); 1124 
  1125 
payoff = zeros(n_paths,1); 1126 
  1127 
rng(1234); 1128 
  1129 
for pidx = 1:n_paths 1130 
    cur_s = state(end); 1131 
    S_A   = S0_CEA; 1132 
    S_C   = S0_CCER; 1133 
     1134 
    if pidx <= n_plot 1135 
        CEA_path_plot(1,pidx)      = S_A; 1136 
        CCER_path_plot(1,pidx)     = S_C; 1137 
        Regime_path_plot(1,pidx)   = cur_s; 1138 
    end 1139 
     1140 
    for t = 1:T_trade 1141 
        cur_s = draw_next_state(cur_s, P); 1142 
        sig   = sig_A(cur_s); 1143 
        dW    = sqrt(dt)*randn; 1144 
        mu_rn = r_annual - 0.5*sig^2; 1145 
        S_A   = S_A * exp(mu_rn*dt + sig*dW); 1146 
        theta = theta_state(cur_s); 1147 
        eps_c = 0.10*sqrt(dt)*randn; 1148 
        S_C   = theta * S_A * exp(eps_c); 1149 
         1150 
        if pidx <= n_plot 1151 
            CEA_path_plot(t+1,pidx)    = S_A; 1152 
            CCER_path_plot(t+1,pidx)   = S_C; 1153 
            Regime_path_plot(t+1,pidx) = cur_s; 1154 
        end 1155 
    end 1156 
    payoff(pidx) = max(S_C, K); 1157 
end 1158 
  1159 
PV_CCER_value = exp(-r_dt*T_trade) * mean(payoff); 1160 
  1161 
time_vec = 0:T_trade; 1162 
  1163 
figure('Name','Regime-switching GBM: CEA/CCER sample paths','Color','w','Position',[100 100 900 420]); 1164 
hold on; 1165 
  1166 
for i = 1:n_plot 1167 
    plot(time_vec, CEA_path_plot(:,i), '-','LineWidth',1.4,'Color',[0 0.447 0.741]); 1168 
    plot(time_vec, CCER_path_plot(:,i),'--','LineWidth',1.4,'Color',[0.85 0.325 0.098]); 1169 
end 1170 
  1171 
ymax_all = max( [CEA_path_plot(:); CCER_path_plot(:)] ); 1172 
ymin_all = min( [CEA_path_plot(:); CCER_path_plot(:)] ); 1173 
ylim([ymin_all*0.98, ymax_all*1.02]); 1174 
  1175 



 

 

reg_path = Regime_path_plot(:,1); 1176 
  1177 
colors = [0.9 0.95 1.0; 1178 
          0.9 1.0 0.9; 1179 
          1.0 0.9 0.9]; 1180 
  1181 
for t = 1:T_trade 1182 
    s = reg_path(t); 1183 
    x_rect = [t-0.5, t+0.5, t+0.5, t-0.5]; 1184 
    y_rect = [ymin_all*0.98, ymin_all*0.98, ymax_all*1.02, ymax_all*1.02]; 1185 
    patch(x_rect, y_rect, colors(s,:), 'EdgeColor','none','FaceAlpha',0.18); 1186 
end 1187 
  1188 
for i = 1:n_plot 1189 
    plot(time_vec, CEA_path_plot(:,i), '-','LineWidth',1.4,'Color',[0 0.447 0.741]); 1190 
    plot(time_vec, CCER_path_plot(:,i),'--','LineWidth',1.4,'Color',[0.85 0.325 0.098]); 1191 
end 1192 
  1193 
xlabel('Trading day'); 1194 
ylabel('Price (CNY)'); 1195 
title('Sample paths of CEA (solid) and CCER (dashed) under regime-switching GBM'); 1196 
grid on; 1197 
xlim([0 T_trade]); 1198 
legend({'CEA paths','CCER paths'},'Location','northwest'); 1199 
  1200 
hold off; 1201 
  1202 
S0_grid = linspace(80, 160, 25); 1203 
T_grid  = 10:10:80; 1204 
nS = length(S0_grid); 1205 
nT = length(T_grid); 1206 
  1207 
n_path_small = 15000; 1208 
  1209 
K_base      = CCER_2023(end); 1210 
theta_mid   = theta_state(2); 1211 
alpha_follow = 0.3; 1212 
  1213 
rng(5678); 1214 
  1215 
S_samples = zeros(nS*nT,1); 1216 
T_samples = zeros(nS*nT,1); 1217 
P_samples = zeros(nS*nT,1); 1218 
idx_sample = 0; 1219 
  1220 
for iT = 1:nT 1221 
    TT   = T_grid(iT); 1222 
    disc = exp(-r_dt*TT); 1223 
    for iS = 1:nS 1224 
        idx_sample = idx_sample + 1; 1225 
        S0a = S0_grid(iS); 1226 
        K2  = K_base + alpha_follow * theta_mid * (S0a - S0_CEA); 1227 
        payoff2 = zeros(n_path_small,1); 1228 
        for pidx = 1:n_path_small 1229 
            cur_s = state(end); 1230 
            Sa    = S0a; 1231 
            Sc    = theta_state(cur_s) * Sa; 1232 
            for t = 1:TT 1233 
                cur_s = draw_next_state(cur_s, P); 1234 
                sig   = sig_A(cur_s); 1235 
                dW    = sqrt(dt)*randn; 1236 
                mu_rn = r_annual - 0.5*sig^2; 1237 
                Sa    = Sa * exp(mu_rn*dt + sig*dW); 1238 
                theta = theta_state(cur_s); 1239 
                eps_c2 = 0.10*sqrt(dt)*randn; 1240 
                Sc     = theta * Sa * exp(eps_c2); 1241 
            end 1242 
            ScT = Sc; 1243 
            payoff2(pidx) = max(ScT, K2); 1244 
        end 1245 
        price_ij = disc * mean(payoff2); 1246 
        S_samples(idx_sample) = S0a; 1247 
        T_samples(idx_sample) = TT; 1248 
        P_samples(idx_sample) = price_ij; 1249 
    end 1250 
end 1251 
  1252 
[SG_orig, TG_orig] = meshgrid(S0_grid, T_grid); 1253 
Price_surface = griddata(S_samples, T_samples, P_samples, SG_orig, TG_orig, 'linear'); 1254 
  1255 
figure('Name','CCER value surface: discounted E[max(CCER_T, K2)] (no extra smoothing)',... 1256 
       'Color','w','Position',[150 150 900 620]); 1257 
  1258 
surf(SG_orig, TG_orig, Price_surface); 1259 
xlabel('Initial CEA price S_0^A (CNY)','FontSize',11); 1260 
ylabel('Maturity T (trading days)','FontSize',11); 1261 
zlabel('Discounted E[ max(CCER_T, K_2) ] (CNY)','FontSize',11); 1262 
title('CCER value surface under regime-switching GBM: discounted E[max(CCER_T, K_2)]','FontSize',12); 1263 
shading interp; 1264 
colormap(parula); 1265 



