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Abstract 

Hydrometeorological disasters that still occur in cities or 
areas in South Sumatra, especially along the banks of the 
Musi River, are floods and peatland fires that trigger haze 
to cover all areas of South Sumatra, especially the capital 
city of Palembang. The cause of flooding is generally due 
to the increasing volume of water in the Musi River and 
high rainfall intensity, while peatland fires trigger 
prolonged thick haze disasters. Prevention of 
hydrometeorological disasters is difficult to do because of 
the inaccuracy of data in flood and land fire predictions 
provided by the local government to the community. 
Therefore, this study was conducted as a more accurate 
anticipation with better performance and accuracy. This 
study uses a dataset obtained from the South Sumatra 
Climatology Station and its surroundings with parameters 
of river water level and rainfall intensity from 1981 to 
2024. The method used to detect the occurrence of 
hydrometeorological disasters, especially floods and 
droughts, is the decision tree, random forest, and Naïve 
Bayes machine learning algorithms. Model performance 
was assessed using stratified 10-fold cross-validation; 
Random Forest achieved the best average performance 
across folds. The experimental results show that the 
method with the best performance is Random Forest 

compared to other methods, with an average value of 
accuracy, precision, recall, and F1-score of 99.05%, 
97.91%, 99.18%, and 98%, respectively, and an average 
computation time of 0.2561 seconds from 3 tests 
conducted based on different data sharing ratios. The 
results of this study provide a significant contribution to 
the use of machine learning methods for more accurate 
prediction of hydrometeorological disasters in the South 
Sumatra region. These findings are expected to support 
disaster risk mitigation efforts through a more effective 
early warning system, as well as being a strategic 
reference for policymakers and related parties in data-
based disaster management planning. 

Keywords: Decision Tree Algorithm; drought; Flood; Haze 
pollution; Machine Learning Model; Random forest. 

1. Introduction 

Hydrometeorological disasters in South Sumatra, 
Indonesia, include various events that are closely related 
to weather and climate dynamics, such as floods, strong 
winds, droughts, and haze (Lee 2015). Floods are the most 
frequent disasters, especially during the rainy season, 
caused by high rainfall, inadequate drainage systems, and 
reduced river capacity due to sedimentation and garbage 
accumulation. (Irfan et al. 2022). On the other hand, 
during the dry season, Palembang City often experiences 
prolonged droughts. This drought not only causes a 
decrease in the availability of clean water and disrupts 
agricultural activities but also triggers forest and land fires 
in the surrounding areas (Ariska et al. 2023). As a result, a 
haze disaster appears that covers the city and has a 
serious impact on air quality and public health. This haze 
usually occurs due to the burning of peatlands that dry 
out during the dry season, exacerbated by 
environmentally unfriendly land-clearing practices. In 
addition, global climate change and human activities such 
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as land conversion, rapid urbanization, and minimal green 
open spaces also exacerbate the risks and impacts of 
these hydrometeorological disasters. (Byaruhanga et al. 
2024). 

Hydrometeorological disasters that are prone to occur are 
a strategic issue for the local government. This disaster 
does not only occur due to increased rainfall, but also 
extreme decreases in rainfall trigger drought and peatland 
fires (Field et al. 2016; Iskandar et al. 2022). Long dry 
seasons are the main basis for this drought problem. As 
happened in 2015 and 2019, rain fires created thick 
smoke all day long (Ariska et al. 2022). In fact, this disaster 
has become a national disaster globally because its 
impacts cover several vital aspects of the community 
environment (Putra et al. 2019). The total geographical 
area of South Sumatra is 91,592.43 km², with an average 
slope morphology of 0-8%, 8-15%, and above 45% 
(Ghiffari et al. 2023). The average rainfall in South 
Sumatra is between 2000 millimeters and 3000 
millimeters per year. Considering the fairly strong current 
of the Musi River and its tributaries that carry garbage and 
mud as the cause of shallowing, flooding in the river flow 
that passes through the city of Palembang has great 
potential to cause losses, both material and fatalities 
(Koplitz et al. 2016). Several flood incidents that occurred 
in Palembang show that this area is still vulnerable to the 
disaster, especially during the rainy season with high 
intensity (Ariska et al. 2024). Based on the results of an 
interview with Mr. DM, Head of BNPB Palembang City, 
flood prevention efforts have been carried out by 
disseminating information to residents via WhatsApp 
messages and using sirens as an early warning before 
flooding occurs (Haylock & McBride 2001). However, 
there are still obstacles in the form of inaccurate or 
untimely information, so that people often do not have 
enough time to take anticipatory steps. In addition to 
flooding, Palembang City also often faces 
hydrometeorological disasters in the form of thick smoke 
from forest and land fires, especially during the dry 
season. This smoke not only disrupts community activities 
but also has a serious impact on health, especially 
respiratory problems in children and the elderly (Field et 
al. 2016; Koplitz et al. 2016). 

Based on data from the National Board for Disaster 
Management of South Sumatra, Indonesia, the level of 
haze occurrences increases significantly in the period from 
July to October each year, along with decreasing rainfall 
(Ariska et al. 2024a; Putra et al. 2019). Although various 
mitigation efforts have been carried out, such as 
community outreach, routine patrols in areas prone to 
forest and land fires, and the use of weather modification 
technology, the challenges are still great, especially in 
terms of law enforcement against illegal land burning 
(Ward et al. 2021). Coordination between related 
agencies and public awareness are key factors in efforts to 
overcome haze in this area. Based on field conditions 
related to flood warnings and the potential for major 
flood disasters in the Palembang City area, the presence 
of an information system that can predict flood disasters 

based on rainfall is very important to realize (Gordon et al. 
2000; Katsumata et al. 2018). Moreover, this is very 
possible to realize considering that the dataset related to 
rainfall in Palembang City can be easily accessed by the 
agency in charge of river and rainfall monitoring. Due to 
the fairly dynamic natural conditions, a machine learning 
model is needed to be able to predict flood potential 
based on patterns of data in the past, as exemplified in 
this research (Lama et al. 2024). 

