% Global NEST

Global NEST Journal, Vol 27, No 10, 07867
Copyright© 2025 Global NEST
Printed in Greece. All rights reserved

The Spatial-temporal Pattern Evolution and Influencing Factors of
Agricultural Carbon Emission Efficiency in Jiangsu Province

Weiran Liu'* ,Wenjing Guo?! and Yuanyuan Yin?

INanjing University of Finance & Economics Hongshan College, Nanjing, 211300, China
Received: 27/07/2025, Accepted: 15/10/2025, Available online: 22/10/2025
*to whom all correspondence should be addressed: e-mail: liuweiranjs@163.com

https://doi.org/10.30955/gnj.07867

Graphical abstract

Abstract

Agriculture, as a pillar sector of the national economy,
plays a crucial role in influencing the quality of the
ecological environment through its carbon emissions.
Jiangsu Province is a major agricultural region in China.
Measuring agricultural carbon emission efficiency (ACEE),
analyzing its spatiotemporal evolution characteristics,
along with the influencing factors are of great significance
for advancing the achievement of agricultural sustainable
development goals in Jiangsu. This paper focuses on the
13 prefecture-level cities in Jiangsu Province and initially
conducts a quantitative assessment of the carbon
emission efficiency in the agricultural sector from 2010 to
2020 using the Super-SBM model. Subsequently, the
paper investigates the temporal and spatial evolutionary
characteristics of ACEE using spatial autocorrelation
models and kernel density estimation. Finally, the paper
employs the geographically weighted regression method
to systematically analyze and interpret the key factors
influencing efficiency. Based on the empirical research
findings, three main conclusions can be drawn. (1)
Regarding efficiency levels, the carbon emission efficiency
in Jiangsu Province's agricultural sector has gradually
improved, but it remains relatively low overall, with
significant efficiency loss issues. (2) In terms of
spatiotemporal evolution, the ACEE in Jiangsu Province
improves over time and exhibits positive spatial clustering
characteristics in space. (3) Concerning influencing factors,
MClI, labor-land allocation efficiency, and other factors all
have a significant impact on ACEE.

Keywords: Agricultural carbon emission efficiency,
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1. Introduction

1.1. Literature review

The intensifying trend of global warming, coupled with the
frequent occurrence of extreme weather events, has
posed severe environmental challenges that have become
major obstacles on the path to sustainable development.
Consequently, reducing carbon emissions to effectively
address global climate change has become a core issue of
widespread concern for governments worldwide. IPCC
ARG Synthesis Report: Climate Change 2023) shows that
the agriculture, forestry and other land uses sector,
accounted for 13-21% of global total anthropogenic
greenhouse gas (GHG) emissions in the period 2010-2019.
As a major global player in the agricultural sector, the
prominent carbon emission issues from China's
agriculture have become a significant challenge that
cannot be ignored in the field of environmental
protection. Currently, China's agriculture is at a critical
juncture, transitioning from extensive scale expansion to
intensive deepening. During this phase, the widespread
use of fertilizers, pesticides, and various agricultural
production inputs, while enhancing agricultural output
efficiency, also imposes more severe pressures and
challenges on China's carbon emission management
(Wang et al., 2020).

Traditional agricultural efficiency assessment primarily
focuses on desirable outputs such as agricultural output
value and grain yield, while often overlooking undesirable
outputs including various pollution emissions generated
during agricultural production. This evaluation method
tends to overestimate efficiency and underestimate policy
effectiveness. Incorporating undesirable outputs such as
carbon emissions allows for a more accurate measurement
of agricultural efficiency. Scholars have employed various
models, including DEA and SFA, to explore this topic from
multiple perspectives. Research in this field not only reflects
the academic community's high regard for environmental
protection issues but also demonstrates proactive
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exploration of sustainable agricultural development
pathways. In the course of academic research, the issue of
agricultural carbon emissions initially attracted extensive
attention in developed countries such as the United States,
Germany, and Australia (Franzluebbers et al., 2017; Nong,
2019; Vos et al., 2019). Subsequently, academic attention
has gradually expanded to developing countries that play
an important role in global economic development, such as
Brazil, India, China, and Egypt (Garofalo et al., 2022;
Radwan et al., 2022; Sah & Devakumar, 2018; Zhu & Huo,
2022). As research deepened, some scholars have chosen
representative organization members, such as EU member
states and BRICS countries, as the object of comparative
analysis. This approach aims to further broaden the
theoretical perspective on agricultural carbon emissions
research and enhance the understanding of issues within
this field (Pata, 2021; Selvanathan et al., 2023).

Taken together, discussions on agricultural carbon
emissions primarily focus on two core topics. The first is the
quantitative assessment of carbon emissions and the
measurement of agricultural carbon emission efficiency
(ACEE) (Zhang et al., 2024). This area includes not only
determining total emissions and defining efficiency metrics,
but also analyzing spatiotemporal variations and regional
interactions (Balsalobre-Lorente et al., 2019; Cui et al.,
2021; Garnier et al., 2019; Gui et al., 2023; Hossain & Chen,
2022; Rong et al., 2023; Zytowski & Kozyra, 2023). The
second core topic is the exploration of the factors
influencing carbon emissions. Scholars have employed a
variety of empirical models, such as LMDI, GMM, mediation
effects, and moderation effects. In terms of driving factors,
researchers have thoroughly studied the mechanisms by
which a series of key factors, such as economic level,
industrial structure, agricultural specialization, agricultural
emission reduction policies, and urbanization level, affect
carbon emissions (Agovino et al., 2019; Solazzo et al., 2016;
Yang et al., 2022; Yu et al., 2020).

In recent years, key paradigms such as technological
innovation and digital transformation have been
increasingly integrating with multiple fields and gradually
extending into the agricultural sector, emerging as
frontier issues promoting sustainable agricultural
development (Cai et al., 2025a; Cai et al., 2025b; Jin & Lei,
2023; Lei & Xu, 2025; Tian et al., 2024). Against this
backdrop, emerging factors such as agricultural green
technology innovation and digital inclusive finance have
entered the academic spotlight, providing new theoretical
research directions for exploring pathways to reduce
agricultural carbon emissions (Abbasi & Zhang, 2024; Cai
et al., 2024; Deng & Zhang, 2024; Li, 2023). However,
existing research has largely focused on macro-level
national or provincial analyses. Limited by the availability
and completeness of micro-level statistical data, rigorous
empirical research on how micro-level units respond to
these emerging factors remains relatively scarce.

