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Abstract 

Agriculture, as a pillar sector of the national economy, 
plays a crucial role in influencing the quality of the 
ecological environment through its carbon emissions. 
Jiangsu Province is a major agricultural region in China. 
Measuring agricultural carbon emission efficiency (ACEE), 
analyzing its spatiotemporal evolution characteristics, 
along with the influencing factors are of great significance 
for advancing the achievement of agricultural sustainable 
development goals in Jiangsu. This paper focuses on the 
13 prefecture-level cities in Jiangsu Province and initially 
conducts a quantitative assessment of the carbon 
emission efficiency in the agricultural sector from 2010 to 
2020 using the Super-SBM model. Subsequently, the 
paper investigates the temporal and spatial evolutionary 
characteristics of ACEE using spatial autocorrelation 
models and kernel density estimation. Finally, the paper 
employs the geographically weighted regression method 
to systematically analyze and interpret the key factors 
influencing efficiency. Based on the empirical research 
findings, three main conclusions can be drawn. (1) 
Regarding efficiency levels, the carbon emission efficiency 
in Jiangsu Province's agricultural sector has gradually 
improved, but it remains relatively low overall, with 
significant efficiency loss issues. (2) In terms of 
spatiotemporal evolution, the ACEE in Jiangsu Province 
improves over time and exhibits positive spatial clustering 
characteristics in space. (3) Concerning influencing factors, 
MCI, labor-land allocation efficiency, and other factors all 
have a significant impact on ACEE. 

Keywords: Agricultural carbon emission efficiency, 
spatiotemporal characteristics, efficiency measurement, 
regional disparities 

1. Introduction 

1.1. Literature review 

The intensifying trend of global warming, coupled with the 
frequent occurrence of extreme weather events, has 
posed severe environmental challenges that have become 
major obstacles on the path to sustainable development. 
Consequently, reducing carbon emissions to effectively 
address global climate change has become a core issue of 

widespread concern for governments worldwide. IPCC《

AR6 Synthesis Report: Climate Change 2023》shows that 

the agriculture, forestry and other land uses sector, 
accounted for 13–21% of global total anthropogenic 
greenhouse gas (GHG) emissions in the period 2010–2019. 
As a major global player in the agricultural sector, the 
prominent carbon emission issues from China's 
agriculture have become a significant challenge that 
cannot be ignored in the field of environmental 
protection. Currently, China's agriculture is at a critical 
juncture, transitioning from extensive scale expansion to 
intensive deepening. During this phase, the widespread 
use of fertilizers, pesticides, and various agricultural 
production inputs, while enhancing agricultural output 
efficiency, also imposes more severe pressures and 
challenges on China's carbon emission management 
(Wang et al., 2020). 

Traditional agricultural efficiency assessment primarily 
focuses on desirable outputs such as agricultural output 
value and grain yield, while often overlooking undesirable 
outputs including various pollution emissions generated 
during agricultural production. This evaluation method 
tends to overestimate efficiency and underestimate policy 
effectiveness. Incorporating undesirable outputs such as 
carbon emissions allows for a more accurate measurement 
of agricultural efficiency. Scholars have employed various 
models, including DEA and SFA, to explore this topic from 
multiple perspectives. Research in this field not only reflects 
the academic community's high regard for environmental 
protection issues but also demonstrates proactive 
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exploration of sustainable agricultural development 
pathways. In the course of academic research, the issue of 
agricultural carbon emissions initially attracted extensive 
attention in developed countries such as the United States, 
Germany, and Australia (Franzluebbers et al., 2017; Nong, 
2019; Vos et al., 2019). Subsequently, academic attention 
has gradually expanded to developing countries that play 
an important role in global economic development, such as 
Brazil, India, China, and Egypt (Garofalo et al., 2022; 
Radwan et al., 2022; Sah & Devakumar, 2018; Zhu & Huo, 
2022). As research deepened, some scholars have chosen 
representative organization members, such as EU member 
states and BRICS countries, as the object of comparative 
analysis. This approach aims to further broaden the 
theoretical perspective on agricultural carbon emissions 
research and enhance the understanding of issues within 
this field (Pata, 2021; Selvanathan et al., 2023). 

Taken together, discussions on agricultural carbon 
emissions primarily focus on two core topics. The first is the 
quantitative assessment of carbon emissions and the 
measurement of agricultural carbon emission efficiency 
(ACEE) (Zhang et al., 2024). This area includes not only 
determining total emissions and defining efficiency metrics, 
but also analyzing spatiotemporal variations and regional 
interactions (Balsalobre-Lorente et al., 2019; Cui et al., 
2021; Garnier et al., 2019; Gui et al., 2023; Hossain & Chen, 
2022; Rong et al., 2023; Żyłowski & Kozyra, 2023). The 
second core topic is the exploration of the factors 
influencing carbon emissions. Scholars have employed a 
variety of empirical models, such as LMDI, GMM, mediation 
effects, and moderation effects. In terms of driving factors, 
researchers have thoroughly studied the mechanisms by 
which a series of key factors, such as economic level, 
industrial structure, agricultural specialization, agricultural 
emission reduction policies, and urbanization level, affect 
carbon emissions (Agovino et al., 2019; Solazzo et al., 2016; 
Yang et al., 2022; Yu et al., 2020). 