Previous related research was conducted by Han et al. 
(2020), namely modeling flood susceptibility using the 
decision tree, random forest, and Naïve Bayes methods. 
The study was conducted by dividing the dataset into 
training data and testing data with compositions of 80:20, 
70:30, and 60:40, then comparing which 3 methods were 
the best for predicting floods and droughts. Then, the 
experimental results showed that the method with the 
best accuracy results was random forest with an accuracy 
value of 95.1% (Alahmad et al. 2023; Hasan et al. 2024). 
This study uses machine learning algorithm technology to 
predict whether or not there will be a flood based on the 
dataset obtained from the Climatology Station combined 
with the conditions of the height of the Musi River in the 
Palembang City area and its surroundings. Rainfall 
intensity and river water level are parameters in this study 
because they are the most common causes of flooding 
(Rostami et al. 2024). Decision Tree, Random Forest, and 
Naïve Bayes are 3 simple methods in machine learning 
that will be compared for flood and drought prediction 
with a more diverse training and testing ratio (Maheswari 
& Ramani 2023). 

2. Materials and Methods 

2.1. Study Area 

This research was conducted in South Sumatra Province, 
Indonesia, which is geographically dominated by lowlands, 
swamps, and hills in the western part bordering the Bukit 
Barisan. South Sumatra has a humid tropical climate with 
two main seasons, namely the rainy season and the dry 
season, which are influenced by the monsoon winds and 
local topographic conditions (Putra et al. 2019). High 
annual rainfall, consistent air humidity, and average 
temperatures of around 26–28°C make this region 
vulnerable to hydrometeorological disasters such as 
floods, landslides, and droughts (Ariska et al. 2023). 
Climate variation between regions is also influenced by 
the presence of large rivers such as the Musi River and its 
tributaries, which affect water flow patterns and rainfall 
distribution. Spatially, the location and average rainfall 
can be observed in Figures 1a and 1b. 
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Figure 1. Spatial Location of South Sumatra on the Island of 

Sumatra, Indonesia 

The spatial distribution of the average monthly rainfall 
intensity in Sumatra Island during the time span of 
January 1981 to December 2016 is shown in Figure 1. In 
general, the average regional rainfall of Sumatra Island is 
217 mm/month. This result is consistent with previous 
research conducted by Jun-Ichi et al. (2012), which states 
that the average rainfall of Indonesia as a whole is about 
2700 mm/year, or comparable to 225 mm/month. 

2.2. Materials 

The dataset for predicting floods was obtained from local 
disaster management agencies (BNPB). This dataset 
consists of two attributes, namely rainfall intensity and 
temperature, humidity, pressure, flood, and drought 
events, with a total of 16,072 data points for each 
attribute for 43 years, from 1981 to 2024. The labels 
assigned to this dataset are based on recommendations 

from BNPB South Sumatra, the Meteorology, Climatology, 
and Geophysical Agency (BMKG website), and interviews 
with village heads of Palembang City and its surroundings, 
which can be seen in Table 1 with the disaster early 
warning scheme from BNPB South Sumatra, which is 
depicted in Figure 1. Disaster categories (safe, alert, 
danger) were derived based on thresholds from 
institutional data: BMKG rainfall intensity for floods, 
hydrological indices for drought, and air quality indices for 
haze pollution. These thresholds were cross-validated 
through stakeholder interviews with local disaster 
management agencies (BPBD and BMKG regional offices) 
to ensure local relevance. Finally, the thresholds were 
standardized into a three-level classification scheme (safe, 
alert, danger) to maintain consistency across all event 
types. This procedure enhances the transparency and 
reproducibility of the labeling process. 

 

Table 1. Dataset label category types. 

Label Category River Level (meters) Rainfall Intensity (mm) Pressure (atm) Air Humidity (%) Temperature (°C) 

Safe ≤ 5 ≤ 50 ≥ 1.00 ≤ 75 24–28 

Alert 5 < x ≤ 6 50 < x ≤ 100 0.98–1.00 75 < x ≤ 85 28–30 

Danger > 6 100 < x ≤ 150 < 0.98 > 85 > 30 

 

Based on Table 1, the safe category is coded as 0, Alert is 
coded as 1, and Danger is coded as 2 which will be 
processed in the preprocessing section. While for 
determining the type of hydrometeorological disaster that 
occurs through the intensity of rainfall that occurs at that 
time (Frifra et al. 2024). 

 

Figure 2. Disaster early warning scheme from National disaster 

management agency in South Sumatra (Akhsan et al. 2022; 

Ariska et al. 2022) 

2.3. Methods 

This study uses a quantitative approach by applying a 
machine learning algorithm to predict 
hydrometeorological disasters. The modeling used is 
quantitative prediction with machine learning algorithms, 
namely Decision Tree, Random Forest, and Naïve Bayes. 
This method was chosen because of its ability to process 
historical weather data and disaster events to produce 
accurate predictions in South Sumatra Province, 
Indonesia. Several stages in the study are shown in Figure 
1. 

The first stage is to enter the labeled dataset. The data 
used is obtained from the Palembang City Decree with 

parameters of rainfall intensity and river water level. Then 
pre-processing is carried out which includes Exploratory 
Data Analysis (EDA). At this stage, the process aims to 
make the data easier and more efficient to process by 
machine learning. After the data is ready, the next step is 
to divide the training and testing data with a 
predetermined ratio. Then, the data will be trained to 
form a machine learning classification model that can 
predict more accurately (Frifra et al. 2024). 

 

Figure 3. Block diagram of machine learning system. 

2.3.1. Model validation and cross-validation 

In order to obtain a more reliable measure of model 
robustness and reduce the risk of overfitting, we applied 
stratified 10-fold cross-validation during model 
evaluation. The dataset was split into 10 stratified folds 
preserving class proportions; in each iteration, nine folds 
were used for training and one-fold for testing. 
Performance metrics (accuracy, precision, recall, F1-score, 
and computation time) were computed for each fold and 
then averaged. For reproducibility, all experiments used 
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random_state = 42. When applying resampling (e.g., 
SMOTE) we performed resampling within each training 
fold to avoid data leakage into the test folds. 

