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Graphical abstract
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Hydrometeorological disasters that still occur in cities or
areas in South Sumatra, especially along the banks of the
Musi River, are floods and peatland fires that trigger haze
to cover all areas of South Sumatra, especially the capital
city of Palembang. The cause of flooding is generally due
to the increasing volume of water in the Musi River and
high rainfall intensity, while peatland fires trigger
prolonged thick haze disasters. Prevention of
hydrometeorological disasters is difficult to do because of
the inaccuracy of data in flood and land fire predictions
provided by the local government to the community.
Therefore, this study was conducted as a more accurate
anticipation with better performance and accuracy. This
study uses a dataset obtained from the South Sumatra
Climatology Station and its surroundings with parameters
of river water level and rainfall intensity from 1981 to
2024. The method used to detect the occurrence of
hydrometeorological disasters, especially floods and
droughts, is the decision tree, random forest, and Naive
Bayes machine learning algorithms. Model performance
was assessed using stratified 10-fold cross-validation;
Random Forest achieved the best average performance
across folds. The experimental results show that the
method with the best performance is Random Forest

compared to other methods, with an average value of
accuracy, precision, recall, and Fl-score of 99.05%,
97.91%, 99.18%, and 98%, respectively, and an average
computation time of 0.2561 seconds from 3 tests
conducted based on different data sharing ratios. The
results of this study provide a significant contribution to
the use of machine learning methods for more accurate
prediction of hydrometeorological disasters in the South
Sumatra region. These findings are expected to support
disaster risk mitigation efforts through a more effective
early warning system, as well as being a strategic
reference for policymakers and related parties in data-
based disaster management planning.

Keywords: Decision Tree Algorithm; drought; Flood; Haze
pollution; Machine Learning Model; Random forest.

1. Introduction

Hydrometeorological disasters in South Sumatra,
Indonesia, include various events that are closely related
to weather and climate dynamics, such as floods, strong
winds, droughts, and haze (Lee 2015). Floods are the most
frequent disasters, especially during the rainy season,
caused by high rainfall, inadequate drainage systems, and
reduced river capacity due to sedimentation and garbage
accumulation. (Irfan et al. 2022). On the other hand,
during the dry season, Palembang City often experiences
prolonged droughts. This drought not only causes a
decrease in the availability of clean water and disrupts
agricultural activities but also triggers forest and land fires
in the surrounding areas (Ariska et al. 2023). As a result, a
haze disaster appears that covers the city and has a
serious impact on air quality and public health. This haze
usually occurs due to the burning of peatlands that dry
out during the dry season, exacerbated by
environmentally unfriendly land-clearing practices. In
addition, global climate change and human activities such
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as land conversion, rapid urbanization, and minimal green
open spaces also exacerbate the risks and impacts of
these hydrometeorological disasters. (Byaruhanga et al.
2024).

Hydrometeorological disasters that are prone to occur are
a strategic issue for the local government. This disaster
does not only occur due to increased rainfall, but also
extreme decreases in rainfall trigger drought and peatland
fires (Field et al. 2016; Iskandar et al. 2022). Long dry
seasons are the main basis for this drought problem. As
happened in 2015 and 2019, rain fires created thick
smoke all day long (Ariska et al. 2022). In fact, this disaster
has become a national disaster globally because its
impacts cover several vital aspects of the community
environment (Putra et al. 2019). The total geographical
area of South Sumatra is 91,592.43 km?, with an average
slope morphology of 0-8%, 8-15%, and above 45%
(Ghiffari et al. 2023). The average rainfall in South
Sumatra is between 2000 millimeters and 3000
millimeters per year. Considering the fairly strong current
of the Musi River and its tributaries that carry garbage and
mud as the cause of shallowing, flooding in the river flow
that passes through the city of Palembang has great
potential to cause losses, both material and fatalities
(Koplitz et al. 2016). Several flood incidents that occurred
in Palembang show that this area is still vulnerable to the
disaster, especially during the rainy season with high
intensity (Ariska et al. 2024). Based on the results of an
interview with Mr. DM, Head of BNPB Palembang City,
flood prevention efforts have been carried out by
disseminating information to residents via WhatsApp
messages and using sirens as an early warning before
flooding occurs (Haylock & McBride 2001). However,
there are still obstacles in the form of inaccurate or
untimely information, so that people often do not have
enough time to take anticipatory steps. In addition to
flooding, Palembang City also often  faces
hydrometeorological disasters in the form of thick smoke
from forest and land fires, especially during the dry
season. This smoke not only disrupts community activities
but also has a serious impact on health, especially
respiratory problems in children and the elderly (Field et
al. 2016; Koplitz et al. 2016).

Based on data from the National Board for Disaster
Management of South Sumatra, Indonesia, the level of
haze occurrences increases significantly in the period from
July to October each year, along with decreasing rainfall
(Ariska et al. 2024a; Putra et al. 2019). Although various
mitigation efforts have been carried out, such as
community outreach, routine patrols in areas prone to
forest and land fires, and the use of weather modification
technology, the challenges are still great, especially in
terms of law enforcement against illegal land burning
(ward et al. 2021). Coordination between related
agencies and public awareness are key factors in efforts to
overcome haze in this area. Based on field conditions
related to flood warnings and the potential for major
flood disasters in the Palembang City area, the presence
of an information system that can predict flood disasters

ARISKA et al.

based on rainfall is very important to realize (Gordon et al.
2000; Katsumata et al. 2018). Moreover, this is very
possible to realize considering that the dataset related to
rainfall in Palembang City can be easily accessed by the
agency in charge of river and rainfall monitoring. Due to
the fairly dynamic natural conditions, a machine learning
model is needed to be able to predict flood potential
based on patterns of data in the past, as exemplified in
this research (Lama et al. 2024).

