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Abstract 

Artificial intelligence (AI) promotes high-quality development in agriculture while also introducing 

new challenges for the management of pollutant emissions. This study aims to explore the pathways 

and underlying mechanisms through which AI influences agricultural pollutant emissions. To achieve 

this, the study employs data from Chinese publicly listed agricultural firms from 2010 to 2022 and 

conducts an empirical analysis using a semi-parametric additive model. The results show that artificial 

intelligence has a nonlinear effect on agricultural pollutant emissions, initially inhibiting them and 

subsequently promoting them. In the early stages of digitalization, constrained by limited resources, AI 

investment reduces the scale of production, thereby lowering pollutant emissions. However, as AI 

investment intensifies, firms overcome resource constraints, and the resulting productivity gains and 

scale expansion effects lead to increased emissions. The mechanism analysis further reveals that AI 

influences agricultural pollutant emissions through two main channels: it first decreases and then 

enhances firms’ operational efficiency, and it initially boosts but later weakens their green innovation 

capacity. These findings provide theoretical support and practical guidance for promoting sustainable 

development and intelligent transformation in the agricultural sector. 
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1. Introduction 

As a fundamental sector of the national economy, agriculture plays a vital role in global food security, 

rural development, and ecological management, making it crucial to human livelihoods (Hou et al. 

2024). With the rapid advancement of agricultural modernization, activities such as the use of chemical 

fertilizers and pesticides, livestock farming, and agricultural mechanization have increased 

significantly. These developments make agriculture one of the major sources of air and water pollution 

(Kuttippurath et al. 2024; Elahi et al. 2024). As the world’s largest agricultural country, China accounts 

for nearly 30% of global nitrogen, phosphorus, and potassium fertilizer use over the past five years. 

This extensive use not only raises serious environmental pollution risks but also exerts considerable 

influence on global ecosystems and environmental governance. Therefore, investigating pollutant 

emissions from Chinese agricultural enterprises constitutes a critical component of global 

environmental governance and climate action, while also offering practical insights for developing 

countries undergoing rapid agricultural modernization and industrialization. Against the backdrop of 

the rapid development and widespread application of artificial intelligence (AI), several critical 

questions arise: Can AI effectively reduce pollutant emissions from Chinese agricultural enterprises? 

What specific patterns or characteristics does its impact on agricultural pollutant emissions exhibit? 

Through which mechanisms does AI exert its influence? Addressing these questions not only deepens 

our understanding of the relationship between AI and sustainable development, but also provides 

theoretical support and policy implications for promoting green transformation and intelligent 

governance in agriculture. 

AI, characterized by autonomous learning, dynamic adaptation, and high-speed processing, is 

increasingly applied to agricultural activities (Oliveira and Silva 2023). Some studies employ AI 

technologies—such as machine learning, deep learning, and image recognition—to analyze and predict 

changes in pollutant emissions (Liu et al. 2025; Rahaman et al. 2025; Senthil Rathi et al. 2025). Other 

research suggests that AI’s capabilities for automatic discovery and optimization offer new 

opportunities to address global climate and environmental issues (Chen et al. 2024; Zhou et al. 2024). 

First, AI enhances the efficiency of resource allocation in agricultural economic activities through its 

dynamic optimization capabilities, which improves energy use efficiency and productivity and thereby 

reduces pollutant emissions (Shen and Zhang 2023). Second, it reduces the barriers to knowledge 

acquisition for agricultural firms, facilitates skill complementarity among R&D personnel, and 

enhances research efficiency and green innovation capacity. According to Li et al. (2025), as firms 

strengthen their green technological capabilities, their pollutant emissions during the production 

process significantly decrease. 

However, whether AI can effectively reduce pollutant emissions from agricultural enterprises 

remains an open question. On the one hand, the widespread application of AI in agricultural production 

enhances productivity but may also lead to the expansion of agricultural activities. This expansion 

effect can result in increased pollutant emissions. Overall, the environmental impact of AI depends on 

its net effect (Zhu et al. 2023). On the other hand, although AI lowers the barriers to acquiring 

knowledge and information—thereby facilitating the improvement of green innovation capacity in 

agricultural firms—an excess of information may trap firms in an “innovation trap,” ultimately 

weakening their green innovation performance. Therefore, the impact of AI on agricultural pollutant 

emissions remains uncertain. Although some studies have acknowledged the possibility of nonlinear 

effects of AI (Shen and Zhang 2023; Lee and Yan 2024), few have examined the specific pathways 
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through which AI affects pollutant emissions in the agricultural sector. Moreover, the underlying 

mechanisms of such impacts have yet to be systematically analyzed. 

To fill this research gap, this study uses data from Chinese listed agricultural firms between 2010 

and 2022 and employs a semi-parametric additive model to systematically analyze the impact of AI on 

agricultural pollutant emissions. Based on the findings, we propose relevant policy recommendations. 

This study makes three main contributions to the literature: 

(1) Although existing literature acknowledges a correlation between AI and pollutant emissions, 

few studies provide a detailed analysis of the underlying impact pathways and characteristics, 

particularly in the context of China’s agricultural sector. In response, this study applies a semi-

parametric additive model—a nonlinear analytical approach—to examine the stage-dependent and 

nonlinear characteristics of AI’s impact on pollutant emissions. 

(2) This study explores the specific mechanisms through which AI affects agricultural pollutant 

emissions. Given the complexity of AI applications in agricultural practices, we consider the dynamic 

and heterogeneous effects of AI on firms’ operational efficiency and green innovation capacity. This 

approach facilitates a better identification and understanding of the internal mechanisms through which 

AI influences pollution levels. 

(3) Drawing on the empirical findings, we propose concrete and feasible policy recommendations. 

In doing so, this study contributes to the theory on AI’s impact pathways and mechanisms in reducing 

agricultural pollutant emissions, and provides practical  guidance for policymakers. 

After the introduction, the remainder of the paper is structured as follows: Sect. “Literature 

review” reviews the relevant literature and identifies the existing gaps. Sect. “Mechanism analysis and 

research hypotheses” analyzes the direct effects of AI on pollutant emissions in agricultural enterprises 

and investigates the underlying transmission pathways. Sect. “Research design” presents the baseline 

regression model and the mechanism analysis model, and explains the variables and data sources. Sect. 

“Analysis on the trend of pollutant emissions from listed agricultural companies in China” analyzes the 

trends in pollutant emissions, including both air and water pollutants, from listed agricultural 

companies in China. Sect. “Empirical results” reports the estimation results of the baseline and 

mechanism models and provides relevant analysis. Sect. “Conclusion and policy recommendations” 

summarizes the main findings, offers policy suggestions, and outlines the study’s limitations and 

directions for future research. 

2. Literature review  

This paper investigates the nonlinear effects of AI on pollutant emissions in agriculture and explores 

the underlying mechanisms through which AI influences agricultural pollution. Accordingly, the 

upcoming literature review is organized around two main themes: artificial intelligence and pollutant 

emissions and pollutant emissions in agriculture. 

2.1 Artificial intelligence and pollutant emissions 

AI, as a new generation of general-purpose technology, is profoundly reshaping the way economies 

operate. As a double-edged sword, AI exhibits a dual effect on pollutant emissions, with both emission-

reducing and emission-increasing potentials. Existing studies primarily examine the emission-reducing 

role of AI from three perspectives: optimizing input structures, enhancing resource allocation 

efficiency, and fostering green innovation.  
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(1)  AI contributes to the reduction of pollutant emissions by optimizing the structure of factor 

inputs within enterprises (Cheng et al. 2024). AI-driven smart systems can replace inefficient manual 

operations, reduce costs, and support investment in cleaner technologies, thereby lowering emission 

intensity (Zhu et al. 2023; Shang et al. 2024).  

(2)  AI enhances firms’ internal resource allocation efficiency. Algorithmic optimization, real-time 

monitoring, and data analytics improve the scheduling of materials and energy, reduce redundant 

inputs, and enhance process efficiency (Usman et al. 2024). This ultimately reduces energy 

consumption and emissions (Shen and Zhang 2023; Cheng et al. 2024). 