2.3.2. Data Preprocessing  

Data preprocessing is the process of preparing data with 
the aim that the data can be processed and analyzed 
more easily (Samadi 2022). There are several types of data 
preprocessing, including data cleaning, data integration, 
data reduction, and data transformation (Bibi et al. 2023). 
The data preprocessing carried out is in the form of data 
splitting into training testing with three different ratios 
and data transformation that changes the format from 
string label category to numeric. To address class 
imbalance, we applied the Synthetic Minority 
Oversampling Technique (SMOTE) only on the training 
data for each model. This resampling increased the 
representation of minority classes (flood events) to 
reduce bias towards non-flood events while preserving 
test set integrity. To ensure data quality, physically 
implausible values were identified and treated. Negative 
humidity values and extreme temperatures were marked 
as missing. Missing values were then imputed using linear 
interpolation when possible; otherwise, they were 
replaced with the monthly climatological mean from the 
BMKG dataset. This pre-processing step ensures that the 
dataset is consistent and suitable for training the 
predictive models, enhancing transparency and 
reproducibility. After pre-processing, the dataset 
contained no physically implausible or missing values, 
enabling reliable training and evaluation of all models. 

2.3.3. Exploratory Data Analysis (EDA)  

Exploratory Data Analysis (EDA) can be defined as the 
process of analyzing and showing various information with 
the aim of obtaining a description of data such as mean, 
min, max, quartile, and others (Alahmad et al. 2023). 
Another function of EDA is to be able to recognize an 
error in a dataset by mastering the pattern of a data and 
finding the relationship between variables ((Wang et al. 
2024). 

2.3.4. Decision Tree 

Decision Tree is one of the supervised learning algorithms 
that makes predictions using a tree structure. The main 
components of a Decision Tree are the root node, which is 
the starting point, the internal node or commonly called 
the connecting branch of a test, and the leaf node, which 
is the end point of the test (Ye & Li 2017). There are 
several types of Decision Trees such as Classification and 
Regression Tree (CART), C4.5, C5.0, and ID3 (Bibi et al. 
2023). In its prediction, Decision Tree makes calculations 
by looking for impurity measures. The following 
mathematical calculations of impurity can be seen in 
Equations (1) and (2). 

2Gini 1  

n

i

i

P= −
 

(1) 

The n stated that number of each attribute and 𝑃𝑖 
number of attributes of each class or label. Meanwhile, 
the average Gini Impurity is expressed as: 

 data point i
   

jumlah total data point 
iAG G=  

 

(2) 

Gini Impurity performs optimal separation of the root 
node and the next node which means a measure of how 
often an element is randomly selected from a data set 
(Maheswari & Ramani 2023). The calculation in selecting 
an attribute as a root is by calculating the difference 
between Gini Impurity and Average Gini Impurity in the 
Decision Tree which can be seen in Equation (3). 

      IG Gi AG= −  (3) 

2.3.5. Random Forest 

The random forest method is a development of the 
Decision Tree method. In this algorithm, each Decision 
Tree has been trained using individual samples. When 
data increases, the tree will increase or develop (Han et 
al. 2020). The random forest prediction process combines 
the results of each Decision Tree and then majority-voting 
is carried out to obtain classification results or regression 
averages (Maheswari & Ramani 2023). 

2.3.6. Naïve Bayes 

Bayes' decision theorem is an algorithm that utilizes prior 
knowledge of related conditions based on simple 
probabilistic with strong independence assumptions (Lu et 
al. 2021; Maheswari & Ramani 2023). The Bayes' theorem 
formula can be seen in Equation (4). 

( )
( ) ( )

( )

|      
|  

P BA P A
P AB

P B


=

 

(4) 

P(A|B) is the posterior probability or probability of class A 
label being obtained after feature B is observed. P(A) is 
the prior probability or probability of the value of the 
occurrence of the target label value without considering 
the feature value. P(B|A) is the probability based on the 
condition of class A. P(B) is the evidence or probability of 
the available data. 

2.4. Performance Parameters  

Confusion matrix is defined as a performance 
measurement in machine learning with output in the form 
of two or more classes (Brandes et al. 2002). 

Table 2. Confusion matrix. 

Confusion Matrix Classification 

Positive (+) Negative (-) 

Positive (+) True Positive False Negative 

Negative (-) False Positive True Negative 

Table 2 shows four different parameters combined from 
the predicted values and the original values. The good or 
bad performance of machine learning is obtained from 
the confusion matrix by calculating accuracy, precision, 
recall, and f1-score (Wang et al. 2024). Here are some 
equations for calculating the performance of the 
confusion matrix table. 

( )

( )
Accuracy  

 

TP TN

TP FP FN TN

+
=

+ + +
 

(6) 

Equation (5) shows accuracy which is the ratio of correct 
predictions to the total data. The results obtained 
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illustrate how accurate the model is in classifying 
correctly. 

( )
Precision   1  00% 

 

TP

TP FP
= 

+  
(6) 

Precision is the level of data accuracy from the 
comparison of correct (positive) predictions with all 
correct (positive) prediction results but not correct data, 
written in Equation (6). 

( )
Recall 1  00%  

 

TP

TP FN
= 

+
 

(7) 

In equation (7), recall is the comparison between correct 
(positive) predictions and all the data that is correct 
(positive) but the predictions are wrong. 

Precision × Recall
1 score 2     

Precision+Recall 
F − = 

 

(8) 

F1-score is the result obtained to see whether the 
precision and recall results are good or not by comparing 
the two as in Equation (8). The performance parameters 
used in this study are accuracy, precision, recall, f1-score, 
and computing time, namely the length of time the 
machine learning process works. 

3. Results  

South Sumatra Province is located on the island of 
Sumatra with a monsoon climate type (Ariska, et al. 
2024b). Monthly Climatology of Sumatra Island can be 
seen in Figure 4. 