In summary, scholars have conducted extensive research
and analysis on the topic of carbon emissions in
agriculture, covering carbon emission  sources,
guantitative assessment, and influencing factors.

LIU et al.

Although these studies have accumulated rich research
results and provided important references for further
exploration of ACEE, there is still room for improvement in
certain core areas that require further research. In terms
of research methodology, existing studies have
predominantly focused on desired outcomes such as
agricultural yield improvement and economic benefits,
while relatively neglecting the environmental pollution
issues  associated with  agricultural  production.
Furthermore, they have not incorporated carbon
emissions, a critical indicator, into the assessment of
undesired outputs. Regarding research perspective, the
current literature largely centers on comprehensive
analyses at the national macro level, with a noticeable
lack of detailed investigations at the provincial or
municipal levels. In terms of research content, ACEE
exhibit  significant  spatial  heterogeneity  across
geographical spaces and at different time points.
However, there is still insufficient in-depth exploration
and analysis of this characteristic.

1.2. Study area

As an eastern coastal area, Jiangsu Province has vast
plains, favorable natural conditions, and a good economic
foundation. Jiangsu is a large economic province, and its
economic development has always been the focus of
attention of all sectors of society. In 2023, lJiangsu
Province realized a GDP of 1,282.22 billion yuan, an
increase of 5.8% over 2022 at constant prices. This figure
highlights the strong momentum and vitality of Jiangsu
Province's dynamic development. At the same time, as a
major agricultural region with outstanding natural
endowments, Jiangsu possesses a solid foundation in its
agricultural industry. In 2023, Jiangsu maintained good
growth rates in grain area, yields, and total production,
with total production remaining above 3.5x108 tons for 10
consecutive years. As one of China's economically
developed provinces with a high level of agricultural
development,  Jiangsu Province is remarkably
representative of the results of carbon emission research
and practice in agriculture. This representativeness is not
only reflected in the scale and structure, but also in the
exploration of sustainable agricultural development and
low-carbon transition.

Based on the "green carbon reduction" perspective, this
paper defines carbon emissions as undesired outputs. This
paper quantitatively evaluates the ACEE in lJiangsu
Province using the Super-SBM model. Subsequently,
relying on spatial autocorrelation analysis and kernel
density estimation, the distribution characteristics and
evolution laws of this efficiency indicator in time and
space dimensions are deeply explored. In addition, to
examine the main elements influencing ACEE, this paper
adopts the geographically weighted regression analysis
method, which provides a more geographically oriented
and detailed explanatory perspective.

1.3. Research Innovations

The innovations of this paper are primarily reflected in the
following aspects: First, it incorporates carbon emissions
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from the agricultural sector as an undesirable output into
the indicator system for measuring the ACEE in Jiangsu
Province. This allows for a more scientific and rational
assessment of agricultural environmental performance.
Second, the research perspective focuses on prefecture-
level cities, enabling a more precise revelation of the
differences and characteristics of regional ACEE. Third, the
study examines the spatiotemporal evolution of ACEE,
providing a reference for local governments to formulate
differentiated emission reduction policies.

2. Material and methods
2.1. Super-SBM model

The Super-SBM model exhibits superior performance and
distinct advantages over classical DEA models. In contrast,
traditional radial DEA models can only proportionally
expand outputs or reduce inputs, while neglecting the
influence of slack variables. This limitation tends to
overestimate efficiency scores and often results in
multiple efficient units that cannot be further
differentiated or ranked. The Super-SBM model,
effectively addresses slack variables by directly
incorporating and minimizing input and output slacks. This
capability allows it to capture the potential for non-
proportional improvements in performance indicators,
thereby achieving more accurate efficiency
measurements. Furthermore, classical DEA models such
as CCR and BCC are unable to appropriately handle
undesirable outputs like carbon emissions. The Super-SBM
model, on the other hand, formally integrates undesirable
outputs into the analytical framework, thus providing a
more realistic assessment of environmental
efficiency(Aldamak & Zolfaghari, 2017, Huang et al.,

2021). Therefore, the Super-SBM model has
demonstrated excellent adaptability and utility in
assessing various scenarios such as environmental

performance and energy use efficiency.
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In Equation (1), we use o as a key indicator to specifically
quantify and characterize the value of ACEE. The size of
p is directly related to the level of efficiency. p>1,
indicating that the decision-making unit reaches the
efficiency frontier; p <1 indicates that there is a loss of
efficiency. Each city in Jiangsu Province is regarded as an
independent decision unit consisting of m inputs, q:1
desired outputs, as well as g2 undesired outputs. The slack
variables s7, s*, s°” represent inputs, desired outputs, and
undesired outputs, respectively.

2.2. Spatial autocorrelation model

Considering the mobility of carbon emissions, it is particularly
necessary to analyze the spatial pattern of carbon emissions

in the target regions in depth, and to reveal their intrinsic
distribution patterns and trends. This initiative aims to
accurately characterize the geographical distribution of
carbon emissions and provide a scientific basis for the
formulation of regional emission reduction strategies.

Compared to simple spatial visualization methods,
Moran's | enables statistical inference regarding spatial
autocorrelation through rigorous hypothesis testing,
thereby effectively identifying spatial dependence and
providing a theoretical foundation for further in-depth
research. The global Moran's I, constructed on the spatial
weight matrix, provides a comprehensive assessment
framework for the spatial interconnectedness of regional
carbon emission efficiency (Huang et al., 2019). The
expression is as follows:
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In Equation (2), o, is the sxpatial weight matrix. The

Global Moran's index, denoted by j, is between -1 and 1.

When >0, there is positive spatial autocorrelation,
indicating that the observations tend to be concentrated
in the spatial dimension; when I<0, it indicates that the
data show negative spatial autocorrelation, i.e., the
outliers tend to be spatially clustered; and when 1=0, it
indicates that the data are randomly disordered in the
spatial distribution. In addition, researchers can further
combine the calculation results of the global Moran index
with the P-value test and the Z-value statistics for in-depth
statistical inference analysis. Y,Y.Y denote the

Y,
observations and overall sample means of evaluation
units i, j, respectively.