(3)  AI provides critical support for green technological innovation in enterprises. AI complements 

skilled labor in green R&D, increases green patenting efficiency, accelerates the development of clean 

technologies, and improves the diffusion and matching efficiency of green innovations, thus enhancing 

their spillover effects (Wang et al. 2024; Liu et al. 2025; Wang et al. 2025). 

However, some studies argue that AI may also lead to increased pollutant emissions under certain 

conditions. For instance, Xu et al. (2025) suggest that while AI improves firm productivity and 

alleviates financial constraints, it may also drive the expansion of production scale, ultimately resulting 

in higher pollutant emissions. In addition, some studies suggest that when AI technologies are 

immature or firms face adoption barriers, a mismatch between AI systems and organizational structures 

may arise, weakening their expected environmental benefits (Lee and Yan 2024; Parra-López et al. 

2025). 

These conflicting findings regarding AI’s environmental impact echo a broader insight from 

the literature on environmental policy. Beyond technological factors, the literature on 

environmental policy underscores that the ultimate impact of external interventions—be it 

regulation or technology—is contingent upon the micro-level transmission mechanisms they 

activate. For instance, environmental regulations can successfully promote corporate green 

innovation by reshaping managerial cognition (Zhang et al. 2025), yet they may also backfire by 

imposing prohibitive compliance costs that crowd out efficiency investments, particularly in 

certain types of firms (Lei and Kocoglu 2025). This suggests that the net effect of AI on emissions 

is not predetermined but hinges on whether it primarily triggers efficiency-enhancing and 

innovation-oriented pathways or conversely leads to cost burdens and maladaptive responses. 

2.2 Pollutant emissions in agriculture 

Agricultural pollutant emissions exhibit significant non-point source characteristics, such as nutrient 

runoff from fertilizers and pesticides, livestock waste discharge, and irrigation-related water pollution 

(Hou et al. 2024; Li and Lei 2025). These emissions are spatially diffuse, temporally variable, and 

influenced by climatic, hydrological, and soil conditions, making conventional monitoring methods 

less effective (Kuttippurath et al. 2024; He et al. 2025). As a result, conventional monitoring 

methods—primarily based on fixed-site measurements and manual surveys—face substantial 

limitations in identifying pollution sources and tracking their origins in agricultural contexts. 

AI offers a novel pathway to address the challenges associated with non-point source pollution in 

agriculture. Integrated with remote sensing, drones, environmental sensors, and image recognition, AI 

enables real-time and precise monitoring of nutrient runoff, livestock discharge, and water 

eutrophication (Usigbe et al. 2024; Ali et al. 2024). Furthermore, embedding AI into precision 
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agriculture—such as intelligent irrigation and variable-rate fertilization—reduces excessive 

agrochemical use by enabling demand-based input application (Oliveira and Silva 2023; Ghazal et al. 

2024; Wang et al. 2025; Khan et al. 2025). 

On a broader level, AI influences agricultural pollutant emissions by enhancing operational 

efficiency and promoting the adoption of green technologies. For instance, AI improves agricultural 

operations through crop variety optimization, production process refinement, precision resource 

allocation, and automated task scheduling (Sheikh et al. 2024; Usigbe et al. 2024; Pandey and Mishra 

2024). These advancements contribute to more efficient agricultural practices, which in turn affect 

emission levels. Additionally, AI facilitates green technology adoption, such as recommending eco-

friendly inputs and guiding ecological farming models, thereby enabling more effective control of 

agricultural pollution (Lin et al. 2024). 

The mechanisms through which external shocks influence environmental performance extend 

beyond the agricultural sector, offering valuable comparative insights. Research on extreme climate 

events reveals that firms’ resilience is shaped by strategic investments in green innovation and 

environmental governance, which can offset physical damages (Lei 2025). Similarly, studies on 

agricultural credit subsidies demonstrate how financial interventions reduce carbon intensity by 

facilitating both technological adoption and, notably, agricultural scale expansion (Zhang et al. 2023). 

This latter point resonates with the potential “scale effect” of AI, suggesting that the interplay between 

technological advancement and production scaling is a critical, yet underexplored, mechanism 

determining the environmental outcomes in agriculture. 

2.3 Literature gaps 

In summary, while the existing literature provides valuable insights, several important research gaps 

remain. First, although prior studies acknowledge that AI may simultaneously exert both emission-

reducing and emission-increasing effects, most theoretical and empirical analyses focus on the 

industrial sector. Systematic investigations into the mechanisms through which AI affects pollutant 

emissions in the agricultural sector are still lacking, and empirical evidence remains scarce. Moreover, 

although classic environmental economics theories—such as the Environmental Kuznets Curve (EKC) 

(Grossman and Krueger 1991; Kong et al. 2025) and the rebound effect (Qian et al. 2025)—highlight 

the nonlinear environmental impacts of technological progress, they have rarely been applied to explain 

the stage-specific pollution effects of AI in agriculture. Second, AI applications in agriculture are 

widely regarded as crucial tools for promoting green transformation and pollution reduction, with 

existing studies affirming their roles in enhancing operational efficiency and technological innovation. 

However, potential unintended consequences—such as scale expansion effects and diminishing 

marginal returns to green innovation—have not been thoroughly examined in the agricultural context. 

Therefore, this study uses data from Chinese listed agricultural firms to explore the nonlinear effects of 

AI on agricultural pollutant emissions and uncover the underlying transmission mechanisms. 

 

3. Mechanism analysis and research hypotheses 

3.1 Direct effect of artificial intelligence on pollutant emissions 

The rapid development of AI profoundly transforms agricultural production and management (Oliveira 
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and Silva 2023; Sheikh et al. 2024; Wang et al. 2025). AI enhances agricultural productivity by 

promoting precision agriculture. For example, in the pre-production stage, AI analyzes soil and climate 

characteristics through algorithms to plan optimal cropping schemes (Aghababaei et al. 2025). During 

the production stage, AI enables precision weeding and fertilization through image recognition and data 

analysis (Khan et al. 2025). In addition, AI-driven models such as random forests and neural networks 

predict rainfall events and optimize irrigation strategies, thereby improving water use efficiency 

(Pandey and Mishra 2024; Sperandio et al. 2025). While these practices reduce the excessive use of 

fertilizers and pesticides to some extent, they also increase agricultural productivity, which in turn leads 

to production scale expansion. This expansion effect results in higher pollutant emissions and 

intensifies environmental risks (Zhu et al. 2023). Therefore, although AI improves agricultural 

productivity, it also increases the intensity of agricultural pollutant emissions through the scale 

expansion effect. 

However, as a general-purpose technology, AI faces multiple constraints during its diffusion 

process—particularly in the early stages—such as limitations in funding, technology, and human 

resources. First, resource constraints increase the risk of system failures during the implementation of 

AI (Ghazal et al. 2024). Second, the lack of standardized data protocols in agriculture, along with the 

presence of bias in some machine learning algorithms, leads to deviations in AI-generated predictions 

(Yang et al. 2024). Third, the high variability of agricultural production environments and the limited 

skills of agricultural workers reduce the adaptability of AI technologies (Parra-López et al. 2025). As a 

result, in the initial phase of AI adoption, these internal and external constraints hinder its practical 

effectiveness in agricultural systems, lowering both production efficiency and output. Consequently, 

pollutant emissions from agricultural activities decrease. 

Taken together, the impact of AI on agricultural pollutant emissions exhibits a stage-specific 

pattern. In the early phase of AI application, internal and external constraints limit the technology’s 

effectiveness in enhancing agricultural productivity and scale. As agricultural output declines, pollutant 

emissions are reduced. As AI adoption deepens, these barriers are gradually alleviated, and the 

adaptability of the technology improves. At this stage, AI begins to generate productivity effects in 

agricultural activities, which further lead to scale expansion and increased pollutant emissions.  