In recent years, key paradigms such as technological 
innovation and digital transformation have been 
increasingly integrating with multiple fields and gradually 
extending into the agricultural sector, emerging as 
frontier issues promoting sustainable agricultural 
development (Cai et al., 2025a; Cai et al., 2025b; Jin & Lei, 
2023; Lei & Xu, 2025; Tian et al., 2024). Against this 
backdrop, emerging factors such as agricultural green 
technology innovation and digital inclusive finance have 
entered the academic spotlight, providing new theoretical 
research directions for exploring pathways to reduce 
agricultural carbon emissions (Abbasi & Zhang, 2024; Cai 
et al., 2024; Deng & Zhang, 2024; Li, 2023). However, 
existing research has largely focused on macro-level 
national or provincial analyses. Limited by the availability 
and completeness of micro-level statistical data, rigorous 
empirical research on how micro-level units respond to 
these emerging factors remains relatively scarce. 

In summary, scholars have conducted extensive research 
and analysis on the topic of carbon emissions in 
agriculture, covering carbon emission sources, 
quantitative assessment, and influencing factors. 

Although these studies have accumulated rich research 
results and provided important references for further 
exploration of ACEE, there is still room for improvement in 
certain core areas that require further research. In terms 
of research methodology, existing studies have 
predominantly focused on desired outcomes such as 
agricultural yield improvement and economic benefits, 
while relatively neglecting the environmental pollution 
issues associated with agricultural production. 
Furthermore, they have not incorporated carbon 
emissions, a critical indicator, into the assessment of 
undesired outputs. Regarding research perspective, the 
current literature largely centers on comprehensive 
analyses at the national macro level, with a noticeable 
lack of detailed investigations at the provincial or 
municipal levels. In terms of research content, ACEE 
exhibit significant spatial heterogeneity across 
geographical spaces and at different time points. 
However, there is still insufficient in-depth exploration 
and analysis of this characteristic. 

1.2. Study area 

As an eastern coastal area, Jiangsu Province has vast 
plains, favorable natural conditions, and a good economic 
foundation. Jiangsu is a large economic province, and its 
economic development has always been the focus of 
attention of all sectors of society. In 2023, Jiangsu 
Province realized a GDP of 1,282.22 billion yuan, an 
increase of 5.8% over 2022 at constant prices. This figure 
highlights the strong momentum and vitality of Jiangsu 
Province's dynamic development. At the same time, as a 
major agricultural region with outstanding natural 
endowments, Jiangsu possesses a solid foundation in its 
agricultural industry. In 2023, Jiangsu maintained good 
growth rates in grain area, yields, and total production, 
with total production remaining above 3.5x108 tons for 10 
consecutive years. As one of China's economically 
developed provinces with a high level of agricultural 
development, Jiangsu Province is remarkably 
representative of the results of carbon emission research 
and practice in agriculture. This representativeness is not 
only reflected in the scale and structure, but also in the 
exploration of sustainable agricultural development and 
low-carbon transition.  

Based on the "green carbon reduction" perspective, this 
paper defines carbon emissions as undesired outputs. This 
paper quantitatively evaluates the ACEE in Jiangsu 
Province using the Super-SBM model. Subsequently, 
relying on spatial autocorrelation analysis and kernel 
density estimation, the distribution characteristics and 
evolution laws of this efficiency indicator in time and 
space dimensions are deeply explored. In addition, to 
examine the main elements influencing ACEE, this paper 
adopts the geographically weighted regression analysis 
method, which provides a more geographically oriented 
and detailed explanatory perspective. 

1.3.  Research Innovations 

The innovations of this paper are primarily reflected in the 
following aspects: First, it incorporates carbon emissions 
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from the agricultural sector as an undesirable output into 
the indicator system for measuring the ACEE in Jiangsu 
Province. This allows for a more scientific and rational 
assessment of agricultural environmental performance. 
Second, the research perspective focuses on prefecture-
level cities, enabling a more precise revelation of the 
differences and characteristics of regional ACEE. Third, the 
study examines the spatiotemporal evolution of ACEE, 
providing a reference for local governments to formulate 
differentiated emission reduction policies. 