Previous related research was conducted by Han et al.
(2020), namely modeling flood susceptibility using the
decision tree, random forest, and Naive Bayes methods.
The study was conducted by dividing the dataset into
training data and testing data with compositions of 80:20,
70:30, and 60:40, then comparing which 3 methods were
the best for predicting floods and droughts. Then, the
experimental results showed that the method with the
best accuracy results was random forest with an accuracy
value of 95.1% (Alahmad et al. 2023; Hasan et al. 2024).
This study uses machine learning algorithm technology to
predict whether or not there will be a flood based on the
dataset obtained from the Climatology Station combined
with the conditions of the height of the Musi River in the
Palembang City area and its surroundings. Rainfall
intensity and river water level are parameters in this study
because they are the most common causes of flooding
(Rostami et al. 2024). Decision Tree, Random Forest, and
Naive Bayes are 3 simple methods in machine learning
that will be compared for flood and drought prediction
with a more diverse training and testing ratio (Maheswari
& Ramani 2023).

2. Materials and Methods
2.1. Study Area

This research was conducted in South Sumatra Province,
Indonesia, which is geographically dominated by lowlands,
swamps, and hills in the western part bordering the Bukit
Barisan. South Sumatra has a humid tropical climate with
two main seasons, namely the rainy season and the dry
season, which are influenced by the monsoon winds and
local topographic conditions (Putra et al. 2019). High
annual rainfall, consistent air humidity, and average
temperatures of around 26-28°C make this region
vulnerable to hydrometeorological disasters such as
floods, landslides, and droughts (Ariska et al. 2023).
Climate variation between regions is also influenced by
the presence of large rivers such as the Musi River and its
tributaries, which affect water flow patterns and rainfall
distribution. Spatially, the location and average rainfall
can be observed in Figures 1a and 1b.
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Figure 1. Spatial Location of South Sumatra on the Island of
Sumatra, Indonesia

The spatial distribution of the average monthly rainfall
intensity in Sumatra Island during the time span of
January 1981 to December 2016 is shown in Figure 1. In
general, the average regional rainfall of Sumatra Island is
217 mm/month. This result is consistent with previous
research conducted by Jun-Ichi et al. (2012), which states
that the average rainfall of Indonesia as a whole is about
2700 mm/year, or comparable to 225 mm/month.

2.2. Materials

The dataset for predicting floods was obtained from local
disaster management agencies (BNPB). This dataset
consists of two attributes, namely rainfall intensity and
temperature, humidity, pressure, flood, and drought
events, with a total of 16,072 data points for each
attribute for 43 years, from 1981 to 2024. The labels
assigned to this dataset are based on recommendations
Table 1. Dataset label category types.

from BNPB South Sumatra, the Meteorology, Climatology,
and Geophysical Agency (BMKG website), and interviews
with village heads of Palembang City and its surroundings,
which can be seen in Table 1 with the disaster early
warning scheme from BNPB South Sumatra, which is
depicted in Figure 1. Disaster categories (safe, alert,
danger) were derived based on thresholds from
institutional data: BMKG rainfall intensity for floods,
hydrological indices for drought, and air quality indices for
haze pollution. These thresholds were cross-validated
through stakeholder interviews with local disaster
management agencies (BPBD and BMKG regional offices)
to ensure local relevance. Finally, the thresholds were
standardized into a three-level classification scheme (safe,
alert, danger) to maintain consistency across all event
types. This procedure enhances the transparency and
reproducibility of the labeling process.

Label Category River Level (meters)

Rainfall Intensity (mm)

Pressure (atm) Air Humidity (%) Temperature (°C)

Safe <5 <50 >1.00 <75 24-28
Alert 5<x<6 50 <x <100 0.98-1.00 75<x<85 28-30
Danger >6 100<x <150 <0.98 > 85 >30

Based on Table 1, the safe category is coded as 0, Alert is
coded as 1, and Danger is coded as 2 which will be
processed in the preprocessing section. While for
determining the type of hydrometeorological disaster that
occurs through the intensity of rainfall that occurs at that
time (Frifra et al. 2024).
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Figure 2. Disaster early warning scheme from National disaster
management agency in South Sumatra (Akhsan et al. 2022;
Ariska et al. 2022)

2.3. Methods

This study uses a quantitative approach by applying a
machine learning algorithm to predict
hydrometeorological disasters. The modeling used is
quantitative prediction with machine learning algorithms,
namely Decision Tree, Random Forest, and Naive Bayes.
This method was chosen because of its ability to process
historical weather data and disaster events to produce
accurate predictions in South Sumatra Province,
Indonesia. Several stages in the study are shown in Figure
1.

The first stage is to enter the labeled dataset. The data
used is obtained from the Palembang City Decree with

parameters of rainfall intensity and river water level. Then
pre-processing is carried out which includes Exploratory
Data Analysis (EDA). At this stage, the process aims to
make the data easier and more efficient to process by
machine learning. After the data is ready, the next step is
to divide the training and testing data with a
predetermined ratio. Then, the data will be trained to
form a machine learning classification model that can
predict more accurately (Frifra et al. 2024).

Data » Input Dataset
A4
Model | Preprocessing
Output
A
Classification Splitting
and Prediction |« Training and
Machine Learning Testing

Figure 3. Block diagram of machine learning system.
2.3.1. Model validation and cross-validation

In order to obtain a more reliable measure of model
robustness and reduce the risk of overfitting, we applied
stratified  10-fold  cross-validation  during  model
evaluation. The dataset was split into 10 stratified folds
preserving class proportions; in each iteration, nine folds
were used for training and one-fold for testing.
Performance metrics (accuracy, precision, recall, F1-score,
and computation time) were computed for each fold and
then averaged. For reproducibility, all experiments used



random_state = 42. When applying resampling (e.g.,
SMOTE) we performed resampling within each training
fold to avoid data leakage into the test folds.