It is noteworthy that this stage-specific impact is consistent with established environmental 

economics theories. In the early stage, AI adoption is constrained by limited resources and technical 

capacity, which suppresses agricultural output and reduces emissions—mirroring the early-phase 

decline in pollution emphasized in the EKC (Grossman and Krueger 1991; Kong et al. 2025). As AI-

induced efficiency gains gradually materialize, expanded production leads to higher pollutant 

emissions, aligning with the rebound effect, which highlights that efficiency improvements may induce 

increased resource use and environmental pressure (Qian et al. 2025). Therefore, the nonlinear 

influence of AI on agricultural pollution reflects the typical patterns described by both the EKC 

framework and rebound effect mechanisms. Based on this reasoning, we propose Hypothesis 1. 

Hypothesis 1 Artificial intelligence exerts a stage-specific impact on agricultural pollutant 

emissions, initially suppressing and later promoting them. 

3.2 Transmission mechanism of artificial intelligence to pollutant emissions 

The operational efficiency of agricultural enterprises influences pollutant emissions by shaping 

agricultural production activities. When operational efficiency improves, the resulting increase in unit 

output tends to boost total agricultural production (Kumar et al. 2024). This expansion leads to greater 
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use of agricultural inputs such as fertilizers, pesticides, and machinery, thereby intensifying 

environmental pollution (Aziz and Chowdhury 2023). In contrast, when operational efficiency declines, 

reduced production intensity lowers the level of agricultural pollutant emissions. 

Moreover, AI exerts a dual effect on the operational efficiency of agricultural enterprises. On one 

hand, in the early stages of AI diffusion and application, deficiencies such as limited data accuracy and 

system instability hinder performance (Jin and Han 2024). These limitations pose challenges for 

enterprises in adapting to new technologies. On the other hand, agriculture is a non–technology-

intensive sector with a large share of low-skilled labor (Menéndez González et al. 2023). Due to path 

dependence and cognitive burdens, low-skilled workers generally exhibit low willingness to adopt new 

technologies and face higher learning costs (Clay et al. 2024). Therefore, constrained by limited 

technological adaptability and learning barriers among low-skilled workers, AI adoption in the early 

stages tends to hinder rather than enhance operational efficiency. This mismatch between AI systems 

and firm’s capacity to absorb new technologies reduces operational efficiency. Consequently, the 

resulting scale contraction effect leads to lower levels of agricultural pollutant emissions. 

As AI adoption deepens, intelligent technologies drive continuous transformation in agricultural 

production activities (Usigbe et al. 2024). This results in an increase in the technological adaptability of 

agricultural enterprises. At this point, with the deployment of AI systems, the operational efficiency of 

agricultural enterprises improves (Balcıoğlu et al. 2024; Pandey and Mishra 2024). The improvement 

in operational efficiency drives the expansion of production scale, which, in turn, increases agricultural 

pollutant emissions.  

Thus, AI affects pollutant emissions by influencing the operational efficiency of agricultural 

enterprises. In the early stages of AI application, due to the limited learning capacity of unskilled labor 

and the low adaptability to new technologies, the operational efficiency of agricultural enterprises 

decreases, leading to a reduction in pollutant emissions. In the later stages of AI implementation, as 

firms’ technological adaptability improves, their operational efficiency increases, which in turn drives 

the expansion of agricultural production activities, resulting in increased pollutant emissions. Based on 

this, we propose Hypothesis 2. 

Hypothesis 2 Artificial intelligence initially reduces, then increases agricultural firms’ operational 

efficiency, thereby exerting a suppressive-then-promoting effect on agricultural pollutant emissions. 

Green innovation refers to the use of green materials and the design of ecological products to achieve 

energy conservation and reduction of pollutant emissions (Lin et al. 2024; Li et al. 2025). According to 

this definition, agricultural enterprises can effectively reduce pollutant emissions through the 

implementation of green innovation. 

AI is considered a significant factor influencing corporate green innovation. First, according to 

innovation diffusion theory, the application of AI technology increases the demand for skilled labor, 

prompting enterprises to increase investment in research and development (Wang et al. 2024; Liu et al. 

2025). Second, AI technology accelerates the dissemination of green knowledge and reduces the failure 

probability of green innovation processes through data mining and algorithm optimization (Luo and 

Feng 2024; Zhang 2024). Given that high-skilled labor, such as R&D personnel, has stronger learning 

capabilities, AI technology in its early stages of application can enhance green technological innovation 

capability of agricultural enterprises by complementing skills and reallocating resources. This leads to a 

reduction in pollutant emissions from agricultural enterprises. 

However, as enterprises increasingly leverage AI, they may gradually shift internal resources and 

attention away from green innovation toward other operational priorities. When attention and resources 
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are redirected, green innovation efforts tend to decline (Yang et al. 2024). Consequently, in the later 

stages of AI application, the reallocation of internal resources and managerial focus reduces the 

innovation capacity of agricultural enterprises, which in turn leads to increased pollutant emissions. 

Based on this reasoning, we propose Hypothesis 3. 

Hypothesis 3 Artificial intelligence first enhances and then reduces the green innovation 

capability of agricultural enterprises, thereby exerting a stage-based effect on agricultural pollutant 

emissions—initially inhibiting them and subsequently promoting them. 

To synthesize the dual-path mechanisms described above, Fig. 1 presents the conceptual 

framework that delineates how AI influences agricultural pollutant emissions through the nonlinear 

channels of operational efficiency and green innovation. 

Figure 1. Conceptual framework of AI’s nonlinear effects on agricultural pollutant emissions 

 

4. Research design 

4.1 Model construction 

Based on the theoretical analysis above, AI exhibits a nonlinear effect on pollutant emissions of 

agricultural enterprises. Following the approach of Miller (2025), we construct a semi-parametric 

additive model as shown in Equation (1) for empirical analysis. The model effectively captures 

nonlinear relationships, enhances estimation efficiency, and alleviates dimensionality issues. It also 

detects potential threshold effects in AI’s impact on emissions, offering nuanced insights into stage-

specific mechanisms and supporting evidence-based, targeted policy formulation for sustainable 

agricultural transformation. 

 

 𝑃𝑜𝑙𝑙u𝑖t = 𝑔(𝐴𝐼𝑖𝑡) + 𝛽1𝐹𝑖𝑥𝑒𝑑𝑖𝑡 + 𝛽2𝑇𝑀𝑇𝑃𝑎𝑦𝑖𝑡 + 𝛽3𝑆𝑖𝑧𝑒𝑖𝑡 + 𝛽4𝐿𝑒𝑣𝑖𝑡 + 𝛽5𝐼𝑛𝑠𝑡𝑖𝑡 + 𝛽0 + 𝛼𝑖 + 𝜀𝑖𝑡   (1) 

In Equation (1), 𝑖 denotes the individual firm, and 𝑡 represents the time period.  𝑃𝑜𝑙𝑙𝑢𝑖𝑡  is the 

dependent variable, indicating the level of pollutant emissions of firm 𝑖 in period 𝑡. 𝐴𝐼𝑖𝑡  is the core 

explanatory variable, measuring the degree of AI adoption in firm 𝑖 at time 𝑡. 𝐹𝑖𝑥𝑒𝑑𝑖𝑡 , 𝑇𝑀𝑇𝑃𝑎𝑦𝑖𝑡 , 

𝑆𝑖𝑧𝑒𝑖𝑡 , 𝐿𝑒𝑣𝑖𝑡 , 𝐼𝑛𝑠𝑡𝑖𝑡  are the selected control variables, whose selection rationale and measurement are 

elaborated in Section 4.3.3. 𝛽0 is the intercept term. 𝛼𝑖  captures the individual fixed effects, and 𝜀𝑖𝑡 
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represents the random error term. 

4.2 Mechanism test model 

To examine the mechanism through which AI affects pollutant emissions in agricultural enterprises, we 

follow the framework of Yang et al. (2024) and construct a regression model as shown in Equation (2). 