2. Material and methods 

2.1. Super-SBM model 

The Super-SBM model exhibits superior performance and 
distinct advantages over classical DEA models. In contrast, 
traditional radial DEA models can only proportionally 
expand outputs or reduce inputs, while neglecting the 
influence of slack variables. This limitation tends to 
overestimate efficiency scores and often results in 
multiple efficient units that cannot be further 
differentiated or ranked. The Super-SBM model, 
effectively addresses slack variables by directly 
incorporating and minimizing input and output slacks. This 
capability allows it to capture the potential for non-
proportional improvements in performance indicators, 
thereby achieving more accurate efficiency 
measurements. Furthermore, classical DEA models such 
as CCR and BCC are unable to appropriately handle 
undesirable outputs like carbon emissions. The Super-SBM 
model, on the other hand, formally integrates undesirable 
outputs into the analytical framework, thus providing a 
more realistic assessment of environmental 
efficiency(Aldamak & Zolfaghari, 2017; Huang et al., 
2021). Therefore, the Super-SBM model has 
demonstrated excellent adaptability and utility in 
assessing various scenarios such as environmental 
performance and energy use efficiency. 
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(1) 

In Equation (1), we use   as a key indicator to specifically 

quantify and characterize the value of ACEE. The size of 
  is directly related to the level of efficiency. 1  , 

indicating that the decision-making unit reaches the 
efficiency frontier; 1   indicates that there is a loss of 

efficiency. Each city in Jiangsu Province is regarded as an 
independent decision unit consisting of m inputs, q1 
desired outputs, as well as q2 undesired outputs. The slack 

variables s−, s+, sb− represent inputs, desired outputs, and 
undesired outputs, respectively. 

2.2. Spatial autocorrelation model 

Considering the mobility of carbon emissions, it is particularly 
necessary to analyze the spatial pattern of carbon emissions 

in the target regions in depth, and to reveal their intrinsic 
distribution patterns and trends. This initiative aims to 
accurately characterize the geographical distribution of 
carbon emissions and provide a scientific basis for the 
formulation of regional emission reduction strategies.  

Compared to simple spatial visualization methods, 
Moran's I enables statistical inference regarding spatial 
autocorrelation through rigorous hypothesis testing, 
thereby effectively identifying spatial dependence and 
providing a theoretical foundation for further in-depth 
research. The global Moran's I, constructed on the spatial 
weight matrix, provides a comprehensive assessment 
framework for the spatial interconnectedness of regional 
carbon emission efficiency (Huang et al., 2019). The 
expression is as follows: 
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(2) 

In Equation (2), 
ij is the sxpatial weight matrix. The 

Global Moran's index, denoted by I , is between -1 and 1. 

When I>0, there is positive spatial autocorrelation, 
indicating that the observations tend to be concentrated 
in the spatial dimension; when I<0, it indicates that the 
data show negative spatial autocorrelation, i.e., the 
outliers tend to be spatially clustered; and when I=0, it 
indicates that the data are randomly disordered in the 
spatial distribution. In addition, researchers can further 
combine the calculation results of the global Moran index 
with the P-value test and the Z-value statistics for in-depth 
statistical inference analysis. i , ,jY Y Y  denote the 

observations and overall sample means of evaluation 
units i, j, respectively. 

2.3.  Kernel density estimation 

To comprehensively analyze the level and characteristics 
of ACEE in Jiangsu Province, focusing only on efficiency 
measurement and spatial autocorrelation analysis is not 
deep enough, and further analysis of its dynamic 
distribution and change patterns is needed. In contrast to 
simple graphical representations, the Kernel density 
estimation (KDE) captures complex distributional features 
of datasets through a nonparametric approach, producing 
a smooth probability density function. This capability 
allows it to clearly reveal the distributional morphology of 
efficiency values over time, thereby effectively uncovering 
regional differentiation in efficiency (Lu et al., 2018; Wen 
et al., 2022). It is assumed that there exists an 
independent and identically distributed data set 
containing the elements  1 2, , , nx x x . For these data 

points, an approximation of their potential probability 
density function f (x) can be obtained by the kernel 
density estimation method. The expression is shown in 
Equation (3): 
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Where, ix x
K

h

 −
 
 

 is the kernel function; n  is the number 

of samples; h is the bandwidth; and ,ix x , denote the 

sample observation and mean value, respectively. 

2.4.  Geographically weighted regression 

Geographically weighted regression (GWR) can effectively 
can efficiently handle geographical variation in data. In 
many fields such as economics, natural resource 
management, etc., the influencing factors of the research 
object will produce different estimated coefficients with 
the change of spatial location. Traditional global 
regression models cannot deal with nonlinear and 
nonstationary spatial data, resulting in inaccurate 
regression results. GWR has a good ability to deal with this 
kind of data, and can estimate the regression parameters 
more accurately based on building a local regression 
model for each observation (Wang et al., 2018; Xu & 
Zhang, 2021). Consequently, GWR has a wide range of 
applications in exploring the relative drivers of spatial 
changes in research objects. In ArcGIS software, the 
optimal bandwidth of the GWR model can be determined 
by minimizing the corrected Akaike Information Criterion 
(AICc) through the integration of optimization algorithms. 
The regression model is constructed as follows: 

( ) ( )0

1
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n

i i i k i i ik i

k
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(4) 

iy  is the value of the dependent variable for the ith 

observation; ( ),i iu v  is the spatial coordinate position of 

the observation point; ( ),k i iu v  is a function of geographic 

location ( ),i iu v  and indicates the extent to which the 

independent variable affects the dependent variable at a 
particular location; ( )0 ,i iu v  represents a constant term at 

a specific location; 
ikx  is the value of the kth independent 

variable at the ith observation; and i is the random error 
term for the ith observation. 