2.3. Kernel density estimation

To comprehensively analyze the level and characteristics
of ACEE in Jiangsu Province, focusing only on efficiency
measurement and spatial autocorrelation analysis is not
deep enough, and further analysis of its dynamic
distribution and change patterns is needed. In contrast to
simple graphical representations, the Kernel density
estimation (KDE) captures complex distributional features
of datasets through a nonparametric approach, producing
a smooth probability density function. This capability
allows it to clearly reveal the distributional morphology of
efficiency values over time, thereby effectively uncovering
regional differentiation in efficiency (Lu et al., 2018; Wen
et al, 2022). It is assumed that there exists an
independent and identically distributed data set
containing the elements {x,x,-x} . For these data

points, an approximation of their potential probability
density function f (x) can be obtained by the kernel
density estimation method. The expression is shown in
Equation (3):
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Where, K(x';xj is the kernel function; 5 is the number

of samples; h is the bandwidth; and xi,f, denote the
sample observation and mean value, respectively.
2.4. Geographically weighted regression

Geographically weighted regression (GWR) can effectively
can efficiently handle geographical variation in data. In
many fields such as economics, natural resource
management, etc., the influencing factors of the research
object will produce different estimated coefficients with
the change of spatial location. Traditional global
regression models cannot deal with nonlinear and
nonstationary spatial data, resulting in inaccurate
regression results. GWR has a good ability to deal with this
kind of data, and can estimate the regression parameters
more accurately based on building a local regression
model for each observation (Wang et al., 2018; Xu &
Zhang, 2021). Consequently, GWR has a wide range of
applications in exploring the relative drivers of spatial
changes in research objects. In ArcGIS software, the
optimal bandwidth of the GWR model can be determined
by minimizing the corrected Akaike Information Criterion
(AICc) through the integration of optimization algorithms.
The regression model is constructed as follows:

n (4)
Vi = ﬂo (ui’vi)+2ﬂk (ui’vi)‘xik t+é;
k=1

Table 1. The input and output indicators
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Y, is the value of the dependent variable for the ith

observation; (u,v,) is the spatial coordinate position of
the observation point; g (u,,v,) is a function of geographic
location (u,v) and indicates the extent to which the

independent variable affects the dependent variable at a
particular location; g, (u,v,) represents a constant term at

a specific location; X, is the value of the kth independent

variable at the ith observation; and g is the random error
term for the ith observation.

3. Indicators and data sources

3.1. Indicators
3.1.1. Efficiency indicator system

The essence of enhancing low-carbon agriculture lies in
maximizing desired returns with less input and lower
carbon emissions. Establishing a scientific input-output
indicator system not only allows for the accurate
quantification and assessment of carbon emission levels in
agricultural activities but also provides a basis for
implementing low-carbon agricultural development
strategies (Liu et al., 2025). Currently, many researchers
have constructed corresponding evaluation frameworks
based on dimensions such as agricultural development
level and input conditions. In light of existing studies, this
paper incorporates undesirable outputs into the research
scope and establishes an indicator system.

Indicator type Indicators Definition Unit
Labor input Rural employees Ten thousand persons
Land input Total sown area Thousand hectares
Fertilizer input Fertilizer usage Ton
Input Pesticide input Pesticide usage Ton
Agricultural plastic film Agricultural plastic film usage Ton
Total power of agricultural

Mechanical input

. Ten thousand kW
machinery

Irrigation input

Effective irrigated area Thousand hectares

Desired output Economic output

Gross agricultural output Hundred million yuan

Undesired output Carbon output

Agricultural carbon emissions Ten thousand tons

From Table 1, it can be seen that indicators are selected
from both socio-economic and natural factors. Among
them, agricultural carbon emissions, as an undesired
output, cannot be obtained directly. Therefore, this paper
adopts the emission factor method to calculate the
agricultural carbon emissions in Jiangsu Province
according to the latest IPCC guidelines. This study only
accounts for carbon emissions from crop production
inputs, excluding CH; and N,O emissions related to
livestock farming as well as sources such as straw open
burning. The formula is given below:

C=>T-5 (5)

In Equation (5), C is the total carbon emissions from
agriculture; the carbon emissions and emission factors for
each source are T; and §;, respectively.

The specific coefficient values are as follows: sown area
16.47 (kg(C)/hm?), fertilizer 0.8956 (kg(C)/kg), pesticide
4.9341 (kg(C)/kg), agricultural film 5.18 (kg(C)/kg),
machinery 0.18 (kg(C)/kW), irrigation 266.48 (kg(C)/hm?).

3.1.2. Influencing factor index system

Apart from the allocation effects of land resources, labor
inputs, and diversified agricultural resource factors,
agricultural characteristics, economic indicators, and
social development factors, also have a significant impact
on ACEE. When selecting an indicator system for
influencing factors, it is essential to comprehensively and
thoroughly examine various relevant factors to ensure the
rigor and validity of the analytical conclusions. Based on
existing research findings, this paper selects the following
key influencing factors for in-depth exploration:
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Table 2. Definition and description of variables

Category of variables Definition Symbol Unit
Cultivated land utilization efficiency Crop sown area/cultivated land MCI %
Labor-land allocation efficiency Area of grain sown/ rural employees LAE hm?/person
Agricultural mechanization level Total power of agricultural machinery/cultivated land AML kW/hm?
Economic development Per capita disposable income of rural residents PCDI Yuan/person
Urban-rural development Urbanization rate UR %
Population ageing Proportion of the population aged 65 and over PA %
. . Energy conservation and environmental protection
Environmental regulation . ECEP %
expenditures/GDP
Technological innovation Science and education expenditure/fiscal expenditure T %
Table 3. Statistical table of ACEE in Jiangsu Province
Year TE PTE SE

2010 0.3511 0.4296 0.8287

2011 0.3109 0.3697 0.8673

2012 0.3453 0.4012 0.8814

2013 0.3997 0.4831 0.8691

2014 0.4270 0.5027 0.8798

2015 0.4979 0.5538 0.9049

2016 0.5338 0.5980 0.9014

2017 0.5850 0.6375 0.9124

2018 0.6326 0.6834 0.9112

2019 0.5630 0.6397 0.8823

2020 0.7328 0.7769 0.9261

Note: TE=PTE*SE

3.2. Data sources

The data utilized in this paper are sourced from the
Jiangsu Statistical Yearbook, the Jiangsu Rural Statistical
Yearbook, and statistical yearbooks compiled by the 13
prefecture-level cities in Jiangsu Province, as well as their
respective statistical bulletins on national economic and
social development. This ensures the authority, credibility,
and comprehensive coverage of the data sources. Due to
missing data on agricultural plastic film consumption and
pesticide application in 2017 for cities such as Yancheng
and Sugian, this paper employed an interpolation method
to estimate the missing values. Additionally, the GWR
model is sensitive to the units of measurement of
variables. To prevent bias in regression coefficients
resulting from differences in measurement units and to
ensure comparability among various influencing factors in
the model. All explanatory variables were normalized to
the [0,1] range using min-max scaling before running the
GWR model. This approach effectively eliminates the
influence of measurement units while preserving the
distribution characteristics of the original data (Cao et al.,
2019; Peng et al., 2024) (Tables 2 and 3).