  

 𝑀𝑖𝑡 = 𝑔(𝐴𝐼𝑖𝑡) + 𝛽1𝐹𝑖𝑥𝑒𝑑𝑖𝑡 + 𝛽2𝑇𝑀𝑇𝑃𝑎𝑦𝑖𝑡 + 𝛽3𝑆𝑖𝑧𝑒𝑖𝑡 + 𝛽4𝐿𝑒𝑣𝑖𝑡 + 𝛽5𝐼𝑛𝑠𝑡𝑖𝑡 + 𝛽0 + 𝛼𝑖 + 𝜀𝑖𝑡    (2) 

In Equation (2), 𝑀𝑖𝑡  represents the mediating variables, specifically operational efficiency 

(𝑂𝑝𝑒𝑟𝐸𝑓𝑓𝑖𝑐) and green innovation capability (𝐺𝑟𝑒𝑒𝑛𝐼𝑛𝑛𝑜). The definitions of the other variables are 

consistent with those in Equation (1). 

4.3 Variables 

4.3.1 Dependent variable 

Enterprise pollutant emissions (𝑃𝑜𝑙𝑙𝑢 ) include water pollutant emissions ( 𝑊𝑎𝑡𝑒𝑟_𝑃𝑜𝑙𝑙𝑢 ) and air 

pollutant emissions (𝐴𝑖𝑟_𝑃𝑜𝑙𝑙𝑢). According to Wang et al. (2023), major agricultural water pollutants 

include chemical oxygen demand (𝐶𝑂𝐷), ammonia nitrogen (𝑁𝐻3 − 𝑁), total nitrogen (𝑇𝑁), and total 

phosphorus (𝑇𝑃). Based on the analyses of Kuttippurath et al. (2024) and Mousavi et al. (2023), major 

agricultural air pollutants include sulfur dioxide (𝑆𝑂2), nitrogen oxides (𝑁𝑂), and smoke. 

To measure enterprise pollutant emissions (𝑃𝑜𝑙𝑙𝑢), we first collect data on emissions of each 

water and air pollutant from agricultural enterprises. Second, we refer to the Administrative Measures 

for the Collection Standards of Pollution Discharge Fees to identify the pollution equivalent value for 

each pollutant. Then, all emissions are converted into standardized pollution equivalents, summed, and 

transformed by taking the natural logarithm of the total plus one. The resulting value reflects the 

overall level of pollutant emissions from agricultural enterprises. 

4.3.2 Independent variable 

According to Choi (2024), software and hardware are essential components of digital systems. 

Following the approach of Song et al. (2024), this study focuses on enterprise investments in software 

and hardware related to AI. We measure the level of AI in agricultural enterprises by the intensity of 

their AI-related software and hardware investments. Specifically, we calculate the sum of AI software 

and hardware investment amounts, take the natural logarithm of this total, and use the result as an 

indicator of the enterprise’s AI level (𝐴𝐼). 

4.3.3 Control variables 

To control for potential omitted variable bias, drawing on relevant studies (Cheng et al. 2024; Xu et al. 

2025), we select the following variables as controls to suit the context of this study: (1) the share of 

fixed assets (𝐹𝑖𝑥𝑒𝑑), measured by the ratio of fixed assets to total assets. A higher proportion indicates 

a more capital-intensive firm structure, which, particularly in agriculture, reflects greater reliance on 

machinery and infrastructure associated with increased resource consumption and emissions. 

Therefore, a positive association with pollutant emissions is expected (Xu et al. 2025). (2)  top 

management team compensation (𝑇𝑀𝑇𝑃𝑎𝑦), measured by the natural logarithm of the compensation of 

the top three executives. As executive compensation is often linked to short-term performance targets, 

it may incentivize profit-driven strategies that neglect environmental externalities, potentially leading 

to higher emissions (Kong et al. 2024). (3) firm size (𝑆𝑖𝑧𝑒), measured by the natural logarithm of total 

assets at the end of the year. Larger agricultural firms typically operate on a greater scale and consume 

more energy, resulting in higher levels of pollution (Xu et al. 2025). (4) leverage (𝐿𝑒𝑣), measured by 
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the ratio of total liabilities to total assets at year-end. Firms with higher leverage are subject to tighter 

financial constraints, reducing their operational resilience (Foulon and Marsat 2023). As a result, they 

may adopt more conservative strategies, such as downsizing or investing in cleaner technologies, to 

mitigate environmental and regulatory risks. Hence, leverage is expected to be negatively associated 

with pollutant emissions. (5) institutional ownership (𝐼𝑛𝑠𝑡), measured by the proportion of shares held 

by institutional investors relative to total shares outstanding. Firms with higher institutional ownership 

are subject to stronger governance pressure and collaborative incentives from common investors, 

making them more likely to take proactive environmental actions and thus exhibit lower levels of 

pollutant emissions (Qiang et al. 2025). 

4.3.4 Mechanism variables 

This study also incorporates two mechanism variables: operational efficiency (𝑂𝑝𝑒𝑟𝐸𝑓𝑓𝑖𝑐) and green 

innovation capability (𝐺𝑟𝑒𝑒𝑛𝐼𝑛𝑛𝑜).  

Inventory turnover reflects the enterprise’s management capacity in terms of production, logistics, 

capital flow, and market responsiveness. Therefore, we use inventory turnover as a proxy for 

operational efficiency. 

In addition, drawing on the methodologies of Xiang and Geng (2024) and Wang et al. (2025), we 

construct a green innovation capability indicator based on the number of green invention patents and 

green utility model patents. Specifically, we sum the number of independently filed green invention 

patents and green utility model patents by each agricultural enterprise in a given year, add one to avoid 

logarithmic transformation of zero, and take the natural logarithm. This value serves as a proxy for the 

firm’s green innovation capability. 

4.4 Sample selection and data source 

The dependent variable of this study, firm pollutant emissions, is based on raw data obtained from 

corporate annual reports, government sustainability reports, and disclosures by environmental 

protection authorities. Python software is used to batch-scrape these reports and extract the required 

pollutant emission data. The original data for the core explanatory variable, control variables, and 

mechanism variables are obtained from the CSMAR Database and the Chinese Patent Database. After 

matching the samples and variables, we select listed firms in the agricultural sector from 2010 to 2022 

as the analysis sample. 

This sample period is chosen based on a combination of policy relevance and data availability. On 

the one hand, 2010 marks a significant starting point in China’s agricultural informatization and 

intelligent transformation. In that year, five key government ministries—including the Ministry of 

Industry and Information Technology, the Ministry of Agriculture, and the Ministry of Science and 

Technology, among others—jointly issued the Action Plan for Agricultural and Rural Informatization 

(2010–2012). This initiative officially launched the country’s digital agriculture agenda and laid the 

groundwork for the application of AI technologies in the agricultural sector. On the other hand, 2022 

represents the latest year for which complete and reliable data are available for all key variables. Due to 

the lag in environmental and financial disclosures by listed companies, some pollutant emission data 

for agricultural firms remain incomplete or of inconsistent quality beyond 2022. Thus, setting 2022 as 

the endpoint of the sample period ensures data integrity and analytical robustness. In sum, the 2010–

2022 period is both policy-relevant and empirically justified for investigating the relationship between 

AI and agricultural pollutant emissions. 