3. Indicators and data sources 

3.1. Indicators 

3.1.1. Efficiency indicator system 

The essence of enhancing low-carbon agriculture lies in 
maximizing desired returns with less input and lower 
carbon emissions. Establishing a scientific input-output 
indicator system not only allows for the accurate 
quantification and assessment of carbon emission levels in 
agricultural activities but also provides a basis for 
implementing low-carbon agricultural development 
strategies (Liu et al., 2025). Currently, many researchers 
have constructed corresponding evaluation frameworks 
based on dimensions such as agricultural development 
level and input conditions. In light of existing studies, this 
paper incorporates undesirable outputs into the research 
scope and establishes an indicator system. 

 

Table 1. The input and output indicators 

Indicator type Indicators Definition Unit 

Input 

Labor input Rural employees  Ten thousand persons 

Land input Total sown area Thousand hectares 

Fertilizer input Fertilizer usage Ton 

Pesticide input Pesticide usage Ton 

Agricultural plastic film Agricultural plastic film usage Ton 

Mechanical input 
Total power of agricultural 

machinery 
Ten thousand kW 

Irrigation input Effective irrigated area Thousand hectares 

Desired output Economic output Gross agricultural output Hundred million yuan 

Undesired output Carbon output Agricultural carbon emissions Ten thousand tons 

From Table 1, it can be seen that indicators are selected 
from both socio-economic and natural factors. Among 
them, agricultural carbon emissions, as an undesired 
output, cannot be obtained directly. Therefore, this paper 
adopts the emission factor method to calculate the 
agricultural carbon emissions in Jiangsu Province 
according to the latest IPCC guidelines. This study only 
accounts for carbon emissions from crop production 
inputs, excluding CH₄ and N₂O emissions related to 
livestock farming as well as sources such as straw open 
burning. The formula is given below: 

i iC T =   
(5) 

In Equation (5), C  is the total carbon emissions from 
agriculture; the carbon emissions and emission factors for 
each source are Ti and i, respectively.  

The specific coefficient values are as follows: sown area 
16.47 (kg(C)/hm2), fertilizer 0.8956 (kg(C)/kg), pesticide 
4.9341 (kg(C)/kg), agricultural film 5.18 (kg(C)/kg), 
machinery 0.18 (kg(C)/kW), irrigation 266.48 (kg(C)/hm2). 

3.1.2. Influencing factor index system 

Apart from the allocation effects of land resources, labor 
inputs, and diversified agricultural resource factors, 
agricultural characteristics, economic indicators, and 
social development factors, also have a significant impact 
on ACEE. When selecting an indicator system for 
influencing factors, it is essential to comprehensively and 
thoroughly examine various relevant factors to ensure the 
rigor and validity of the analytical conclusions. Based on 
existing research findings, this paper selects the following 
key influencing factors for in-depth exploration: 
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Table 2. Definition and description of variables 

Category of variables Definition Symbol Unit 

Cultivated land utilization efficiency Crop sown area/cultivated land MCI % 

Labor-land allocation efficiency Area of grain sown/ rural employees LAE hm2/person  

Agricultural mechanization level Total power of agricultural machinery/cultivated land AML kW/hm2 

Economic development Per capita disposable income of rural residents PCDI Yuan/person 

Urban-rural development Urbanization rate UR % 

Population ageing Proportion of the population aged 65 and over PA % 

Environmental regulation 
Energy conservation and environmental protection 

expenditures/GDP 
ECEP % 

Technological innovation Science and education expenditure/fiscal expenditure TI % 

Table 3. Statistical table of ACEE in Jiangsu Province 

Year TE PTE SE 

2010 0.3511 0.4296 0.8287 

2011 0.3109 0.3697 0.8673 

2012 0.3453 0.4012 0.8814 

2013 0.3997 0.4831 0.8691 

2014 0.4270 0.5027 0.8798 

2015 0.4979 0.5538 0.9049 

2016 0.5338 0.5980 0.9014 

2017 0.5850 0.6375 0.9124 

2018 0.6326 0.6834 0.9112 

2019 0.5630 0.6397 0.8823 

2020 0.7328 0.7769 0.9261 

Note: TE=PTE*SE 

 

3.2. Data sources 

The data utilized in this paper are sourced from the 
Jiangsu Statistical Yearbook, the Jiangsu Rural Statistical 
Yearbook, and statistical yearbooks compiled by the 13 
prefecture-level cities in Jiangsu Province, as well as their 
respective statistical bulletins on national economic and 
social development. This ensures the authority, credibility, 
and comprehensive coverage of the data sources. Due to 
missing data on agricultural plastic film consumption and 
pesticide application in 2017 for cities such as Yancheng 
and Suqian, this paper employed an interpolation method 
to estimate the missing values. Additionally, the GWR 
model is sensitive to the units of measurement of 
variables. To prevent bias in regression coefficients 
resulting from differences in measurement units and to 
ensure comparability among various influencing factors in 
the model. All explanatory variables were normalized to 
the [0,1] range using min-max scaling before running the 
GWR model. This approach effectively eliminates the 
influence of measurement units while preserving the 
distribution characteristics of the original data (Cao et al., 
2019; Peng et al., 2024) (Tables 2 and 3). 

