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Abstract

Artificial intelligence (AI) promotes high-quality development in agriculture while also introducing
new challenges for the management of pollutant emissions. This study aims to explore the pathways
and underlying mechanisms through which Al influences agricultural pollutant emissions. To achieve
this, the study employs data from Chinese publicly listed agricultural firms from 2010 to 2022 and
conducts an empirical analysis using a semi-parametric additive model. The results show that artificial
intelligence has a nonlinear effect on agricultural pollutant emissions, initially inhibiting them and
subsequently promoting them. In the early stages of digitalization, constrained by limited resources, Al
investment reduces the scale of production, thereby lowering pollutant emissions. However, as Al
investment intensifies, firms overcome resource constraints, and the resulting productivity gains and
scale expansion effects lead to increased emissions. The mechanism analysis further reveals that Al
influences agricultural pollutant emissions through two main channels: it first decreases and then
enhances firms’ operational efficiency, and it initially boosts but later weakens their green innovation
capacity. These findings provide theoretical support and practical guidance for promoting sustainable

development and intelligent transformation in the agricultural sector.
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1. Introduction

As a fundamental sector of the national economy, agriculture plays a vital role in global food security,
rural development, and ecological management, making it crucial to human livelihoods (Hou et al.
2024). With the rapid advancement of agricultural modernization, activities such as the use of chemical
fertilizers and pesticides, livestock farming, and agricultural mechanization have increased
significantly. These developments make agriculture one of the major sources of air and water pollution
(Kuttippurath et al. 2024; Elahi et al. 2024). As the world’s largest agricultural country, China accounts
for nearly 30% of global nitrogen, phosphorus, and potassium fertilizer use over the past five years.
This extensive use not only raises serious environmental pollution risks but also exerts considerable
influence on global ecosystems and environmental governance. Therefore, investigating pollutant
emissions from Chinese agricultural enterprises constitutes a critical component of global
environmental governance and climate action, while also offering practical insights for developing
countries undergoing rapid agricultural modernization and industrialization. Against the backdrop of
the rapid development and widespread application of artificial intelligence (AI), several critical
questions arise: Can Al effectively reduce pollutant emissions from Chinese agricultural enterprises?
What specific patterns or characteristics does its impact on agricultural pollutant emissions exhibit?
Through which mechanisms does Al exert its influence? Addressing these questions not only deepens
our understanding of the relationship between AI and sustainable development, but also provides
theoretical support and policy implications for promoting green transformation and intelligent
governance in agriculture.

Al, characterized by autonomous learning, dynamic adaptation, and high-speed processing, is
increasingly applied to agricultural activities (Oliveira and Silva 2023). Some studies employ Al
technologies—such as machine learning, deep learning, and image recognition—to analyze and predict
changes in pollutant emissions (Liu et al. 2025; Rahaman et al. 2025; Senthil Rathi et al. 2025). Other
research suggests that Al’s capabilities for automatic discovery and optimization offer new
opportunities to address global climate and environmental issues (Chen et al. 2024; Zhou et al. 2024).
First, Al enhances the efficiency of resource allocation in agricultural economic activities through its
dynamic optimization capabilities, which improves energy use efficiency and productivity and thereby
reduces pollutant emissions (Shen and Zhang 2023). Second, it reduces the barriers to knowledge
acquisition for agricultural firms, facilitates skill complementarity among R&D personnel, and
enhances research efficiency and green innovation capacity. According to Li et al. (2025), as firms
strengthen their green technological capabilities, their pollutant emissions during the production
process significantly decrease.

However, whether Al can effectively reduce pollutant emissions from agricultural enterprises
remains an open question. On the one hand, the widespread application of Al in agricultural production
enhances productivity but may also lead to the expansion of agricultural activities. This expansion
effect can result in increased pollutant emissions. Overall, the environmental impact of Al depends on
its net effect (Zhu et al. 2023). On the other hand, although AI lowers the barriers to acquiring
knowledge and information—thereby facilitating the improvement of green innovation capacity in
agricultural firms—an excess of information may trap firms in an “innovation trap,” ultimately
weakening their green innovation performance. Therefore, the impact of Al on agricultural pollutant
emissions remains uncertain. Although some studies have acknowledged the possibility of nonlinear
effects of Al (Shen and Zhang 2023; Lee and Yan 2024), few have examined the specific pathways



through which Al affects pollutant emissions in the agricultural sector. Moreover, the underlying
mechanisms of such impacts have yet to be systematically analyzed.

To fill this research gap, this study uses data from Chinese listed agricultural firms between 2010
and 2022 and employs a semi-parametric additive model to systematically analyze the impact of Al on
agricultural pollutant emissions. Based on the findings, we propose relevant policy recommendations.
This study makes three main contributions to the literature:

(1) Although existing literature acknowledges a correlation between Al and pollutant emissions,
few studies provide a detailed analysis of the underlying impact pathways and characteristics,
particularly in the context of China’s agricultural sector. In response, this study applies a semi-
parametric additive model—a nonlinear analytical approach—to examine the stage-dependent and
nonlinear characteristics of AI’s impact on pollutant emissions.

(2) This study explores the specific mechanisms through which Al affects agricultural pollutant
emissions. Given the complexity of Al applications in agricultural practices, we consider the dynamic
and heterogeneous effects of Al on firms’ operational efficiency and green innovation capacity. This
approach facilitates a better identification and understanding of the internal mechanisms through which
Al influences pollution levels.

(3) Drawing on the empirical findings, we propose concrete and feasible policy recommendations.
In doing so, this study contributes to the theory on Al’s impact pathways and mechanisms in reducing
agricultural pollutant emissions, and provides practical guidance for policymakers.

After the introduction, the remainder of the paper is structured as follows: Sect. “Literature
review” reviews the relevant literature and identifies the existing gaps. Sect. “Mechanism analysis and
research hypotheses” analyzes the direct effects of Al on pollutant emissions in agricultural enterprises
and investigates the underlying transmission pathways. Sect. “Research design” presents the baseline
regression model and the mechanism analysis model, and explains the variables and data sources. Sect.
“Analysis on the trend of pollutant emissions from listed agricultural companies in China” analyzes the
trends in pollutant emissions, including both air and water pollutants, from listed agricultural
companies in China. Sect. “Empirical results” reports the estimation results of the baseline and
mechanism models and provides relevant analysis. Sect. “Conclusion and policy recommendations”
summarizes the main findings, offers policy suggestions, and outlines the study’s limitations and

directions for future research.

2. Literature review

This paper investigates the nonlinear effects of Al on pollutant emissions in agriculture and explores
the underlying mechanisms through which Al influences agricultural pollution. Accordingly, the
upcoming literature review is organized around two main themes: artificial intelligence and pollutant

emissions and pollutant emissions in agriculture.
2.1 Artificial intelligence and pollutant emissions

Al, as a new generation of general-purpose technology, is profoundly reshaping the way economies
operate. As a double-edged sword, Al exhibits a dual effect on pollutant emissions, with both emission-
reducing and emission-increasing potentials. Existing studies primarily examine the emission-reducing
role of Al from three perspectives: optimizing input structures, enhancing resource allocation

efficiency, and fostering green innovation.