Table 1. Descriptive statistics of main variables 
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Variable Observations  Mean  Standard deviation  Min  Max 

𝐿𝑛 𝑇𝑜𝑡𝑎𝑙𝑃𝑜𝑙𝑙𝑢 189 0.143 0.005 0.132 0.152 

 𝐴𝐼 189 11.946 5.601 0.000 18.563 

𝐹𝑖𝑥𝑒𝑑 189 0.214 0.128 0.000 0.643 

𝑇𝑀𝑇𝑃𝑎𝑦 188 13.934 0.811 9.68 16.101 

𝑆𝑖𝑧𝑒 189 21.756 1.047 18.946 23.829 

𝐿𝑒𝑣 189 0.421 0.218 0.030 0.937 

𝐼𝑛𝑠𝑡 189 0.435 0.209 0.012 0.838 

The final unbalanced panel includes 22 listed agricultural firms, yielding a total of 189 firm-year 

observations. Descriptive statistics for the main variables used in the baseline analysis are reported in 

Table 1. Among these, 19 firms are identified as having adopted AI in at least one year during the 

sample period. To further clarify the timeframe during which AI has been applied by agricultural firms, 

we present in Fig. 2 the annual number of companies reporting non-zero AI investment from 2010 to 

2022. In our study, firm-level AI application is proxied by annual AI-related investment, as recorded in 

the CSMAR database. As shown in Fig. 2, agricultural firms began investing in AI as early as 2010, 

with 11 firms reporting such investment in that year. Throughout the sample period, the number of AI-

investing firms per year ranged from 10 to 15, indicating a steady—albeit uneven—uptake of AI 

technologies in the sector. This pattern offers a concrete temporal basis for analyzing the environmental 

effects of AI adoption. 

 
Figure 2. Annual number of agricultural firms investing in AI during 2010 to 2022 

Note: A firm is counted in a given year only if it has non-zero AI investment in that year. Hence, although 19 firms adopted AI at 

least once during the sample period, the number of adopting firms varied year by year. 

 

In light of this, we retain firm-year observations in which AI investment was zero, including years 

prior to the initial AI adoption by each firm and firms that never adopted AI during the entire sample 

period. This approach is methodologically justified for several reasons. First, including pre-AI years 

enables a more comprehensive within-firm comparison of emission outcomes before and after AI 

adoption. Second, maintaining non-AI firms in the sample helps establish a valid counterfactual, 

strengthening the identification of AI’s effects. Lastly, given that 2010 marked the launch of China’s 

national agricultural digitalization strategy, retaining data from this year onward is consistent with the 

broader policy context and allows us to capture the early diffusion of AI technologies in agriculture. 

 

5. Analysis on the trend of pollutant emissions from listed 

agricultural companies in China 
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5.1 Analysis on the trend of water pollutant discharge 

We aggregate the water pollutant emissions (𝑊𝑎𝑡𝑒𝑟_𝑃𝑜𝑙𝑙𝑢) of all listed agricultural firms in China 

from 2010 to 2022. Specifically, we sum the emissions of chemical oxygen demand (𝐶𝑂𝐷), ammonia 

nitrogen (𝑁𝐻3 − 𝑁), total nitrogen (𝑇𝑁), and total phosphorus (𝑇𝑃) for all listed agricultural firms. 

The trends of each type of water pollutant are then plotted, as shown in Fig. 3. 

 

Figure 3. Trends in the total water pollutant emissions from listed agricultural companies in China 

Note: Marked points indicate years in which the emissions of the corresponding pollutant decreased relative to the previous year. 

 

According to Fig. 3, the total water pollutant emissions of listed agricultural firms in China show 

an overall upward trend from 2010 to 2022. Specifically, this trend can be divided into four distinct 

phases. 

The first phase (from 2010 to 2014): During this period, the total emissions of chemical oxygen 

demand (𝐶𝑂𝐷), ammonia nitrogen (𝑁𝐻3 − 𝑁), total nitrogen (𝑇𝑁), and total phosphorus (𝑇𝑃) from 

China’s listed agricultural firms increase at a relatively moderate pace. This phase coincides with the 

initial stage of the introduction and refinement of agricultural environmental policies in China, during 

which policy enforcement and infrastructure development still lag behind. In addition, the degree of 

agricultural scale expansion remains relatively low, and the intensity of fertilization and livestock 

production per unit of land tends to stabilize, resulting in a controllable rate of increase in total 

emissions. 

The second phase (from 2014 to 2018): The emissions of 𝐶𝑂𝐷 , 𝑁𝐻3 − 𝑁 , 𝑇𝑁 , and 𝑇𝑃  rise 

sharply. This trend is closely related to the accelerated expansion and modernization of the agricultural 

sector. At the same time, with the gradual improvement of the environmental information disclosure 

system, the coverage and transparency of environmental data disclosure by listed firms also improve, 

possibly broadening the statistical scope of emission data and thus contributing to a noticeable increase 

in reported emissions. 

The third phase (from 2018 to 2020): The growth rate of all water pollutant emissions slows 

down. This change is associated with the strengthening of environmental governance policies at the 

national level. The implementation of relevant agricultural environmental regulations strengthens 

supervision intensity. Meanwhile, green production practices, such as soil testing and formulated 

fertilization, organic fertilizer substitution, and integrated crop-livestock systems, gain increasing 

attention. Some highly polluting livestock projects are also restricted or shut down, which effectively 
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alleviates the water pollution burden. 

The fourth phase (from 2020 to 2022): The emissions of 𝑁𝐻3 − 𝑁, 𝑇𝑁, and 𝑇𝑃 increase rapidly, 

while 𝐶𝑂𝐷  emissions decrease. This divergence may be explained by two main factors. First, the 

expansion of agricultural production and the improper application of certain green technologies (such 

as the excessive use of nitrogen fertilizers) lead to increased emissions of nitrogen and phosphorus 

pollutants. Second, as 𝐶𝑂𝐷  reflects organic matter pollution, its reduction may be attributed to 

improvements in wastewater treatment capacity or enhanced recycling of livestock waste. In addition, 

more mature standards and regulatory measures for 𝐶𝑂𝐷 emissions at the policy level also play a role 

in curbing such emissions. 

5.2 Analysis of changing trends in air pollutant emissions 

We also aggregate the air pollutant emissions (𝐴𝑖𝑟_𝑃𝑜𝑙𝑙𝑢) for all listed agricultural firms in China. 

Specifically, we sum the emissions of sulfur dioxide (𝑆𝑂2), nitrogen oxides (𝑁𝑂), and smoke for all 

listed agricultural firms. We then plot the trends for each type of air pollutant, as shown in Fig. 4. 

 

 
Figure 4. Trends in total air pollutant emissions from listed agricultural companies in China 

Note: Marked points indicate years in which the emissions of the corresponding pollutant decreased relative to the previous year. 

 

According to Fig. 4, total air pollutant emissions from listed agricultural firms in China show an 

overall upward trend from 2010 to 2022. Specifically, the changes can be divided into four distinct 

stages. 

The first stage covers the years 2010 to 2013. During this period, the combined emissions of 

sulfur dioxide (𝑆𝑂2), nitrogen oxides (𝑁𝑂) and smoke from listed agricultural firms exhibit a slow 

upward trend. This suggests that China’s agricultural modernization remains at an early stage, with 

relatively limited mechanization and scale, resulting in relatively moderate growth in air pollution 

emissions. 

The second stage spans from 2013 to 2016. During this period, the total emissions of 𝑆𝑂2, 𝑁𝑂 

and smoke continue to rise, and the growth rate significantly accelerates. This trend is closely related to 

the rapid advancement of agricultural modernization and the continuous expansion of agricultural 

production in China. 

The third stage covers the years 2016 to 2020. In this period, the growth of 𝑆𝑂2 emissions slows 

significantly and even begins to decline, while the growth rate of 𝑁𝑂  emissions also decreases. 

However, smoke emissions continue the rapid upward trend observed in the previous stage. This 

divergence may be closely related to environmental protection policies and the development of green 

technologies. Pollution control initiatives promote the substitution of coal, the application of clean 



 

14 

energy, and the widespread adoption of desulfurization and denitrification technologies, thereby 

curbing the growth of 𝑆𝑂2  and 𝑁𝑂  emissions. In contrast, smoke control remains technically 

challenging, especially in agriculture, such as straw burning, open-air processing, and waste disposal 

from livestock. The slow improvement in technology and difficulties in enforcement contribute to the 

continued rise in smoke emissions. 