4. Results and discussion 

4.1. Efficiency measurement and analysis 

The following table summarizes the specific values of 
ACEE in Jiangsu Province between 2010 and 2020, which 
provides data support for evaluating the carbon utilization 
efficiency in Jiangsu Province's agricultural production 
process. 

The mean Technical Efficiency (TE) of agricultural carbon 
emissions is 0.4890, with the mean Pure Technical 

Efficiency (PTE) at 0.5523 and the mean Scale Efficiency 
(SE) at 0.8877. As the PTE and SE improve, the TE has 
been continuously increasing, rising from 0.3511 in 2010 
to 0.7328 in 2020. It can be observed that the 
enhancement of agricultural technological levels and the 
development of agricultural economies of scale have 
substantially promoted the overall level of ACEE in Jiangsu 
Province. However, this positive change does not imply 
that Jiangsu's ACEE has reached the efficiency frontier. 
The fact that all types of efficiency values remain less than 
one indicates that there is still room for efficiency 
improvement. This also highlights the current issues with 
efficiency losses and insufficient resource utilization in the 
agriculture of Jiangsu Province. Furthermore, the fact that 
the PTE values are lower than the SE values indicates that 
the technology for energy conservation and carbon 
reduction in agriculture in Jiangsu Province is still in its 
initial stages, and agricultural resources are not being fully 
and effectively utilized. There is considerable scope for 
Jiangsu Province to advance agricultural technological 
progress. It is urgent to further expand efforts in 
technology research and development and dissemination 
to achieve the long-term goals of green and low-carbon 
development in agriculture. 

Due to dimensional constraints, traditional two-
dimensional charts are limited to presenting 
unidirectional correlations between spatial or temporal 
dimensions and efficiency values, making them 
inadequate for supporting multi-element coupling 
analysis. The 3D waterfall plot, by constructing a three-
dimensional data field, effectively enhances the capture 
capability for dynamic evolution characteristics of the 
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data, thereby achieving integrated three-dimensional 
visualization of spatial-temporal-efficiency dimensions. As 
illustrated in subplot (a) of Figure 1, this paper conducts a 
longitudinal comparison of efficiency values across 13 
prefecture-level cities in Jiangsu Province for the years 
2010, 2015, and 2020. Time-series analysis reveals that 
the comprehensive TE, PTE and SE of most cities 
demonstrate a significant upward trend, corroborating 
the continuous improvement of ACEE in Jiangsu Province. 
At the city level, Xuzhou exhibits the most pronounced 
gains across all three efficiency values, while Yancheng 
registers the lowest level of efficiency improvement. In 
subplot (b) of Figure 1, the research scope is expanded to 
the regional scale, dividing Jiangsu Province into three 
major regions—South Jiangsu, Central Jiangsu, and North 
Jiangsu—based on geographical location. Dynamic 
analysis reveals that the efficiency values across all three 
regions generally maintained a fluctuating upward trend. 
Among these, South Jiangsu demonstrated outstanding 
performance in TE and PTE metrics, leveraging dual 
advantages in economic foundation and environmental 
policies. Central Jiangsu, through its efficient resource 
allocation mechanisms, established comparative 
advantages in SE. In contrast, North Jiangsu faces 
constraints from the dominance of traditional cropping 
patterns, relatively outdated agricultural management 

practices, and insufficient large-scale operational capacity. 
These factors collectively contribute to its relatively 
lagging agricultural modernization trajectory, directly 
limiting the holistic improvement of its ACEE. 

 

Figure 1. 3D waterfall plot of ACEE in Jiangsu Province  

4.2. Spatial correlation analysis 

Due to differences in geographical environment and 
agricultural structure, the ACEE in various cities of Jiangsu 
Province exhibits a certain degree of spatial 
heterogeneity. Exploring the spatial distribution 
characteristics of ACEE is of significant importance for 
developing a precise and efficient low-carbon agricultural 
development strategy in Jiangsu Province. In the Global 
Moran's I index, the spatial adjacency matrix serves as the 
weight matrix. 