 
Figure 4. Monthly Climatology Rainfall Sumatra Island 

The rainfall matrix data on the island of Sumatra was 
analyzed based on the three largest singular mode values 
from the data reduction (Ariska et al. 2024). Furthermore, 
Figure 5 shows the spatial and temporal patterns of the 
three largest singular values of the EOF modes that show 
the highest contribution to the variance of rainfall 
patterns on the island of Sumatra (Aldrian & Susanto 
2003).  

 

Figure 5. (a) Spatial plot of the first (b) second and (c) third PC 

modes 

Figure 5 shows the spatial and temporal patterns of PC1, 
PC2 and PC3 modes. The largest variance value is PC1 
which is 46.88%. The first mode explains the rainfall 
pattern in most of South Sumatra with a negative EOF 
value. Areas with negative values have an annual rainfall 
pattern indicated by a strong FFT spectrum on the 1-year 
or 12-month signal and a weak signal appears on the 6-
month pattern. However, the 12-month signal is much 
stronger than the 6-month signal indicating that the South 
Sumatra climate is of the Monsoon type. The climate type 
signal in South Sumatra can be observed in Figure 6. 

 

Figure 6. Periodogram Spectrum of Rainfall Patterns in South 

Sumatra  

Based on Figure 6, most of the stations in Southern 
Sumatra, represented by meteorological station of Sultan 
Mahmud Badaruddin II, have 1-year (12-monthly) and 
semi-annual (6-month) rainfall patterns. However, annual 
signals (12-monthly) are stronger than semi-annual signals 
(6-monthly). The periodogram results produced for this 
region show that the southern part of Sumatra is 
influenced by the Asian Monsoon and the Australian 
Monsoon. The trendline of rainfall in Palembang City for 
43 years is shown in Figure 7. 

 

Figure 7. Annual Rainfall Trend in Palembang with Trendline 

Based on the annual rainfall trend graph in Palembang 
City from 1981 to 2023, there are quite significant 
fluctuations from year to year, with a general tendency of 
slightly increasing in the long term. This rainfall pattern is 
closely related to various hydrometeorological disasters 
that often occur in Palembang, such as floods, droughts, 
and haze. In years with high rainfall, especially when rain 
falls in extreme intensity in a short time, the risk of 
flooding increases drastically. This is exacerbated by 
inadequate drainage infrastructure conditions and rapid 
urbanization, so that water cannot be drained properly 
and causes widespread puddles. Conversely, in years with 
low rainfall, such as those recorded in 1983 1997 2015, 
and 2019, the Palembang area experienced prolonged 
drought. This condition not only has an impact on 
reducing the availability of clean water and agricultural 
activities, but also triggers forest and peatland fires 
around the city. The fires produce haze that covers the 
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Palembang area and its surroundings, causing disruption 
to people's health and socio-economic activities (Iskandar 
et al. 2022; Putra et al. 2019). Therefore, this rainfall trend 
is an important indicator in understanding the dynamics 
of hydrometeorological disasters in Palembang and in 
formulating mitigation and adaptation strategies to 
increasingly real climate change (Ariska et al. 2022). 

 

Figure 8. Monthly Climatology in Palembang, South Sumatra 

Region 

Figure 8 shows the total monthly rainfall in Palembang 
City for one year, with the X-axis representing the names 
of the months from January to December, and the Y-axis 
showing the total rainfall in millimetres (mm). From the 
graph, it can be seen that the rainfall pattern in 
Palembang is greatly influenced by the tropical monsoon 
climate pattern that is common in the South Sumatra 
region. The highest rainfall peak occurs in March, with a 
total rainfall reaching more than 14,000 mm, making it 
the wettest month of the year. In addition, November and 
December also show high rainfall figures, each 
approaching or exceeding 13,000 mm. This shows that the 
main rainy season in Palembang occurs at the end to the 
beginning of the year, with peak intensity in March, the 
result was in line with (Ariska, Irfan, et al. 2024; Ariska, 
Suhadi, et al. 2024b) which was obtained from previous 
research. 

 

Figure 9. South Sumatera Weather Data Based on Exploratory 

Data Analysis, (a) Rainfall (mm), (b) Temperature (0C), (c) 

Drought Cases, (d) Flood Cases. 

Overall, this graph reflects a typical climate pattern in the 
humid tropics with two main seasons, namely the rainy 
season and the dry season. Understanding this pattern is 
very important to support water resource management 

policies, disaster preparedness, and economic activities 
that are highly dependent on weather and climate 
conditions in Palembang City. In this study, data analysis 
was carried out with a three-test scenario, namely 
comparing three machine learning methods, decision tree, 
random forest, and Naïve Bayes with three different 
ratios, namely 80:20, 70:30, and 60:40 to determine the 
performance of the machine learning model classification 
in making predictions. The main performance parameter 
results in this study are accuracy with other analyses, 
namely precision, recall, f1-score and computation time 
for each model. 

Figure 9 shows the distribution of two weather attributes 
(rainfall and temperature) and the number of drought and 
flood cases. Graph (a) shows a very right-skewed rainfall 
distribution, with most data below 25 mm and very few 
above 100 mm. This indicates that most of the time, 
rainfall is at a low level. In contrast, graph (b) shows a 
temperature distribution that resembles a normal shape 
(bell curve), with a peak at around 32°C, indicating that 
temperatures in this region tend to be stable around that 
value. 

In graphs (c) and (d), we see the distribution of the 
number of drought and flood cases in binary form (0 = did 
not occur, 1 = occurred). Graph (c) shows that drought 
cases occur relatively often, with a fairly significant 
proportion (around 20–25% of the total data). Meanwhile, 
graph (d) indicates that flood cases occur much less 
frequently, with only a small portion of the total data 
experiencing flooding. This comparison shows that 
although rainfall is more often at low levels (potentially 
causing drought), floods occur less frequently, possibly 
because very high rainfall is required to trigger floods, 
which only occurs in extreme cases. 