4, Results and discussion

4.1. Efficiency measurement and analysis

The following table summarizes the specific values of
ACEE in Jiangsu Province between 2010 and 2020, which
provides data support for evaluating the carbon utilization
efficiency in Jiangsu Province's agricultural production
process.

The mean Technical Efficiency (TE) of agricultural carbon
emissions is 0.4890, with the mean Pure Technical

Efficiency (PTE) at 0.5523 and the mean Scale Efficiency
(SE) at 0.8877. As the PTE and SE improve, the TE has
been continuously increasing, rising from 0.3511 in 2010
to 0.7328 in 2020. It can be observed that the
enhancement of agricultural technological levels and the
development of agricultural economies of scale have
substantially promoted the overall level of ACEE in Jiangsu
Province. However, this positive change does not imply
that Jiangsu's ACEE has reached the efficiency frontier.
The fact that all types of efficiency values remain less than
one indicates that there is still room for efficiency
improvement. This also highlights the current issues with
efficiency losses and insufficient resource utilization in the
agriculture of Jiangsu Province. Furthermore, the fact that
the PTE values are lower than the SE values indicates that
the technology for energy conservation and carbon
reduction in agriculture in Jiangsu Province is still in its
initial stages, and agricultural resources are not being fully
and effectively utilized. There is considerable scope for
Jiangsu Province to advance agricultural technological
progress. It is urgent to further expand efforts in
technology research and development and dissemination
to achieve the long-term goals of green and low-carbon
development in agriculture.

Due to dimensional constraints, traditional two-
dimensional charts are limited to presenting
unidirectional correlations between spatial or temporal
dimensions and efficiency values, making them
inadequate for supporting multi-element coupling
analysis. The 3D waterfall plot, by constructing a three-
dimensional data field, effectively enhances the capture
capability for dynamic evolution characteristics of the



data, thereby achieving integrated three-dimensional
visualization of spatial-temporal-efficiency dimensions. As
illustrated in subplot (a) of Figure 1, this paper conducts a
longitudinal comparison of efficiency values across 13
prefecture-level cities in Jiangsu Province for the years
2010, 2015, and 2020. Time-series analysis reveals that
the comprehensive TE, PTE and SE of most cities
demonstrate a significant upward trend, corroborating
the continuous improvement of ACEE in Jiangsu Province.
At the city level, Xuzhou exhibits the most pronounced
gains across all three efficiency values, while Yancheng
registers the lowest level of efficiency improvement. In
subplot (b) of Figure 1, the research scope is expanded to
the regional scale, dividing Jiangsu Province into three
major regions—South Jiangsu, Central Jiangsu, and North
Jiangsu—based on geographical location. Dynamic
analysis reveals that the efficiency values across all three
regions generally maintained a fluctuating upward trend.
Among these, South Jiangsu demonstrated outstanding
performance in TE and PTE metrics, leveraging dual
advantages in economic foundation and environmental
policies. Central Jiangsu, through its efficient resource
allocation mechanisms,  established  comparative
advantages in SE. In contrast, North Jiangsu faces
constraints from the dominance of traditional cropping
patterns, relatively outdated agricultural management
Table 4. Global Moran's index of ACEE in Jiangsu Province

LIU et al.

practices, and insufficient large-scale operational capacity.
These factors collectively contribute to its relatively
lagging agricultural modernization trajectory, directly
limiting the holistic improvement of its ACEE.

Figure 1. 3D waterfall plot of ACEE in Jiangsu Province
4.2. Spatial correlation analysis

Due to differences in geographical environment and
agricultural structure, the ACEE in various cities of Jiangsu
Province exhibits a certain degree of spatial
heterogeneity. Exploring the spatial distribution
characteristics of ACEE is of significant importance for
developing a precise and efficient low-carbon agricultural
development strategy in Jiangsu Province. In the Global
Moran's | index, the spatial adjacency matrix serves as the
weight matrix.

Year | z P

2010 0.365 3.31 0.001
2011 0.149 1.707 0.088
2012 0.454 3.92 0.000
2013 0.47 4.024 0.000
2014 0.515 4.333 0.000
2015 0.469 4.052 0.000
2016 0.434 4.106 0.000
2017 0.505 4.301 0.000
2018 0.404 3.569 0.000
2019 0.197 2.016 0.044
2020 0.322 2.953 0.003

As shown in Table 4, the Global Moran's | statistics for levels. Furthermore, within the unified provincial

ACEE in Jiangsu Province during 2010-2020 are all positive
and statistically significant, indicating robust positive
spatial autocorrelation in ACEE over the study period. This
implies a spatial clustering pattern of efficiency values
among adjacent regions. Despite variations in economic
foundation, social structure, and environmental
governance capacity across lJiangsu's prefecture-level
cities, the high homogeneity of natural baseline
characteristics such as climatic conditions and soil types,
coupled with similarities in dominant agricultural
industrial structures, collectively shape the convergent
development pattern of inter-regional ACEE. In addition
to environmental homogeneity, factors such as
knowledge spillover and technology diffusion must also be
considered. Cities with advanced low-carbon agricultural
technologies often exert positive spillover effects on
neighboring regions, facilitating cross-regional technology
mobility and promoting spatial convergence of efficiency

administrative framework, policy coordination and
emulation mechanisms fostered by this structure drive
synchronized changes in regional ACEE performance.

4.3. Dynamic evolution feature analysis

To analyze the dynamic changes in ACEE in Jiangsu
Province, the non-parametric kernel density estimation is
adopted for evaluation. The method overcomes the
limitations of traditional estimation methods and can
flexibly show the subtle dynamics of efficiency changes,
increasing the uniqueness and innovation of the study.
Figure 2 presents the regression results.