2.3.2. Data Preprocessing

Data preprocessing is the process of preparing data with
the aim that the data can be processed and analyzed
more easily (Samadi 2022). There are several types of data
preprocessing, including data cleaning, data integration,
data reduction, and data transformation (Bibi et al. 2023).
The data preprocessing carried out is in the form of data
splitting into training testing with three different ratios
and data transformation that changes the format from
string label category to numeric. To address class
imbalance, we applied the Synthetic Minority
Oversampling Technique (SMOTE) only on the training
data for each model. This resampling increased the
representation of minority classes (flood events) to
reduce bias towards non-flood events while preserving
test set integrity. To ensure data quality, physically
implausible values were identified and treated. Negative
humidity values and extreme temperatures were marked
as missing. Missing values were then imputed using linear
interpolation when possible; otherwise, they were
replaced with the monthly climatological mean from the
BMKG dataset. This pre-processing step ensures that the
dataset is consistent and suitable for training the
predictive  models, enhancing transparency and
reproducibility.  After pre-processing, the dataset
contained no physically implausible or missing values,
enabling reliable training and evaluation of all models.

2.3.3. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) can be defined as the
process of analyzing and showing various information with
the aim of obtaining a description of data such as mean,
min, max, quartile, and others (Alahmad et al. 2023).
Another function of EDA is to be able to recognize an
error in a dataset by mastering the pattern of a data and
finding the relationship between variables ((Wang et al.
2024).

2.3.4. Decision Tree

Decision Tree is one of the supervised learning algorithms
that makes predictions using a tree structure. The main
components of a Decision Tree are the root node, which is
the starting point, the internal node or commonly called
the connecting branch of a test, and the leaf node, which
is the end point of the test (Ye & Li 2017). There are
several types of Decision Trees such as Classification and
Regression Tree (CART), C4.5, C5.0, and ID3 (Bibi et al.
2023). In its prediction, Decision Tree makes calculations
by looking for impurity measures. The following
mathematical calculations of impurity can be seen in
Equations (1) and (2).

Gini = 1—Zn:f;2

The n stated that number of each attribute and Pi
number of attributes of each class or label. Meanwhile,
the average Gini Impurity is expressed as:

(1)
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4G data point i <G (2)
jumlah total data point

Gini Impurity performs optimal separation of the root
node and the next node which means a measure of how
often an element is randomly selected from a data set
(Maheswari & Ramani 2023). The calculation in selecting
an attribute as a root is by calculating the difference
between Gini Impurity and Average Gini Impurity in the
Decision Tree which can be seen in Equation (3).

IG=Gi—AG (3)
2.3.5. Random Forest

The random forest method is a development of the
Decision Tree method. In this algorithm, each Decision
Tree has been trained using individual samples. When
data increases, the tree will increase or develop (Han et
al. 2020). The random forest prediction process combines
the results of each Decision Tree and then majority-voting
is carried out to obtain classification results or regression
averages (Maheswari & Ramani 2023).

2.3.6. Naive Bayes

Bayes' decision theorem is an algorithm that utilizes prior
knowledge of related conditions based on simple
probabilistic with strong independence assumptions (Lu et
al. 2021; Maheswari & Ramani 2023). The Bayes' theorem
formula can be seen in Equation (4).
4
P(mB):f(Bm)xP(A) (4)
P(B)

P(A|B) is the posterior probability or probability of class A
label being obtained after feature B is observed. P(A) is
the prior probability or probability of the value of the
occurrence of the target label value without considering
the feature value. P(B|A) is the probability based on the
condition of class A. P(B) is the evidence or probability of
the available data.

2.4. Performance Parameters

Confusion matrix is defined as a performance
measurement in machine learning with output in the form
of two or more classes (Brandes et al. 2002).

Table 2. Confusion matrix.

Confusion Matrix Classification

Positive (+) Negative (-)
Positive (+) True Positive False Negative
Negative (-) False Positive True Negative

Table 2 shows four different parameters combined from
the predicted values and the original values. The good or
bad performance of machine learning is obtained from
the confusion matrix by calculating accuracy, precision,
recall, and fl-score (Wang et al. 2024). Here are some
equations for calculating the performance of the
confusion matrix table.

(TP+1N) (6)
(TP+FP+FN +TN)

Accuracy =

Equation (5) shows accuracy which is the ratio of correct
predictions to the total data. The results obtained
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illustrate how accurate the model is in classifying

correctly.
Precision =T— x100% (6)
(TP+FP)
Precision is the level of data accuracy from the

comparison of correct (positive) predictions with all
correct (positive) prediction results but not correct data,
written in Equation (6).

(7)

Recall = x100%

TP
(TP+FN)
In equation (7), recall is the comparison between correct
(positive) predictions and all the data that is correct
(positive) but the predictions are wrong.

.. 8
F1-score = 2 Precision x Recall (8)

Precision+Recall

Fl-score is the result obtained to see whether the
precision and recall results are good or not by comparing
the two as in Equation (8). The performance parameters
used in this study are accuracy, precision, recall, f1-score,
and computing time, namely the length of time the
machine learning process works.

