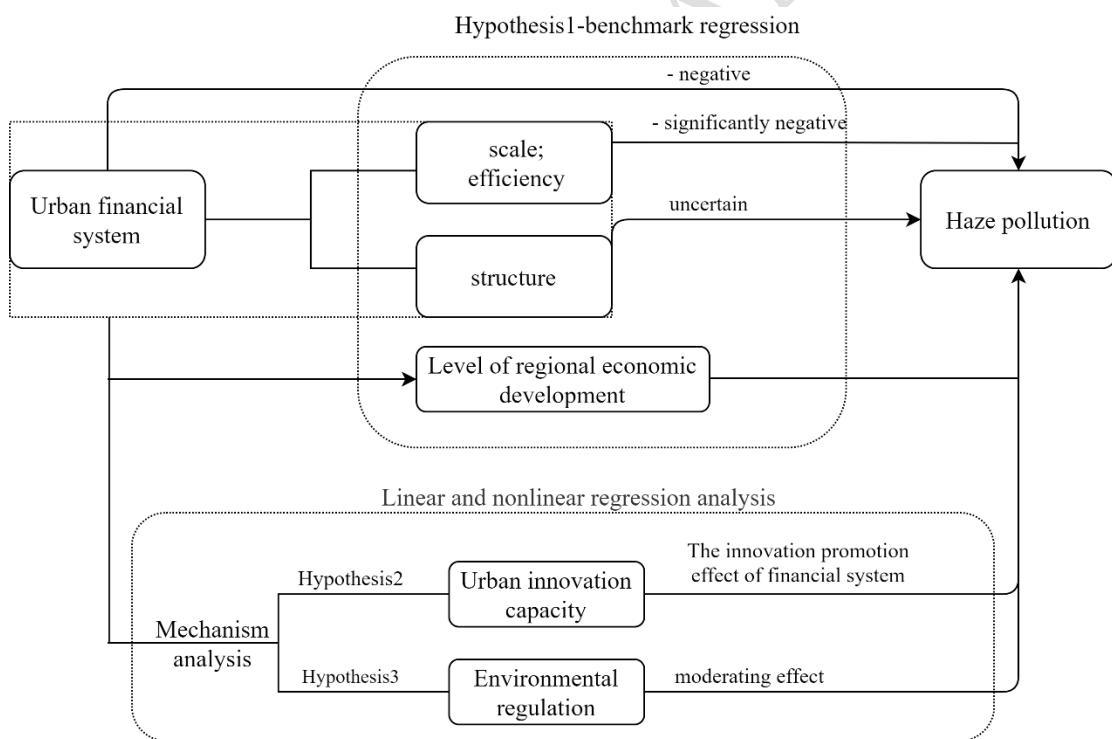

1 **Can urban financial development help to protect the “Blue Sky”? An**
2 **Empirical analysis on haze governance**

3

4 Mengying Ni ¹, Xue Lei ², Qingnan You^{3*}, Zhuang Zhang ^{3*}

5 ¹ College of Economics and Management, Southwest University, Chongqing, 400715, China.


6 ² School of Management, Shanghai University, Shanghai 200444, China

7 ³ School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China.

8 *Corresponding author: Qingnan You, Zhuang Zhang

9 E-mail: 13986249777@163.com; zhangzhaung@qq.com

10 **Graphical abstract**

11

12

13 **ABSTRACT**

14 This study examines whether financial development contributes to haze pollution reduction. In a
15 Partially Linear Functional-Coefficient (PLFC) model, we use a prefecture-level panel to analyse
16 the influential mechanism of financial development on haze pollution by constructing the
17 comprehensive index of urban financial development from three dimensions of financial scale,
18 financial efficiency and financial structure. The results indicate that financial development
19 significantly contributes to haze pollution reduction, both in terms of financial scale and financial
20 efficiency. The role of financial structure is uncertain. Moreover, the impact of financial
21 development on smog is nonlinear in regional changes. We also find that innovation and
22 environmental regulation can significantly promote the impact of financial development on haze
23 governance. These results suggest different channels through which financial development affect
24 smog.

25 **Keywords:** Financial development; Haze governance; Innovation; Environmental regulation

26

27 **1. Introduction**

28 Supporting high-quality development with a high-quality ecological environment has become
29 one of the central themes of China's development in the new era. Among the key policy initiatives,
30 the "Blue Sky Protection Campaign"—a flagship component of the country's broader battle against
31 pollution—plays a pivotal role in advancing the vision of a "Beautiful China". In his address at the
32 National Conference on Ecological and Environmental Protection in 2023, President Xi Jinping
33 articulated the "Four Major Transformations" and the "Five Major Relationships" in ecological
34 civilization, emphasizing that building a Beautiful China should be placed at the forefront of
35 national modernization and rejuvenation efforts. This provides fundamental guidance for
36 environmental governance, including air pollution control and smog mitigation.

37 The strategy has since been further institutionalized in practice. In 2024, the State Council
38 issued the Action Plan for Continuous Improvement of Air Quality, which deepens the Blue Sky
39 Protection Campaign through targeted measures such as promoting clean heating, advancing ultra-
40 low emissions retrofitting in industry, and strengthening regional joint prevention and control
41 mechanisms. According to the 2024 China Ecological and Environmental Status Bulletin, the
42 average PM_{2.5} concentration in cities at the prefecture level and above declined to 29.3 micrograms
43 per cubic meter, while the proportion of days with good air quality rose to 87.2 percent—indicating
44 a steady improvement in overall environmental quality.

45 However, it is worth noting that China's efforts to control smog still face substantial

46 challenges, including uneven regional governance capacity and the need for deeper source-level
47 pollution control. Key regions such as Beijing–Tianjin–Hebei and its surrounding areas continue
48 to require intensive remediation efforts. Meanwhile, insufficient financial investment and the slow
49 diffusion of green technologies have emerged as critical bottlenecks constraining the effectiveness
50 of air pollution governance. Against this backdrop, the 2024 National Conference on Ecological
51 and Environmental Protection called for improving the institutional framework for green and low-
52 carbon development, emphasizing that high-level ecological protection should advance in tandem
53 with high-quality economic growth. This policy direction highlights the role of finance as an
54 enabling mechanism for smog mitigation.

55 As the core of modern economic systems, the financial sector plays a pivotal role in resource
56 allocation. Yet, how this intermediation function can be translated into tangible environmental
57 outcomes remains an open question. Specifically, whether instruments such as green credit and
58 carbon finance can alleviate funding constraints, stimulate industrial green transformation, and
59 ultimately enhance the efficiency of pollution control represents a critical issue at the intersection
60 of financial development and environmental governance—and constitutes the central motivation
61 of this study. Existing studies have shown that the effect of financial development on the
62 environment has two sides: On the one hand, the scale effect, structural effect and technological
63 effect of finance can expand the economic scale, improve the economic structure, and adopt more
64 eco-friendly production methods by upgrading equipment and manufacturing processes to reduce
65 pollution (Sadorsky, 2010; Zhang, 2011; Brock et al., 2005). On the other hand, the improvement
66 of financial level has broadened financing channels for high-polluting, high-energy-consuming and
67 high-emission companies, which enabled them to attract more financial support (Boutabba, 2014;
68 Ali et al., 2015; Zhang, 2011). The Environmental Kuznets Curve shows that the relationship
69 between economic development and pollution is an inverted U-shaped curve at a certain stage.
70 Therefore, with the phased changes in the way in which economic development and environmental
71 governance are connected, does the impact of financial development on smog still have two sides?
72 Is it true that the more developed the economy, the more significant the impact of financial
73 development on the smog? How is this impact achieved? Previous research on these issues has not
74 been sufficient. Many existing studies have explored the factors affecting haze pollution and the
75 channels to reduce pollution from various perspectives such as urbanization, industrialization and
76 foreign investment. In contrast, this paper has made the following contributions to related research.
77 First, we use a prefecture-level panel of 276 cities in China from 2006 to 2018 to construct an index
78 of financial development from the dimensions of financial scale, financial efficiency and financial
79 structure to explore whether financial development can reduce haze pollution. Second, we use a

80 PLFC model to identify the nonlinear characteristics of this impact in different stages of economic
81 development. Lastly, the role of innovation and environmental regulation in the effect of financial
82 development on haze pollution has also been included in our empirical analysis, which provides
83 new suggestive evidence for the improvement of both economic and environmental benefits.

84 This paper is organized as follows. In Section 2, we review previous literature and put forward
85 research hypothesis. Section 3 follows with an empirical estimation strategy, including the
86 description of the empirical model and the introduction of data and variables. Section 4 presents
87 the main results and discuss the effects of financial development on haze governance from both
88 linear and nonlinear aspects. Section 5 presents our conclusions and discusses the policy
89 implication of this research.

90 **2.Literature review and theoretical hypothesis**

91 The literature on the financial development and environmental pollution has provided
92 important insights for follow-up research. Lundgren (2003) explored the capitalization effect of
93 financial development on environmental performance in the Swedish pulp industry and found that
94 financial development may drive companies to increase investment in emission reduction
95 equipment and encourage them to introduce eco-friendly technologies. Tamazian and Rao (2010)
96 conducted a study on 24 countries in transition from 1993 to 2014. By using GMM methodology,
97 they found that under a certain system, freer financial development can attract more foreign capital
98 to support the development of new technologies, reduce the carbon intensity of the economy, and
99 play an active role in environmental protection. In contrast, Sadorsky (2010) concluded that the
100 improvement of the financial market has broadened financing channels for companies to expand
101 their production capacity, which would increase energy consumption and pollution emissions.
102 Some other studies have shown that the relationship between financial development and pollution
103 may vary depending on the level of financial development. Yan et al. (2016) used an endogenous
104 growth model to examine the impact of financial development on CO₂ intensity and find that the
105 relationship between them shows an inverted U-shaped curve. High-level financial development
106 can improve technology and reduce CO₂ intensity.