(1) AI contributes to the reduction of pollutant emissions by optimizing the structure of factor
inputs within enterprises (Cheng et al. 2024). Al-driven smart systems can replace inefficient manual
operations, reduce costs, and support investment in cleaner technologies, thereby lowering emission
intensity (Zhu et al. 2023; Shang et al. 2024).

(2) Al enhances firms’ internal resource allocation efficiency. Algorithmic optimization, real-time
monitoring, and data analytics improve the scheduling of materials and energy, reduce redundant
inputs, and enhance process efficiency (Usman et al. 2024). This ultimately reduces energy

consumption and emissions (Shen and Zhang 2023; Cheng et al. 2024).

(3) Al provides critical support for green technological innovation in enterprises. Al complements
skilled labor in green R&D, increases green patenting efficiency, accelerates the development of clean
technologies, and improves the diffusion and matching efficiency of green innovations, thus enhancing
their spillover effects (Wang et al. 2024; Liu et al. 2025; Wang et al. 2025).

However, some studies argue that Al may also lead to increased pollutant emissions under certain
conditions. For instance, Xu et al. (2025) suggest that while Al improves firm productivity and
alleviates financial constraints, it may also drive the expansion of production scale, ultimately resulting
in higher pollutant emissions. In addition, some studies suggest that when Al technologies are
immature or firms face adoption barriers, a mismatch between Al systems and organizational structures
may arise, weakening their expected environmental benefits (Lee and Yan 2024; Parra-Lopez et al.
2025).

These conflicting findings regarding AI’s environmental impact echo a broader insight from
the literature on environmental policy. Beyond technological factors, the literature on
environmental policy underscores that the ultimate impact of external interventions—be it
regulation or technology—is contingent upon the micro-level transmission mechanisms they
activate. For instance, environmental regulations can successfully promote corporate green
innovation by reshaping managerial cognition (Zhang et al. 2025), yet they may also backfire by
imposing prohibitive compliance costs that crowd out efficiency investments, particularly in
certain types of firms (Lei and Kocoglu 2025). This suggests that the net effect of Al on emissions
is not predetermined but hinges on whether it primarily triggers efficiency-enhancing and
innovation-oriented pathways or conversely leads to cost burdens and maladaptive responses.

2.2 Pollutant emissions in agriculture

Agricultural pollutant emissions exhibit significant non-point source characteristics, such as nutrient
runoff from fertilizers and pesticides, livestock waste discharge, and irrigation-related water pollution
(Hou et al. 2024; Li and Lei 2025). These emissions are spatially diffuse, temporally variable, and
influenced by climatic, hydrological, and soil conditions, making conventional monitoring methods
less effective (Kuttippurath et al. 2024; He et al. 2025). As a result, conventional monitoring
methods—primarily based on fixed-site measurements and manual surveys—face substantial

limitations in identifying pollution sources and tracking their origins in agricultural contexts.

Al offers a novel pathway to address the challenges associated with non-point source pollution in
agriculture. Integrated with remote sensing, drones, environmental sensors, and image recognition, Al
enables real-time and precise monitoring of nutrient runoff, livestock discharge, and water

eutrophication (Usigbe et al. 2024; Ali et al. 2024). Furthermore, embedding Al into precision



agriculture—such as intelligent irrigation and variable-rate fertilization—reduces excessive
agrochemical use by enabling demand-based input application (Oliveira and Silva 2023; Ghazal et al.
2024; Wang et al. 2025; Khan et al. 2025).

On a broader level, Al influences agricultural pollutant emissions by enhancing operational
efficiency and promoting the adoption of green technologies. For instance, Al improves agricultural
operations through crop variety optimization, production process refinement, precision resource
allocation, and automated task scheduling (Sheikh et al. 2024; Usigbe et al. 2024; Pandey and Mishra
2024). These advancements contribute to more efficient agricultural practices, which in turn affect
emission levels. Additionally, Al facilitates green technology adoption, such as recommending eco-
friendly inputs and guiding ecological farming models, thereby enabling more effective control of

agricultural pollution (Lin et al. 2024).

The mechanisms through which external shocks influence environmental performance extend
beyond the agricultural sector, offering valuable comparative insights. Research on extreme climate
events reveals that firms’ resilience is shaped by strategic investments in green innovation and
environmental governance, which can offset physical damages (Lei 2025). Similarly, studies on
agricultural credit subsidies demonstrate how financial interventions reduce carbon intensity by
facilitating both technological adoption and, notably, agricultural scale expansion (Zhang et al. 2023).
This latter point resonates with the potential “scale effect” of Al, suggesting that the interplay between
technological advancement and production scaling is a critical, yet underexplored, mechanism

determining the environmental outcomes in agriculture.
2.3 Literature gaps

In summary, while the existing literature provides valuable insights, several important research gaps
remain. First, although prior studies acknowledge that Al may simultaneously exert both emission-
reducing and emission-increasing effects, most theoretical and empirical analyses focus on the
industrial sector. Systematic investigations into the mechanisms through which Al affects pollutant
emissions in the agricultural sector are still lacking, and empirical evidence remains scarce. Moreover,
although classic environmental economics theories—such as the Environmental Kuznets Curve (EKC)
(Grossman and Krueger 1991; Kong et al. 2025) and the rebound effect (Qian et al. 2025)—highlight
the nonlinear environmental impacts of technological progress, they have rarely been applied to explain
the stage-specific pollution effects of Al in agriculture. Second, Al applications in agriculture are
widely regarded as crucial tools for promoting green transformation and pollution reduction, with
existing studies affirming their roles in enhancing operational efficiency and technological innovation.
However, potential unintended consequences—such as scale expansion effects and diminishing
marginal returns to green innovation—have not been thoroughly examined in the agricultural context.
Therefore, this study uses data from Chinese listed agricultural firms to explore the nonlinear effects of

Al on agricultural pollutant emissions and uncover the underlying transmission mechanisms.

3. Mechanism analysis and research hypotheses

3.1 Direct effect of artificial intelligence on pollutant emissions

The rapid development of Al profoundly transforms agricultural production and management (Oliveira



and Silva 2023; Sheikh et al. 2024; Wang et al. 2025). Al enhances agricultural productivity by
promoting precision agriculture. For example, in the pre-production stage, Al analyzes soil and climate
characteristics through algorithms to plan optimal cropping schemes (Aghababaei et al. 2025). During
the production stage, Al enables precision weeding and fertilization through image recognition and data
analysis (Khan et al. 2025). In addition, Al-driven models such as random forests and neural networks
predict rainfall events and optimize irrigation strategies, thereby improving water use efficiency
(Pandey and Mishra 2024; Sperandio et al. 2025). While these practices reduce the excessive use of
fertilizers and pesticides to some extent, they also increase agricultural productivity, which in turn leads
to production scale expansion. This expansion effect results in higher pollutant emissions and
intensifies environmental risks (Zhu et al. 2023). Therefore, although AI improves agricultural
productivity, it also increases the intensity of agricultural pollutant emissions through the scale
expansion effect.