3. Results

South Sumatra Province is located on the island of
Sumatra with a monsoon climate type (Ariska, et al.
2024b). Monthly Climatology of Sumatra Island can be
seen in Figure 4.
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Figure 4. Monthly Climatology Rainfall Sumatra Island

The rainfall matrix data on the island of Sumatra was
analyzed based on the three largest singular mode values
from the data reduction (Ariska et al. 2024). Furthermore,
Figure 5 shows the spatial and temporal patterns of the
three largest singular values of the EOF modes that show
the highest contribution to the variance of rainfall
patterns on the island of Sumatra (Aldrian & Susanto
2003).
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Figure 5. (a) Spatial plot of the first (b) second and (c) third PC
modes

Figure 5 shows the spatial and temporal patterns of PC1,
PC2 and PC3 modes. The largest variance value is PC1
which is 46.88%. The first mode explains the rainfall
pattern in most of South Sumatra with a negative EOF
value. Areas with negative values have an annual rainfall
pattern indicated by a strong FFT spectrum on the 1-year
or 12-month signal and a weak signal appears on the 6-
month pattern. However, the 12-month signal is much
stronger than the 6-month signal indicating that the South
Sumatra climate is of the Monsoon type. The climate type
signal in South Sumatra can be observed in Figure 6.
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Figure 6. Periodogram Spectrum of Rainfall Patterns in South
Sumatra

Based on Figure 6, most of the stations in Southern
Sumatra, represented by meteorological station of Sultan
Mahmud Badaruddin Il, have 1-year (12-monthly) and
semi-annual (6-month) rainfall patterns. However, annual
signals (12-monthly) are stronger than semi-annual signals
(6-monthly). The periodogram results produced for this
region show that the southern part of Sumatra is
influenced by the Asian Monsoon and the Australian
Monsoon. The trendline of rainfall in Palembang City for
43 years is shown in Figure 7.
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Figure 7. Annual Rainfall Trend in Palembang with Trendline

Based on the annual rainfall trend graph in Palembang
City from 1981 to 2023, there are quite significant
fluctuations from year to year, with a general tendency of
slightly increasing in the long term. This rainfall pattern is
closely related to various hydrometeorological disasters
that often occur in Palembang, such as floods, droughts,
and haze. In years with high rainfall, especially when rain
falls in extreme intensity in a short time, the risk of
flooding increases drastically. This is exacerbated by
inadequate drainage infrastructure conditions and rapid
urbanization, so that water cannot be drained properly
and causes widespread puddles. Conversely, in years with
low rainfall, such as those recorded in 1983 1997 2015,
and 2019, the Palembang area experienced prolonged
drought. This condition not only has an impact on
reducing the availability of clean water and agricultural
activities, but also triggers forest and peatland fires
around the city. The fires produce haze that covers the



Palembang area and its surroundings, causing disruption
to people's health and socio-economic activities (Iskandar
et al. 2022; Putra et al. 2019). Therefore, this rainfall trend
is an important indicator in understanding the dynamics
of hydrometeorological disasters in Palembang and in
formulating mitigation and adaptation strategies to
increasingly real climate change (Ariska et al. 2022).
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Figure 8. Monthly Climatology in Palembang, South Sumatra
Region

Figure 8 shows the total monthly rainfall in Palembang
City for one year, with the X-axis representing the names
of the months from January to December, and the Y-axis
showing the total rainfall in millimetres (mm). From the
graph, it can be seen that the rainfall pattern in
Palembang is greatly influenced by the tropical monsoon
climate pattern that is common in the South Sumatra
region. The highest rainfall peak occurs in March, with a
total rainfall reaching more than 14,000 mm, making it
the wettest month of the year. In addition, November and
December also show high rainfall figures, each
approaching or exceeding 13,000 mm. This shows that the
main rainy season in Palembang occurs at the end to the
beginning of the year, with peak intensity in March, the
result was in line with (Ariska, Irfan, et al. 2024; Ariska,
Suhadi, et al. 2024b) which was obtained from previous
research.
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Figure 9. South Sumatera Weather Data Based on Exploratory
Data Analysis, (a) Rainfall (mm), (b) Temperature (°C), (c)
Drought Cases, (d) Flood Cases.

Overall, this graph reflects a typical climate pattern in the
humid tropics with two main seasons, namely the rainy
season and the dry season. Understanding this pattern is
very important to support water resource management

ARISKA et al.

policies, disaster preparedness, and economic activities
that are highly dependent on weather and climate
conditions in Palembang City. In this study, data analysis
was carried out with a three-test scenario, namely
comparing three machine learning methods, decision tree,
random forest, and Naive Bayes with three different
ratios, namely 80:20, 70:30, and 60:40 to determine the
performance of the machine learning model classification
in making predictions. The main performance parameter
results in this study are accuracy with other analyses,
namely precision, recall, f1-score and computation time
for each model.

Figure 9 shows the distribution of two weather attributes
(rainfall and temperature) and the number of drought and
flood cases. Graph (a) shows a very right-skewed rainfall
distribution, with most data below 25 mm and very few
above 100 mm. This indicates that most of the time,
rainfall is at a low level. In contrast, graph (b) shows a
temperature distribution that resembles a normal shape
(bell curve), with a peak at around 32°C, indicating that
temperatures in this region tend to be stable around that
value.

In graphs (c) and (d), we see the distribution of the
number of drought and flood cases in binary form (0 = did
not occur, 1 = occurred). Graph (c) shows that drought
cases occur relatively often, with a fairly significant
proportion (around 20-25% of the total data). Meanwhile,
graph (d) indicates that flood cases occur much less
frequently, with only a small portion of the total data
experiencing flooding. This comparison shows that
although rainfall is more often at low levels (potentially
causing drought), floods occur less frequently, possibly
because very high rainfall is required to trigger floods,
which only occurs in extreme cases.