107 In fact, regions with more developed economies tend to have higher levels of financial
108 development and stronger pollution reduction capabilities. Al-Mulali et al. (2015) grouped 129
109 countries by income to explore the impact of financial development on CO₂ emissions. The results
110 showed that compared with low-income countries, high-income countries are more likely to use
111 their financial advantages to introduce high-quality goods, services and technology so that they
112 could significantly reduce CO₂ emissions in the long-term (Shahbaz et al., 2013; Jalil & Feridun,

113 2011). Similarly, Tamazian et al. (2009) concluded that countries with better financial markets tend
114 to have a higher degree of financial liberalization. On the one hand, companies can obtain funds
115 from the capital market and banks to reduce liquidity risks, increase R&D expenditures, support
116 technological innovation, and enhance energy efficiency to reduce pollution emissions (Blanford,
117 2008). On the other hand, the opening and liberalization of financial markets can attract more
118 foreign investment related to R&D to alleviate environmental degradation. There is a large gap in
119 financial development between regions in China. With the support of national policies, the financial
120 system in the eastern region has developed rapidly and credit resources are more sufficient. It is
121 easier to obtain effective financial support for its R&D and innovation activities, which is
122 conducive to reducing pollution. On the contrary, financial development in the middle and western
123 regions is relatively backward, and financial support for R&D investment is not sufficient.
124 Meanwhile, residents in the eastern region are more willing to pay higher prices for eco-friendly
125 products and services because of their higher incomes and stronger environmental awareness. As
126 a result, enterprises are encouraged to innovate in technology and use clean energy for production
127 (Wang and Huang, 2015). Moreover, compared with the western region, both the financial support
128 of government and the allocation of financial resources have promoted better environmental
129 governance in the eastern region (He et al., 2019). Based on the existing literature, we believe that
130 financial development contributes to haze governance. However, this impact may vary depending
131 on the level of regional economic development. Therefore, we put forward the following
132 hypothesis:

133 Hypothesis1: Urban financial development contributes to the reduction of haze pollution, and
134 this effect is nonlinear with different levels of economic development.

135 Innovation plays an important role in the balance of economic and environmental benefits.
136 Taking the construction of smart cities as an example, Shi et al. (2018) believed that urban
137 innovation development strategies can improve the resource allocation and utilization efficiency
138 of enterprises through innovations in technology, products, markets, resource allocation and
139 organization, promote the transformation of enterprises and the upgrading of industrial structure,
140 and reduce environmental pollution in cities. Xu et al. (2021) confirmed that the innovation of eco-
141 friendly technologies may affect carbon emissions through transmission channels such as energy
142 consumption structure, industrial structure, urbanization and foreign direct investment (Du and Li.,
143 2019; Shao et al., 2013). In the theory of innovation, Schumpeter believed that the forms of
144 innovation includes new products, mode of production, markets and organizations. It is true that
145 the implementation of these innovative behaviors is inseparable from the core elements of
146 innovation, namely R&D capital, human capital and technology (Griliches, 1979; Acemoglu, 2011).

147 Liu et al. (2020) examined the data of Chinese manufacturing industry and the results indicate that
148 the distortion of the price of R&D capital significantly inhibited the innovation efficiency of
149 enterprises. With the investment of educational resources, the increase in the supply of human
150 capital has increased the number and quality of innovation patents in China. Generally speaking,
151 the introduction of foreign capital may have a spillover effect of innovative technology on
152 enterprises in the host country (Carluccio & Fally, 2013; Javorcik et al., 2018). The smaller the gap
153 between the existing technology and the frontier technology is, the more obvious the spillover
154 effect will be (Zhu et al., 2020). Previous studies have shown that financial development can affect
155 key innovation factors of enterprises such as R&D capital investment, human capital investment,
156 foreign capital introduction and technology absorptive capacity. Nevertheless, the impact of
157 financial development on innovation factors may vary with the level of economic development,
158 which can affect the effectiveness of pollution governance. In terms of R&D capital investment,
159 the financial market in wealthy areas is usually more perfect, with rich financial resources and
160 products. A well-developed financial market can provide diversified financing support for
161 innovative enterprises, and promote their improvement of technology to reduce urban
162 environmental pollution (Acemoglu, 2002). On the contrary, companies in poor areas with scarce
163 financial resources usually lack for the motivation to innovate and improve technology because
164 they are facing more financing constraints and fewer financing channels (Jerzmanowski & Tamura,
165 2019). As for human capital, financial development improve the level of it by expanding the scale
166 of investment to achieve the goal of reducing environmental pollution from promoting the
167 production of clean products, technologies and processes (Romer, 1990). The China Human
168 Capital Report in 2018 shows that the distribution of human capital in China from 1985 to 2016 is
169 unbalanced in space, showing a downward trend from east to west. In terms of foreign capital
170 introduction and technology absorption, He (2014) believed that the technological spillover of FDI
171 depends on the regional economic endowment, such as the level of economic development,
172 financial market development, infrastructure and human capital. The spillover effects of FDI in
173 regions with more developed economies and more perfect financial markets will be more
174 significant (Alfaro et al., 2004). In summary, financial development can affect haze pollution by
175 influencing the input of innovative elements. Meanwhile, this effect may be nonlinear because of
176 different levels of innovative concentration, financial development and economic development in
177 different regions. So we propose the following hypothesis:

178 Hypothesis2: Financial development can reduce haze pollution by improving the regional
179 innovation capabilities. Meanwhile, the impact of financial development on haze pollution through
180 innovation may be nonlinear because of different levels of economic development in different

181 regions.

182 A series of evidences prove that environmental regulations play an important role in energy
183 conservation and pollution reduction (Curtis and Lee, 2019; Wang et al., 2019). Galloway and
184 Johnson (2016) found that strict environmental regulations encourage companies to improve
185 technical efficiency to achieve pollution reduction goals. Liu et al. (2018) concluded that
186 environmental regulation uses direct intervention, economic and legal supervision to restrain
187 energy consumption and alleviate energy pressure. Similarly, Fan et al. (2020) collected the
188 provincial-level satellite monitoring data of PM2.5 concentration and conclude that environmental
189 regulations have prompted enterprises to expand investment in pollution control and optimize the
190 structure of energy consumption. Potter hypothesis holds that environmental regulations have a
191 compensatory effect on innovation, which means that strict regulations can drive companies to
192 develop patented technologies to achieve technological progress in pollution control (Chakraborty
193 and Chatterjee, 2017; Rubashkina et al., 2015). How will companies respond to strict
194 environmental regulations? In rich areas with well-developed financial markets and unobstructed
195 information, companies have the motivation and confidence to obtain financial resources from the
196 market even in the face of strict regulations, which can be used to control pollution, update
197 equipment or innovate production technologies (Chen et al., 2019). In poor areas, limited financial
198 capital means high costs for companies under strict environmental regulations, whether it is
199 equipment upgrades or technological innovation. In order to reduce financial costs, companies may
200 choose to reduce production, move out or even go bankrupt to achieve the goal of environmental
201 regulation. Furthermore, in terms of the relationship between environmental regulations and
202 foreign capital introduction, the Pollution Halo hypothesis holds that in the face of environmental
203 regulations, governments in rich regions can introduce foreign capital and advanced technologies
204 to achieve green production, strengthen spillover effects of technology and improve environmental
205 quality because of their market advantages. In contrast, the hypothesis of Pollution Paradise and
206 Race to the Bottom suggest that governments in poor areas may lower the level of regulation to
207 attract high-polluting and high-energy-consuming industries which have moved out to avoid strict
208 domestic environmental supervision (Becker and Henderson, 2000; Keller and Levinson, 2002;
209 List et al., 2003; Copeland and Taylor, 2004; Woods, 2006). In summary, the effect of
210 environmental regulations on pollution varies with the level of regional economic and financial
211 development. In regions with well-developed financial markets, environmental regulations have a
212 stronger effect on reducing pollution. Therefore, we propose the following hypothesis:

213 *Hypothesis3: Environmental regulation plays a moderating role in the process of financial*
214 *development affecting haze pollution. Moreover, this role has two sides due to differences in*

215 regional development. Specifically, the moderating effect in rich areas will strengthen the
216 inhibiting effect of financial development on haze pollution, while the inhibiting effect in poor
217 areas will be weakened.

218

219 **3.Empirical strategy**

220 *3.1 Model*

221 we constructed a linear regression model to estimate the impact of urban financial
222 development on smog. The general form of the model adopted can be written as follows:

223
$$Y_{it} = \alpha_0 + \alpha fin_{i(t-1)} + \beta' X_{it} + \mu_i + \varepsilon_{it} \quad (1)$$

224 Where Y_{it} indicates the haze pollution for city i in year t , fin represents the level of
225 urban financial development, including dimensions of financial scale ($finsc$), financial efficiency
226 ($finef$) and financial structure ($finst$). Given that the influence of financial development on the
227 smog may be lagging, we introduce the lagged values of financial development variable into the
228 general regression model. α is the estimated coefficient of the impact of financial development
229 on haze pollution, which is also the coefficient of interest. If α is significantly negative after
230 controlling a series of factors that affect haze pollution, it means that urban financial development
231 can effectively reduce haze pollution in the long term. X_{it} is a vector of control variables,
232 including the level of foreign investment (fdi), the level of urbanization ($urban$), industrial
233 structure ($ind3$), population size ($peosc$) and infrastructure ($infra$). The values of foreign
234 investment, industrial structure and population size are all in logarithmic form. To mitigate
235 potential heteroskedasticity in the model, all control variables are log-transformed in the
236 regressions. β' represents the estimated coefficient of each control variable. μ_i is a time-
237 invariant effect unique to city i . ε_{it} is the error term.