The fourth stage spans from 2020 to 2022. In this stage, the total emissions of all three air 

pollutants increase sharply again, with the fastest growth observed across all periods. This may be due 

to, first, the rapid post-pandemic recovery and expansion of agricultural production, which 

substantially raises energy demand and the use of agricultural machinery. Second, the gradual 

improvement in emissions disclosure systems leads to more complete enterprise reporting, which may 

broaden the statistical coverage and result in an apparent surge in total emissions. 

 

6. Empirical results 

6.1 Baseline regression 

The estimation results of the baseline model are shown in Column (1) of Table 2. In addition, the 

marginal effect diagram of the core independent variable AI on corporate pollutant emissions is shown 

in Fig. 5. 

Table 2. Estimation results of semiparametric additive model 

Variable 
(1) 

Baseline regression results 

(2) 

Robustness test I 

(3) 

Robustness test Ⅱ 

𝐴𝐼 See Fig. 5** See Fig. 6*** See Fig. 7** 

(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) 
0.044** 

(0.020) 

0.041* 

(0.023) 

0.057*** 

(0.021) 

𝐹𝑖𝑥𝑒𝑑 
0.001 

(0.005) 

0.000 

(0.006) 

0.003 

(0.006) 

𝑇𝑀𝑇𝑃𝑎𝑦 
0.004*** 

(0.001) 

0.004*** 

(0.001) 

0.004*** 

(0.001) 

𝑆𝑖𝑧𝑒 
0.002** 

(0.001) 

0.002** 

(0.001) 

0.002** 

(0.001) 

𝐿𝑒𝑣 
-0.008*** 

(0.003) 

-0.009*** 

(0.003) 

-0.008*** 

(0.003) 

𝐼𝑛𝑠𝑡 
-0.021*** 

(0.003) 

-0.020*** 

(0.004) 

-0.021*** 

(0.004) 

Note: *, **, *** indicate significant at the 10%, 5%, and 1% significance levels, respectively. The standard error is in brackets. 

According to Fig. 5, the marginal effect of AI investment intensity on pollutant emissions in 

agricultural firms first decreases and then increases. The value of the marginal effect is initially 

negative and later becomes positive. This indicates that the use of AI in agricultural firms follows a 

pattern of initially reducing and then increasing pollutant emissions, which supports Hypothesis 1 of 

this study. The impact of AI on agricultural pollution exhibits a two-stage characteristic. At low levels 

of AI adoption, resource constraints reduce production efficiency and output. As a result, pollutant 

emissions decline. At high levels of AI adoption, AI enables firms to expand production scale. This 

expansion leads to an increase in agricultural pollutant emissions. 
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Figure 5. The marginal effect of AI in agricultural enterprises on pollutant emissions 

 

Specifically, when the logarithm of AI investment in agricultural firms is less than approximately 

7, AI has a suppressive effect on pollutant emissions, and this effect becomes increasingly stronger. 

This suggests that at this stage, agricultural firms face significant internal and external resource 

constraints. Issues such as failure risks and poor technological compatibility are prominent, limiting 

productivity improvements and scale expansion. As firms reduce production scale, pollutant emissions 

decline more rapidly. 

When the logarithm of AI investment ranges between 7 and 14, AI still reduces pollutant 

emissions, but the suppressive effect gradually weakens. This indicates that firms begin to seek ways to 

overcome resource constraints and reverse the decline in productivity. The problems of failure risk and 

technological mismatch become less severe. The decline in production scale and output slows, leading 

to a smaller reduction in pollutant emissions. 

However, when the logarithm of AI investment exceeds 14, AI begins to promote pollutant 

emissions, and this effect intensifies. This implies that firms have overcome resource limitations, and 

issues related to failure risk and compatibility are effectively resolved. Agricultural firms can leverage 

AI to enhance productivity and expand production scale. As production and operational activities 

increase, the intensity of pollutant emissions also rises continuously. 

6.2 Robustness test 

To test the robustness of our estimation results, we follow the approaches of Ma et al. (2024) and Ling 

et al. (2024), and conduct robustness checks using three methods: replacing the explained variable, 

changing the model estimation method, and adding control variables. 

6.2.1 Replace the explained variable 

We replace the original dependent variable—total pollutant emissions (𝑃𝑜𝑙𝑙𝑢)—with water pollutant 

emissions (𝑊𝑎𝑡𝑒𝑟_𝑃𝑜𝑙𝑙𝑢) and air pollutant emissions (𝐴𝑖𝑟_𝑃𝑜𝑙𝑙𝑢), respectively, to re-estimate the 

model for robustness testing. At the same time, this approach allows us to analyze the separate effects 

of AI on firms’ water and air pollutant emissions. The robustness test results are shown in Column (2) 

“Robustness test I” and Column (3) “Robustness test II” of Table 2. 
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Figure 6. The marginal effect of AI in agricultural enterprises on water pollutant emissions 

 

According to Fig. 6 and Fig. 7, after replacing the dependent variable with water pollutant 

emissions (𝑊𝑎𝑡𝑒𝑟_𝑃𝑜𝑙𝑙𝑢) and air pollutant emissions (𝐴𝑖𝑟_𝑃𝑜𝑙𝑙𝑢), respectively, the overall marginal 

effect trend of AI remains unchanged. The marginal effects of AI investment intensity on water and air 

pollutant emissions both show a trend of first decreasing and then increasing. Moreover, the marginal 

effects are initially negative and later become positive. This indicates that the use of AI in agricultural 

enterprises first suppresses and then promotes water and air pollutant emissions, thereby reaffirming 

Hypothesis 1 of this paper. The impact of AI on agricultural pollution exhibits a stage-specific pattern, 

characterized by initial suppression followed by promotion. In addition, the directions of the control 

variables’ effects remain consistent, with only differences in magnitude and statistical significance. 

This confirms the robustness of the estimation results. 

 
Figure 7. The marginal effect of AI in agricultural enterprises on air pollutant emissions 

 

A comparison of Fig. 5, Fig. 6, and Fig. 7 reveals that the impact pattern of AI investment on total 

pollutant emissions closely mirrors that on air pollutant emissions, while the effect on water pollutants 

exhibits slight deviations. Notably, when the logarithm of AI investment exceeds 14, the intensity of 

water pollutant emissions exhibits a fluctuating upward trend—rising, then falling, and rising again. 

This indicates that in the initial phase of production expansion, agricultural enterprises primarily 

contribute to the sharp increase in air pollutant emissions. 

6.2.2 Changing the model estimation method 

When estimating the semi-parametric additive model, we change the type and degrees of freedom of 

the smoothing function compared with the baseline model, and re-estimate the model to conduct 

robustness checks. Specifically, we replace the default “Thin Plate Regression Spline” with the “Cubic 

Regression Spline” and the “Natural Cubic Spline,” respectively. At the same time, we modify the 
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degrees of freedom. The estimation results are shown in Column (1) “Robustness test Ⅲ” and Column 

(2) “Robustness test Ⅳ” of Table 3. 

Table 3. Robustness test model estimation results 

Variable 
(1) 

Robustness test Ⅲ 

(2) 

Robustness test Ⅳ 

(3) 

Robustness test Ⅴ 

𝐴𝐼 See Fig. 8*** See Fig. 9*** See Fig. 10*** 

(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) 
0.057*** 

(0.021) 

0.057*** 

(0.021) 

0.034** 

(0.014) 

𝐶𝑎𝑝   
0.001*** 

(0.000) 

𝐷𝐸𝑅   
-0.017** 

(0.007) 

𝐸𝑀   
0.017** 

(0.007) 

𝐵𝑀   
-0.010*** 

(0.003) 

𝐹𝑖𝑥𝑒𝑑 
0.003 

(0.006) 

0.003 

(0.006) 

-0.001 

(0.006) 

𝑇𝑀𝑇𝑃𝑎𝑦 
0.004*** 

(0.001) 

0.004*** 

(0.001) 

0.004*** 

(0.001) 

𝑆𝑖𝑧𝑒 
0.002** 

(0.001) 

0.002** 

(0.001) 

0.002** 

(0.001) 

𝐿𝑒𝑣 
-0.008*** 

(0.003) 

-0.008*** 

(0.003) 

-0.008** 

(0.004) 

𝐼𝑛𝑠𝑡 
-0.021*** 

(0.004) 

-0.021*** 

(0.004) 

-0.022*** 

(0.003) 

Note: *, **, *** indicate significant at the 10%, 5%, and 1% significance levels, respectively. The standard error is in brackets. 