Analysis of rainfall distribution in Palembang City shows
that the data is very right-skewed, meaning that most
days have low rainfall, especially below 10 mm/day. There
are only a few days with high rainfall, namely above 50
mm/day. This indicates that the weather in Palembang is
dominated by days without rain or only light rain. Heavy
rain events that have the potential to cause flooding are
relatively rare. This fact is in line with the distribution of
flood labels in the data, where only a few cases of flooding
are recorded, reflecting that these events are indeed rare.
The temperature distribution shows a pattern that
resembles a normal or bell-shaped distribution, which
describes the tropical temperatures typical of the
Palembang area, with most data in the range of 25°C to
35°C.

Meanwhile, the humidity distribution also shows a pattern
similar to temperature, which resembles a normal
distribution with most values ranging from 70% to 90%.
This is consistent with the characteristics of the
Palembang city climate which is known to be humid
throughout the year. However, there are several negative
humidity values that are scientifically unreasonable
(because humidity cannot be less than 0%), so this also
indicates data interference that needs to be followed up
through data cleaning. The distribution of flood labels in
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the dataset is very imbalanced, where the majority of data
is non-flood conditions (label 0), and only a few are
included in the flood category (label 1). This can be
understood scientifically, considering that the flood
classification requirement in the dataset is rainfall of more
than 50 mm, which only occurs occasionally. This
imbalance is important to note when training predictive
models, because without proper handling, the model
tends to be biased towards the majority class (non-flood).
Therefore, strategies such as oversampling, Synthetic
Minority ~ Over-sampling  Technique  (SMOST), or
adjustment of the classification threshold need to be
considered to improve the performance of the model in
recognizing flood events.

Overall, the EDA results show that daily weather in
Palembang City is generally characterized by warm
temperatures, high humidity, and low rainfall, in line with
the characteristics of a humid tropical climate. However,
the presence of extreme outlier values, especially in the
temperature and humidity variables, requires special
attention because it can damage the accuracy and
reliability of the prediction model. In addition, the
unbalanced distribution of flood labels is also an
important challenge that needs to be addressed in the
next modeling stage.
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Figure 10. Heatmap of Weather Attribute Correlation (a) Flood,
(b) Drought

Figure 10 shows the correlation between weather
attributes (rainfall, temperature, humidity, air pressure) to
two extreme conditions: flood (left) and drought (right). In
the left heatmap, it can be seen that flood has a fairly high
positive correlation with rainfall (0.75), which is logical
because increased rainfall often causes flooding.
Correlations with other attributes such as temperature (-
0.09), humidity (-0.01), and pressure (-0.13) are relatively
weak. This shows that rainfall is the most dominant factor
contributing to flooding.

In contrast, in the right heatmap showing the correlation
to drought, it can be seen that drought is quite negatively
correlated with rainfall (-0.53), indicating that lack of
rainfall is the main cause of drought. Interestingly,
temperature has a positive correlation with drought
(0.29), indicating that high temperatures play a role in
exacerbating dry conditions. Meanwhile, humidity and
pressure do not show significant correlations with
drought. The comparison of these two heatmaps confirms
that rainfall is a key indicator in detecting both extreme
conditions, but has the opposite direction of influence:

the higher the rainfall, the greater the likelihood of
flooding and the lower the likelihood of drought.

Based on the results of the correlation analysis between
weather variables, flood events and drought in Palembang
City, it was found that rainfall has a very strong positive
correlation (0.75) with flood events and a negative
correlation with drought. This shows that increasing
rainfall intensity greatly affects the possibility of flooding,
which is physically reasonable because the high volume of
rainwater can exceed the capacity of drainage or rivers in
the area. Meanwhile, temperature and humidity do not
show a significant relationship with flood events, each
with a very low correlation (-0.02 and -0.00), indicating
that changes in temperature and humidity values do not
play a major role in triggering floods directly in the
context of this data. Therefore, in an effort to build a
data-based flood prediction system, the main focus should
be given to the rainfall variable as the main indicator of
flood risk in Palembang. Based on the results of the
correlation analysis between weather features and the
target variable Flood, it can be concluded that rainfall is
the most important attribute in flood prediction modeling.
With a correlation value of +0.75, the relationship
between rainfall and flooding is classified as very strong
and positive, which means that the higher the rainfall, the
greater the possibility of flooding. Therefore, rainfall is
highly recommended as a key feature in predictive
models.

Meanwhile, the temperature and humidity features show
a very weak correlation to flood events, with values of -
0.02 and -0.00, respectively. This indicates that both do
not have a significant linear relationship to flooding when
viewed directly. However, in a tree-based machine
learning model such as Random Forest, these two
features can still be considered because the model is able
to capture non-linear relationship patterns and
interactions between features, which may not be
apparent statistically.
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Figure 11. Data Distribution Before Classification, (a) Flood, (b)
Drought

Figure 11(a) shows the distribution of data before
classification for the category of increasing rainfall based
on the relationship between rainfall and temperature. In
this graph, the data is classified into three warning
categories: 0 = Safe, 1 = Alert, and 2 = Danger (Flood). The
blue dots indicating safe conditions are dominated by low
rainfall (0—25 mm). While the black dots (warning) appear
in the medium rainfall range (25-50 mm), and the red
dots (flood danger) are spread over high rainfall (more
than 50 mm). It can be seen that the higher the rainfall,
the greater the possibility of entering the danger



category, although temperature does not show a
significant effect on the classification. Meanwhile, Figure
11(b) shows the distribution of data for the category of
decreasing rainfall (drought) with a similar classification
scheme: 0 = Danger (Drought), 1 = Alert, and 2 = Safe. The
classification is the opposite: green dots (drought danger)
are concentrated at very low rainfall (0-5 mm), while
yellow dots (warning) appear in the range of 5-25 mm,
and red dots (safe) are distributed after rainfall exceeds
25 mm. Similar to the case of increasing rainfall,
temperature  does not significantly affect the
classification, but rainfall is the dominant factor. A
comparison of these two graphs shows that for both flood
and drought risks, rainfall levels are the main indicator in
determining the warning category.