238 The previous analysis shows that the effect of financial development on smog shows different
239 results in cities with different levels of economic development. To discuss the role of economic
240 development level between financial development and urban haze pollution, we introduce the
241 interaction between the level of urban financial development (fin) and the level of urban economic
242 development (U) in the regression and estimate the following equation:

243
$$Y_{it} = \alpha_0 + \alpha_1 fin_{i(t-1)} + \alpha_2 fin_{i(t-1)} \times U_{it} + \beta' X_{it} + \mu_i + \varepsilon_{it} \quad (2)$$

244 Eq. (2) shows that the estimated coefficient of the impact of financial development on haze
245 pollution may be a linear function of the level of urban economic development, namely

246 $\alpha_1 + \alpha_2 \times U_{it}$. However, due to the interaction term is considered reasonable and meets the
 247 assumptions of the linear regression model, Eq. (1) and (2) may have model setting and estimation
 248 errors (Li et al., 2019; Du et al., 2020). Therefore, we introduce a PLFC model to avoid the above
 249 problems, which can overcome the estimation errors and examine the heterogeneous influence of
 250 different levels of urban economic development. Our estimating equation is motivated by Eq. (3):

$$251 \quad Y_{it} = \alpha_0 + g(U_{it})fin_{i(t-1)} + \beta'X_{it} + \mu_i + \varepsilon_{it} \quad (3)$$

252 This model can be divided into two parts: Part $g(U_{it})$ describes the nonlinear impact of
 253 financial development on haze pollution under different levels of urban economic development;
 254 Part $\beta'X_{it}$ is the linear part which controls other factors affecting technological progress. The
 255 variables in Eq. (3) are defined in the same way as in Eq. (1). Furthermore, we use the following
 256 estimation methods proposed by Zhang et al. (2020) and Du et al. (2020).

257 First of all, we use the linear combination of a series of sieve functions to fit the functional-
 258 coefficient $g(U_{it})$ in equation (3):

$$259 \quad h(U_{it})'\gamma = [h_1(U_{it}), \dots, h_k(U_{it})] \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_k \end{bmatrix} \quad (4)$$

260 Where $h(U_{it})$ and γ are the vectors of primary functions order k by 1 and unknown
 261 parameters order k by 1. When k becomes larger, there is a linear combination of $h_i(U_{it})$ that
 262 can approximate any smooth function $g(U_{it})$. Therefore, Eq. (3) can be represented as follows:

$$263 \quad Y_{it} = \alpha_0 + h(U_{it})'\gamma fin_{i(t-1)} + \beta'X_{it} + \mu_i + v_{it} \quad (5)$$

264 Where $v_{it} = \varepsilon_{it} + g(U_{it})fin_{i(t-1)} - h(U_{it})'\gamma fin_{i(t-1)}$ represents the sieve error.

265 Second, we take the first difference of Eq. (5) to remove the fixed effect:

$$266 \quad \Delta Y_{it} = \Delta(fin_{i(t-1)}h(U_{it}))'\gamma + \beta'\Delta X_{it} + \Delta v_{it} \quad (6)$$

267 Using the Ordinary Least Squares method to estimate Eq. (6), we get:

$$268 \quad (\hat{\beta}', \hat{\gamma}') = [\Delta \tilde{X}' \Delta \tilde{X}]^{-1} \Delta \tilde{X}' \Delta \tilde{Y} \quad (7)$$

$$269 \quad \text{Where } \Delta \tilde{Y} = \begin{bmatrix} \Delta Y_{12} \\ \vdots \\ \Delta Y_{NT} \end{bmatrix}, \Delta \tilde{X} = \begin{bmatrix} \Delta X'_{12}, \Delta(fin_{11}p(U_{12})) \\ \vdots \\ \Delta X'_{NT}, \Delta(fin_{N(T-1)}p(U_{NT})) \end{bmatrix}.$$

270 Therefore, the functional-coefficient can be approximated as follows:

$$271 \quad \hat{g}(U_{it}) = h(U_{it})'\hat{\gamma} \quad (8)$$

272 Lastly, we estimate the following models based on the above analysis:

$$273 \quad Y_{it} = \alpha_0 + g_1(Log(pgdp))fin_{i(t-1)} + \beta'X_{it} + \mu_i + \varepsilon_{it} \quad (9)$$

$$274 \quad Y_{it} = \alpha_0 + g_2(Log(pgdp))fin_{sc(i(t-1))} + \beta'X_{it} + \mu_i + \varepsilon_{it} \quad (10)$$

275
$$Y_{it} = \alpha_0 + g_3(\text{Log}(pgdp))\text{finef}_{i(t-1)} + \beta'X_{it} + \mu_i + \varepsilon_{it} \quad (11)$$

276
$$Y_{it} = \alpha_0 + g_4(\text{Log}(pgdp)))\text{finst}_{i(t-1)} + \beta'X_{it} + \mu_i + \varepsilon_{it} \quad (12)$$

277 Where $g_1(\text{Log}(pgdp))$, $g_2(\text{Log}(pgdp))$, $g_3(\text{Log}(pgdp))$ and $g_4(\text{Log}(pgdp))$ are the
278 functional-coefficients of comprehensive index of financial development, financial scale, financial
279 efficiency and financial structure, respectively.

280 *3.2 Variables and data*

281 *3.2.1 Variables*

282 The level of urban financial development is the independent variable. Due to the unavailability
283 of financial data at prefecture-level, we measure the *comprehensive level of urban financial*
284 *development (fin)* from the dimensions of *financial scale (finsc)*, *financial efficiency (finef)* and
285 *financial structure (finst)* (Ge et al., 2018). *Financial scale* is calculated as the proportion of the
286 total deposits and loans of financial institutions in the regional GDP. Zhang (2011) finds that the
287 expansion of financial scale will accelerate environmental degradation. Generally speaking, the
288 proportion of the total credit loans of the private sector to GDP can measure financial efficiency.
289 However, the data of private sector credit loans at the city level has not been published, so we use
290 the conversion rate from deposits to loans to measure *financial efficiency*, that is, the ratio of the
291 loan balance to the deposit balance of the financial institution. Following Peng et al. (2019), we
292 proxy *financial structure* using the ratio of fiscal expenditure to total fixed asset investment. The
293 core economic meaning of this indicator lies in its ability to capture the relative strength between
294 administrative and market-based resource allocation within a city. A higher ratio indicates that a
295 larger share of resources is directly allocated through government fiscal expenditure, reflecting a
296 financial structure characterized by stronger government intervention. Conversely, a lower ratio
297 suggests more active investment by market participants and a financial system increasingly guided
298 by market signals. This proxy is designed to capture the structural characteristics of China's local
299 financial systems from the perspective of *resource allocation authority*. It aligns closely with our
300 theoretical framework, which emphasizes the "dual nature" of financial development in influencing
301 environmental governance outcomes. Furthermore, we use the **Entropy Method**, which is widely
302 used in the measurement of various comprehensive indicators (Liu et al., 2019; Du et al., 2021), to
303 construct a *comprehensive index of urban financial development* from the dimensions financial
304 scale, financial efficiency and financial structure.

305 Based on previous research, the control variables in our model include the level of foreign

306 investment, the level of urbanization, industrial structure, population size and infrastructure to
307 avoid omitted variable bias.

308 *The level of foreign investment* is expressed as the proportion of the city's actual utilization of
309 foreign capital to its GDP. On the one hand, Foreign Direct Investment can introduce advanced
310 production technology and effective management experience through the flow of high-tech talents
311 and learning effects (Kim et al., 2015), which may indirectly improve regional air quality. On the
312 other hand, preferential policies for foreign investment may also squeeze the living space of local
313 enterprises. Meanwhile, the opening of the domestic market may introduce high-polluting
314 industries and exacerbate environmental degradation (Copeland and Taylor, 1994; Shahbaz et al,
315 2015).

316 Shao et al. (2019) point out that the process of urbanization can affect urban haze pollution
317 through agglomeration and structural effects based on the research on China's provincial panel.
318 Therefore, we use the ratio of non-agricultural population to total urban population to measure the
319 level of *urbanization* (Panayotou, 1997).

320 This study uses the share of tertiary industry value added in GDP as the primary indicator of
321 *industrial structure*, following the approaches of Zhang et al. (2020) and Yi and Liu (2018). The
322 impact of industrial structure on haze pollution operates through a dual mechanism. On the one
323 hand, urban industrial expansion—particularly during stages dominated by energy-intensive
324 manufacturing—tends to increase energy consumption and industrial emissions, thereby
325 exacerbating haze pollution. On the other hand, technological progress and the upgrading of the
326 industrial structure toward a more service-oriented composition can significantly enhance resource
327 use efficiency and facilitate a green transformation of the economic development model, thereby
328 mitigating haze pollution at its source.

329 Some existing studies have shown that concentrated human production and living activities
330 tend to worsen haze pollution. Therefore, we use population density to measure *population size*
331 referring to previous studies.

332 The construction of urban infrastructure can significantly improve air quality (Sun et al., 2019).
333 We use the area of paved roads per capita to measure the level of urban *infrastructure*.