However, as a general-purpose technology, Al faces multiple constraints during its diffusion
process—particularly in the early stages—such as limitations in funding, technology, and human
resources. First, resource constraints increase the risk of system failures during the implementation of
Al (Ghazal et al. 2024). Second, the lack of standardized data protocols in agriculture, along with the
presence of bias in some machine learning algorithms, leads to deviations in Al-generated predictions
(Yang et al. 2024). Third, the high variability of agricultural production environments and the limited
skills of agricultural workers reduce the adaptability of Al technologies (Parra-Lopez et al. 2025). As a
result, in the initial phase of Al adoption, these internal and external constraints hinder its practical
effectiveness in agricultural systems, lowering both production efficiency and output. Consequently,
pollutant emissions from agricultural activities decrease.

Taken together, the impact of Al on agricultural pollutant emissions exhibits a stage-specific
pattern. In the early phase of Al application, internal and external constraints limit the technology’s
effectiveness in enhancing agricultural productivity and scale. As agricultural output declines, pollutant
emissions are reduced. As Al adoption deepens, these barriers are gradually alleviated, and the
adaptability of the technology improves. At this stage, Al begins to generate productivity effects in
agricultural activities, which further lead to scale expansion and increased pollutant emissions.

It is noteworthy that this stage-specific impact is consistent with established environmental
economics theories. In the early stage, Al adoption is constrained by limited resources and technical
capacity, which suppresses agricultural output and reduces emissions—mirroring the early-phase
decline in pollution emphasized in the EKC (Grossman and Krueger 1991; Kong et al. 2025). As Al-
induced efficiency gains gradually materialize, expanded production leads to higher pollutant
emissions, aligning with the rebound effect, which highlights that efficiency improvements may induce
increased resource use and environmental pressure (Qian et al. 2025). Therefore, the nonlinear
influence of Al on agricultural pollution reflects the typical patterns described by both the EKC
framework and rebound effect mechanisms. Based on this reasoning, we propose Hypothesis 1.

Hypothesis 1 Artificial intelligence exerts a stage-specific impact on agricultural pollutant

emissions, initially suppressing and later promoting them.
3.2 Transmission mechanism of artificial intelligence to pollutant emissions

The operational efficiency of agricultural enterprises influences pollutant emissions by shaping
agricultural production activities. When operational efficiency improves, the resulting increase in unit

output tends to boost total agricultural production (Kumar et al. 2024). This expansion leads to greater



use of agricultural inputs such as fertilizers, pesticides, and machinery, thereby intensifying
environmental pollution (Aziz and Chowdhury 2023). In contrast, when operational efficiency declines,
reduced production intensity lowers the level of agricultural pollutant emissions.

Moreover, Al exerts a dual effect on the operational efficiency of agricultural enterprises. On one
hand, in the early stages of Al diffusion and application, deficiencies such as limited data accuracy and
system instability hinder performance (Jin and Han 2024). These limitations pose challenges for
enterprises in adapting to new technologies. On the other hand, agriculture is a non—technology-
intensive sector with a large share of low-skilled labor (Menéndez Gonzélez et al. 2023). Due to path
dependence and cognitive burdens, low-skilled workers generally exhibit low willingness to adopt new
technologies and face higher learning costs (Clay et al. 2024). Therefore, constrained by limited
technological adaptability and learning barriers among low-skilled workers, Al adoption in the early
stages tends to hinder rather than enhance operational efficiency. This mismatch between Al systems
and firm’s capacity to absorb new technologies reduces operational efficiency. Consequently, the
resulting scale contraction effect leads to lower levels of agricultural pollutant emissions.

As Al adoption deepens, intelligent technologies drive continuous transformation in agricultural
production activities (Usigbe et al. 2024). This results in an increase in the technological adaptability of
agricultural enterprises. At this point, with the deployment of Al systems, the operational efficiency of
agricultural enterprises improves (Balcioglu et al. 2024; Pandey and Mishra 2024). The improvement
in operational efficiency drives the expansion of production scale, which, in turn, increases agricultural
pollutant emissions.

Thus, Al affects pollutant emissions by influencing the operational efficiency of agricultural
enterprises. In the early stages of Al application, due to the limited learning capacity of unskilled labor
and the low adaptability to new technologies, the operational efficiency of agricultural enterprises
decreases, leading to a reduction in pollutant emissions. In the later stages of Al implementation, as
firms’ technological adaptability improves, their operational efficiency increases, which in turn drives
the expansion of agricultural production activities, resulting in increased pollutant emissions. Based on
this, we propose Hypothesis 2.

Hypothesis 2 Artificial intelligence initially reduces, then increases agricultural firms’ operational
efficiency, thereby exerting a suppressive-then-promoting effect on agricultural pollutant emissions.
Green innovation refers to the use of green materials and the design of ecological products to achieve
energy conservation and reduction of pollutant emissions (Lin et al. 2024; Li et al. 2025). According to
this definition, agricultural enterprises can effectively reduce pollutant emissions through the
implementation of green innovation.

Al is considered a significant factor influencing corporate green innovation. First, according to
innovation diffusion theory, the application of Al technology increases the demand for skilled labor,
prompting enterprises to increase investment in research and development (Wang et al. 2024; Liu et al.
2025). Second, Al technology accelerates the dissemination of green knowledge and reduces the failure
probability of green innovation processes through data mining and algorithm optimization (Luo and
Feng 2024; Zhang 2024). Given that high-skilled labor, such as R&D personnel, has stronger learning
capabilities, Al technology in its early stages of application can enhance green technological innovation
capability of agricultural enterprises by complementing skills and reallocating resources. This leads to a
reduction in pollutant emissions from agricultural enterprises.

However, as enterprises increasingly leverage Al, they may gradually shift internal resources and

attention away from green innovation toward other operational priorities. When attention and resources



are redirected, green innovation efforts tend to decline (Yang et al. 2024). Consequently, in the later
stages of Al application, the reallocation of internal resources and managerial focus reduces the
innovation capacity of agricultural enterprises, which in turn leads to increased pollutant emissions.
Based on this reasoning, we propose Hypothesis 3.

Hypothesis 3 Artificial intelligence first enhances and then reduces the green innovation
capability of agricultural enterprises, thereby exerting a stage-based effect on agricultural pollutant
emissions—initially inhibiting them and subsequently promoting them.

To synthesize the dual-path mechanisms described above, Fig. 1 presents the conceptual
framework that delineates how Al influences agricultural pollutant emissions through the nonlinear

channels of operational efficiency and green innovation.
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Stage 1: Inhibition effect Stage 2: Promoting effect
[

______ 2 2
V 1 E
| [ Al } I Al ] [
l Fim's Low Adaplal\on (AI Lowers Knowledge | Finm's Adaptation to Reallocation of
l to Al Acquisition Barrier l | Al Enhances Innovation resources I
| Operational Efficiency Green Innovation | | (Operational Efficiency Green Innovation I
| Decreases luc1e1ses | | Increases Decreases |
’ Production Intensity ] Pollution Abatement I | Production Intensity Pollution Abatement | |
' Decreases Capability Increases Capability Decreases I

4. Research design

4.1 Model construction

Based on the theoretical analysis above, Al exhibits a nonlinear effect on pollutant emissions of
agricultural enterprises. Following the approach of Miller (2025), we construct a semi-parametric
additive model as shown in Equation (1) for empirical analysis. The model effectively captures
nonlinear relationships, enhances estimation efficiency, and alleviates dimensionality issues. It also
detects potential threshold effects in AI’s impact on emissions, offering nuanced insights into stage-
specific mechanisms and supporting evidence-based, targeted policy formulation for sustainable

agricultural transformation.