Table 4. Global Moran's index of ACEE in Jiangsu Province 

Year I Z p 

2010 0.365 3.31 0.001 

2011 0.149 1.707 0.088 

2012 0.454 3.92 0.000 

2013 0.47 4.024 0.000 

2014 0.515 4.333 0.000 

2015 0.469 4.052 0.000 

2016 0.434 4.106 0.000 

2017 0.505 4.301 0.000 

2018 0.404 3.569 0.000 

2019 0.197 2.016 0.044 

2020 0.322 2.953 0.003 

 

As shown in Table 4, the Global Moran's I statistics for 
ACEE in Jiangsu Province during 2010-2020 are all positive 
and statistically significant, indicating robust positive 
spatial autocorrelation in ACEE over the study period. This 
implies a spatial clustering pattern of efficiency values 
among adjacent regions. Despite variations in economic 
foundation, social structure, and environmental 
governance capacity across Jiangsu's prefecture-level 
cities, the high homogeneity of natural baseline 
characteristics such as climatic conditions and soil types, 
coupled with similarities in dominant agricultural 
industrial structures, collectively shape the convergent 
development pattern of inter-regional ACEE.  In addition 
to environmental homogeneity, factors such as 
knowledge spillover and technology diffusion must also be 
considered. Cities with advanced low-carbon agricultural 
technologies often exert positive spillover effects on 
neighboring regions, facilitating cross-regional technology 
mobility and promoting spatial convergence of efficiency 

levels. Furthermore, within the unified provincial 
administrative framework, policy coordination and 
emulation mechanisms fostered by this structure drive 
synchronized changes in regional ACEE performance. 

4.3. Dynamic evolution feature analysis 

To analyze the dynamic changes in ACEE in Jiangsu 
Province, the non-parametric kernel density estimation is 
adopted for evaluation. The method overcomes the 
limitations of traditional estimation methods and can 
flexibly show the subtle dynamics of efficiency changes, 
increasing the uniqueness and innovation of the study. 
Figure 2 presents the regression results. 

Figure 2 presents the spatiotemporal distribution 
characteristics of ACEE across Jiangsu Province and its 
three major regions. First, regarding the evolution of the 
distribution centroid, a notable rightward shift is observed 
in the ACEE distribution centroids of Jiangsu Province and 
its southern, central, and northern regions during the 
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period, indicating sustained optimization of agricultural 
ecological efficiency across all regions. This also indicates 
that alongside the overall enhancement of provincial 
ACEE, certain "leading cities" have emerged. Therefore, 
proactive efforts should be made to establish cross-
regional technology promotion service platforms. These 
platforms will facilitate technology transfer from high-
efficiency cities to low-efficiency cities, narrow the spatial 
disparity in efficiency distribution, and ultimately foster 
coordinated and balanced ACEE development across the 
entire region. Second, based on peak characteristic 
analysis, the peak values of the horizontal ACEE 
distribution for Jiangsu Province and its three regions 
showed a declining trend during the observation period. 
The peak shape gradually transformed from sharp peaks 
to broader peaks. Traditional one-size-fits-all policies 
would prove ineffective, necessitating tailored strategies 
that differentiate between cities with varying efficiency 
levels. Finally, further analysis of the number of peaks and 
the distribution pattern reveals that the number of side 
peaks in South Jiangsu is higher than in Central Jiangsu 
and North Jiangsu. Specifically, South Jiangsu exhibits 
multi-peak distribution characteristics accompanied by a 

distinct right-skewed tail. In contrast, Central Jiangsu and 
North Jiangsu have fewer side peaks and less prominent 
tailing characteristics, reflecting a relatively balanced 
distribution of ACEE levels in these two regions. Overall, 
while the ACEE in Jiangsu Province demonstrates an 
upward trajectory, the issue of inter-regional 
development disparity persists. 

 

Figure 2. Kernel density estimation of ACEE in Jiangsu Province 

 

Figure 3. Spatial distribution of estimated regression coefficients for influencing factors of the GWR model  

 

4.4. Influencing factors analysis  

There are significant differences in socio-economic factors 
in different regions, which may have a direct or indirect 
effect on the efficiency of agricultural carbon emissions. In 
this paper, the geographically weighted regression (GWR) 
is used, with the ArcGIS software, and the coefficient 
estimates of the influencing factors were presented in a 
spatial visualization. The GWR model achieved an 
adjusted R² of 0.7664, outperforming the global OLS 
model (adjusted R² = 0.6940), indicating that spatial 
heterogeneity is important in explaining ACEE. 

(1) The Multiple Cropping Index (MCI) is a comprehensive 
indicator used to quantify the intensity of cultivated land 

utilization under specific topographic and climatic 
conditions(Li et al., 2023). Regression analysis shows that 
the impact of MCI on ACEE exhibits significant spatial 
dependence. The regression coefficients of MCI exhibit a 
distinct latitudinal gradient, increasing progressively from 
north to south. The northern region constitutes a 
negative-value zone, the central region represents a 
transition zone, and the southern region is a positive-
value zone. Previous studies in agricultural domains have 
similarly identified spatial heterogeneity in MCI impacts, 
analyzing from perspectives of natural endowments and 
socioeconomic factors (Zhang et al., 2019; Zhao et al., 
2016).  
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Figure 4. Scatter plot of fertilizer and pesticide usage in three 

regions of Jiangsu 

Specifically in Jiangsu Province, as shown in Figure 4, the 
agricultural production in North Jiangsu heavily relies on 
the input of fertilizers and pesticides, resulting in a 
decrease in carbon emission efficiency. In contrast, the 
South Jiangsu has achieved a more low-carbon and 
intensive agricultural management model with its higher 
level of economic development and technological 
capabilities. The transitional characteristics observed in 
Central Jiangsu reflect a dynamic interplay between these 
opposing effects. 