Figure 2 presents the spatiotemporal distribution
characteristics of ACEE across Jiangsu Province and its
three major regions. First, regarding the evolution of the
distribution centroid, a notable rightward shift is observed
in the ACEE distribution centroids of Jiangsu Province and
its southern, central, and northern regions during the
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period, indicating sustained optimization of agricultural
ecological efficiency across all regions. This also indicates
that alongside the overall enhancement of provincial
ACEE, certain "leading cities" have emerged. Therefore,
proactive efforts should be made to establish cross-
regional technology promotion service platforms. These
platforms will facilitate technology transfer from high-
efficiency cities to low-efficiency cities, narrow the spatial
disparity in efficiency distribution, and ultimately foster
coordinated and balanced ACEE development across the
entire region. Second, based on peak characteristic
analysis, the peak values of the horizontal ACEE
distribution for Jiangsu Province and its three regions
showed a declining trend during the observation period.
The peak shape gradually transformed from sharp peaks
to broader peaks. Traditional one-size-fits-all policies
would prove ineffective, necessitating tailored strategies
that differentiate between cities with varying efficiency
levels. Finally, further analysis of the number of peaks and
the distribution pattern reveals that the number of side
peaks in South lJiangsu is higher than in Central Jiangsu
and North Jiangsu. Specifically, South Jiangsu exhibits
multi-peak distribution characteristics accompanied by a

MCT ;
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distinct right-skewed tail. In contrast, Central Jiangsu and
North Jiangsu have fewer side peaks and less prominent
tailing characteristics, reflecting a relatively balanced
distribution of ACEE levels in these two regions. Overall,
while the ACEE in Jiangsu Province demonstrates an
upward trajectory, the issue of inter-regional
development disparity persists.

(3) Jinngu Province (b) South Jiangsu
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Figure 3. Spatial distribution of estimated regression coefficients for influencing factors of the GWR model

4.4. Influencing factors analysis

There are significant differences in socio-economic factors
in different regions, which may have a direct or indirect
effect on the efficiency of agricultural carbon emissions. In
this paper, the geographically weighted regression (GWR)
is used, with the ArcGIS software, and the coefficient
estimates of the influencing factors were presented in a
spatial visualization. The GWR model achieved an
adjusted R? of 0.7664, outperforming the global OLS
model (adjusted R? = 0.6940), indicating that spatial
heterogeneity is important in explaining ACEE.

(1) The Multiple Cropping Index (MCl) is a comprehensive
indicator used to quantify the intensity of cultivated land

utilization under specific topographic and climatic
conditions(Li et al., 2023). Regression analysis shows that
the impact of MCl on ACEE exhibits significant spatial
dependence. The regression coefficients of MCI exhibit a
distinct latitudinal gradient, increasing progressively from
north to south. The northern region constitutes a
negative-value zone, the central region represents a
transition zone, and the southern region is a positive-
value zone. Previous studies in agricultural domains have
similarly identified spatial heterogeneity in MCI impacts,
analyzing from perspectives of natural endowments and
socioeconomic factors (Zhang et al., 2019; Zhao et al.,
2016).
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Figure 4. Scatter plot of fertilizer and pesticide usage in three
regions of Jiangsu

Specifically in Jiangsu Province, as shown in Figure 4, the
agricultural production in North Jiangsu heavily relies on
the input of fertilizers and pesticides, resulting in a
decrease in carbon emission efficiency. In contrast, the
South Jiangsu has achieved a more low-carbon and
intensive agricultural management model with its higher
level of economic development and technological
capabilities. The transitional characteristics observed in
Central Jiangsu reflect a dynamic interplay between these
opposing effects.

(2) This paper selects “area of grain sown/ rural
Employees” as a key influencing factor reflecting labor-
land allocation efficiency (LAE). An increase in LAE
corresponds to a lower degree of land fragmentation,
facilitating the adoption of mechanized farming and
precision agriculture technologies (Li et al., 2024). The
GWR results indicate that the regression coefficient for
LAE remains positive across the entire province,
suggesting that expanding per capita cultivated land area
serves as a positive driver for enhancing ACEE. As
illustrated in Figure 3, the intensity of this factor forms
distinct high-value aggregation clusters in central Jiangsu.
Compared to southern Jiangsu, where per capita arable
land resources face urbanization-induced constraints, and
northern Jiangsu, which is limited by capital and
technological constraints, the central region effectively
converts scale advantages into improvements in ACEE.
Previous studies examining the impact of per capita
cultivated land on agricultural sectors in other regions
have also identified spatial heterogeneity, leading to
recommendations for differentiated policy approaches
(Chen et al., 2022). Regarding the spatial characteristics
exhibited by LAE, northern and southern regions should
further explore highly intensive agricultural management
models, while central regions need to continue
encouraging land circulation and scale-based cultivation
practices.

(3) The agricultural mechanization level (AML), serving as
an indicator of agricultural production modernization,
exerts a negative impact on ACEE without demonstrating
a significant spatial clustering pattern. This finding
contradicts some previous studies, primarily due to the
following two reasons(Chen et al., 2024; Cheng et al.,
2023). On one hand, agricultural mechanization heavily
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relies on fossil energy consumption, and its energy
intensity increases proportionally with the mechanization
rate. On the other hand, a technological path dependency
has formed between mechanization and high-carbon
agricultural practices, reinforcing the use of inputs such as
pesticides and chemical fertilizers, thereby creating a
feedback loop that generates substantial carbon
emissions. Consequently, cities in Jiangsu must shift their
policy focus from general mechanization promotion to
targeted adoption of green energy agricultural machinery.

(4) Per capita disposable income (PCDI) serves as an
indicator for assessing economic development levels.
Regression analysis reveals that higher income level
significantly promotes the reduction of agricultural carbon
emissions(Wang et al., 1996). Although no spatially
heterogeneous pattern is observed, this finding suggests
that increased income drives agricultural green
transformation beyond traditional regional gradients,
functioning as a common motivating force across regions.
This also implies that raising farmers’ income could
stimulate intrinsic motivation for adopting green
production practices at the micro-level, thereby
facilitating the overall transition to low-carbon agricultural
development in Jiangsu Province.