334 3.2.2 Data source

335 We finally select 276 prefecture-level cities as the sample, in view of the availability of data
336 and the consistency of the statistical caliber. The period of the sample is from 2006 to 2020. We
337 use the concentration of PM2.5 ($\mu\text{g}/\text{m}^3$) as the dependent variable. The data calculated by three
338 sensing instruments (NASA MODIS, MISR and SeaWiFS) from ACAG matches the judgment of

339 CMEP on the PM2.5 situation in China (Hammer et al., 2020). The data of independent variable,
 340 control variables, environmental regulations and per capita GDP are all taken from the *China City*
 341 *Statistical Yearbook*. In the process of data handling, cities with a large number of missing values
 342 have been eliminated from the sample, and the nearest interpolation method (Yu et al., 2015) is
 343 used to interpolate some variables with a few missing values. Table 1 contains descriptive statistics
 344 and data resource on the variables used in our analysis. Where *fin*, *finsc*, *finef* and *finst*
 345 represent the comprehensive index of financial development, financial scale, financial efficiency
 346 and financial structure, respectively, and the one-period lagged-value is taken in the subsequent
 347 analysis. *Log(pgdp)* represents the logarithm of GDP per capita. It should be noted that our focus
 348 is on the nonlinear effects of financial development on haze pollution. During the sample period,
 349 *lpgdp* in Chinese prefecture-level cities is primarily distributed between 9 and 12, roughly covering
 350 the full spectrum of urban economic development, from a per capita GDP of approximately 8,000
 351 yuan to 160,000 yuan (in 2006 constant prices). Analyzing this wide range allows us to clearly
 352 reveal the nonlinear patterns in how financial development affects haze pollution across different
 353 stages of economic development. *inv* represents the urban innovation index, which is derived
 354 from *China Cities and Industry Innovation Report* in 2017. The report estimates the innovation
 355 index of 338 cities in China from 2001 to 2016 based on micro-patent and enterprise-level data, as
 356 well as innovation output indicators such as patent output, patent value and the number of newly
 357 registered companies. The level of *environmental regulation* is measured by **Entropy Method**,
 358 using data on five types of urban environmental indicators, including the removal rate of industrial
 359 SO_2 and smoke dust, the utilization rate of industrial solid waste, the centralized treatment rate of
 360 sewage and the rate of harmless treatment of household waste.

361
 362

363 **Table 1.** Summary statistics and sources of variables

	Data source	Units	Mean	S.D.
Dependent variables -PM _{2.5}				
PM _{2.5}	Dalhousie University	$\mu\text{g}/\text{m}^3$		
	Atmospheric		42.194	18.769
	Composition			
	Analysis Group			
Key explanatory variable -Financial development				
comprehensive index of financial development (<i>fin</i>)	Raw data drawn from <i>China City Statistical</i>	N/A	0.076	0.034
Financial scale (<i>finsc</i>)	<i>Yearbook (2007-21)</i>	%	2.229	1.016

Financial efficiency (<i>finef</i>)	and calculated by	%	0.658	0.171
financial structure(<i>finst</i>)	authors	%	0.259	0.131
Other control variables (X)				
Logarithm of foreign investment (<i>Log(fdi)</i>)		N/A	-6.485	1.410
urbanization (<i>log(urban)</i>)		%	-0.234	0.512
Logarithm of Industrial structure (<i>Log(ind3)</i>)	<i>China City Statistical Yearbook (2007-21)</i>	N/A	-0.943	0.271
Logarithm of population size (<i>Log(peosc</i>)		Log(persons per square km)	5.761	0.878
Infrastructure (<i>log(infra)</i>)		Square metres	2.301	0.547
logarithm of GDP per capita (<i>Log(pgdp)</i>)		Log(Yuan per capita)	10.392	0.687
urban innovation index (<i>inv</i>)	<i>China Cities and Industry Innovation Report(2017)</i>	N/A	2.300	3.529
Variables of Environmental regulation				
the removal rate of industrial SO2 (<i>R_so2</i>)		%	51.502	26.713
the removal rate of industrial smoke dust (<i>R_smo</i>)		%	94.841	11.316
the utilization rate of industrial solid waste (<i>R_solid</i>)	<i>China City Statistical Yearbook (2007-19)</i>	%	79.766	22.541
the centralized treatment rate of sewage (<i>R_wate</i>)		%	75.463	22.709
the rate of harmless treatment of garbage (<i>R_rub</i>)		%	84.748	24.331
The level of environmental regulation(<i>ER</i>)	Calculated by authors	N/A	0.480	0.149

364 Note:Comprehensive index of financial development (*fin*) and The level of environmental regulation(*ER*) are
 365 measured through Entropy Method by authors.

366 **4.Empirical analysis**

367 *4.1 Main results*

368 Table 2 reports the estimation results of the linear regression model in Eq. (1). The coefficient
 369 of the comprehensive index of urban financial development is negative and statistically significant
 370 at the 5% level, which indicates that if the value of this index increases by 1, the PM2.5

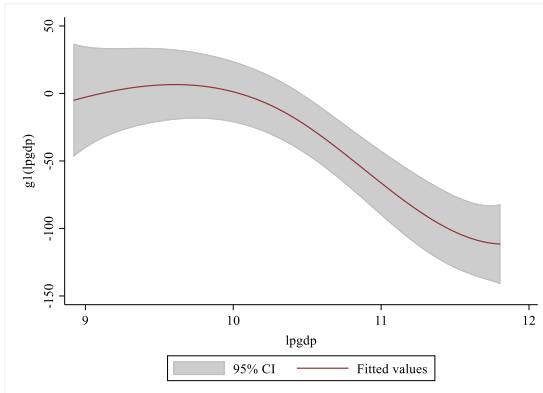
371 concentration may decrease by about $18 \mu\text{g}/\text{m}^3$. Furthermore, the coefficients of financial scale and
 372 financial efficiency are both negative and statistically significant at the 1% level, while the
 373 coefficient of financial structure is positive and statistically significant. These results preliminary
 374 confirmed that financial development contributes to urban smog governance in China. As an
 375 important factor affecting environmental quality, financial development can improve the efficiency
 376 of capital allocation and utilization by reducing adverse selection and moral hazard caused by
 377 incomplete or asymmetric information (Freixas et al., 2008), while it can also reduce environmental
 378 pollution while reducing supervision costs, improving audit efficiency, promoting technology
 379 upgrades and economic development (Laeven et al., 2015). As for the control variables, foreign
 380 investment, industrial structure and infrastructure can reduce urban PM2.5 pollution to a certain
 381 extent, while the increase in the level of urbanization has significantly increased the concentration
 382 of PM2.5. Table 2 reports the linear impact of regional financial development on haze pollution,
 383 but ignores the heterogeneity in different regions. In the following analysis, we will discuss the
 384 heterogeneous impact of financial development on haze pollution in cities under different
 385 economic development levels.

386 **Table 2**

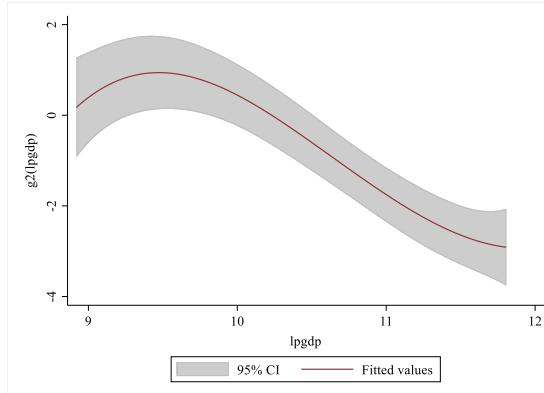
387 The inhibiting effect of financial development on smog pollution (Baseline model)

	(1)	(2)	(3)	(4)
<i>L.fin</i>	-32.2405*** (-3.24)			
<i>L.finse</i>		-1.8509*** (-6.25)		
<i>L.finef</i>			-7.0462*** (-6.34)	
<i>L.finst</i>				10.1589*** (6.86)
Constant	35.1735*** (5.83)	39.4986*** (6.66)	39.1844*** (6.62)	31.6176*** (5.36)
Control variables	Yes	Yes	Yes	Yes
City	Yes	Yes	Yes	Yes
Year	Yes	Yes	Yes	Yes
<i>N</i>	35.1735*** (5.83)	39.4986*** (6.66)	39.1844*** (6.62)	31.6176*** (5.36)
<i>Adj.R</i> ²				

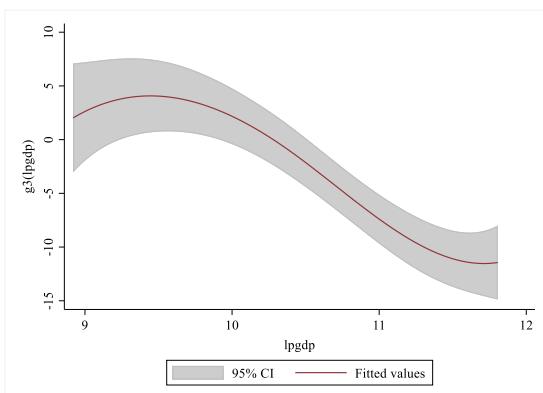
388 Note: *t* statistics in parentheses ; * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$

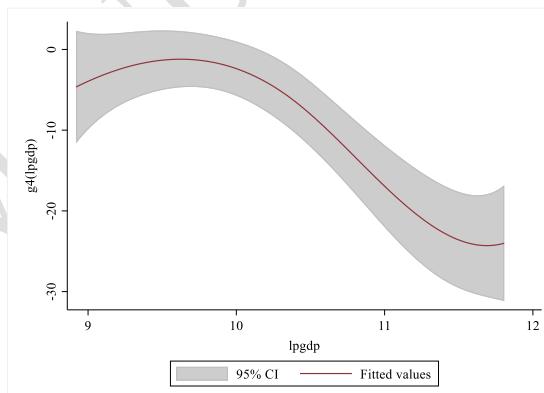

389 *4.2 Results of the partially linear functional-coefficient model*

390 In the previous analysis, we find that financial development has significantly reduced the
 391 smog concentration in Chinese cities under the linear assumption. In this section, we discuss
 392 whether the impact of financial development on haze pollution is stable under the setting of the