(2) This paper selects “area of grain sown/ rural 
Employees” as a key influencing factor reflecting labor-
land allocation efficiency (LAE). An increase in LAE 
corresponds to a lower degree of land fragmentation, 
facilitating the adoption of mechanized farming and 
precision agriculture technologies (Li et al., 2024). The 
GWR results indicate that the regression coefficient for 
LAE remains positive across the entire province, 
suggesting that expanding per capita cultivated land area 
serves as a positive driver for enhancing ACEE. As 
illustrated in Figure 3, the intensity of this factor forms 
distinct high-value aggregation clusters in central Jiangsu. 
Compared to southern Jiangsu, where per capita arable 
land resources face urbanization-induced constraints, and 
northern Jiangsu, which is limited by capital and 
technological constraints, the central region effectively 
converts scale advantages into improvements in ACEE. 
Previous studies examining the impact of per capita 
cultivated land on agricultural sectors in other regions 
have also identified spatial heterogeneity, leading to 
recommendations for differentiated policy approaches 
(Chen et al., 2022). Regarding the spatial characteristics 
exhibited by LAE, northern and southern regions should 
further explore highly intensive agricultural management 
models, while central regions need to continue 
encouraging land circulation and scale-based cultivation 
practices. 

(3) The agricultural mechanization level (AML), serving as 
an indicator of agricultural production modernization, 
exerts a negative impact on ACEE without demonstrating 
a significant spatial clustering pattern. This finding 
contradicts some previous studies, primarily due to the 
following two reasons(Chen et al., 2024; Cheng et al., 
2023). On one hand, agricultural mechanization heavily 

relies on fossil energy consumption, and its energy 
intensity increases proportionally with the mechanization 
rate. On the other hand, a technological path dependency 
has formed between mechanization and high-carbon 
agricultural practices, reinforcing the use of inputs such as 
pesticides and chemical fertilizers, thereby creating a 
feedback loop that generates substantial carbon 
emissions. Consequently, cities in Jiangsu must shift their 
policy focus from general mechanization promotion to 
targeted adoption of green energy agricultural machinery. 

(4) Per capita disposable income (PCDI) serves as an 
indicator for assessing economic development levels. 
Regression analysis reveals that higher income level 
significantly promotes the reduction of agricultural carbon 
emissions(Wang et al., 1996). Although no spatially 
heterogeneous pattern is observed, this finding suggests 
that increased income drives agricultural green 
transformation beyond traditional regional gradients, 
functioning as a common motivating force across regions. 
This also implies that raising farmers’ income could 
stimulate intrinsic motivation for adopting green 
production practices at the micro-level, thereby 
facilitating the overall transition to low-carbon agricultural 
development in Jiangsu Province. 

(5) The urbanization rate (UR) serves as a critical indicator 
for assessing urban-rural development. Urbanization has 
accelerated rural-to-urban population migration. As 
illustrated in Figure 3, regression coefficients for UR's 
impact on ACEE remain universally positive across the 
province, indicating that urbanization progress 
significantly enhances agricultural sustainable 
development (Zhao et al., 2023). However, a distinct 
spatial pattern of "high in the north, low in the south" 
emerges, reflecting the interplay between modernization 
effects and negative land-use consequences. In North 
Jiangsu, urbanization's positive modernization effects 
dominate. Rural labor outflow stimulates socialized 
service development, thereby enhancing agricultural scale 
management and resource efficiency. Conversely, in 
highly urbanized South Jiangsu, arable land scarcity 
weakens the marginal benefits of urbanization while 
intensifying environmental constraints on agricultural 
production. 

(6) The intensification of population ageing (PA) leads to a 
decline in physical labor capacity and exacerbates 
environmental constraints. Experience from Japan has 
demonstrated that, with supportive policy frameworks, 
land consolidation and mechanization can partially 
alleviate labor shortages. However, studies by scholars 
from different countries have reached divergent 
conclusions regarding the impact of PA on agricultural 
development (Akdemir et al., 2021; Seok et al., 2018). 
Regression results from this study indicate that PA exerts 
a positive effect on ACEE, particularly more in the 
northern regions. Labor shortages have accelerated land 
transfer and the expansion of large-scale farming, thereby 
enhancing land use efficiency and reducing carbon 
emissions. Furthermore, in recent years, cities in Jiangsu 
Province have promoted the application of novel farming 
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techniques while continuously improving socialized 
services and ecological compensation mechanisms, 
actively responding to the dual challenges of demographic 
transition and "carbon neutrality", which has yielded 
positive outcomes. 