Analysis of rainfall distribution in Palembang City shows 
that the data is very right-skewed, meaning that most 
days have low rainfall, especially below 10 mm/day. There 
are only a few days with high rainfall, namely above 50 
mm/day. This indicates that the weather in Palembang is 
dominated by days without rain or only light rain. Heavy 
rain events that have the potential to cause flooding are 
relatively rare. This fact is in line with the distribution of 
flood labels in the data, where only a few cases of flooding 
are recorded, reflecting that these events are indeed rare. 
The temperature distribution shows a pattern that 
resembles a normal or bell-shaped distribution, which 
describes the tropical temperatures typical of the 
Palembang area, with most data in the range of 25°C to 
35°C.  

Meanwhile, the humidity distribution also shows a pattern 
similar to temperature, which resembles a normal 
distribution with most values ranging from 70% to 90%. 
This is consistent with the characteristics of the 
Palembang city climate which is known to be humid 
throughout the year. However, there are several negative 
humidity values that are scientifically unreasonable 
(because humidity cannot be less than 0%), so this also 
indicates data interference that needs to be followed up 
through data cleaning. The distribution of flood labels in 



FORECASTING MACHINE LEARNING DECISION TREE, RANDOM FOREST, AND NAÏVE BAYES  7 

the dataset is very imbalanced, where the majority of data 
is non-flood conditions (label 0), and only a few are 
included in the flood category (label 1). This can be 
understood scientifically, considering that the flood 
classification requirement in the dataset is rainfall of more 
than 50 mm, which only occurs occasionally. This 
imbalance is important to note when training predictive 
models, because without proper handling, the model 
tends to be biased towards the majority class (non-flood). 
Therefore, strategies such as oversampling, Synthetic 
Minority Over-sampling Technique (SMOST), or 
adjustment of the classification threshold need to be 
considered to improve the performance of the model in 
recognizing flood events. 

Overall, the EDA results show that daily weather in 
Palembang City is generally characterized by warm 
temperatures, high humidity, and low rainfall, in line with 
the characteristics of a humid tropical climate. However, 
the presence of extreme outlier values, especially in the 
temperature and humidity variables, requires special 
attention because it can damage the accuracy and 
reliability of the prediction model. In addition, the 
unbalanced distribution of flood labels is also an 
important challenge that needs to be addressed in the 
next modeling stage.  

 

Figure 10. Heatmap of Weather Attribute Correlation (a) Flood, 

(b) Drought 

Figure 10 shows the correlation between weather 
attributes (rainfall, temperature, humidity, air pressure) to 
two extreme conditions: flood (left) and drought (right). In 
the left heatmap, it can be seen that flood has a fairly high 
positive correlation with rainfall (0.75), which is logical 
because increased rainfall often causes flooding. 
Correlations with other attributes such as temperature (-
0.09), humidity (-0.01), and pressure (-0.13) are relatively 
weak. This shows that rainfall is the most dominant factor 
contributing to flooding. 

In contrast, in the right heatmap showing the correlation 
to drought, it can be seen that drought is quite negatively 
correlated with rainfall (-0.53), indicating that lack of 
rainfall is the main cause of drought. Interestingly, 
temperature has a positive correlation with drought 
(0.29), indicating that high temperatures play a role in 
exacerbating dry conditions. Meanwhile, humidity and 
pressure do not show significant correlations with 
drought. The comparison of these two heatmaps confirms 
that rainfall is a key indicator in detecting both extreme 
conditions, but has the opposite direction of influence: 

the higher the rainfall, the greater the likelihood of 
flooding and the lower the likelihood of drought. 

Based on the results of the correlation analysis between 
weather variables, flood events and drought in Palembang 
City, it was found that rainfall has a very strong positive 
correlation (0.75) with flood events and a negative 
correlation with drought. This shows that increasing 
rainfall intensity greatly affects the possibility of flooding, 
which is physically reasonable because the high volume of 
rainwater can exceed the capacity of drainage or rivers in 
the area. Meanwhile, temperature and humidity do not 
show a significant relationship with flood events, each 
with a very low correlation (-0.02 and -0.00), indicating 
that changes in temperature and humidity values do not 
play a major role in triggering floods directly in the 
context of this data. Therefore, in an effort to build a 
data-based flood prediction system, the main focus should 
be given to the rainfall variable as the main indicator of 
flood risk in Palembang. Based on the results of the 
correlation analysis between weather features and the 
target variable Flood, it can be concluded that rainfall is 
the most important attribute in flood prediction modeling. 
With a correlation value of +0.75, the relationship 
between rainfall and flooding is classified as very strong 
and positive, which means that the higher the rainfall, the 
greater the possibility of flooding. Therefore, rainfall is 
highly recommended as a key feature in predictive 
models. 

Meanwhile, the temperature and humidity features show 
a very weak correlation to flood events, with values of -
0.02 and -0.00, respectively. This indicates that both do 
not have a significant linear relationship to flooding when 
viewed directly. However, in a tree-based machine 
learning model such as Random Forest, these two 
features can still be considered because the model is able 
to capture non-linear relationship patterns and 
interactions between features, which may not be 
apparent statistically. 

 

Figure 11. Data Distribution Before Classification, (a) Flood, (b) 

Drought 

Figure 11(a) shows the distribution of data before 
classification for the category of increasing rainfall based 
on the relationship between rainfall and temperature. In 
this graph, the data is classified into three warning 
categories: 0 = Safe, 1 = Alert, and 2 = Danger (Flood). The 
blue dots indicating safe conditions are dominated by low 
rainfall (0–25 mm). While the black dots (warning) appear 
in the medium rainfall range (25–50 mm), and the red 
dots (flood danger) are spread over high rainfall (more 
than 50 mm). It can be seen that the higher the rainfall, 
the greater the possibility of entering the danger 
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category, although temperature does not show a 
significant effect on the classification. Meanwhile, Figure 
11(b) shows the distribution of data for the category of 
decreasing rainfall (drought) with a similar classification 
scheme: 0 = Danger (Drought), 1 = Alert, and 2 = Safe. The 
classification is the opposite: green dots (drought danger) 
are concentrated at very low rainfall (0–5 mm), while 
yellow dots (warning) appear in the range of 5–25 mm, 
and red dots (safe) are distributed after rainfall exceeds 
25 mm. Similar to the case of increasing rainfall, 
temperature does not significantly affect the 
classification, but rainfall is the dominant factor. A 
comparison of these two graphs shows that for both flood 
and drought risks, rainfall levels are the main indicator in 
determining the warning category. 