Pollu;, = g(Al) + pFixed;; + B, TMTPay;, + ;3Size; + Bylevy + Psinsty + By + a; + & (1)

In Equation (1), i denotes the individual firm, and t represents the time period. Pollu;; is the
dependent variable, indicating the level of pollutant emissions of firm i in period t. Al;; is the core
explanatory variable, measuring the degree of Al adoption in firm i at time t. Fixed;;, TMTPay;,,
Size;:, Lev;, Inst;; are the selected control variables, whose selection rationale and measurement are

elaborated in Section 4.3.3. B, is the intercept term. ; captures the individual fixed effects, and &;;



represents the random error term.
4.2 Mechanism test model

To examine the mechanism through which Al affects pollutant emissions in agricultural enterprises, we

follow the framework of Yang et al. (2024) and construct a regression model as shown in Equation (2).

M;, = g(Al;) + B,Fixed;, + f,TMTPay;, + [5Size; + fyLlev;, + Psinstyy + By + a; + & (2)
In Equation (2), M;, represents the mediating variables, specifically operational efficiency
(OperEffic) and green innovation capability (Greeninno). The definitions of the other variables are

consistent with those in Equation (1).
4.3 Variables

4.3.1 Dependent variable

Enterprise pollutant emissions (Pollu) include water pollutant emissions (Water_Pollu) and air
pollutant emissions (Air_Pollu). According to Wang et al. (2023), major agricultural water pollutants
include chemical oxygen demand (COD), ammonia nitrogen (NH3 — N), total nitrogen (TN), and total
phosphorus (TP). Based on the analyses of Kuttippurath et al. (2024) and Mousavi et al. (2023), major
agricultural air pollutants include sulfur dioxide (S02), nitrogen oxides (NO), and smoke.

To measure enterprise pollutant emissions (Pollu), we first collect data on emissions of each
water and air pollutant from agricultural enterprises. Second, we refer to the Administrative Measures
for the Collection Standards of Pollution Discharge Fees to identify the pollution equivalent value for
each pollutant. Then, all emissions are converted into standardized pollution equivalents, summed, and
transformed by taking the natural logarithm of the total plus one. The resulting value reflects the
overall level of pollutant emissions from agricultural enterprises.

4.3.2 Independent variable

According to Choi (2024), software and hardware are essential components of digital systems.
Following the approach of Song et al. (2024), this study focuses on enterprise investments in software
and hardware related to AI. We measure the level of Al in agricultural enterprises by the intensity of
their Al-related software and hardware investments. Specifically, we calculate the sum of Al software
and hardware investment amounts, take the natural logarithm of this total, and use the result as an
indicator of the enterprise’s Al level (AI).

4.3.3 Control variables

To control for potential omitted variable bias, drawing on relevant studies (Cheng et al. 2024; Xu et al.
2025), we select the following variables as controls to suit the context of this study: (1) the share of
fixed assets (Fixed), measured by the ratio of fixed assets to total assets. A higher proportion indicates
a more capital-intensive firm structure, which, particularly in agriculture, reflects greater reliance on
machinery and infrastructure associated with increased resource consumption and emissions.
Therefore, a positive association with pollutant emissions is expected (Xu et al. 2025). (2) top
management team compensation (TMTPay), measured by the natural logarithm of the compensation of
the top three executives. As executive compensation is often linked to short-term performance targets,
it may incentivize profit-driven strategies that neglect environmental externalities, potentially leading
to higher emissions (Kong et al. 2024). (3) firm size (Size), measured by the natural logarithm of total
assets at the end of the year. Larger agricultural firms typically operate on a greater scale and consume

more energy, resulting in higher levels of pollution (Xu et al. 2025). (4) leverage (Lev), measured by



the ratio of total liabilities to total assets at year-end. Firms with higher leverage are subject to tighter
financial constraints, reducing their operational resilience (Foulon and Marsat 2023). As a result, they
may adopt more conservative strategies, such as downsizing or investing in cleaner technologies, to
mitigate environmental and regulatory risks. Hence, leverage is expected to be negatively associated
with pollutant emissions. (5) institutional ownership (Inst), measured by the proportion of shares held
by institutional investors relative to total shares outstanding. Firms with higher institutional ownership
are subject to stronger governance pressure and collaborative incentives from common investors,
making them more likely to take proactive environmental actions and thus exhibit lower levels of
pollutant emissions (Qiang et al. 2025).

4.3.4 Mechanism variables

This study also incorporates two mechanism variables: operational efficiency (OperEf fic) and green
innovation capability (GreenInno).

Inventory turnover reflects the enterprise’s management capacity in terms of production, logistics,
capital flow, and market responsiveness. Therefore, we use inventory turnover as a proxy for
operational efficiency.

In addition, drawing on the methodologies of Xiang and Geng (2024) and Wang et al. (2025), we
construct a green innovation capability indicator based on the number of green invention patents and
green utility model patents. Specifically, we sum the number of independently filed green invention
patents and green utility model patents by each agricultural enterprise in a given year, add one to avoid
logarithmic transformation of zero, and take the natural logarithm. This value serves as a proxy for the

firm’s green innovation capability.

4.4 Sample selection and data source

The dependent variable of this study, firm pollutant emissions, is based on raw data obtained from
corporate annual reports, government sustainability reports, and disclosures by environmental
protection authorities. Python software is used to batch-scrape these reports and extract the required
pollutant emission data. The original data for the core explanatory variable, control variables, and
mechanism variables are obtained from the CSMAR Database and the Chinese Patent Database. After
matching the samples and variables, we select listed firms in the agricultural sector from 2010 to 2022
as the analysis sample.

This sample period is chosen based on a combination of policy relevance and data availability. On
the one hand, 2010 marks a significant starting point in China’s agricultural informatization and
intelligent transformation. In that year, five key government ministries—including the Ministry of
Industry and Information Technology, the Ministry of Agriculture, and the Ministry of Science and
Technology, among others—jointly issued the Action Plan for Agricultural and Rural Informatization
(2010-2012). This initiative officially launched the country’s digital agriculture agenda and laid the
groundwork for the application of Al technologies in the agricultural sector. On the other hand, 2022
represents the latest year for which complete and reliable data are available for all key variables. Due to
the lag in environmental and financial disclosures by listed companies, some pollutant emission data
for agricultural firms remain incomplete or of inconsistent quality beyond 2022. Thus, setting 2022 as
the endpoint of the sample period ensures data integrity and analytical robustness. In sum, the 2010-
2022 period is both policy-relevant and empirically justified for investigating the relationship between
Al and agricultural pollutant emissions.