PLFC model. Results of the linear part of the nonlinear models (9) to (12) are reported in columns (1)-(4) of **Appendix** (Table1). Meanwhile, Figure 1 plots the estimation results of the nonlinear functional-coefficient of the comprehensive index of financial development ($L.fin$), financial scale ($L.finsc$), financial efficiency ($L.finef$) and financial structure ($L.fininst$), respectively, namely $g_1(\text{Log}(pgdp))$, $g_2(\text{Log}(pgdp))$, $g_3(\text{Log}(pgdp))$ and $g_4(\text{Log}(pgdp))$. Figures (a), (b), (c) and (d) show that when $\text{Log}(pgdp)$ is less than 10, the coefficient curve of financial development is relatively smooth, and the 95% confidence interval indicates that impact lies in these intervals is not significant or only slightly significant. In terms of the trend, the impact of financial development on haze pollution when $\text{Log}(pgdp)$ is larger than 10 varies with different levels of urban economic development, and the estimated coefficients are all significantly negative within the 95% confidence interval, which reflects the limitation that the linear model may not reflect the actual interaction between key variables. When the economy is underdeveloped, the coefficient of financial development fluctuates above zero, which means that it will deteriorate haze pollution. The deterioration of haze pollution caused by finance has gradually slowed down with the development of economy. When the economy is at a well-developed level, financial development turns to have a significant inhibitory effect on haze pollution. We propose the following reasons for the above-mentioned interesting phenomenon. Urban economic development is closely related to the level of financial development. Financial intermediaries and markets in cities with better economic development can provide effective liquidity supply (Fecht et al., 2008), diversify risks (Acemoglu et al., 2006), and reduce adverse selection and moral hazard caused by incomplete or asymmetric information (Bose et al., 1996). Conversely, cities with lagged economic development may inhibit financial development. From the perspective of the relationship between financial development and innovation, green technological innovation is the core driving force for pollution reduction of companies and industrial transformation (Schumpeter, 1934; Ghisetti et al., 2017; Du et al., 2021). Nevertheless, green technologies often have long research and development cycles and slow investment returns, which directly lead to high risks and uncertain returns in green technology upgrade investment projects (Hsu et al., 2014). As a result, this kind of projects will face higher financing constraints in the underdeveloped financial market, which will hinder the technological innovation activities of enterprises. In summary, compared with the poor regions, the richer regions have a more perfect financial system and more competitive financial markets, which can enable companies to introduce green technologies and clean production processes by broadening financing channels, reducing financing costs, increasing R&D investment and upgrading equipment, which can provide more opportunities for reducing air pollution and improving environmental quality. In view of the analysis of linear and nonlinear results, the first

427 hypothesis has been confirmed¹.


428


(a) Coefficient curve of L_{fin}

(b) Coefficient curve of L_{finsc}

(c) Coefficient curve of L_{finef}

(d) Coefficient curve of L_{finst}

Fig. 1. The functional coefficient of financial development on haze pollution.

429 Note: The horizontal axis in the figure represents log-transformed per capita GDP ($lpgdp$). For ease of interpretation, the following correspondences are
430 provided: $lpgdp$ values of 9, 10, 11, and 12 approximately correspond to actual per capita GDP of 8,103, 22,026, 59,874, and 162,755 yuan, respectively.
431

432 4.3 Robustness tests

433 Whether it is a linear model or a nonlinear model analysis, the results show that financial
434 development can significantly reduce urban PM2.5. In order to examine whether the results are
435 reliable, we use the following methods for robustness analysis. First, we use Generalized Least
436 Squares (GLS) in the regression to avoid estimation errors that may be caused by the correlation
437 of variables. The results are reported in **Panel A** of Table 3. Second, the four well-developed

¹ It should be noted that, while the above mechanism tests provide evidence consistent with the hypothesized pathway—"financial development → enhancement of innovation capacity → reduction in haze pollution"—we cautiously acknowledge that the relationship between urban innovation capacity and haze pollution may be subject to complex endogeneity. For instance, improvements in air quality could themselves attract high-skilled talent and clean-technology firms, thereby generating feedback effects on urban innovation capacity. Although our model addresses part of the causality concern by lagging the core explanatory variable (financial development), the current results primarily reveal robust associations and suggestive transmission patterns among the variables. Nevertheless, these findings offer important correlational evidence and theoretical insights for understanding the "black box" linking financial development and environmental quality.

438 municipalities directly under the Central Government, namely Beijing, Shanghai, Tianjin and
 439 Chongqing, are all provincial-level administrative divisions and are directly managed by the
 440 Central Government. Therefore, we exclude the data of municipalities in regression and the results
 441 are shown in **Panel B** of Table 3. Third, the State Council issued the Air Pollution Prevention and
 442 Control Action Plan in 2013, which proposed to eliminate heavily polluted weather within 5 years
 443 and improve air quality. Therefore, we set a dummy variable (*Air10*) to represent the plan in order
 444 to remove the policy effect. The dummy variable will take a value of 1 from 2013 to 2017,
 445 otherwise it will take a value of 0. The results are shown in **Panel C** of Table 3. Lastly, we take a
 446 one-period lagged-value for the control variables to avoid the endogenous problems caused by
 447 them, and the results are shown in **Panel D** of Table 3. After the above analysis, we find that the
 448 results are still robust.

449 **Table 3**

450 Robustness checks.

	Panel A	Panel B	Panel C	Panel D
	Robustness tests 1	Robustness tests 2	Robustness tests 3	Robustness tests 4
<i>L.fin</i>	-56.3728*** (-8.82)	-40.5459*** (-3.71)	-20.7332* (-1.94)	-20.5011** (-2.57)
adj. <i>R</i> ²	-	0.4672	0.5024	0.3898
<i>L.finsc</i>	-1.6494*** (-6.93)	-1.8566*** (-6.25)	-0.9259*** (-3.16)	-2.4816*** (-7.71)
adj. <i>R</i> ²	-	0.4470	0.4839	0.3986
<i>L.finef</i>	-4.7029*** (-6.27)	-6.9086*** (-6.17)	-3.8578*** (-3.52)	-9.6370*** (-8.42)
adj. <i>R</i> ²	-	0.4468	0.4843	0.4005
<i>L.finstd</i>	-8.5928*** (-6.50)	10.6879*** (7.16)	8.8250*** (6.16)	10.8606*** (6.91)
adj. <i>R</i> ²	-	0.4489	0.4879	0.3967
<i>N</i>	3864	3804	3864	3864
Controls	Yes	Yes	Yes	Yes
Year	Yes	Yes	Yes	Yes
City	Yes	Yes	Yes	Yes

451 Note: *t* statistics in parentheses, * *p* < 0.1, ** *p* < 0.05, *** *p* < 0.01. Each coefficients in the table are drawn from the
 452 regressions consistent with the mentioned model and conducting with different explanatory variables.
 453

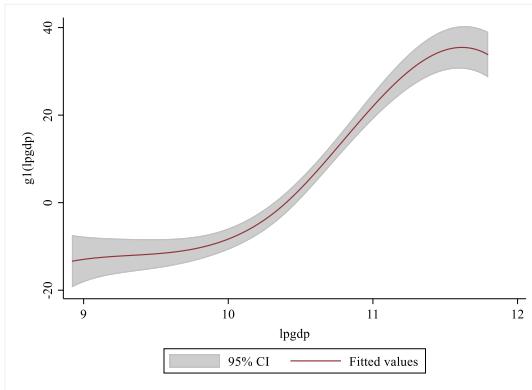
455 4.4 Mechanism analysis

456 The above results indicate that financial development can significantly reduce the
457 concentration of urban PM2.5 in general, and the impact may vary depending on regional economic
458 development, that is, in cities with better economic development, financial development can
459 significantly reduce haze pollution, while the impact is uncertain in cities with a lower level of
460 development. In this section, we study the mechanism of financial development affecting haze
461 pollution and the reasons for nonlinear differences due to different levels of regional economic
462 development from the perspectives of urban innovation ability and environmental regulation
463 intensity.

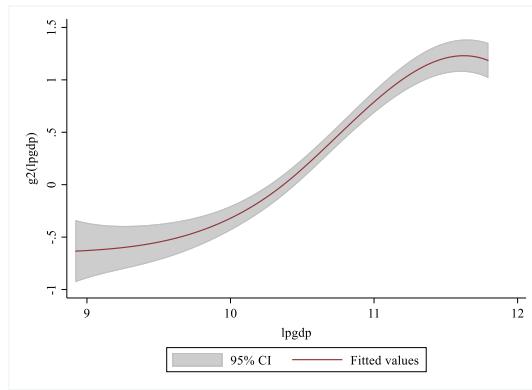
464 Innovation can affect technological progress, efficiency improvement and urban pollution
465 control. As the main participants in innovation, the innovation activities of enterprises are
466 inseparable from R&D capital, human capital and technical support, and the investment of these
467 capitals requires a strong financial foundation. Therefore, we use the Urban Innovation Index,
468 which measures urban innovation capabilities, to examine whether financial development can
469 reduce pollution by improving urban innovation capabilities. First, we introduce the Urban
470 Innovation Index as a dependent variable into equation (1) to discuss the impact of financial
471 development on innovation. Columns (1)-(4) of Table 4 show the results. Then we introduce the
472 Urban Innovation Index as a control variable into Eq. (1), and the estimation results are reported
473 in columns (5)-(6) of **Table 4**.