 

 

colorbar; 1266 
grid on; 1267 
view(135, 30); 1268 
  1269 
hold on; 1270 
[~, idx_T40] = min(abs(T_grid - 40)); 1271 
plot3(S0_grid, T_grid(idx_T40)*ones(1,nS), Price_surface(idx_T40,:), ... 1272 
      'k-','LineWidth',2); 1273 
text(S0_grid(end), T_grid(idx_T40), Price_surface(idx_T40,end), ... 1274 
     '  Slice at T \approx 40','Color','k','FontSize',10); 1275 
hold off; 1276 
  1277 
fprintf('================ Regime-Switching CCER Valuation (E[max(CCER_T, K)]) ================\n'); 1278 
fprintf('Risk-free annual rate r     : %.4f\n', r_annual); 1279 
fprintf('Simulation horizon (T_trade): %d trading days\n', T_trade); 1280 
fprintf('Time step dt (in years)     : 1/252\n\n'); 1281 
  1282 
fprintf('--- Figure 1: Sample paths under regime-switching GBM ---\n'); 1283 
fprintf('Initial CEA price S0^A      : %.2f CNY\n', S0_CEA); 1284 
fprintf('Initial CCER price S0^C     : %.2f CNY\n', S0_CCER); 1285 
fprintf('Regimes (1=low, 2=mid, 3=high) are inferred from 2023 data.\n'); 1286 
fprintf('The figure shows %d simulated CEA (solid) and CCER (dashed) paths,\n', n_plot); 1287 
fprintf('with colored background bands indicating regime switches over time.\n'); 1288 
fprintf('These paths illustrate how CCER prices co-move with CEA prices\n'); 1289 
fprintf('and how different regimes (low/medium/high demand and price) affect\n'); 1290 
fprintf('the joint evolution of the two carbon assets.\n\n'); 1291 
  1292 
fprintf('--- Single-maturity CCER value at T = %d trading days ---\n', T_trade); 1293 
fprintf('Guarantee level K (per unit CCER)         : %.2f CNY\n', K); 1294 
fprintf('Number of Monte Carlo paths (T = %d)      : %d\n', T_trade, n_paths); 1295 
fprintf('Discounted E[ max(CCER_T, K) ] (per unit) : %.4f CNY\n\n', PV_CCER_value); 1296 
  1297 
fprintf('--- Figure 2: CCER value surface on the original (S0^A, T) grid ---\n'); 1298 
fprintf('Grid of initial CEA prices S0^A           : from %.2f to %.2f CNY (%d points)\n', ... 1299 
        min(S0_grid), max(S0_grid), nS); 1300 
fprintf('Grid of maturities T                      : from %d to %d trading days (%d points)\n', ... 1301 
        min(T_grid), max(T_grid), nT); 1302 
fprintf('Monte Carlo paths per (S0^A, T) grid point: %d\n', n_path_small); 1303 
fprintf('K2 is defined as K_base + alpha_follow * theta_mid * (S0^A - S0_CEA),\n'); 1304 
fprintf('where K_base = %.2f, alpha_follow = %.2f, theta_mid = %.4f.\n', ... 1305 
        K_base, alpha_follow, theta_mid); 1306 
fprintf('This breaks the nearly linear dependence on S0^A while preserving\n'); 1307 
fprintf('the overall guarantee-contract structure E[max(CCER_T, K2)].\n'); 1308 
fprintf('The 3D surface is plotted directly on this original grid without\n'); 1309 
fprintf('any additional smoothing beyond the basic griddata interpolation.\n'); 1310 
fprintf('===============================================================================\n'); 1311 
  1312 
end 1313 
  1314 
function next_s = draw_next_state(cur_s, P) 1315 
prob = P(cur_s,:); 1316 
u = rand; 1317 
cumprob = cumsum(prob); 1318 
next_s = find(u <= cumprob, 1, 'first'); 1319 
if isempty(next_s) 1320 
    next_s = cur_s; 1321 
end 1322 
end 1323 
 1324 