(5) The urbanization rate (UR) serves as a critical indicator
for assessing urban-rural development. Urbanization has
accelerated rural-to-urban population migration. As
illustrated in Figure 3, regression coefficients for UR's
impact on ACEE remain universally positive across the
province, indicating that urbanization progress
significantly enhances agricultural sustainable
development (Zhao et al, 2023). However, a distinct
spatial pattern of "high in the north, low in the south"
emerges, reflecting the interplay between modernization
effects and negative land-use consequences. In North
Jiangsu, urbanization's positive modernization effects
dominate. Rural labor outflow stimulates socialized
service development, thereby enhancing agricultural scale
management and resource efficiency. Conversely, in
highly urbanized South lJiangsu, arable land scarcity
weakens the marginal benefits of urbanization while
intensifying environmental constraints on agricultural
production.

(6) The intensification of population ageing (PA) leads to a
decline in physical labor capacity and exacerbates
environmental constraints. Experience from Japan has
demonstrated that, with supportive policy frameworks,
land consolidation and mechanization can partially
alleviate labor shortages. However, studies by scholars
from different countries have reached divergent
conclusions regarding the impact of PA on agricultural
development (Akdemir et al., 2021; Seok et al., 2018).
Regression results from this study indicate that PA exerts
a positive effect on ACEE, particularly more in the
northern regions. Labor shortages have accelerated land
transfer and the expansion of large-scale farming, thereby
enhancing land use efficiency and reducing carbon
emissions. Furthermore, in recent years, cities in Jiangsu
Province have promoted the application of novel farming
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techniques while continuously improving socialized
services and ecological compensation mechanisms,
actively responding to the dual challenges of demographic
transition and "carbon neutrality”, which has yielded
positive outcomes.

(7) Energy conservation and environmental protection
(ECEP) expenditure serves as a key indicator for measuring
the intensity of environmental regulations, reflecting
government policy guidance and fiscal support, and
constitute a vital safeguard for sustainable agricultural
development(Chen et al., 2023; Wang et al, 2022).
Empirical results from the GWR model indicate that ECEP
exhibits a positive yet relatively low coefficient for ACEE.
First, evaluating environmental fiscal policies requires a
long-term perspective. The impact of fiscal policies
exhibits a certain degree of time lag. The actual effects on
agricultural production may only become apparent after
an extended period following the allocation of fiscal
funds. This may lead to an underestimation of the ECEP
impact coefficient. Furthermore, the dispersion of fiscal
funds across multiple agricultural projects may also
weaken their marginal impact on agricultural carbon sinks.

(8) Technological innovation (TI) is crucial for the
agricultural green transition (He et al., 2021). As shown in
Figure 3, the coefficients of Tl are positive across all cities,
indicating that science and education expenditure can
effectively enhance ACEE. The effect is particularly more
pronounced in northern lJiangsu, where technology is
relatively underdeveloped. Government science and
education  expenditure  can promptly  address
technological gaps and generate high marginal benefits.
Furthermore, North lJiangsu can introduce mature
agricultural technologies from South lJiangsu, reducing
trial-and-error costs and thereby contributing to the
improvement of carbon emission efficiency. In contrast, as
agricultural technology in South Jiangsu is already among
the most advanced in the province, the impact of Tl on
ACEE exhibits a certain trend of diminishing marginal
returns, resulting in relatively lower regression
coefficients. Additionally, the long-time lag between
investment in technological R&D and the application of
outcomes may also contribute to the currently modest
regression coefficients of TI.

5. Conclusion and Recommendation

To realize the "Dual Carbon" goal proposed by the Chinese
government, it is important to promote a low-carbon
green transition in agriculture. This process requires not
only efforts to alleviate environmental pressure and
improve carbon emission efficiency in agricultural
production but also an in-depth exploration of its
spatiotemporal evolution characteristics and key
influencing factors. Based on the above research, the
following conclusions can be drawn: (1) Although the
ACEE in Jiangsu Province shows a gradual upward trend,
the current overall efficiency level remains relatively low,
with a certain degree of efficiency loss. (2) From a spatial
perspective, Jiangsu Province's ACEE has exhibited
positive spatial agglomeration characteristics in recent

years. From a temporal perspective, the ACEE has shown
an overall improvement trend, but there is also a certain
degree of polarization. (3) As for the influencing factors,
MCI, labor-land allocation efficiency, and other factors all
have a significant impact on ACEE. The regression results
indicate that the strength of the impact of some variables
on ACEE exhibits significant spatial heterogeneity.

To promote the low-carbon and sustainable development
of agriculture in Jiangsu Province, this paper proposes the
following policy recommendations based on empirical
findings: (1) Jiangsu should continue to advance low-
carbon agricultural development and enhance the overall
level of ACEE. Efforts should be made to strengthen the
promotion and application of low-carbon and intelligent
agricultural machinery, and to organize large-scale
training programs on green farming techniques, so as to
consolidate the foundation for overall ACEE improvement.
(2) The government should enhance regional coordination
and targeted support mechanisms. On one hand, high-
efficiency regions should be encouraged to pursue
technological innovation and facilitate the transfer of low-
carbon technologies and management models. On the
other hand, targeted assistance should be provided to
cities with lower efficiency to help them overcome
bottlenecks in the transition to green agriculture. (3)
Differentiated strategies tailored to local conditions are
necessary. Northern regions should prioritize the adoption
of low-carbon technologies such as side-deep fertilization
and slow-release fertilizers, as listed in the Jiangsu
Agricultural Carbon Reduction Technology Catalogue
(2022), to mitigate the carbon penalty from increased
MCI. Southern regions, which possess stronger economic
and agricultural foundations, should focus on developing
cutting-edge low-carbon technologies such as smart
agriculture and digital agriculture.

6. Limitation

Currently, many regions face environmental constraints
similar to those in Jiangsu Province during the transition
toward green agriculture. The modeling framework and
findings of this paper provide an analytical framework and
policy insights for other regions at comparable
development stages. However, this research has certain
limitations, mainly including: (1) The study is conducted at
the municipal scale, which may overlook more granular
differences at the county level regarding ACEE, thus failing
to fully capture intra-regional heterogeneity. (2) Due to
data availability constraints, several potential influencing
factors—such as the level of agricultural digitalization and
the stringency of environmental penalties—were not
incorporated into the empirical model, possibly leading to
incomplete model settings.

Acknowledgments

This work was supported by the 2023 University
Philosophy and Social Science Research Project in Jiangsu
Province: Research on Energy Efficiency of Jiangsu
Province under the "Dual Carbon" Goal (2023SJYB2203)
and the 2025 Nanjing University of Finance & Economics



10

Hongshan College Young Teachers' Research Capacity
Enhancement Program (KYTS202501).