474 The empirical results in columns (1)-(4) show that the coefficient of financial development is
475 mostly positive and statistically significant at the 1% level, indicating that financial development
476 has significantly improved the level of urban innovation, that is, the effect of financial development
477 on the promotion of urban innovation capabilities has been confirmed, which is in accordance with
478 the previous literature. The results of columns (5)-(8) show that the improvement of urban
479 innovation capabilities can significantly reduce the concentration of PM2.5. In addition, the
480 inhibitory effect of financial development on PM2.5 is still significantly negative after the
481 introduction of urban innovation capabilities, which also confirms the results of the general
482 regression model. Based on the results from columns (1)-(8), financial development can reduce
483 smog by improving urban innovation capabilities, which confirms the innovation channel effect of
484 financial development in reducing pollution. Nevertheless, the above results fail to explain the
485 effect of financial development on haze pollution in the PLFC model, which varies with the
486 economic development of different cities. Therefore, we use a PLFC model to explore the non-
487 linearity of the impact of financial development on urban innovation capacity under different
488 economic development levels. The empirical models is reported as Eq. (1), (2), (3) and (4) in

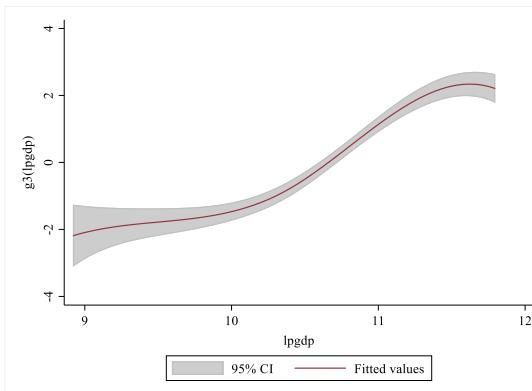
489 **Appendix.** The results in **Fig. 2** show that in terms of the comprehensive index of financial
 490 development, financial scale, financial efficiency and financial structure, the innovative effect of
 491 financial development shows different characteristics with different levels of economic
 492 development. When the economy is underdeveloped, financial development has an inhibitory
 493 effect on urban innovation; as the economy gets better, the inhibition of financial development on
 494 innovation slows down and gradually turns into a promotion effect; the promotion of urban
 495 innovation by financial development gradually strengthens and shows a significant upward trend
 496 when the economy is developed. Therefore, the nonlinear effect of financial development on urban
 497 innovation explains the reason for the nonlinear effect of financial development on haze pollution.
 498 In other words, the **second hypothesis** has been confirmed.

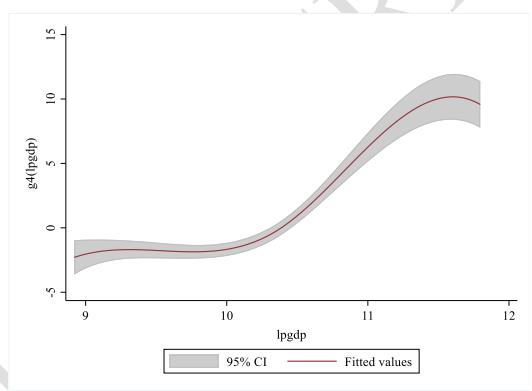

499 **Table 4**

500 The effect of innovation channels in financial development.


	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Urban Innovation Index(inv)				PM _{2.5}			
<i>L.fin</i>	25.7847*** (7.37)				-30.1941*** (-2.90)			
<i>L.finsc</i>		1.7414*** (12.39)				-1.6309*** (-3.75)		
<i>L.finef</i>			1.9467*** (5.00)				-5.5744*** (-4.88)	
<i>L.fin</i>				-1.4365** (-2.19)				0.3828 (0.20)
<i>inv</i>					-0.5300*** (-8.96)	-0.5005*** (-8.31)	-0.5265*** (-8.98)	-0.5546*** (-9.45)
Constant	-4.9335*** (-2.61)	-6.8466*** (-3.68)	-4.2045** (-2.22)	-2.4594 (-1.30)	45.7359*** (8.21)	47.1342*** (8.43)	47.1151*** (8.50)	43.1582*** (7.79)
Controlss	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
City	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
<i>N</i>	2760	2760	2760	2760	2760	2760	2760	2760
adj. <i>R</i> ²	0.2740	0.3014	0.2655	0.2595	0.1593	0.1612	0.1645	0.1564

501 *t* statistics in parentheses * *p* < 0.1, ** *p* < 0.05, *** *p* < 0.01


502


(b) Coefficient curve of $L.fin$

(b) Coefficient curve of $L.finsc$

(c) Coefficient curve of $L.finref$

(d) Coefficient curve of $L.fininst$

503

504

Fig. 2. The effect of financial development on urban innovation.

505

506

Note: The horizontal axis in the figure represents log-transformed per capita GDP ($lpgdp$). For ease of interpretation, the following correspondences are

provided: $lpgdp$ values of 9, 10, 11, and 12 approximately correspond to actual per capita GDP of 8,103, 22,026, 59,874, and 162,755 yuan, respectively.

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

520
$$Y_{it} = \alpha_0 + \alpha_1 F_{i(t-1)} + \alpha_2 ER_{it} + \beta' X_{it} + \mu_i + \varepsilon_{it} \quad (13)$$

521
$$Y_{it} = \alpha_0 + \alpha_1 F_{i(t-1)} + \alpha_2 ER_{it} + \alpha_3 F_{i(t-1)} * ER_{it} + \beta' X_{it} + \mu_i + \varepsilon_{it} \quad (14)$$

522 Where $F_{i(t-1)}$ represents the level of urban financial development, including the
 523 comprehensive index of financial development ($L.fin$), financial scale ($L.finsc$), financial
 524 efficiency ($L.finef$) and financial structure ($L.fininst$); ER indicates the level of environmental
 525 regulation. The control variables are consistent with those in Eq. (1). The estimated results are
 526 reported in Table 5.

527 The odd-numbered columns in Table 5 represent the high-level economic development groups,
 528 and the even-numbered columns represent the low-level economic development groups. The
 529 results indicate that environmental regulation can strengthen the inhibitory effect of financial
 530 development on haze pollution. Moreover, the moderating effects of environmental regulations are
 531 different: for cities with high-level economic development, environmental regulations have
 532 effectively strengthened the effect of finance to reduce smog; for cities with low-level economic
 533 development, environmental regulations have weakened the impact of financial development on
 534 haze pollution. Furthermore, we find that environmental regulations also have an impact on urban
 535 innovation capability, and this effect varies with different economic levels. In short, the
 536 environmental regulation can help high-level cities to enhance the innovation capability, but it may
 537 also inhibit the innovation activities of low-level cities. The result is reported as **Appendix** (Fig.
 538 1). Therefore, the **third hypothesis** has been confirmed.

539 **Table 5**

540 The moderating effect of environmental regulation

	(1) H-L	(2) L-L	(3) H-L	(4) L-L	(5) H-L	(6) L-L	(7) H-L	(8) L-L
$L.fin$	56.8932* (1.93)	-0.5254 (-0.02)						
ER	-18.8159*** (-5.19)	-13.6753*** (-3.93)	-12.4593*** (-3.51)	-2.7766 (-0.75)	-0.6610 (-0.11)	-27.7728*** (-5.51)	-44.0523*** (-12.30)	-20.7098*** (-6.72)
$L.fin \times ER$	-1.4e+02*** (-3.27)	29.0880 (0.67)						
$L.finsc$			2.6915*** (2.85)	2.7243** (2.48)				
$L.finsc \times ERR$			-7.0553*** (-5.32)	-4.7953*** (-2.61)				
$L.finef$					12.0985*** (2.77)	-9.2026** (-2.49)		
$L.finef \times ER$					-37.2147*** (-4.71)	27.4440*** (3.39)		
$L.fininst$							-36.7696*** (-3.93)	-10.4676** (-2.44)
$L.fininst \times ER$							68.8939***	29.0411***

Constant	53.0373***	39.4092***	48.9480***	36.0874***	48.6260***	45.0347***	69.4584***	(4.72)	(3.53)
	(5.73)	(5.44)	(5.34)	(4.91)	(5.13)	(6.22)	(7.62)	(6.05)	
Controls	Yes	Yes							
City	Yes	Yes							
Year	Yes	Yes							
<i>N</i>	1982	1606	1982	1606	1982	1606	1982	1606	
adj. <i>R</i> ²	0.9022	0.9375	0.9039	0.9377	0.9037	0.9380	0.9026	0.9382	

541 Note: *t* statistics in parentheses, * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$; H-L denotes for high-level economic
 542 development groups, L-L denotes for low-level economic development groups

543 **5. Conclusions and discussion**

544 In this paper, we use a prefecture-level panel of 276 cities in China from 2006 to 2018 to
 545 construct a urban financial development index from dimensions of financial scale, financial
 546 efficiency and financial structure. A partially linear functional-coefficient model is used to explore
 547 the impact of financial development on urban haze pollution and the influential mechanism. The
 548 results indicate that financial development which including financial scale, financial efficiency and
 549 financial structure can reduce haze pollution to a certain extent.