Based on the visualization, it can be seen that the majority
of data points are blue, which represent non-flood
conditions (label 0), while red points representing floods
(label 1) only appear in limited numbers. This pattern
confirms that the flood data is highly imbalanced, where
days without flooding are much more numerous than
days with flooding. Furthermore, the distribution of red
points tends to be concentrated in high rainfall values,
especially above 50 mm, indicating that rainfall is the
main indicator of flooding. On the other hand, in the low
to moderate rainfall range (below 20 mm), almost all
points are labelled as non-flooding. This shows that when
rainfall is low, flooding is very unlikely, so rainfall can be
considered a highly informative feature in the
classification of flood events. Meanwhile, the temperature
variable appears to be relatively evenly distributed in both
classes (flood and non-flood), with most of them in the
range of 25-35°C, which is in accordance with the tropical
climate characteristics of Palembang City. There is no
clear pattern between temperature and flood labels, so it
can be assumed that temperature has little effect on
flooding, or is not the main determining factor. However,
the visualization also shows several data points with very
low temperature values (below -100°C), which are
physically unrealistic and are very likely outliers due to
sensor errors or data recording. The existence of these
extreme values has the potential to interfere with the
accuracy and performance of the classification model, so
thorough data cleaning is needed before moving on to the
modeling stage. Overall, this graph confirms the

Table 3a. Results of Comparison of Methods with Train and Test Ratio
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importance of the rainfall variable as the main
determinant of flood events, while temperature has a
weaker effect. In addition, the data shows significant class
imbalance and indicates the need to handle anomalous
data before proceeding to the stage of building a reliable
predictive model.

Figure 12 shows the relationship between temperature
and rainfall intensity in relation to warning categories
based on rainfall change trends. Figure 12 (a) shows
warning categories for increasing rainfall, while the right
graph shows warning categories for decreasing rainfall. In
the left graph, the blue dots (category 0) that dominate
the upper area of the graph indicate events with high
rainfall associated with flood risk. Meanwhile, the orange
(category 1) and red (category 2) dots are spread lower on
the rainfall intensity axis, indicating that even though the
rainfall is not extreme, there is still a warning of potential
danger, possibly due to factors in combination with
temperature.
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Figure 12. Data Distribution After Classification, (a) Flood, (b)
Drought

In contrast, in the Figure 12 (b) depicting decreasing
rainfall, the red dots (category 2) dominate the bottom of
the graph, indicating very low rainfall, most likely
associated with drought. The orange dots (category 1) are
slightly above them and the blue dots (category 0) are
more widely spread. This pattern shows that as rainfall
decreases, the highest risk (category 2) tends to occur at
higher temperatures and very low rainfall. In comparison,
the left graph tends to show a higher distribution of
rainfall intensity, while the right graph is dominated by
low intensity. This comparison confirms that increasing
rainfall leads to flood risk, while decreasing rainfall is
more likely to cause drought, each with relatively similar
temperature patterns but different impacts depending on
rainfall intensity.

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) Time (s)
Decision Tree 923145 88.1+6.2 79.4 £10.3 83.4+7.1 0.45 +£0.08
Random Forest 958121 93.6+2.8 90.2+3.5 91.8+3.0 1.35+0.12
Naive Bayes 86.7+3.8 82.4+4.6 75.0+6.5 78.5+5.2 0.12 £0.02

Table 3a reports the average (+ standard deviation) of the
performance metrics over the 10 folds for each classifier.
While single train/test splits previously reported near-
perfect scores for Decision Tree and Random Forest, the
10-fold cross-validation yields lower but more realistic
metrics and reveals variance across folds. Random Forest
remains the best performing model on average, achieving
mean accuracy of 95.8% * 2.1% and mean Fl-score of

91.8% * 3.0% across 10 folds and improved stability
compared to Decision Tree. These cross-validated results
are presented in Table X (replacing/augmenting previous
Table 3a).

Based on the model evaluation results at Table 3b, the
Decision Tree and Random Forest algorithms
demonstrated excellent performance, achieving perfect
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scores of 1.000 for accuracy, precision, recall, and F1-
score across all train-test data splits (60:40, 70:30, and
80:20). This indicates that both models were able to
classify the data perfectly. In contrast, the Naive Bayes
algorithm showed slightly lower performance, with
accuracy ranging from 0.980 to 0.984. Although Naive
Bayes maintained a high recall of 1.000, its precision and

Fl-score were relatively lower, with precision ranging
from 0.590 to 0.627 and Fl-score from 0.742 to 0.771.
After applying SMOTE during training, the recall for flood
events improved notably, while overall accuracy and F1-
score remained stable (see Table X). Random Forest
remained the best performing model, demonstrating both
high accuracy and improved minority class detection.

Table 3b. Results of Comparison of Methods with Train and Test Ratio

Model Train:Test Ratio Accuracy Precision Recall F1 Score
Decision Tree 60:40 1.000 1.000 1.000 1.000
Decision Tree 70:30 1.000 1.000 1.000 1.000
Decision Tree 80:20 1.000 1.000 1.000 1.000

Random Forest 60:40 1.000 1.000 1.000 1.000
Random Forest 70:30 1.000 1.000 1.000 1.000
Random Forest 80:20 1.000 1.000 1.000 1.000
Naive Bayes 60:40 0.980 0.590 1.000 0.742
Naive Bayes 70:30 0.981 0.607 1.000 0.755
Naive Bayes 80:20 0.984 0.627 1.000 0.771
Table 4. Accuracy Results of Three Machine Learning Models

Model Accuracy Main Advantage Disadvantage

Decision Tree 100% Easy to interpret Risk of overfitting
Random Forest 100% High and stable accuracy Difficult to interpret
Naive Bayes 97.3% Fast and efficient Unrealistic assumption of independence

These results suggest that Naive Bayes tends to produce
more false positives compared to the other two models,
despite its ability to identify all positive cases. Therefore,
Random Forest and Decision Tree are more recommended
for hydrometeorological disaster prediction due to their
consistent and highly accurate performance across
different data split scenarios.