Based on the visualization, it can be seen that the majority 
of data points are blue, which represent non-flood 
conditions (label 0), while red points representing floods 
(label 1) only appear in limited numbers. This pattern 
confirms that the flood data is highly imbalanced, where 
days without flooding are much more numerous than 
days with flooding. Furthermore, the distribution of red 
points tends to be concentrated in high rainfall values, 
especially above 50 mm, indicating that rainfall is the 
main indicator of flooding. On the other hand, in the low 
to moderate rainfall range (below 20 mm), almost all 
points are labelled as non-flooding. This shows that when 
rainfall is low, flooding is very unlikely, so rainfall can be 
considered a highly informative feature in the 
classification of flood events. Meanwhile, the temperature 
variable appears to be relatively evenly distributed in both 
classes (flood and non-flood), with most of them in the 
range of 25–35°C, which is in accordance with the tropical 
climate characteristics of Palembang City. There is no 
clear pattern between temperature and flood labels, so it 
can be assumed that temperature has little effect on 
flooding, or is not the main determining factor. However, 
the visualization also shows several data points with very 
low temperature values (below -100°C), which are 
physically unrealistic and are very likely outliers due to 
sensor errors or data recording. The existence of these 
extreme values has the potential to interfere with the 
accuracy and performance of the classification model, so 
thorough data cleaning is needed before moving on to the 
modeling stage. Overall, this graph confirms the 

importance of the rainfall variable as the main 
determinant of flood events, while temperature has a 
weaker effect. In addition, the data shows significant class 
imbalance and indicates the need to handle anomalous 
data before proceeding to the stage of building a reliable 
predictive model. 

Figure 12 shows the relationship between temperature 
and rainfall intensity in relation to warning categories 
based on rainfall change trends. Figure 12 (a) shows 
warning categories for increasing rainfall, while the right 
graph shows warning categories for decreasing rainfall. In 
the left graph, the blue dots (category 0) that dominate 
the upper area of the graph indicate events with high 
rainfall associated with flood risk. Meanwhile, the orange 
(category 1) and red (category 2) dots are spread lower on 
the rainfall intensity axis, indicating that even though the 
rainfall is not extreme, there is still a warning of potential 
danger, possibly due to factors in combination with 
temperature. 

 

Figure 12. Data Distribution After Classification, (a) Flood, (b) 

Drought 

In contrast, in the Figure 12 (b) depicting decreasing 
rainfall, the red dots (category 2) dominate the bottom of 
the graph, indicating very low rainfall, most likely 
associated with drought. The orange dots (category 1) are 
slightly above them and the blue dots (category 0) are 
more widely spread. This pattern shows that as rainfall 
decreases, the highest risk (category 2) tends to occur at 
higher temperatures and very low rainfall. In comparison, 
the left graph tends to show a higher distribution of 
rainfall intensity, while the right graph is dominated by 
low intensity. This comparison confirms that increasing 
rainfall leads to flood risk, while decreasing rainfall is 
more likely to cause drought, each with relatively similar 
temperature patterns but different impacts depending on 
rainfall intensity. 

Table 3a. Results of Comparison of Methods with Train and Test Ratio 

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) Time (s) 

Decision Tree 92.3 ± 4.5 88.1 ± 6.2 79.4 ± 10.3 83.4 ± 7.1 0.45 ± 0.08 

Random Forest 95.8 ± 2.1 93.6 ± 2.8 90.2 ± 3.5 91.8 ± 3.0 1.35 ± 0.12 

Naïve Bayes 86.7 ± 3.8 82.4 ± 4.6 75.0 ± 6.5 78.5 ± 5.2 0.12 ± 0.02 

 

Table 3a reports the average (± standard deviation) of the 
performance metrics over the 10 folds for each classifier. 
While single train/test splits previously reported near-
perfect scores for Decision Tree and Random Forest, the 
10-fold cross-validation yields lower but more realistic 
metrics and reveals variance across folds. Random Forest 
remains the best performing model on average, achieving 
mean accuracy of 95.8% ± 2.1% and mean F1-score of 

91.8% ± 3.0% across 10 folds and improved stability 
compared to Decision Tree. These cross-validated results 
are presented in Table X (replacing/augmenting previous 
Table 3a). 

Based on the model evaluation results at Table 3b, the 
Decision Tree and Random Forest algorithms 
demonstrated excellent performance, achieving perfect 
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scores of 1.000 for accuracy, precision, recall, and F1-
score across all train-test data splits (60:40, 70:30, and 
80:20). This indicates that both models were able to 
classify the data perfectly. In contrast, the Naïve Bayes 
algorithm showed slightly lower performance, with 
accuracy ranging from 0.980 to 0.984. Although Naïve 
Bayes maintained a high recall of 1.000, its precision and 

F1-score were relatively lower, with precision ranging 
from 0.590 to 0.627 and F1-score from 0.742 to 0.771. 
After applying SMOTE during training, the recall for flood 
events improved notably, while overall accuracy and F1-
score remained stable (see Table X). Random Forest 
remained the best performing model, demonstrating both 
high accuracy and improved minority class detection. 

Table 3b. Results of Comparison of Methods with Train and Test Ratio 

Model Train:Test Ratio Accuracy Precision Recall F1 Score 

Decision Tree 60:40 1.000 1.000 1.000 1.000 

Decision Tree 70:30 1.000 1.000 1.000 1.000 

Decision Tree 80:20 1.000 1.000 1.000 1.000 

Random Forest 60:40 1.000 1.000 1.000 1.000 

Random Forest 70:30 1.000 1.000 1.000 1.000 

Random Forest 80:20 1.000 1.000 1.000 1.000 

Naive Bayes 60:40 0.980 0.590 1.000 0.742 

Naive Bayes 70:30 0.981 0.607 1.000 0.755 

Naive Bayes 80:20 0.984 0.627 1.000 0.771 

Table 4. Accuracy Results of Three Machine Learning Models 

Model Accuracy Main Advantage Disadvantage 

Decision Tree 100% Easy to interpret Risk of overfitting 

Random Forest 100% High and stable accuracy Difficult to interpret 

Naïve Bayes 97.3% Fast and efficient Unrealistic assumption of independence 

 

These results suggest that Naïve Bayes tends to produce 
more false positives compared to the other two models, 
despite its ability to identify all positive cases. Therefore, 
Random Forest and Decision Tree are more recommended 
for hydrometeorological disaster prediction due to their 
consistent and highly accurate performance across 
different data split scenarios. 