550 Our findings have several implications. On the whole, the coefficient of the comprehensive
 551 index of urban financial development indicates that financial development contributes to smog
 552 governance and significantly reduces haze pollution. In terms of the dimensions of financial
 553 development, both financial scale and financial efficiency have significantly inhibited urban smog
 554 pollution, but the impact of the financial structure is uncertain and even the opposite. From the
 555 perspective of regional economic disparity, the results of the PLFC model show that the effects of
 556 financial development, financial scale, financial efficiency and financial structure all have
 557 nonlinear and differentiated characteristics. Specifically, financial development may exacerbate
 558 the deterioration of haze pollution in poor areas; as the economy gets better, the positive effect of
 559 financial development on haze pollution slows down and gradually turns into a inhabit effect; the
 560 inhabit effect gradually strengthens and shows a significant upward trend when the economy is
 561 developed. As for the the mechanism of the impact, financial development can affect smog by
 562 improving urban innovation capabilities. However, due to the differences in regional economic
 563 development, financial development has a nonlinear impact on urban innovation. In well-
 564 developed cities, financial development can enhance the innovation capabilities; otherwise,
 565 financial development may have an inhibitory effect on urban innovation. On the other hand, the
 566 moderating effect of environmental regulations can change the impact of financial development on
 567 haze pollution, and this effect also presents similar nonlinear characteristic. Compared with
 568 underdeveloped cities, environmental regulation can strengthen the effect of pollution reduction

569 caused by financial development in more developed cities.

570 The results presented in this paper provide new empirical evidence for the way in which
571 financial development and haze governance are connected, and also provide new ideas for cities
572 to improve the financial system, optimize the financial structure, improve financial quality as well
573 as the ability of environmental governance, and promote the coordinated progress of economic
574 growth and environmental protection.

575 The paper concludes that financial development generally supports local haze mitigation, but
576 its effectiveness varies with regional economic development, highlighting the need for stage-
577 specific, tiered financial policies. For less-developed cities ($lpgdp < 10$), the financial system has
578 yet to establish effective interactions with the real economy, and premature promotion of complex
579 green finance instruments may be counterproductive. Policy priorities should focus on
580 strengthening financial infrastructure: expanding inclusive finance and improving SME credit
581 access; enhancing credit guarantee systems to lower initial financing barriers for green projects;
582 and leveraging fiscal funds to guide commercial capital toward environmental initiatives. The key
583 objective is to bridge the “last mile” between financial resources and the real economy, laying the
584 foundation for subsequent green transitions.

585 For more developed cities ($lpgdp \geq 10$), financial markets are sufficiently mature to deploy
586 advanced instruments for targeted haze reduction. Policy emphasis should shift toward financial
587 innovation and market mechanisms: promoting green credit, green bonds, and insurance linked to
588 carbon or pollution rights; establishing regional environmental trading markets to allow prices to
589 guide emissions; and creating green industry investment funds with risk-sharing and interest
590 subsidies to attract private capital for long-term green technology development. The ultimate goal
591 is to leverage efficient financial markets to catalyze technological innovation and industrial
592 upgrading, achieving a dual win for pollution control and economic development.

593 The paper further examines the innovation channel of financial development and its nonlinear
594 effects on urban innovation capacity. To strengthen local innovation, governments should increase
595 investment in innovation inputs, direct financial resources toward entrepreneurship and R&D to
596 stimulate firm-level innovation, enhance educational resources to attract and cultivate talent, and
597 foster an innovation-friendly environment that reinforces the local innovation infrastructure. For
598 regions with weaker innovation capabilities, authorities should proactively build platforms
599 connecting local firms and universities with more advanced regions, enabling them to leverage
600 external innovation advantages to overcome local shortcomings and progress toward becoming
601 innovation-driven cities.

602 Moreover, the moderating role of environmental regulation varies with regional economic

603 development. Policy stringency and implementation must be tailored to local conditions to
604 maximize synergy with financial development. In high-development cities, environmental
605 standards should be maintained and gradually strengthened. Strict regulation in these contexts can
606 generate significant “innovation compensation” effects (Porter hypothesis). Governments should
607 ensure a fair, stable, and predictable regulatory environment, complemented by transparent
608 environmental information disclosure, to stabilize market expectations and incentivize firms to
609 allocate financial resources toward long-term green technology R&D and equipment upgrades.

610 In less-developed cities, overly rigid regulations may produce “crowding-out” effects. Policy
611 design should be more flexible, such as implementing gradual, stepwise increases in standards to
612 provide firms with adjustment periods; relying more on market-based instruments (e.g., tax
613 incentives or emissions trading) rather than direct administrative shutdowns to reduce compliance
614 costs; and increasing horizontal ecological transfer payments from central and provincial
615 governments to offset short-term economic losses from strengthened environmental protection,
616 avoiding a “race to the bottom.”

617 In sum, as the “Blue Sky Defense” initiative advances, local governments must recognize the
618 stage-dependent constraints on the effectiveness of financial development and environmental
619 policy. Aligning the allocation of financial resources and regulatory stringency with local economic
620 development stages and factor endowments is essential to achieve the dual goals of sustainable
621 economic growth and environmental protection.

622

623 **References**

624 Acemoglu D. Directed technical change[J]. The review of economic studies, 2002, 69(4): 781-809.

625 Acemoglu D. Introduction to modern economic growth[M]. Princeton university press, 2008.

626 Agbloyor E K, Abor J, Adjasi C K D, et al. Exploring the causality links between financial markets and foreign direct investment
627 in Africa[J]. Research in International Business and Finance, 2013, 28: 118-134.

628 Alfaro L, Chanda A, Kalemli-Ozcan S, et al. FDI and economic growth: the role of local financial markets[J]. Journal of international
629 economics, 2004, 64(1): 89-112.

630 Al-Mulali U, Ozturk I, Lean H H. The influence of economic growth, urbanization, trade openness, financial development, and
631 renewable energy on pollution in Europe[J]. Natural Hazards, 2015, 79(1): 621-644.

632 Becker, R., and V, Henderson, Effects of Air Quality Regulations on Polluting Industries, Journal of Political Economy, 2000, 108(2),
633 379—421.

634 Bencivenga, V. R., & Smith, B. D. Financial intermediation and endogenous growth. Review of Economic Studies, 1991, (2), 195-
635 209.

636 Blanford G J. R&D investment strategy for climate change[J]. Energy Economics, 2009, 31: S27-S36.

637 638 Bose, N., & Cothren, R. Equilibrium loan contracts and endogenous growth in the presence of asymmetric information. Journal of Monetary Economics, 1996, 38(2), 363-376.

639 640 Boutabba, M. A. The impact of financial development, income, energy and trade on carbon emissions: evidence from the Indian economy. Economic Modelling, 2014, 40, 33-41.

641 642 Brock W A, Taylor M S. Economic growth and the environment: a review of theory and empirics[J]. Handbook of economic growth, 2005, 1: 1749-1821.

643 644 Burkhardt J, Bayham J, Wilson A, et al. The effect of pollution on crime: Evidence from data on particulate matter and ozone[J]. Journal of Environmental Economics and Management, 2019, 98: 102267.

645 646 Carluccio, J., and T. Fally. Foreign Entry and Spillovers with Technological Incompatibilities in the Supply Chain. Journal of International Economics, 2013, 90(1), 123—135.

647 648 Chakraborty P, Chatterjee C. Does environmental regulation indirectly induce upstream innovation? New evidence from India[J]. Research Policy, 2017, 46(5): 939-955.

649 650 Chen X, Zhang Z, Li M. Environmental regulation, industrial structure change and technological innovation ability[J]. Systems Engineering, 2019, 5: 59-68.

651 652 Chowdhury, R. H., & Min, M. Financial market development and the effectiveness of r&d investment: evidence from developed and emerging countries. Research in International Business and Finance, 2012, 26(2), 258-272.

653 Copeland Brian R., Taylor M. Scott, Trade, Growth and the Environment. Journal of Economic Literature, 2004, 42(1), 7-71.

654 655 Copeland Brian R., Taylor M. Scott. North-South Trade and the Environment. The Quarterly Journal of Economics, 1994, 109(3), 755-787

656 Diamond D W, Dybvig P H. Bank runs, deposit insurance, and liquidity[J]. Journal of political economy, 1983, 91(3): 401-419.

657 658 Du K, Cheng Y, Yao X. Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities[J]. Energy Economics, 2021, 98: 105247.

659 660 Du K, Li J. Towards a green world: How do green technology innovations affect total-factor carbon productivity[J]. Energy Policy, 2019, 131: 240-250.

661 662 Du K, Yu Y, Li J. Does international trade promote CO2 emission performance? An empirical analysis based on a partially linear functional-coefficient panel data model[J]. Energy Economics, 2020, 92: 104983.

663 664 Fan Q Q, Chu C J, Liu J R, et al. Environmental Regulation, Industrial Upgrading and Haze Control[J]. *China Journal of Economics*, 2020, 7(04): 189-213.

665 Freixas X., Rochet J. C. Microeconomics of Banking. Mit Press Books, 1.

666 667 Galloway E, Johnson E P. Teaching an old dog new tricks: Firm learning from environmental regulation[J]. Energy Economics, 2016, 59: 1-10.

668 669 Ge P F, Huang X L, Xu Z Y. Financial Development, Innovation Heterogeneity and the Improvement of Green Total Factor Productivity: Empirical Evidence from the "Belt and Road"[J]. *Finance & Economics*, 2018, (01): 1-14.

670 Ghisetti C, Quatraro F. Green technologies and environmental productivity: A cross-sectoral analysis of direct and indirect effects
671 in Italian regions[J]. Ecological Economics, 2017, 132: 1-13.

672 Griliches Z. Issues in assessing the contribution of research and development to productivity growth[J]. The bell journal of
673 economics, 1979: 92-116.

674 Hammer M S, Van Donkelaar A, Li C, et al. Global estimates and long-term trends of fine particulate matter concentrations (1998–
675 2018)[J]. Environmental Science & Technology, 2020, 54(13): 7879-7890.