Table 1. Descriptive statistics of main variables



Variable Observations Mean Standard deviation Min Max

Ln TotalPollu 189 0.143 0.005 0.132 0.152
Al 189 11.946 5.601 0.000 18.563
Fixed 189 0.214 0.128 0.000 0.643
TMTPay 188 13.934 0.811 9.68 16.101
Size 189 21.756 1.047 18.946 23.829

Lev 189 0.421 0.218 0.030 0.937

Inst 189 0.435 0.209 0.012 0.838

The final unbalanced panel includes 22 listed agricultural firms, yielding a total of 189 firm-year
observations. Descriptive statistics for the main variables used in the baseline analysis are reported in
Table 1. Among these, 19 firms are identified as having adopted Al in at least one year during the
sample period. To further clarify the timeframe during which Al has been applied by agricultural firms,
we present in Fig. 2 the annual number of companies reporting non-zero Al investment from 2010 to
2022. In our study, firm-level Al application is proxied by annual Al-related investment, as recorded in
the CSMAR database. As shown in Fig. 2, agricultural firms began investing in Al as early as 2010,
with 11 firms reporting such investment in that year. Throughout the sample period, the number of Al-
investing firms per year ranged from 10 to 15, indicating a steady—albeit uneven—uptake of Al
technologies in the sector. This pattern offers a concrete temporal basis for analyzing the environmental

effects of Al adoption.
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Figure 2. Annual number of agricultural firms investing in Al during 2010 to 2022
Note: A firm is counted in a given year only if it has non-zero Al investment in that year. Hence, although 19 firms adopted Al at
least once during the sample period, the number of adopting firms varied year by year.

In light of this, we retain firm-year observations in which Al investment was zero, including years
prior to the initial Al adoption by each firm and firms that never adopted Al during the entire sample
period. This approach is methodologically justified for several reasons. First, including pre-Al years
enables a more comprehensive within-firm comparison of emission outcomes before and after Al
adoption. Second, maintaining non-Al firms in the sample helps establish a valid counterfactual,
strengthening the identification of AI’s effects. Lastly, given that 2010 marked the launch of China’s
national agricultural digitalization strategy, retaining data from this year onward is consistent with the

broader policy context and allows us to capture the early diffusion of Al technologies in agriculture.

5. Analysis on the trend of pollutant emissions from listed

agricultural companies in China



5.1 Analysis on the trend of water pollutant discharge

We aggregate the water pollutant emissions (Water_Pollu) of all listed agricultural firms in China
from 2010 to 2022. Specifically, we sum the emissions of chemical oxygen demand (COD), ammonia
nitrogen (NH3 — N), total nitrogen (TN), and total phosphorus (TP) for all listed agricultural firms.
The trends of each type of water pollutant are then plotted, as shown in Fig. 3.
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Figure 3. Trends in the total water pollutant emissions from listed agricultural companies in China

Note: Marked points indicate years in which the emissions of the corresponding pollutant decreased relative to the previous year.

According to Fig. 3, the total water pollutant emissions of listed agricultural firms in China show
an overall upward trend from 2010 to 2022. Specifically, this trend can be divided into four distinct
phases.

The first phase (from 2010 to 2014): During this period, the total emissions of chemical oxygen
demand (€COD), ammonia nitrogen (NH3 — N), total nitrogen (TN), and total phosphorus (TP) from
China’s listed agricultural firms increase at a relatively moderate pace. This phase coincides with the
initial stage of the introduction and refinement of agricultural environmental policies in China, during
which policy enforcement and infrastructure development still lag behind. In addition, the degree of
agricultural scale expansion remains relatively low, and the intensity of fertilization and livestock
production per unit of land tends to stabilize, resulting in a controllable rate of increase in total
emissions.

The second phase (from 2014 to 2018): The emissions of COD, NH3 — N, TN, and TP rise
sharply. This trend is closely related to the accelerated expansion and modernization of the agricultural
sector. At the same time, with the gradual improvement of the environmental information disclosure
system, the coverage and transparency of environmental data disclosure by listed firms also improve,
possibly broadening the statistical scope of emission data and thus contributing to a noticeable increase
in reported emissions.

The third phase (from 2018 to 2020): The growth rate of all water pollutant emissions slows
down. This change is associated with the strengthening of environmental governance policies at the
national level. The implementation of relevant agricultural environmental regulations strengthens
supervision intensity. Meanwhile, green production practices, such as soil testing and formulated
fertilization, organic fertilizer substitution, and integrated crop-livestock systems, gain increasing

attention. Some highly polluting livestock projects are also restricted or shut down, which effectively
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alleviates the water pollution burden.

The fourth phase (from 2020 to 2022): The emissions of NH3 — N, TN, and TP increase rapidly,
while COD emissions decrease. This divergence may be explained by two main factors. First, the
expansion of agricultural production and the improper application of certain green technologies (such
as the excessive use of nitrogen fertilizers) lead to increased emissions of nitrogen and phosphorus
pollutants. Second, as COD reflects organic matter pollution, its reduction may be attributed to
improvements in wastewater treatment capacity or enhanced recycling of livestock waste. In addition,
more mature standards and regulatory measures for COD emissions at the policy level also play a role

in curbing such emissions.
5.2 Analysis of changing trends in air pollutant emissions

We also aggregate the air pollutant emissions (Air_Pollu) for all listed agricultural firms in China.
Specifically, we sum the emissions of sulfur dioxide ($02), nitrogen oxides (NO), and smoke for all

listed agricultural firms. We then plot the trends for each type of air pollutant, as shown in Fig. 4.
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Figure 4. Trends in total air pollutant emissions from listed agricultural companies in China

Note: Marked points indicate years in which the emissions of the corresponding pollutant decreased relative to the previous year.

According to Fig. 4, total air pollutant emissions from listed agricultural firms in China show an
overall upward trend from 2010 to 2022. Specifically, the changes can be divided into four distinct
stages.

The first stage covers the years 2010 to 2013. During this period, the combined emissions of
sulfur dioxide (S02), nitrogen oxides (NO) and smoke from listed agricultural firms exhibit a slow
upward trend. This suggests that China’s agricultural modernization remains at an early stage, with
relatively limited mechanization and scale, resulting in relatively moderate growth in air pollution
emissions.

The second stage spans from 2013 to 2016. During this period, the total emissions of SO2, NO
and smoke continue to rise, and the growth rate significantly accelerates. This trend is closely related to
the rapid advancement of agricultural modernization and the continuous expansion of agricultural
production in China.

The third stage covers the years 2016 to 2020. In this period, the growth of SO2 emissions slows
significantly and even begins to decline, while the growth rate of NO emissions also decreases.
However, smoke emissions continue the rapid upward trend observed in the previous stage. This
divergence may be closely related to environmental protection policies and the development of green

technologies. Pollution control initiatives promote the substitution of coal, the application of clean
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energy, and the widespread adoption of desulfurization and denitrification technologies, thereby
curbing the growth of SO2 and NO emissions. In contrast, smoke control remains technically
challenging, especially in agriculture, such as straw burning, open-air processing, and waste disposal
from livestock. The slow improvement in technology and difficulties in enforcement contribute to the
continued rise in smoke emissions.