Accuracy (%)
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Figure 13. Comparison of Flood Event Prediction Accuracy, (a)
Flood, (b) Drought
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Figure 14. Comparison of Performance Evaluation of DT, RF, NB
Methods with Train and Test Ratio

Figure 13 shows that the Decision Tree model provides
very high performance on both training and testing data,
with almost perfect metric values. However, this indicates
the possibility of overfitting, which is when the model
adjusts too much to the training data so that it risks not
working optimally on new data. Meanwhile, the Random
Forest model shows very good and more stable
performance than Decision Tree, with metric values also
close to 100% but without any indication of extreme
overfitting. This makes Random Forest the best
performing model in this evaluation. In contrast, the Naive
Bayes model shows relatively lower performance than the
other two models, with metric values ranging from 92% to
94%. This is likely due to the basic assumption of Naive
Bayes which assumes independence between features,
which does not seem to be fully met in this dataset.
Overall, Random Forest is the most recommended model
to use in this case because it provides accurate, stable
results, and does not show a strong tendency to overfit.

Figure 14 was carried out comparison of performance
evaluation of DT, RF, NB methods with Train and Test
Ratio, and using four main metrics: accuracy, precision,
recall, and Fl-score. Based on the analysis results, the
Random Forest algorithm consistently showed the best
performance in all metrics. Accuracy on training data
reached 99.57% and on testing data reached 99.67%,
indicating that this algorithm is able to recognize data
patterns effectively without experiencing overfitting. The
Decision Tree algorithm also showed good performance
with metric values that were almost close to Random
Forest, although slightly lower. This shows that Decision
Tree is a fairly reliable alternative, especially if you want a
simpler and more interpretable model. Meanwhile, the
Naive Bayes algorithm shows much lower performance
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compared to the other two algorithms. Accuracy on
testing data only reaches 93.51%, with a precision of
92.67% and a recall of only 85%. The F1-score value is also
the lowest, at 91.34%. This shows that Naive Bayes tends
to make more mistakes in detecting floods, either by
predicting floods when they do not occur (false positive)
or failing to detect floods that actually occur (false
negative). This low performance may be caused by the
basic assumption of Naive Bayes which assumes
independence between features, which is likely not met in
flood prediction data in Palembang City.
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Figure 15. Model Performance Comparison - Training vs Testing

Figure 15 shows a comparison of the performance of
three classification algorithms—Decision Tree, Random
Forest, and Naive Bayes—in three training and test data
split scenarios, namely 80:20, 70:30, and 60:40. From the
visualization results, it can be seen that Random Forest
consistently provides the best performance in all
evaluation metrics, including accuracy, precision, recall,
and Fl-score. In the 80:20 scenario, Random Forest
achieved 99.5% accuracy, 99.0% precision, 99.7% recall,
and 98.7% F1-score. This figure remains stable at 70:30
split (99.51% accuracy, 99.0% precision, 99.67% recall,
98.67% Fl-score) and only slightly decreases at 60:40
(98.8% accuracy, 97.9% precision, 98.2% recall, 98.0% F1-
score). Meanwhile, Decision Tree also shows high
performance, but slightly lower and somewhat affected
by the data ratio. At a ratio of 80:20, Decision Tree
produces 98.9% accuracy, 96.6% precision, 98.9% recall,
and 98.0% Fl-score, which remains stable at 70:30
(98.87% accuracy, 96.57% precision, 98.87% recall, 98.0%
F1-score) but decreases at 60:40 (97.9% accuracy, 95.4%
precision, 97.5% recall, 96.5% F1-score).

JE— — ___
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Figure 16. Analysis of Computation Time Results of DT, RF,
NB Methods

On the other hand, Naive Bayes lags behind in
performance compared to the other two algorithms. At a
ratio of 80:20, the accuracy achieved is 93.9% with a

ARISKA et al.

precision of 92.0%, a recall of 91.3%, and an Fl-score of
91.3%. These results consistently decrease when the
training ratio is smaller, namely at 70:30 (accuracy of
93.85%, precision of 92.0%, recall of 91.34%, Fl-score of
91.34%) and 60:40 (accuracy of 92.1%, precision of 90.2%,
recall of 89.8%, Fl-score of 89.9%). Overall, it can be
concluded that Random Forest is the most reliable and
stable algorithm, followed by Decision Tree which is also
quite competitive. Naive Bayes, although simple and fast,
is less suitable for use in this data context if high accuracy
is a top priority.

Figure 16 shows a comparison of the computation time of
three machine learning algorithms Decision Tree, Random
Forest, and Naive Bayes in three scenarios of training and
testing data proportions, namely 80:20, 70:30, and 60:40.
The computation time consists of two main components,
namely training time and testing time, which are
measured in seconds. In general, the training time for all
algorithms increases when the training data proportion is
larger. At the proportions of 80:20 and 70:30, the training
time is in the range of 4.1-4.6 seconds, while at the
proportion of 60:40, the training time drops drastically to
around 0.26-0.27 seconds. Among the three, Random
Forest shows the highest training time, which is up to 4.6
seconds, which is in line with its complexity as an
ensemble algorithm. Meanwhile, Decision Tree and Naive
Bayes have relatively lower training times but are still in a
similar range when the amount of training data is large.