676 He J, Cheng R, Liu T. Financial Development, Technological Innovation and Environmental Pollution[J]. *Journal of Northeastern*
677 *University (Social Science)*, 2019, 21(02): 139-148.

678 Jalil A, Feridun M. The impact of growth, energy and financial development on the environment in China: a cointegration analysis[J].
679 Energy economics, 2011, 33(2): 284-291.

680 Javorcik B S, Lo Turco A, Maggioni D. New and improved: does FDI boost production complexity in host countries?[J]. The
681 Economic Journal, 2018, 128(614): 2507-2537.

682 Jerzmanowski M, Tamura R. Directed technological change & cross-country income differences: A quantitative analysis[J]. Journal
683 of Development Economics, 2019, 141: 102372.

684 Keller W, Levinson A. Pollution abatement costs and foreign direct investment inflows to US states[J]. Review of economics and
685 Statistics, 2002, 84(4): 691-703.

686 Kholdy S, Sohrabian A. Foreign direct investment, financial markets, and political corruption[J]. Journal of Economic Studies, 2008,
687 35(6): 486-500.

688 Kim H H, Lee H, Lee J. Technology diffusion and host–country productivity in South-South FDI flows[J]. Japan and the world
689 Economy, 2015, 33: 1-10.

690 Levine R, Zervos S. Stock markets, banks, and economic growth[J]. American economic review, 1998: 537-558.

691 Li J, Liu H, Du K. Does market-oriented reform increase energy rebound effect? Evidence from China's regional development[J].
692 China Economic Review, 2019, 56: 101304.

693 Liu D D, Huang L Y, Dong J R. How Does R&D Factor Price Distortion Affect the Innovation Efficiency of Manufacturing Industry:
694 From the Perspective of Global Value Chain[J]. *Journal of International Trade*, 2020, (10): 112-127.

695 Liu X, Zhou X, Zhu B, et al. Measuring the maturity of carbon market in China: An entropy-based TOPSIS approach[J]. Journal of
696 cleaner production, 2019, 229: 94-103.

697 Liu Y, Li Z, Yin X. Environmental regulation, technological innovation and energy consumption---a cross-region analysis in
698 China[J]. Journal of Cleaner Production, 2018, 203: 885-897.

699 Lundgren T. A real options approach to abatement investments and green goodwill[J]. Environmental and Resource Economics,
700 2003, 25(1): 17-31.

701 Panayotou T. Demystifying the environmental Kuznets curve: turning a black box into a policy tool[J]. Environment and
702 development economics, 1997, 2(4): 465-484.

703 Peng F M. Financial Development, Spatial Linkage and Economic Growth of Guangdong-Hong Kong-Macao Greater Bay

704 Area[J]. *Guizhou Social Sciences*, 2019, (03): 109-117.

705 Romer P M. Endogenous technological change[J]. *Journal of political Economy*, 1990, 98(5, Part 2): S71-S102.

706 Sadorsky P. The impact of financial development on energy consumption in emerging economies[J]. *Energy policy*, 2010, 38(5):
707 2528-2535.

708 Sager L. Estimating the effect of air pollution on road safety using atmospheric temperature[R]. *Grantham Research Institute on*
709 *Climate Change and the Environment*, 2016.

710 Schumpeter J A, Swedberg R. *The theory of economic development*[M]. Routledge, 2021.

711 Shahbaz M, Hye Q M A, Tiwari A K, et al. Economic growth, energy consumption, financial development, international trade and
712 CO2 emissions in Indonesia[J]. *Renewable and sustainable energy reviews*, 2013, 25: 109-121.

713 Shahbaz M, Nasreen S, Abbas F, et al. Does foreign direct investment impede environmental quality in high-, middle-, and low-
714 income countries?[J]. *Energy Economics*, 2015, 51: 275-287.

715 Shao S, Huang T, Yang L. Using latent variable approach to estimate China' s economy-wide energy rebound effect over 1954–
716 2010[J]. *Energy Policy*, 2014, 72: 235-248.

717 Shao S, Li X, Cao J H. China's Urbanization and Haze Governance[J]. *Economic Research Journal*, 2019, 54(02): 148-165.

718 Shi D Q, Ding H, Wei P, et al. Can the Construction of Smart Cities Reduce Environmental Pollution[J]. *China Industrial Economics*,
719 2018, (06): 117-135.

720 Sun C W, Luo Y, Yao X. Transportation Infrastructure and Urban Air Pollution: Empirical Evidence from China[J]. *Economic*
721 *Research Journal*, 2019, 54(08): 136-151.

722 Tamazian A, Chousa J P, Vadlamannati K C. Does higher economic and financial development lead to environmental degradation:
723 evidence from BRIC countries[J]. *Energy policy*, 2009, 37(1): 246-253.

724 Tamazian A, Rao B B. Do economic, financial and institutional developments matter for environmental degradation? Evidence from
725 transitional economies[J]. *Energy economics*, 2010, 32(1): 137-145.

726 Wang M, Huang Y. Environmental Pollution and Economic Growth in China[J]. *China Economic Quarterly*, 2015, 14(02): 557-
727 578.

728 Wang, Yun, Xiaohua Sun, and Xu Guo. "Environmental regulation and green productivity growth: Empirical evidence on the Porter
729 Hypothesis from OECD industrial sectors." *Energy Policy* 132 (2019): 611-619.

730 Woods N D. Interstate competition and environmental regulation: a test of the race-to-the-bottom thesis[J]. *Social Science Quarterly*,
731 2006, 87(1): 174-189.

732 Xu L, Fan M, Yang L, et al. Heterogeneous green innovations and carbon emission performance: evidence at China's city level[J].
733 *Energy Economics*, 2021, 99: 105269.

734 Yan C L, Li T, Lan W. Financial Development, Innovation and Carbon Dioxide Emissions[J]. *Journal of Financial Research*, 2016,
735 (01): 14-30.

736 Yi X, Liu F L. Financial Development and Industrial Structure Transformation: Theory and Empirical Research Based on Cross-
737 country Panel Data[J]. *The Journal of Quantitative & Technical Economics*, 2018, 35(06): 21-39.

738 Zhang W, Tang Q, Sun J, et al. Financial Development and Entrepreneurial Vitality: Exploring the Roles of Entrepreneurial Intention
 739 and Government Attention[J]. Available at SSRN 5233605.

740 Zhang X, Zhang X, Chen X. Happiness in the air: How does a dirty sky affect mental health and subjective well-being?[J]. Journal
 741 of environmental economics and management, 2017, 85: 81-94.

742 Zhang Y J. The impact of financial development on carbon emissions: An empirical analysis in China[J]. Energy policy, 2011, 39(4):
 743 2197-2203.

744 Zhang Y, Zhou Q. Partially linear functional-coefficient dynamic panel data models: sieve estimation and specification testing[J].
 745 Econometric Reviews, 2021, 40(10): 983-1006.

746 Zhang, Y. J. The impact of financial development on carbon emissions: an empirical analysis in china". Energy Policy, 2011, 39(4),
 747 2197-2203.

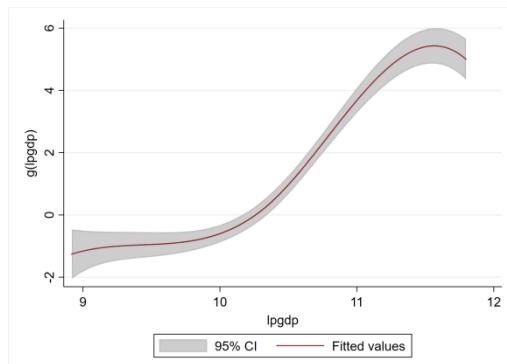
748 Zhu Z J, Huang X H, Wang Y. Foreign Entry and the Solving of the Dual Low Dilemma of Chinese-style Innovation[J]. *Economic
 749 Research Journal*, 2020, 55(05): 99-115.
 750

751 **Appendix:**

752 **Table1:**The estimation results of the linear part of the nonlinear models

	(1)	(2)	(3)	(4)
<i>lfdi</i>	0.2009 (1.55)	0.1874* (1.77)	0.2086* (1.87)	0.2331** (2.34)
<i>lurban</i>	1.2235*** (4.43)	1.3021*** (5.04)	1.4524*** (4.92)	1.2357*** (4.91)
<i>lind3</i>	-14.0409*** (-13.18)	-14.7194*** (-16.64)	-14.3194*** (-18.90)	-14.1237*** (-14.81)
<i>lpeosc</i>	-0.4867 (-0.77)	-0.3970 (-0.63)	-0.4525 (-0.71)	-0.5706 (-0.88)
<i>linfra</i>	-0.2801 (-0.47)	-0.1960 (-0.36)	-0.0308 (-0.05)	-0.3037 (-0.56)
<i>N</i>	3864	3864	3864	3864
<i>r2</i>	0.0657	0.0776	0.0584	0.0657

753
 754 $inv_{it} = \alpha_0 + f_1(Log(pgdp))fin_{i(t-1)} + \beta'X_{it} + \mu_i + \varepsilon_{it}$ (1)


755 $inv_{it} = \alpha_0 + f_2(Log(pgdp))finsc_{i(t-1)} + \beta'X_{it} + \mu_i + \varepsilon_{it}$ (2)

756 $inv_{it} = \alpha_0 + f_3(Log(pgdp))finef_{i(t-1)} + \beta'X_{it} + \mu_i + \varepsilon_{it}$ (3)

757 $inv_{it} = \alpha_0 + f_4(Log(pgdp))fin_{i(t-1)} + \beta'X_{it} + \mu_i + \varepsilon_{it}$ (4)

759

760

Fig. 1. The functional-coefficient of environmental regulation on urban innovation ability.