(7) Energy conservation and environmental protection 
(ECEP) expenditure serves as a key indicator for measuring 
the intensity of environmental regulations, reflecting 
government policy guidance and fiscal support, and 
constitute a vital safeguard for sustainable agricultural 
development(Chen et al., 2023; Wang et al., 2022). 
Empirical results from the GWR model indicate that ECEP 
exhibits a positive yet relatively low coefficient for ACEE. 
First, evaluating environmental fiscal policies requires a 
long-term perspective. The impact of fiscal policies 
exhibits a certain degree of time lag. The actual effects on 
agricultural production may only become apparent after 
an extended period following the allocation of fiscal 
funds. This may lead to an underestimation of the ECEP 
impact coefficient. Furthermore, the dispersion of fiscal 
funds across multiple agricultural projects may also 
weaken their marginal impact on agricultural carbon sinks. 

(8) Technological innovation (TI) is crucial for the 
agricultural green transition (He et al., 2021). As shown in 
Figure 3, the coefficients of TI are positive across all cities, 
indicating that science and education expenditure can 
effectively enhance ACEE. The effect is particularly more 
pronounced in northern Jiangsu, where technology is 
relatively underdeveloped. Government science and 
education expenditure can promptly address 
technological gaps and generate high marginal benefits. 
Furthermore, North Jiangsu can introduce mature 
agricultural technologies from South Jiangsu, reducing 
trial-and-error costs and thereby contributing to the 
improvement of carbon emission efficiency. In contrast, as 
agricultural technology in South Jiangsu is already among 
the most advanced in the province, the impact of TI on 
ACEE exhibits a certain trend of diminishing marginal 
returns, resulting in relatively lower regression 
coefficients. Additionally, the long-time lag between 
investment in technological R&D and the application of 
outcomes may also contribute to the currently modest 
regression coefficients of TI. 

5. Conclusion and Recommendation 

To realize the "Dual Carbon" goal proposed by the Chinese 
government, it is important to promote a low-carbon 
green transition in agriculture. This process requires not 
only efforts to alleviate environmental pressure and 
improve carbon emission efficiency in agricultural 
production but also an in-depth exploration of its 
spatiotemporal evolution characteristics and key 
influencing factors. Based on the above research, the 
following conclusions can be drawn: (1) Although the 
ACEE in Jiangsu Province shows a gradual upward trend, 
the current overall efficiency level remains relatively low, 
with a certain degree of efficiency loss. (2) From a spatial 
perspective, Jiangsu Province's ACEE has exhibited 
positive spatial agglomeration characteristics in recent 

years. From a temporal perspective, the ACEE has shown 
an overall improvement trend, but there is also a certain 
degree of polarization. (3) As for the influencing factors, 
MCI, labor-land allocation efficiency, and other factors all 
have a significant impact on ACEE. The regression results 
indicate that the strength of the impact of some variables 
on ACEE exhibits significant spatial heterogeneity. 

To promote the low-carbon and sustainable development 
of agriculture in Jiangsu Province, this paper proposes the 
following policy recommendations based on empirical 
findings: (1) Jiangsu should continue to advance low-
carbon agricultural development and enhance the overall 
level of ACEE. Efforts should be made to strengthen the 
promotion and application of low-carbon and intelligent 
agricultural machinery, and to organize large-scale 
training programs on green farming techniques, so as to 
consolidate the foundation for overall ACEE improvement. 
(2) The government should enhance regional coordination 
and targeted support mechanisms. On one hand, high-
efficiency regions should be encouraged to pursue 
technological innovation and facilitate the transfer of low-
carbon technologies and management models. On the 
other hand, targeted assistance should be provided to 
cities with lower efficiency to help them overcome 
bottlenecks in the transition to green agriculture. (3) 
Differentiated strategies tailored to local conditions are 
necessary. Northern regions should prioritize the adoption 
of low-carbon technologies such as side-deep fertilization 
and slow-release fertilizers, as listed in the Jiangsu 
Agricultural Carbon Reduction Technology Catalogue 
(2022), to mitigate the carbon penalty from increased 
MCI. Southern regions, which possess stronger economic 
and agricultural foundations, should focus on developing 
cutting-edge low-carbon technologies such as smart 
agriculture and digital agriculture. 

6. Limitation 

Currently, many regions face environmental constraints 
similar to those in Jiangsu Province during the transition 
toward green agriculture. The modeling framework and 
findings of this paper provide an analytical framework and 
policy insights for other regions at comparable 
development stages. However, this research has certain 
limitations, mainly including: (1) The study is conducted at 
the municipal scale, which may overlook more granular 
differences at the county level regarding ACEE, thus failing 
to fully capture intra-regional heterogeneity. (2) Due to 
data availability constraints, several potential influencing 
factors—such as the level of agricultural digitalization and 
the stringency of environmental penalties—were not 
incorporated into the empirical model, possibly leading to 
incomplete model settings. 
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