The fourth stage spans from 2020 to 2022. In this stage, the total emissions of all three air
pollutants increase sharply again, with the fastest growth observed across all periods. This may be due
to, first, the rapid post-pandemic recovery and expansion of agricultural production, which
substantially raises energy demand and the use of agricultural machinery. Second, the gradual
improvement in emissions disclosure systems leads to more complete enterprise reporting, which may

broaden the statistical coverage and result in an apparent surge in total emissions.

6. Empirical results

6.1 Baseline regression

The estimation results of the baseline model are shown in Column (1) of Table 2. In addition, the

marginal effect diagram of the core independent variable Al on corporate pollutant emissions is shown

in Fig. 5.
Table 2. Estimation results of semiparametric additive model
- D) @) @)
Variable Baseline regression results Robustness test | Robustness test 11
Al See Fig. 5™ See Fig. 6™ See Fig. 7
(Intercept) 0.044™ 0.041" 0.057"
(0.020) (0.023) (0.021)
Fixed 0.001 0.000 0.003
(0.005) (0.006) (0.006)
0.004"** 0.004™** 0.004"**
TMTPay (0.001) (0.001) (0.001)
Size 0.002** 0.002* 0.002**
(0.001) (0.001) (0.001)
Lew -0.008" -0.009"" -0.008""
(0.003) (0.003) (0.003)
Inst -0.021™ -0.020™" -0.021™"
(0.003) (0.004) (0.004)

Note: *, **, *** indicate significant at the 10%, 5%, and 1% significance levels, respectively. The standard error is in brackets.
According to Fig. 5, the marginal effect of Al investment intensity on pollutant emissions in
agricultural firms first decreases and then increases. The value of the marginal effect is initially
negative and later becomes positive. This indicates that the use of Al in agricultural firms follows a
pattern of initially reducing and then increasing pollutant emissions, which supports Hypothesis 1 of
this study. The impact of Al on agricultural pollution exhibits a two-stage characteristic. At low levels
of Al adoption, resource constraints reduce production efficiency and output. As a result, pollutant
emissions decline. At high levels of Al adoption, Al enables firms to expand production scale. This

expansion leads to an increase in agricultural pollutant emissions.
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Figure 5. The marginal effect of Al in agricultural enterprises on pollutant emissions

Specifically, when the logarithm of Al investment in agricultural firms is less than approximately
7, Al has a suppressive effect on pollutant emissions, and this effect becomes increasingly stronger.
This suggests that at this stage, agricultural firms face significant internal and external resource
constraints. Issues such as failure risks and poor technological compatibility are prominent, limiting
productivity improvements and scale expansion. As firms reduce production scale, pollutant emissions
decline more rapidly.

When the logarithm of Al investment ranges between 7 and 14, Al still reduces pollutant
emissions, but the suppressive effect gradually weakens. This indicates that firms begin to seek ways to
overcome resource constraints and reverse the decline in productivity. The problems of failure risk and
technological mismatch become less severe. The decline in production scale and output slows, leading
to a smaller reduction in pollutant emissions.

However, when the logarithm of Al investment exceeds 14, Al begins to promote pollutant
emissions, and this effect intensifies. This implies that firms have overcome resource limitations, and
issues related to failure risk and compatibility are effectively resolved. Agricultural firms can leverage
Al to enhance productivity and expand production scale. As production and operational activities

increase, the intensity of pollutant emissions also rises continuously.
6.2 Robustness test

To test the robustness of our estimation results, we follow the approaches of Ma et al. (2024) and Ling
et al. (2024), and conduct robustness checks using three methods: replacing the explained variable,
changing the model estimation method, and adding control variables.

6.2.1 Replace the explained variable

We replace the original dependent variable—total pollutant emissions (Pollu)—with water pollutant
emissions (Water_Pollu) and air pollutant emissions (Air_Pollu), respectively, to re-estimate the
model for robustness testing. At the same time, this approach allows us to analyze the separate effects
of Al on firms’ water and air pollutant emissions. The robustness test results are shown in Column (2)
“Robustness test I’ and Column (3) “Robustness test II”” of Table 2.
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Figure 6. The marginal effect of Al in agricultural enterprises on water pollutant emissions

According to Fig. 6 and Fig. 7, after replacing the dependent variable with water pollutant
emissions (Water_Pollu) and air pollutant emissions (Air_Pollu), respectively, the overall marginal
effect trend of Al remains unchanged. The marginal effects of Al investment intensity on water and air
pollutant emissions both show a trend of first decreasing and then increasing. Moreover, the marginal
effects are initially negative and later become positive. This indicates that the use of Al in agricultural
enterprises first suppresses and then promotes water and air pollutant emissions, thereby reaffirming
Hypothesis 1 of this paper. The impact of Al on agricultural pollution exhibits a stage-specific pattern,
characterized by initial suppression followed by promotion. In addition, the directions of the control
variables’ effects remain consistent, with only differences in magnitude and statistical significance.

This confirms the robustness of the estimation results.
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Figure 7. The marginal effect of Al in agricultural enterprises on air pollutant emissions

A comparison of Fig. 5, Fig. 6, and Fig. 7 reveals that the impact pattern of Al investment on total
pollutant emissions closely mirrors that on air pollutant emissions, while the effect on water pollutants
exhibits slight deviations. Notably, when the logarithm of Al investment exceeds 14, the intensity of
water pollutant emissions exhibits a fluctuating upward trend—rising, then falling, and rising again.
This indicates that in the initial phase of production expansion, agricultural enterprises primarily
contribute to the sharp increase in air pollutant emissions.

6.2.2 Changing the model estimation method

When estimating the semi-parametric additive model, we change the type and degrees of freedom of
the smoothing function compared with the baseline model, and re-estimate the model to conduct
robustness checks. Specifically, we replace the default “Thin Plate Regression Spline” with the “Cubic

Regression Spline” and the “Natural Cubic Spline,” respectively. At the same time, we modify the
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degrees of freedom. The estimation results are shown in Column (1) “Robustness test III” and Column
(2) “Robustness test [IV” of Table 3.

Table 3. Robustness test model estimation results

. 1) (2 (3)
Variable Robustness test 111 Robustness test [V Robustness test V
Al See Fig. 8" See Fig. 9™* See Fig. 10"

(Intercept) 0.057"" 0.057"" 0.034™
(0.021) (0.021) (0.014)

Cap 0.001™"
(0.000)

-0.017*

DER (0.007)
0.017*

EM (0.007)

-0.010™

BM (0.003)
Fixed 0.003 0.003 -0.001
(0.006) (0.006) (0.006)

0.004™" 0.004™" 0.004™"

TMTPay (0.001) (0.001) (0.001)
Size 0.002%* 0.002*" 0.002*"
(0.001) (0.001) (0.001)

Lev -0.008™"" -0.008™™" -0.008™
(0.003) (0.003) (0.004)

Inst -0.021™™ -0.021™™ -0.022""
(0.004) (0.004) (0.003)

Note: *, **, *** indicate significant at the 10%, 5%, and 1% significance levels, respectively. The standard error is in brackets.
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Figure 8. The marginal effect of Al on pollutant emissions after changing the model estimation method
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Figure 9. The marginal effect of Al on pollutant emissions after changing the model estimation method



According to Fig. 8 and Fig. 9, after changing the smoothing function and degrees of freedom, the
overall trend of the marginal effect of Al on agricultural firms’ pollutant emissions remains unchanged,
with only differences in the degree of fluctuation. The coefficient directions of the control variables
also remain consistent with those in the baseline model. This further confirms the robustness of the
estimation results.