 

 
Figure 8. The marginal effect of AI on pollutant emissions after changing the model estimation method 

 

 

 
Figure 9. The marginal effect of AI on pollutant emissions after changing the model estimation method 

 



 

18 

According to Fig. 8 and Fig. 9, after changing the smoothing function and degrees of freedom, the 

overall trend of the marginal effect of AI on agricultural firms’ pollutant emissions remains unchanged, 

with only differences in the degree of fluctuation. The coefficient directions of the control variables 

also remain consistent with those in the baseline model. This further confirms the robustness of the 

estimation results. 

6.2.3 Adding control variables 

Drawing on the study by Ma et al. (2024), we add additional control variables to the baseline model to 

account for potential confounding factors and implement stricter controls. We then re-estimate the 

model to conduct a robustness check.  

Specifically, the additional control variables include: capital intensity (Cap), measured by the ratio 

of total assets to operating revenue; debt-to-equity ratio (DER), measured by the ratio of total liabilities 

to shareholders’ equity at the end of the year; equity multiplier (EM), measured by the ratio of total 

assets to shareholders’ equity at year-end; and book-to-market ratio (BM), measured by the ratio of 

book value to market value. The estimation results are reported in Column (3) of Table 3 under 

Robustness test V. 

 
Figure 10. The marginal effect of AI on pollutant emissions after adding control variables 

 

According to Fig. 10, after incorporating additional control variables, the marginal effect of AI on 

agricultural firms’ pollutant emissions remains consistent with the baseline model. Specifically, at a 

low level of AI usage, it exerts a suppressive effect on pollutant emissions. As the level of AI usage 

increases, it gradually exhibits a promoting effect on emissions, and this promoting effect continues to 

intensify. These findings further confirm the robustness of the conclusions in this study. 

6.3 Mechanism analysis 

Theoretical analysis and empirical results presented earlier show that the level of AI investment in 

agricultural firms exerts a direct effect on their pollutant emissions, which first suppresses and then 

promotes emissions. To further explore the underlying mechanism of this effect, we follow the 

approach of Yang et al. (2024) and estimate the specified Model (2). 

6.3.1 Operational efficiency 

The estimation results of the mechanism model based on operational efficiency are shown in Column 

(1) of Table 4. 

Table 4. Estimation results of the mechanism test models 

Variable 
(1) 

Operational efficiency 

(2) 

Green innovation capabilities 

𝐴𝐼 See Fig. 11*** See Fig. 12* 

(𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) 376.180*** -2.267** 
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(53.817) (0.889) 

𝐹𝑖𝑥𝑒𝑑 
-56.173*** 

(13.121) 

0.505** 

(0.241) 

𝑇𝑀𝑇𝑃𝑎𝑦 
-1.655 

(1.484) 

0.048* 

(0.027) 

𝑆𝑖𝑧𝑒 
-16.593*** 

(2.448) 

0.068* 

(0.041) 

𝐿𝑒𝑣 
11.361* 

(6.703) 

-0.139 

(0.122) 

𝐼𝑛𝑠𝑡 
12.372 

(8.262) 

0.100 

(0.149) 

Note: *, **, *** indicate significant at the 10%, 5%, and 1% significance levels, respectively. The standard error is in brackets. 

According to Fig. 11, the marginal effect of AI investment on the operational efficiency of 

agricultural firms shows a downward-then-upward trend. The value of the marginal effect is initially 

less than zero and then becomes greater than zero. This indicates that the use of AI by agricultural firms 

first suppresses and then promotes their operational efficiency, which confirms Hypothesis 2 of this 

paper. AI affects pollutant emissions intensity by influencing the operational efficiency of agricultural 

firms. AI investment initially reduces and then enhances operational efficiency, thereby exerting a 

suppressing-then-promoting effect on agricultural pollutant emissions. 

 
Figure 11. The marginal effect of AI on operational efficiency in agricultural enterprises 

 

Specifically, when the logarithmic value of AI investment by agricultural firms is less than 

approximately 14, it exerts a suppressing effect on operational efficiency. This suppressing effect 

shows a trend of first decreasing, then increasing, and finally slightly declining. This suggests that, 

during this stage, firms are constrained by both limited technological adaptability and learning barriers 

among unskilled labor, resulting in reduced operational efficiency. This hinders the expansion of 

production scale and leads to a reduction in pollutant emissions. Meanwhile, when the logarithmic 

value of AI investment is approximately equal to 10, the decline in operational efficiency becomes 

controlled, indicating that issues related to technological adaptability and labor learning barriers begin 

to ease. 

When the logarithmic value of AI investment exceeds approximately 14, it promotes operational 

efficiency, with the marginal effect exhibiting an accelerating yet fluctuating upward trend. This 

indicates that, during this stage, technological adaptability improves continuously, and learning barriers 

for unskilled labor are gradually overcome. As a result, firms become increasingly adaptive, which 

accelerates improvements in operational efficiency. As operational efficiency rises, the resulting 

productivity and scale expansion effects lead to a rapid increase in pollutant emissions. 

6.3.2 Green innovation capabilities 

The estimation results of the mechanism model based on green innovation capabilities are shown in 
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Column (2) of Table 4. 

According to Fig. 12, the marginal effect of AI investment by agricultural firms on their green 

innovation capability generally follows an inverted U-shaped pattern, first increasing and then 

decreasing. The marginal effect value first falls below zero, then rises above zero, and eventually drops 

below zero again. Although in the early stage of AI investment—when the logarithmic value of AI 

investment is approximately less than 4—the marginal effect is negative, its magnitude becomes less 

negative over time. Therefore, overall, AI exerts a promoting effect followed by a suppressing effect on 

agricultural firms’ green innovation capability, which supports Hypothesis 3. AI influences pollutant 

emissions by affecting firms’ green innovation capability. Specifically, AI investment intensity first 

enhances and then reduces green innovation, which in turn first suppresses and later promotes pollutant 

emissions. 

 
Figure 12. The marginal effect of AI on green innovation capabilities of agricultural enterprises 

 

Specifically, when the logarithmic value of AI investment in agriculture is approximately less than 

4, it exerts a suppressing effect on firms’ green innovation, although this negative effect gradually 

weakens. A possible reason for this phenomenon is that in the initial stage of AI adoption, firms require 

time to allocate appropriate R&D resources. The resulting time-lag effect prevents AI from showing a 

positive impact on green innovation capability during this stage. 

However, when the logarithmic value of agricultural AI investment is approximately greater than 

4 but less than 14, it promotes green innovation capability. This suggests that AI can effectively 

enhance agricultural firms’ green technology innovation through complementary effects. At the same 

time, this promoting effect first strengthens and then weakens, indicating a saturation trend in the 

enabling effect of AI as investment intensity increases. After reaching a peak, the positive impact on 

green innovation gradually diminishes. 

Finally, when the logarithmic value of agricultural AI investment exceeds 14, it again exerts a 

suppressing effect on green innovation capability. This implies that as AI investment intensity 

continues to rise, firms gradually shift their attention and internal resources away from innovation, 

leading to a decline in green innovation. As a result, pollutant emissions increase. Moreover, the 

suppressing effect continues to intensify, indicating that the negative impact of resource reallocation 

and attention diversion on green innovation persists and strengthens over time. This leads to a 

continuous increase in pollutant emission intensity. 