References

Abbasi, K.R.,, Zhang, Q. (2024). Augmenting agricultural
sustainability: Investigating the role of agricultural land,
green innovation, and food production in reducing
greenhouse gas emissions. Sustainable Development, 32(6),
6918-6933.

Agovino, M., Casaccia, M., Ciommi, M., Ferrara, M., Marchesano,
K. (2019). Agriculture, climate change and sustainability: The
case of EU-28. Ecological Indicators, 105, 525-543.

Akdemir, S., Kougnigan, E., Keskin, F., AKCAOZ, H., Boz, I., Kutlar,
i., Miassi, Y., Kusek, G., Turker, M. (2021). Ageing population
and agricultural sustainability issues: Case of Turkey. New
Medi, 20(4).

Aldamak, A., Zolfaghari, S. (2017). Review of efficiency ranking
methods in data envelopment analysis. Measurement, 106,
161-172.

Balsalobre-Lorente, D., Driha, O.M., Bekun, F.V., Osundina, O.A.
(2019). Do agricultural activities induce carbon emissions?
The BRICS experience. Environmental Science and Pollution
Research, 26, 25218-25234.

Cai, Q., Chen, W., Wang, M., Di, K. (2025a). Drivers of green
finance development: a nonlinear fsQCA-ANN analysis.
International Journal of Global Warming, 36(1), 86-105.

Cai, Q., Chen, W., Wang, M., Di, K. (2025b). How does green
finance influence carbon emission intensity? A non-linear
fsQCA-ANN approach. Polish Journal of Environmental
Studies, 34(5).

Cai, Q., Chen, W., Wang, M., Di, K. (2024). Optimizing resource
allocation for regional employment governance: A dynamic
fuzzy-set QCA analysis of low-carbon pilot cities in China.
Global NEST Journal, 26(8).

Cao, X., Liu, Y., Li, T., Liao, W. (2019). Analysis of Spatial Pattern
Evolution and Influencing Factors of Regional Land Use
Efficiency in China Based on ESDA-GWR. Scientific Reports,
9(1), 520.

Chen, H., Ho, H.-W., Ji, C., Zheng, H., Zhang, S. (2024).
Spatiotemporal evolution and driving factors of agricultural
land transfer in China. Plos one, 19(9), e0310532.

Chen, S., Yang, J., Kang, X. (2023). Effect of fiscal expenditure for
supporting agriculture on agricultural economic efficiency in
Central China—a case study of Henan Province. Agriculture,
13(4), 822.

Chen, Y., Wang, S., Wang, Y. (2022). Spatiotemporal evolution of
cultivated land non-agriculturalization and its drivers in
typical areas of southwest China from 2000 to 2020. Remote
Sensing, 14(13), 3211.

Cheng, L., Gao, Y. Dai, X. (2023). Spatio-temporal
comprehensive measurement of China’s agricultural green
development level and associated influencing factors. PLoS
One, 18(8), €0288599.

Cui, Y., Khan, S.U., Deng, Y., Zhao, M.J., Hou, M.Y. (2021).
Environmental improvement value of agricultural carbon
reduction and its spatiotemporal dynamic evolution: Evidence
from China. Science of the Total Environment, 754, 142170.

Deng, Y., Zhang, S. (2024). Green finance, green technology
innovation and agricultural carbon emissions in China.
Applied Ecology Environmental Research, 22(2).

LIU et al.

Franzluebbers, A.J., Chappell, J.C., Shi, W., Cubbage, F.W. (2017).
Greenhouse gas emissions in an agroforestry system of the
southeastern USA. Nutrient Cycling in Agroecosystems, 108,
85-100.

Garnier, J., Le Noég, J., Marescaux, A., Sanz-Cobena, A., Lassaletta,
L., Silvestre, M., Thieu, V., Billen, G. (2019). Long-term
changes in greenhouse gas emissions from French
agriculture and livestock (1852-2014): From traditional
agriculture to conventional intensive systems. Science of the
Total Environment, 660, 1486-1501.

Garofalo, D.F.T., Novaes, R.M.L., Pazianotto, R.A., Maciel, V.G.,
Branddo, M., Shimbo, J.Z., Folegatti-Matsuura, M.l. (2022).
Land-use change CO2 emissions associated with agricultural
products at municipal level in Brazil. Journal of Cleaner
Production, 364, 132549.

Gui, D.W., He, H.G,, Liu, C.M., Han, S.S. (2023). Spatio-temporal
dynamic evolution of carbon emissions from land use change
in Guangdong Province, China, 2000-2020. Ecological
Indicators, 156, 111131.

He, W., Li, E., Cui, Z. (2021). Evaluation and influence factor of
green efficiency of China’s agricultural innovation from the
perspective  of  technical transformation.  Chinese
Geographical Science, 31(2), 313-328.

Hossain, M., Chen, S. (2022). The decoupling study of agricultural
energy-driven CO2 emissions from agricultural sector
development. International Journal of Environmental Science
and Technology, 19(5), 4509-4524.

Huang, X.Q., Xu, X.C., Wang, Q.Q., Zhang, L., Gao, X., Chen, L.H.
(2019). Assessment of agricultural carbon emissions and
their spatiotemporal changes in China, 1997-2016.
International Journal of Environmental Research Public
Health, 16(17), 3105.

Huang, Y.J., Huang, X.K., Xie, M.N., Cheng, W., Shu, Q. (2021). A
study on the effects of regional differences on agricultural
water resource utilization efficiency using super-efficiency
SBM model. Scientific Reports, 11(1), 9953.

Jin, X., Lei, X. (2023). A study on the mechanism of ESG’s impact
on corporate value under the concept of sustainable
development. Sustainability, 15(11), 8442.

Lei, X., Xu, X. (2025). The “spider web” of venture capital: An
invisible force driving corporate green technology
innovation. Technology in Society, 82, 102882.

Li, H. (2023). Digital inclusive finance, agricultural green
technology innovation and agricultural carbon emissions:
Impact mechanism and empirical test. Plos one, 18(10),
e0288072.

Li, X., Zhang, X., Jin, X. (2024). Spatio-temporal characteristics
and driving factors of cultivated land change in various
agricultural regions of China: A detailed analysis based on
county-level data. Ecological Indicators, 166, 112485.