6.2.3 Adding control variables

Drawing on the study by Ma et al. (2024), we add additional control variables to the baseline model to
account for potential confounding factors and implement stricter controls. We then re-estimate the
model to conduct a robustness check.

Specifically, the additional control variables include: capital intensity (Cap), measured by the ratio
of total assets to operating revenue; debt-to-equity ratio (DER), measured by the ratio of total liabilities
to shareholders’ equity at the end of the year; equity multiplier (EM), measured by the ratio of total
assets to shareholders’ equity at year-end; and book-to-market ratio (BM), measured by the ratio of
book value to market value. The estimation results are reported in Column (3) of Table 3 under
Robustness test V.
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Figure 10. The marginal effect of Al on pollutant emissions after adding control variables

According to Fig. 10, after incorporating additional control variables, the marginal effect of Al on
agricultural firms’ pollutant emissions remains consistent with the baseline model. Specifically, at a
low level of Al usage, it exerts a suppressive effect on pollutant emissions. As the level of Al usage
increases, it gradually exhibits a promoting effect on emissions, and this promoting effect continues to

intensify. These findings further confirm the robustness of the conclusions in this study.
6.3 Mechanism analysis

Theoretical analysis and empirical results presented earlier show that the level of Al investment in
agricultural firms exerts a direct effect on their pollutant emissions, which first suppresses and then
promotes emissions. To further explore the underlying mechanism of this effect, we follow the
approach of Yang et al. (2024) and estimate the specified Model (2).

6.3.1 Operational efficiency

The estimation results of the mechanism model based on operational efficiency are shown in Column
(1) of Table 4.

Table 4. Estimation results of the mechanism test models

. 6 @)
Variable Operational efficiency Green innovation capabilities
Al See Fig. 11" See Fig. 12"
(Intercept) 376.180™" -2.267"
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(53.817) (0.889)

Fived -56.173" 0.505*"
(13.121) (0.241)

-1.655 0.048"

TMTPay (1.484) (0.027)
. -16.593"* 0.068"
Size (2.448) (0.041)
Lew 11.361° -0.139
(6.703) (0.122)

st 12.372 0.100
(8.262) (0.149)

Note: *, ** *** indicate significant at the 10%, 5%, and 1% significance levels, respectively. The standard error is in brackets.
According to Fig. 11, the marginal effect of Al investment on the operational efficiency of
agricultural firms shows a downward-then-upward trend. The value of the marginal effect is initially
less than zero and then becomes greater than zero. This indicates that the use of Al by agricultural firms
first suppresses and then promotes their operational efficiency, which confirms Hypothesis 2 of this
paper. Al affects pollutant emissions intensity by influencing the operational efficiency of agricultural
firms. Al investment initially reduces and then enhances operational efficiency, thereby exerting a

suppressing-then-promoting effect on agricultural pollutant emissions.
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Figure 11. The marginal effect of Al on operational efficiency in agricultural enterprises

Specifically, when the logarithmic value of Al investment by agricultural firms is less than
approximately 14, it exerts a suppressing effect on operational efficiency. This suppressing effect
shows a trend of first decreasing, then increasing, and finally slightly declining. This suggests that,
during this stage, firms are constrained by both limited technological adaptability and learning barriers
among unskilled labor, resulting in reduced operational efficiency. This hinders the expansion of
production scale and leads to a reduction in pollutant emissions. Meanwhile, when the logarithmic
value of Al investment is approximately equal to 10, the decline in operational efficiency becomes
controlled, indicating that issues related to technological adaptability and labor learning barriers begin
to ease.

When the logarithmic value of Al investment exceeds approximately 14, it promotes operational
efficiency, with the marginal effect exhibiting an accelerating yet fluctuating upward trend. This
indicates that, during this stage, technological adaptability improves continuously, and learning barriers
for unskilled labor are gradually overcome. As a result, firms become increasingly adaptive, which
accelerates improvements in operational efficiency. As operational efficiency rises, the resulting
productivity and scale expansion effects lead to a rapid increase in pollutant emissions.

6.3.2 Green innovation capabilities

The estimation results of the mechanism model based on green innovation capabilities are shown in



Column (2) of Table 4.

According to Fig. 12, the marginal effect of Al investment by agricultural firms on their green
innovation capability generally follows an inverted U-shaped pattern, first increasing and then
decreasing. The marginal effect value first falls below zero, then rises above zero, and eventually drops
below zero again. Although in the early stage of Al investment—when the logarithmic value of Al
investment is approximately less than 4—the marginal effect is negative, its magnitude becomes less
negative over time. Therefore, overall, Al exerts a promoting effect followed by a suppressing effect on
agricultural firms’ green innovation capability, which supports Hypothesis 3. Al influences pollutant
emissions by affecting firms’ green innovation capability. Specifically, Al investment intensity first

enhances and then reduces green innovation, which in turn first suppresses and later promotes pollutant

emissions.
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Figure 12. The marginal effect of Al on green innovation capabilities of agricultural enterprises

Specifically, when the logarithmic value of Al investment in agriculture is approximately less than
4, it exerts a suppressing effect on firms’ green innovation, although this negative effect gradually
weakens. A possible reason for this phenomenon is that in the initial stage of Al adoption, firms require
time to allocate appropriate R&D resources. The resulting time-lag effect prevents Al from showing a
positive impact on green innovation capability during this stage.

However, when the logarithmic value of agricultural Al investment is approximately greater than
4 but less than 14, it promotes green innovation capability. This suggests that Al can effectively
enhance agricultural firms’ green technology innovation through complementary effects. At the same
time, this promoting effect first strengthens and then weakens, indicating a saturation trend in the
enabling effect of Al as investment intensity increases. After reaching a peak, the positive impact on
green innovation gradually diminishes.

Finally, when the logarithmic value of agricultural Al investment exceeds 14, it again exerts a
suppressing effect on green innovation capability. This implies that as Al investment intensity
continues to rise, firms gradually shift their attention and internal resources away from innovation,
leading to a decline in green innovation. As a result, pollutant emissions increase. Moreover, the
suppressing effect continues to intensify, indicating that the negative impact of resource reallocation
and attention diversion on green innovation persists and strengthens over time. This leads to a
continuous increase in pollutant emission intensity.

Our empirical findings offer important extensions to the existing body of literature. First, existing
studies primarily focus on industrial enterprises to examine the impact of Al applications on pollutant
emissions (Shang et al. 2024; Cheng et al. 2024; Xu et al. 2025). In contrast, empirical investigations

into the agricultural sector remain relatively limited. This study addresses this gap by using listed
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agricultural firms in China as the research sample and systematically analyzing the effects of Al on
agricultural pollutant emissions. It thus provides valuable empirical evidence to supplement the
literature. Moreover, this study finds that Al exerts a two-stage effect on agricultural emissions—
initially reducing them and subsequently increasing them—whereas most existing studies in the
industrial context report a consistently negative effect of Al on pollution.