 

Figure 13. Comparison of Flood Event Prediction Accuracy, (a) 

Flood, (b) Drought 

 

Figure 14. Comparison of Performance Evaluation of DT, RF, NB 

Methods with Train and Test Ratio 

Figure 13 shows that the Decision Tree model provides 
very high performance on both training and testing data, 
with almost perfect metric values. However, this indicates 
the possibility of overfitting, which is when the model 
adjusts too much to the training data so that it risks not 
working optimally on new data. Meanwhile, the Random 
Forest model shows very good and more stable 
performance than Decision Tree, with metric values also 
close to 100% but without any indication of extreme 
overfitting. This makes Random Forest the best 
performing model in this evaluation. In contrast, the Naive 
Bayes model shows relatively lower performance than the 
other two models, with metric values ranging from 92% to 
94%. This is likely due to the basic assumption of Naive 
Bayes which assumes independence between features, 
which does not seem to be fully met in this dataset. 
Overall, Random Forest is the most recommended model 
to use in this case because it provides accurate, stable 
results, and does not show a strong tendency to overfit. 

Figure 14 was carried out comparison of performance 
evaluation of DT, RF, NB methods with Train and Test 
Ratio, and using four main metrics: accuracy, precision, 
recall, and F1-score. Based on the analysis results, the 
Random Forest algorithm consistently showed the best 
performance in all metrics. Accuracy on training data 
reached 99.57% and on testing data reached 99.67%, 
indicating that this algorithm is able to recognize data 
patterns effectively without experiencing overfitting. The 
Decision Tree algorithm also showed good performance 
with metric values that were almost close to Random 
Forest, although slightly lower. This shows that Decision 
Tree is a fairly reliable alternative, especially if you want a 
simpler and more interpretable model. Meanwhile, the 
Naïve Bayes algorithm shows much lower performance 
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compared to the other two algorithms. Accuracy on 
testing data only reaches 93.51%, with a precision of 
92.67% and a recall of only 85%. The F1-score value is also 
the lowest, at 91.34%. This shows that Naïve Bayes tends 
to make more mistakes in detecting floods, either by 
predicting floods when they do not occur (false positive) 
or failing to detect floods that actually occur (false 
negative). This low performance may be caused by the 
basic assumption of Naïve Bayes which assumes 
independence between features, which is likely not met in 
flood prediction data in Palembang City.  

 

Figure 15. Model Performance Comparison - Training vs Testing 

Figure 15 shows a comparison of the performance of 
three classification algorithms—Decision Tree, Random 
Forest, and Naive Bayes—in three training and test data 
split scenarios, namely 80:20, 70:30, and 60:40. From the 
visualization results, it can be seen that Random Forest 
consistently provides the best performance in all 
evaluation metrics, including accuracy, precision, recall, 
and F1-score. In the 80:20 scenario, Random Forest 
achieved 99.5% accuracy, 99.0% precision, 99.7% recall, 
and 98.7% F1-score. This figure remains stable at 70:30 
split (99.51% accuracy, 99.0% precision, 99.67% recall, 
98.67% F1-score) and only slightly decreases at 60:40 
(98.8% accuracy, 97.9% precision, 98.2% recall, 98.0% F1-
score). Meanwhile, Decision Tree also shows high 
performance, but slightly lower and somewhat affected 
by the data ratio. At a ratio of 80:20, Decision Tree 
produces 98.9% accuracy, 96.6% precision, 98.9% recall, 
and 98.0% F1-score, which remains stable at 70:30 
(98.87% accuracy, 96.57% precision, 98.87% recall, 98.0% 
F1-score) but decreases at 60:40 (97.9% accuracy, 95.4% 
precision, 97.5% recall, 96.5% F1-score). 

 

Figure 16. Analysis of Computation Time Results of DT, RF, 
NB Methods 

On the other hand, Naive Bayes lags behind in 
performance compared to the other two algorithms. At a 
ratio of 80:20, the accuracy achieved is 93.9% with a 

precision of 92.0%, a recall of 91.3%, and an F1-score of 
91.3%. These results consistently decrease when the 
training ratio is smaller, namely at 70:30 (accuracy of 
93.85%, precision of 92.0%, recall of 91.34%, F1-score of 
91.34%) and 60:40 (accuracy of 92.1%, precision of 90.2%, 
recall of 89.8%, F1-score of 89.9%). Overall, it can be 
concluded that Random Forest is the most reliable and 
stable algorithm, followed by Decision Tree which is also 
quite competitive. Naive Bayes, although simple and fast, 
is less suitable for use in this data context if high accuracy 
is a top priority. 

Figure 16 shows a comparison of the computation time of 
three machine learning algorithms Decision Tree, Random 
Forest, and Naïve Bayes in three scenarios of training and 
testing data proportions, namely 80:20, 70:30, and 60:40. 
The computation time consists of two main components, 
namely training time and testing time, which are 
measured in seconds. In general, the training time for all 
algorithms increases when the training data proportion is 
larger. At the proportions of 80:20 and 70:30, the training 
time is in the range of 4.1-4.6 seconds, while at the 
proportion of 60:40, the training time drops drastically to 
around 0.26-0.27 seconds. Among the three, Random 
Forest shows the highest training time, which is up to 4.6 
seconds, which is in line with its complexity as an 
ensemble algorithm. Meanwhile, Decision Tree and Naïve 
Bayes have relatively lower training times but are still in a 
similar range when the amount of training data is large. 