Li, Y., Cai, G., Tan, K., Zeng, R., Chen, X., Wang, X. (2023).
Emergy- based efficiency and sustainability assessments of
diversified multi- cropping systems in South China. Journal
of Cleaner Production, 414, 137660.

Liu, B., Yang, J., Qi, S. Shi, RJ.LR.0.E.,, Finance. (2025).
Decoupling Effects and Impact Mechanisms of Carbon
Emissions in China's Plantation System. 104340.

Lu, X.H., Kuang, B., Li, J., Han, J., Zhang, Z. (2018). Dynamic
evolution of regional discrepancies in carbon emissions from
agricultural land utilization: Evidence from Chinese provincial
data. Sustainability, 10(2), 552.



THE SPATIAL-TEMPORAL PATTERN EVOLUTION AND INFLUENCING FACTORS OF AGRICULTURAL 11

Nong, D. (2019). A general equilibrium impact study of the
Emissions Reduction Fund in Australia by using a national
environmental and economic model. Journal of Cleaner
Production, 216, 422-434.

Pata, U.K. (2021). Linking renewable energy, globalization,
agriculture, CO2 emissions and ecological footprint in BRIC
countries: A sustainability perspective. Renewable Energy,
173, 197-208.

Peng, J., Liu, Y., Xu, C., Chen, D. (2024). Unveiling the Patterns
and Drivers of Ecological Efficiency in Chinese Cities: A
Comprehensive Study Using Super-Efficiency Slacks-Based
Measure and Geographically Weighted Regression
Approaches. Sustainability, 16(8), 3112.

Radwan, A., Hongyun, H., Achraf, A., Mustafa, A.M. (2022).
Energy use and energy-related carbon dioxide emissions
drivers in Egypt's economy: Focus on the agricultural sector
with a structural decomposition analysis. Energy, 258,
124821.

Rong, J., Hong, J., Guo, Q., Fang, Z.,, Chen, S. (2023). Path mechanism
and spatial spillover effect of green technology innovation on
agricultural CO2 emission intensity: A case study in Jiangsu
Province, China. Ecological Indicators, 157, 111147.

Sah, D., Devakumar, A. (2018). The carbon footprint of
agricultural crop cultivation in India. Carbon Management,
9(3), 213-225.

Selvanathan, S., Jayasinghe, M.S., Selvanathan, E.A., Abbas, S.A,,
Iftekhar, M.S. (2023). Energy consumption, agriculture,
forestation and CO2 emission nexus: an application to OECD
countries. Applied Economics, 55(37), 4359-4376.

Seok, J.H., Moon, H., Kim, G., Reed, M.R. (2018). Is aging the
important factor for sustainable agricultural development in
Korea? Evidence from the relationship between aging and
farm technical efficiency. Sustainability, 10(7), 2137.

Solazzo, R., Donati, M., Tomasi, L., Arfini, F. (2016). How effective
is greening policy in reducing GHG emissions from
agriculture? Evidence from Italy. Science of the Total
Environment, 573, 1115-1124.

Tian, L., Zhang, C., Lei, X. (2024). Digital Economy’s role in
environmental sustainability: Air quality enhancement
through the ‘Broadband China’ initiative. Polish Journal of
Environmental Studies, 193135.

Vos, C., Don, A,, Hobley, E.U., Prietz, R., Heidkamp, A., Freibauer,
A. (2019). Factors controlling the variation in organic carbon
stocks in agricultural soils of Germany. European Journal of
Soil Science, 70(3), 550-564.

Wang, G.F., Liao, M.L., Jiang, J. (2020). Research on agricultural
carbon emissions and regional carbon emissions reduction
strategies in China. Sustainability, 12(7), 2627.

Wang, J., Cramer, G.L., Wailes, E.J. (1996). Production efficiency
of Chinese agriculture: evidence from rural household survey
data. Agricultural Economics, 15(1), 17-28.

Wang, S., Zhu, J., Wang, L., Zhong, S. (2022). The inhibitory effect
of agricultural fiscal expenditure on agricultural green total
factor productivity. Scientific Reports, 12(1), 20933.

Wang, Y.N., Chen, W., Kang, Y.Q., Li, W., Guo, F. (2018). Spatial
correlation of factors affecting CO2 emission at provincial
level in China: A geographically weighted regression
approach. Journal of Cleaner Production, 184, 929-937.

Wen, S.B., Hu, Y.X,, Liu, H.M. (2022). Measurement and spatial—
temporal characteristics of agricultural carbon emission in
China: an internal structural perspective. Agriculture, 12(11),
1749.

Xu, H.F., Zhang, C.S. (2021). Investigating spatially varying
relationships between total organic carbon contents and pH
values in European agricultural soil using geographically
weighted regression. Science of The Total Environment, 752,
141977.

Yang, H., Wang, X.X., Bin, P. (2022). Agriculture carbon-emission
reduction and changing factors behind agricultural eco-
efficiency growth in China. Journal of Cleaner Production,
334, 130193.

Yu, Y., Jiang, T.Y., Li, S.Q., Li, X.L., Gao, D.C. (2020). Energy-
related CO2 emissions and structural emissions’ reduction in
China’s agriculture: An input—output perspective. Journal of
Cleaner Production, 276, 124169.

Zhang, C., He, H., Mokhtar, A. (2019). The impact of climate
change and human activity on spatiotemporal patterns of
multiple cropping index in South West China. Sustainability,
11(19), 5308.

Zhang, S., Li, X., Nie, Z., Wang, Y., Li, D., Chen, X., Liu, Y., Pang,
JJ.A. (2024). The significance of agricultural modernization
development for agricultural carbon emission efficiency in
China. 14(6), 939.

Zhao, X., Yang, J., Chen, H., Zhang, X., Xi, Y. (2023). The effect of
urbanization on agricultural eco-efficiency and mediation
analysis. Frontiers in Environmental Science, 11, 1199446.

Zhao, Y., Bai, L., Feng, J., Lin, X., Wang, L., Xu, L., Ran, Q., Wang,
K. (2016). Spatial and temporal distribution of multiple
cropping indices in the North China plain using a long remote
sensing data time series. Sensors, 16(4), 557.

Zhu, Y., Ho, C.J. (2022). The impact of agricultural production
efficiency on agricultural carbon emissions in China.
Energies, 15(12), 4464.

Zytowski, T., Kozyra, J. (2023). Crop cultivation efficiency and HG
emission: SBM-DEA model with undesirable output
approach. Sustainability, 15(13), 10557.