Second, Lin et al. (2024) suggest that Al enhances environmental performance in agricultural
enterprises by promoting green innovation. Building on this insight, this study further reveals that
green innovation capacity is constrained by firms’ absorptive limits. As Al adoption advances to later
stages, firms may experience a decline in green innovation efficiency due to saturation of absorptive
capacity, which in turn leads to a rebound in pollutant emissions. This finding implies the existence of a
threshold effect in the environmental benefits of AL

Finally, some prior studies identify that Al indirectly affects corporate emissions by influencing
resource allocation, input structure, and energy efficiency (Shen and Zhang 2023; Zhou et al. 2024;
Cheng et al. 2024). Extending this line of inquiry, the present study incorporates the perspective of
operational efficiency and finds that Al first improves and then weakens the operational efficiency of
agricultural enterprises, resulting in a nonlinear emission pattern characterized by “initial reduction
followed by subsequent increase.” This mechanism is particularly important because operational
efficiency is closely related to production scale. Continuous improvements in efficiency tend to drive
production expansion, which may amplify pollutant emissions and weaken the long-term mitigation
effects of AL

In sum, this study not only broadens the application scope of Al’s environmental impacts by
introducing the agricultural sector but also uncovers nonlinear transmission mechanisms—via green
innovation capacity and operational efficiency—that significantly enrich the existing literature both

theoretically and empirically.

7. Conclusion and policy recommendations

7.1 Conclusion

This paper analyzes the nonlinear impact path and underlying mechanism of Al on pollutant emissions
in agricultural firms. Using listed agricultural companies in China from 2010 to 2022 as the sample, it
constructs a semi-parametric additive model to empirically test the specific path through which Al
investment intensity affects pollutant emissions. It further explores the internal mechanisms from the
perspectives of operational efficiency and green innovation capability. The main conclusions are as
follows:

First, Al has a phased impact on pollutant emissions in agricultural firms, showing an initial
suppressive effect followed by a promoting effect. At low levels of Al adoption, internal and external
resource constraints lead to reductions in production efficiency and scale, resulting in lower pollutant
emissions. As Al usage intensifies, the resulting improvements in productivity and scale expansion lead
to increased emissions.

Second, the impact path of Al on total pollutant emissions is consistent with its effect on air
pollutants, while it differs slightly in the case of water pollutants. Specifically, at higher levels of Al
usage, water pollutant intensity shows a fluctuating trend—rising, then falling, and rising again. This

suggests that during the early stage of production expansion, Al primarily leads to a rapid increase in
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air pollutant emissions.

Third, Al influences agricultural pollutant emissions through a nonlinear effect on operational
efficiency—first reducing and then enhancing it. In the early stage of AI application, firms face
limitations from new technology adaptation and learning barriers among unskilled labor, which reduces
operational efficiency and hinders production scale expansion, thereby lowering emissions. As Al
adoption deepens, technological adaptation improves, learning barriers diminish, and firm adaptability
increases, leading to rapid gains in operational efficiency and, consequently, a sharp rise in pollutant
emissions.

Finally, Al affects pollutant emissions by first enhancing and then weakening green innovation
capacity in agricultural firms. At low levels of Al use, resource allocation and the complementary effect
with skilled labor improve green innovation, reducing emissions. As Al use intensifies, diminishing
returns set in, innovation resources are reallocated, and organizational attention shifts—factors that

gradually erode green innovation capacity and lead to rising pollutant emissions.
7.2 Policy recommendations

Building upon the empirical findings, this section discusses their broader implications for policy design
and managerial practice. The results reveal that Al adoption exerts a nonlinear environmental effect in
agricultural enterprises—emissions decline in the early stages but rebound as adoption deepens. This
U-pattern is transmitted through two key mechanisms: green innovation capacity and operational
efficiency. These dynamics suggest that simple promotion of Al may not guarantee sustainable
emission reductions unless paired with supportive policy and managerial responses. Accordingly, the
following recommendations are proposed:

First, it is important to improve the Al technology adaptation mechanism to shorten the “low-
efficiency adaptation period” during the initial stage of digital transformation in agricultural firms. The
research shows that in the early phase of Al application, agricultural firms often face problems such as
poor technological compatibility and long learning curves for unskilled labor. These issues reduce
operational efficiency and constrain production activities, leading to a temporary decline in pollutant
emissions. To prevent such “false reductions” from masking structural problems, the government is
advised to strengthen public support for Al applications in agriculture. This includes establishing
technical adaptation guidance centers, launching standardized solutions for different sub-industries, and
offering skill training and hands-on coaching for grassroots agricultural firms to help them overcome
the initial adaptation gap and achieve both technological progress and green development.

Second, a differentiated regulatory mechanism should be introduced to manage the emission
rebound associated with large-scale Al adoption. As Al usage increases, productivity improves
significantly and industrial expansion accelerates, which leads to a rapid rise in pollutant emissions. To
address this risk, pollutant emission intensity should be embedded into capacity-expansion approval,
Al-related subsidy qualification, and green credit evaluation. Firms with a severe disconnect between
expansion and emission control should be subject to capacity constraints and enhanced environmental
supervision to prevent the spread of *“ high-intelligence but high-emission expansion.”

Finally, the positive impact of Al on green innovation should be strengthened to avoid the
marginal decline of its long-term enabling effects. The research shows that Al initially promotes green
innovation in agricultural firms through resource restructuring and complementarity, thereby
effectively curbing emissions. However, as Al adoption deepens, firms may shift their resource

allocation to non-green areas, weakening their green innovation capacity. To sustain AI’s green-
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enabling effect, a coordinated policy framework—Iinking Al adoption with green R&D incentives—
should be implemented to guide firms in applying Al to energy saving, cleaner production, and
resource recycling. It is recommended to establish special funds, provide green tax incentives, and
introduce performance-linked environmental subsidies. Incorporating green technology outcomes into
performance evaluation and financing criteria can further strengthen firms’ long-term motivation for

continuous green innovation.
7.3 Limitations and future research

This study has several limitations that offer directions for future research. First, the sample includes
only listed agricultural firms in China, which may not fully represent the broader sector, particularly
small and non-listed enterprises with different capacities for AI adoption and environmental
management. Moreover, the sample size is relatively small (22 firms). While this firm-level evidence
still provides valuable insights into Al’s environmental impacts within the agricultural sector, the
limited sample inevitably constrains the statistical power of the analysis and may weaken the external
validity of the findings.

Second, while firm-level investment in Al hardware and software provides a practical proxy for Al
application, it does not capture specific use cases. Different Al technologies—such as precision
irrigation, pest detection, or automated spraying—may affect emissions through distinct pathways. This
heterogeneity is not fully reflected in the current analysis.

Future research could address these limitations by incorporating data from non-listed enterprises
or conducting field-level surveys to obtain more detailed information on Al usage patterns and expand
the sample size. Additionally, disaggregating Al applications by function could help identify which
technologies contribute most effectively to environmental performance, thereby offering more targeted

policy and managerial implications.
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