While the training time varies depending on the data size, 
the testing time of all three algorithms is very efficient 
and consistent across all scenarios, ranging from 0.26–
0.27 seconds. This suggests that all three algorithms are 
suitable for use in real-time prediction scenarios or 
applications with limited computing resources at the 
testing stage. Overall, Random Forest excels in 
generalization ability but requires higher computing time 
at the training stage. In contrast, Decision Tree and Naïve 
Bayes offer better computing efficiency, making them 
more suitable for applications that require fast or periodic 
training. Therefore, the selection of algorithms and data 
proportions should be adjusted to the accuracy 
requirements and expected computing time efficiency in 
the application of machine learning models. 

This research algorithm not only supports the 
effectiveness of the machine learning approach in disaster 
risk mitigation, but is also in line with a study by Bai et al., 
(2021) which shows that Random Forest provides 
excellent results in flood event classification based on 
climate and rainfall data. In addition, research by 
Maheswari & Ramani, (2023) also proves that Decision 
Tree and Random Forest can be used effectively in flood 
early warning systems in Southeast Asia. This study also 
complements the study conducted by Irfan et al., (2021); 
Irfan and Awaluddin 2022), which states that ensemble 
techniques such as Random Forest excel in modeling 
complex phenomena such as hydrometeorological 
disasters. Therefore, this study is not only relevant, but 
also strengthens the scientific and practical foundations 
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for the application of artificial intelligence in disaster early 
warning systems at the regional level. 

4. Discussion and Conclusion 

The results of this study indicate that the Random Forest 
algorithm has the best performance compared to Decision 
Tree and Naïve Bayes in predicting hydrometeorological 
disasters in South Sumatra. This is indicated by the 
consistently high accuracy, precision, recall, and F1-score 
values in both training and testing data. This finding is in 
line with the study by Alahmad et al. (2023), which found 
that Random Forest provides excellent results in 
classifying extreme rainfall in tropical areas with high 
climate complexity. This model is proven to be superior 
because it is able to handle non-linear data and reduce 
overfitting through an ensemble approach. Furthermore, 
the effectiveness of Random Forest in the context of 
hydrometeorological prediction is also reinforced by the 
study of Han et al. (2021), which compared various 
machine learning algorithms to predict flood events in 
China. In the study, Random Forest showed an accuracy of 
more than 95%, outperforming methods such as SVM and 
Gradient Boosting. The findings in this study are 
consistent with their results, especially in managing 
multivariable meteorological data such as rainfall, 
humidity, and temperature, which are the main predictors 
of hydrometeorological disasters. 

The near-perfect scores observed in some single train/test 
splits indicate potential overfitting, likely driven by (i) 
imbalanced class distributions, (ii) limited number of 
positive event samples for certain event types, and (iii) the 
possibility of data leakage if pre-processing was applied 
before splitting. Our stratified 10-fold cross-validation 
demonstrates more realistic performance estimates and 
highlights the variance across folds. Although Random 
Forest maintained superior average performance, these 
results caution that reported metrics from a single split 
can be overly optimistic. External validation on 
independent datasets (not used in training or 
hyperparameter tuning) is recommended as future work 
to confirm generalisability in operational settings. 

Meanwhile, the performance of decision tree and Naïve 
Bayes in this study also provides an interesting picture. 
Decision Tree tends to overfit the training data, which 
reduces its ability to generalize to the testing data. This is 
consistent with the findings of Bai et al. (2021) in a study 
of landslide prediction in Vietnam, where the decision 
tree showed high accuracy in training but decreased when 
tested on new data. Meanwhile, Naïve Bayes, although 
simple, actually showed quite good stability on clean data 
but was sensitive to the distribution and correlation 
between features, as stated by Bibi et al. (2023) in a study 
on extreme weather detection using probabilistic models. 

Overall, this study confirms that the use of machine 
learning algorithms, especially Random Forest, provides 
an effective and reliable solution in predicting 
hydrometeorological disasters based on weather 
parameters in South Sumatra. The Random Forest model 
showed the highest performance, with an accuracy value 

reaching 98.5%, precision 97.9%, recall 98.2%, and F1-
score 98.0% on the test data, far surpassing Naïve Bayes, 
which only achieved an accuracy of 93.4%, and Decision 
Tree, with an accuracy of 96.7%. In addition, the 
evaluation results showed that Random Forest has high 
performance stability and does not show symptoms of 
overfitting, as seen in Decision Tree, which has a fairly 
large difference in accuracy between training data (99.8%) 
and testing data (96.7%). These findings indicate that 
Random Forest is very adaptive to the characteristics of 
multivariable meteorological data such as rainfall, 
temperature, humidity, and air pressure. Therefore, this 
approach has great potential to be integrated into disaster 
early warning systems and risk mitigation policy decision-
making in tropical areas with dynamic climates such as 
South Sumatra. 

Based on the results obtained, it is recommended that the 
Random Forest model be integrated into the 
hydrometeorological early warning system in South 
Sumatra, especially to support data-based disaster 
mitigation policies. Further research is recommended to 
include broader spatial-temporal data and incorporate 
other hydrological variables such as water level, 
vegetation index, and land cover change to improve 
prediction accuracy. The application of SMOTE improved 
detection of the minority flood class, highlighting the 
importance of addressing class imbalance in 
hydrometeorological prediction. Despite these 
improvements, other techniques such as threshold 
adjustment, hybrid resampling, or cost-sensitive learning 
could be explored in future studies to further enhance 
model reliability. In addition, the use of deep learning 
methods such as LSTM or CNN is also worth exploring to 
capture long-term dynamic patterns in climate data. 
Collaboration with government agencies and climate data 
centers such as the Meteorology, Climatology, and 
Geophysics Agency is essential to ensure that this model 
can be implemented practically and sustainably in regional 
planning and disaster risk management at the local and 
regional levels. The models’ robustness was evaluated 
using stratified 10-fold cross-validation, which supports 
the superiority of Random Forest while indicating the 
need for external validation on independent datasets as 
future work. 
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