Our empirical findings offer important extensions to the existing body of literature. First, existing 

studies primarily focus on industrial enterprises to examine the impact of AI applications on pollutant 

emissions (Shang et al. 2024; Cheng et al. 2024; Xu et al. 2025). In contrast, empirical investigations 

into the agricultural sector remain relatively limited. This study addresses this gap by using listed 
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agricultural firms in China as the research sample and systematically analyzing the effects of AI on 

agricultural pollutant emissions. It thus provides valuable empirical evidence to supplement the 

literature. Moreover, this study finds that AI exerts a two-stage effect on agricultural emissions—

initially reducing them and subsequently increasing them—whereas most existing studies in the 

industrial context report a consistently negative effect of AI on pollution. 

Second, Lin et al. (2024) suggest that AI enhances environmental performance in agricultural 

enterprises by promoting green innovation. Building on this insight, this study further reveals that 

green innovation capacity is constrained by firms’ absorptive limits. As AI adoption advances to later 

stages, firms may experience a decline in green innovation efficiency due to saturation of absorptive 

capacity, which in turn leads to a rebound in pollutant emissions. This finding implies the existence of a 

threshold effect in the environmental benefits of AI. 

Finally, some prior studies identify that AI indirectly affects corporate emissions by influencing 

resource allocation, input structure, and energy efficiency (Shen and Zhang 2023; Zhou et al. 2024; 

Cheng et al. 2024). Extending this line of inquiry, the present study incorporates the perspective of 

operational efficiency and finds that AI first improves and then weakens the operational efficiency of 

agricultural enterprises, resulting in a nonlinear emission pattern characterized by “initial reduction 

followed by subsequent increase.” This mechanism is particularly important because operational 

efficiency is closely related to production scale. Continuous improvements in efficiency tend to drive 

production expansion, which may amplify pollutant emissions and weaken the long-term mitigation 

effects of AI. 

In sum, this study not only broadens the application scope of AI’s environmental impacts by 

introducing the agricultural sector but also uncovers nonlinear transmission mechanisms—via green 

innovation capacity and operational efficiency—that significantly enrich the existing literature both 

theoretically and empirically. 

 

7. Conclusion and policy recommendations 

7.1 Conclusion 

This paper analyzes the nonlinear impact path and underlying mechanism of AI on pollutant emissions 

in agricultural firms. Using listed agricultural companies in China from 2010 to 2022 as the sample, it 

constructs a semi-parametric additive model to empirically test the specific path through which AI 

investment intensity affects pollutant emissions. It further explores the internal mechanisms from the 

perspectives of operational efficiency and green innovation capability. The main conclusions are as 

follows: 

First, AI has a phased impact on pollutant emissions in agricultural firms, showing an initial 

suppressive effect followed by a promoting effect. At low levels of AI adoption, internal and external 

resource constraints lead to reductions in production efficiency and scale, resulting in lower pollutant 

emissions. As AI usage intensifies, the resulting improvements in productivity and scale expansion lead 

to increased emissions. 

Second, the impact path of AI on total pollutant emissions is consistent with its effect on air 

pollutants, while it differs slightly in the case of water pollutants. Specifically, at higher levels of AI 

usage, water pollutant intensity shows a fluctuating trend—rising, then falling, and rising again. This 

suggests that during the early stage of production expansion, AI primarily leads to a rapid increase in 
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air  pollutant emissions. 

Third, AI influences agricultural pollutant emissions through a nonlinear effect on operational 

efficiency—first reducing and then enhancing it. In the early stage of AI application, firms face 

limitations from new technology adaptation and learning barriers among unskilled labor, which reduces 

operational efficiency and hinders production scale expansion, thereby lowering emissions. As AI 

adoption deepens, technological adaptation improves, learning barriers diminish, and firm adaptability 

increases, leading to rapid gains in operational efficiency and, consequently, a sharp rise in pollutant 

emissions. 

Finally, AI affects pollutant emissions by first enhancing and then weakening green innovation 

capacity in agricultural firms. At low levels of AI use, resource allocation and the complementary effect 

with skilled labor improve green innovation, reducing emissions. As AI use intensifies, diminishing 

returns set in, innovation resources are reallocated, and organizational attention shifts—factors that 

gradually erode green innovation capacity and lead to rising pollutant emissions. 

7.2 Policy recommendations 

Building upon the empirical findings, this section discusses their broader implications for policy design 

and managerial practice. The results reveal that AI adoption exerts a nonlinear environmental effect in 

agricultural enterprises—emissions decline in the early stages but rebound as adoption deepens. This 

U-pattern is transmitted through two key mechanisms: green innovation capacity and operational 

efficiency. These dynamics suggest that simple promotion of AI may not guarantee sustainable 

emission reductions unless paired with supportive policy and managerial responses. Accordingly, the 

following recommendations are proposed: 

First, it is important to improve the AI technology adaptation mechanism to shorten the “low-

efficiency adaptation period” during the initial stage of digital transformation in agricultural firms. The 

research shows that in the early phase of AI application, agricultural firms often face problems such as 

poor technological compatibility and long learning curves for unskilled labor. These issues reduce 

operational efficiency and constrain production activities, leading to a temporary decline in pollutant 

emissions. To prevent such “false reductions” from masking structural problems, the government is 

advised to strengthen public support for AI applications in agriculture. This includes establishing 

technical adaptation guidance centers, launching standardized solutions for different sub-industries, and 

offering skill training and hands-on coaching for grassroots agricultural firms to help them overcome 

the initial adaptation gap and achieve both technological progress and green development. 

Second, a differentiated regulatory mechanism should be introduced to manage the emission 

rebound associated with large-scale AI adoption. As AI usage increases, productivity improves 

significantly and industrial expansion accelerates, which leads to a rapid rise in pollutant emissions. To 

address this risk, pollutant emission intensity should be embedded into capacity-expansion approval, 

AI-related subsidy qualification, and green credit evaluation. Firms with a severe disconnect between 

expansion and emission control should be subject to capacity constraints and enhanced environmental 

supervision to prevent the spread of “ high-intelligence but high-emission expansion.” 

Finally, the positive impact of AI on green innovation should be strengthened to avoid the 

marginal decline of its long-term enabling effects. The research shows that AI initially promotes green 

innovation in agricultural firms through resource restructuring and complementarity, thereby 

effectively curbing emissions. However, as AI adoption deepens, firms may shift their resource 

allocation to non-green areas, weakening their green innovation capacity. To sustain AI’s green-
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enabling effect, a coordinated policy framework—linking AI adoption with green R&D incentives—

should be implemented to guide firms in applying AI to energy saving, cleaner production, and 

resource recycling. It is recommended to establish special funds, provide green tax incentives, and 

introduce performance-linked environmental subsidies. Incorporating green technology outcomes into 

performance evaluation and financing criteria can further strengthen firms’ long-term motivation for 

continuous green innovation. 

7.3 Limitations and future research 

This study has several limitations that offer directions for future research. First, the sample includes 

only listed agricultural firms in China, which may not fully represent the broader sector, particularly 

small and non-listed enterprises with different capacities for AI adoption and environmental 

management. Moreover, the sample size is relatively small (22 firms). While this firm-level evidence 

still provides valuable insights into AI’s environmental impacts within the agricultural sector, the 

limited sample inevitably constrains the statistical power of the analysis and may weaken the external 

validity of the findings. 

Second, while firm-level investment in AI hardware and software provides a practical proxy for AI 

application, it does not capture specific use cases. Different AI technologies—such as precision 

irrigation, pest detection, or automated spraying—may affect emissions through distinct pathways. This 

heterogeneity is not fully reflected in the current analysis. 

Future research could address these limitations by incorporating data from non-listed enterprises 

or conducting field-level surveys to obtain more detailed information on AI usage patterns and expand 

the sample size. Additionally, disaggregating AI applications by function could help identify which 

technologies contribute most effectively to environmental performance, thereby offering more targeted 

policy and managerial implications. 
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