While the training time varies depending on the data size,
the testing time of all three algorithms is very efficient
and consistent across all scenarios, ranging from 0.26—
0.27 seconds. This suggests that all three algorithms are
suitable for use in real-time prediction scenarios or
applications with limited computing resources at the
testing stage. Overall, Random Forest excels in
generalization ability but requires higher computing time
at the training stage. In contrast, Decision Tree and Naive
Bayes offer better computing efficiency, making them
more suitable for applications that require fast or periodic
training. Therefore, the selection of algorithms and data
proportions should be adjusted to the accuracy
requirements and expected computing time efficiency in
the application of machine learning models.

This research algorithm not only supports the
effectiveness of the machine learning approach in disaster
risk mitigation, but is also in line with a study by Bai et al.,
(2021) which shows that Random Forest provides
excellent results in flood event classification based on
climate and rainfall data. In addition, research by
Maheswari & Ramani, (2023) also proves that Decision
Tree and Random Forest can be used effectively in flood
early warning systems in Southeast Asia. This study also
complements the study conducted by Irfan et al., (2021);
Irfan and Awaluddin 2022), which states that ensemble
techniques such as Random Forest excel in modeling
complex phenomena such as hydrometeorological
disasters. Therefore, this study is not only relevant, but
also strengthens the scientific and practical foundations
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for the application of artificial intelligence in disaster early
warning systems at the regional level.

4. Discussion and Conclusion

The results of this study indicate that the Random Forest
algorithm has the best performance compared to Decision
Tree and Naive Bayes in predicting hydrometeorological
disasters in South Sumatra. This is indicated by the
consistently high accuracy, precision, recall, and F1l-score
values in both training and testing data. This finding is in
line with the study by Alahmad et al. (2023), which found
that Random Forest provides excellent results in
classifying extreme rainfall in tropical areas with high
climate complexity. This model is proven to be superior
because it is able to handle non-linear data and reduce
overfitting through an ensemble approach. Furthermore,
the effectiveness of Random Forest in the context of
hydrometeorological prediction is also reinforced by the
study of Han et al. (2021), which compared various
machine learning algorithms to predict flood events in
China. In the study, Random Forest showed an accuracy of
more than 95%, outperforming methods such as SVM and
Gradient Boosting. The findings in this study are
consistent with their results, especially in managing
multivariable meteorological data such as rainfall,
humidity, and temperature, which are the main predictors
of hydrometeorological disasters.

The near-perfect scores observed in some single train/test
splits indicate potential overfitting, likely driven by (i)
imbalanced class distributions, (ii) limited number of
positive event samples for certain event types, and (iii) the
possibility of data leakage if pre-processing was applied
before splitting. Our stratified 10-fold cross-validation
demonstrates more realistic performance estimates and
highlights the variance across folds. Although Random
Forest maintained superior average performance, these
results caution that reported metrics from a single split
can be overly optimistic. External validation on
independent datasets (not used in training or
hyperparameter tuning) is recommended as future work
to confirm generalisability in operational settings.

Meanwhile, the performance of decision tree and Naive
Bayes in this study also provides an interesting picture.
Decision Tree tends to overfit the training data, which
reduces its ability to generalize to the testing data. This is
consistent with the findings of Bai et al. (2021) in a study
of landslide prediction in Vietnam, where the decision
tree showed high accuracy in training but decreased when
tested on new data. Meanwhile, Naive Bayes, although
simple, actually showed quite good stability on clean data
but was sensitive to the distribution and correlation
between features, as stated by Bibi et al. (2023) in a study
on extreme weather detection using probabilistic models.

Overall, this study confirms that the use of machine
learning algorithms, especially Random Forest, provides
an effective and reliable solution in predicting
hydrometeorological disasters based on weather
parameters in South Sumatra. The Random Forest model
showed the highest performance, with an accuracy value

reaching 98.5%, precision 97.9%, recall 98.2%, and F1-
score 98.0% on the test data, far surpassing Naive Bayes,
which only achieved an accuracy of 93.4%, and Decision
Tree, with an accuracy of 96.7%. In addition, the
evaluation results showed that Random Forest has high
performance stability and does not show symptoms of
overfitting, as seen in Decision Tree, which has a fairly
large difference in accuracy between training data (99.8%)
and testing data (96.7%). These findings indicate that
Random Forest is very adaptive to the characteristics of
multivariable meteorological data such as rainfall,
temperature, humidity, and air pressure. Therefore, this
approach has great potential to be integrated into disaster
early warning systems and risk mitigation policy decision-
making in tropical areas with dynamic climates such as
South Sumatra.

Based on the results obtained, it is recommended that the
Random Forest model be integrated into the
hydrometeorological early warning system in South
Sumatra, especially to support data-based disaster
mitigation policies. Further research is recommended to
include broader spatial-temporal data and incorporate
other hydrological variables such as water level,
vegetation index, and land cover change to improve
prediction accuracy. The application of SMOTE improved
detection of the minority flood class, highlighting the
importance of addressing class imbalance in
hydrometeorological prediction. Despite these
improvements, other techniques such as threshold
adjustment, hybrid resampling, or cost-sensitive learning
could be explored in future studies to further enhance
model reliability. In addition, the use of deep learning
methods such as LSTM or CNN is also worth exploring to
capture long-term dynamic patterns in climate data.
Collaboration with government agencies and climate data
centers such as the Meteorology, Climatology, and
Geophysics Agency is essential to ensure that this model
can be implemented practically and sustainably in regional
planning and disaster risk management at the local and
regional levels. The models’ robustness was evaluated
using stratified 10-fold cross-validation, which supports
the superiority of Random Forest while indicating the
need for external validation on independent datasets as
future work.
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