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ABSTRACT

Wasting of food is a key issue in most parts of the world, which is associated with losing food
nutrition, health risks, and the environment. Ineffectiveness of the currently used detection
means is an indication that there is need to have intelligent and real-time monitoring
mechanisms. In this work, an IoT-based multi-sensor system incorporating NDIR CO 2, DHT
22, and MQ-4 sensors to detect and predict the presence of important environmental indicators
(carbon dioxide, temperature, humidity, and methane concentration) will be proposed to
monitor food spoilage. The cloud-based machine learning methods are used to process sensor
data to classify the freshness state of food products. Prediction was confirmed by experimental

validation of the system on different fruits, vegetables, and foodstuff with an overall accuracy
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of 95% supporting the reliability of the system. The introduced framework provides a scalable
and effectual solution for reducing food waste, enhancing food safety, and improving supply
chain sustainability.

Keywords: Food Wasted detection, NDIR Co2 sensor, DTH22 sensor, MQ-4 sensor, IoT,
Artificial Intelligence

1. Introduction
Recently, there seems to have been a rise in concern towards food waste thus research towards
reducing the various effects that surround it [1]. According to the Global Report on nutrition,
it was estimated that nearly 19% of the global population has a poor intake of nutrients and is
associated with malnutrition and increased mortality level especially among children below the
ages of five years this is 35%. Food wastage was equally a critical factor that worsened this
problem affecting the Hunger Index and the environment. Nearly 3.1 million children each year
lost their health because of the poor nourishment, making this issue remain critical [3]. Some
of the areas that it was noted that excessive food portions were thrown away were restaurants,
hostels, during parties and at home and some of the highlighted causes of the vice include; poor
planning and ordering of meals and foodstuffs, over-purchasing of foods that do not meet
marketing targets and inefficient handling of the foods. This unethical practice has been
considered socially and environmentally irresponsible, supported by evidence from the Food
and Agriculture Organization (FAO), which revealed that nearly one-third of the food produced
globally is wasted [4]. Modern technologies continue to advance daily, influencing various
sectors such as the medical field, particularly its diagnostic aspects, as well as health and food
safety domains. Enhancing diagnosis involves correlating patients' health conditions with data
gathered from diverse health analysis technologies. [5,6]. The intelligent food traceability has
been identified to play an important role in resolving global problems related to food omics,

namely, the overall analysis of food properties such as nutritional content, quality, authenticity,



safety, and security [7]. Food may go bad in many different ways, such as microbial activities
such as bacteria, molds and yeasts being present on food leading to wastage (ex. bread left at
room temperature must not mold). Fruits and vegetables undergo enzyme reactions that cause
wastage like over ripe and mushy bananas. Fats and oils may also become rancid due to
chemical processes, such as oxidation, which change taste and smell (e.g. nuts growing stale).
Physical injuries, including bruises on fruits, like apples, can result in exposures to microbes.
Foods with high moisture levels are likely to allow the growth of mold (e.g. bread in damp
conditions). Storing the perishable goods that cannot be refrigerated like milk in the right
conditions will result in bacterial growth and wastage as exhibited in Figure 1.

Traditional means of food spoilage detection like manual examination and chemical analysis
are frequently tedious, subjective and is limited in scalability. This weakness has led to the
utilization of advanced technologies such as [oT and Al and sensor networks into food quality
evaluation systems. Sensing loT solutions permit remote and constant tracking of all the
environmental parameters like temperature, humidity, and gas concentration to identify the
signs of spoilage. When coupled with machine learning algorithms, these technologies is
designed to analyse complex data patterns to forecast food degradation before it becomes
visible, reducing losses across the supply chain and ensuring safer consumption.

The IoT sensors are recognized for its reusability and potential to substitute the traditional
analysis method using quick, accurate, reliable, and multiplex analysis. There are quite a
number of outstanding contributions in the area of biological sensing devices in food safety
and inspection such as the detection of food borne pathogens in contaminated food in ports.
The fundamental concept of biosensor detection is to combine a biological recognition unit
coupled with a sensing transducer which emits a detectable signal directly related to the analyte
concentration. Multiple forms of biosensing devices have been constructed as determined by

the type of bioreceptor, but their role can depend on the interaction with analytes, and it must



exhibit high specificity [8]. Alternatively, the most common form of biosensor in terms of type
of transducer is the electrochemical type with the rest being optical and mass-sensitive
biosensors [9].

The system suggested is described in the following details. Part 2 follows a literature review,
providing the overview of the past studies and approaches. Section 3 will be the proposed
approach, clarifying the new techniques and mechanisms used. Section 4 comments on the

results, offering the evaluation of the outcomes and implications thereof. Lastly, Section 5

provides the deduction, which summarizes the results and proposes the directions.
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Figure 1. Various ways to spoil food

2. Related Works

In this era, food wastage is a major problem in the world even with the technological and food
preservation systems. Vakkas Dogan, et al, [10] proposed a novel colorimetric system in
sensing images through red cabbage extract (ARCE), a smartphone application that
incorporates embedded machine learning to monitor real time food wastage. FG-UV-CD100
films were originally prepared through crosslinking of ARCE-impregnated fish gelatine (FG)
in the presence of carbon dots (CDs) in the presence of UV light. Changes of colour of FG-
UV-CDI100 films to ammonia vapor samples with graded concentration levels were recorded
under varying light conditions (through smartphones of different brands) and this produced a

heterogeneous and representative dataset that was used to train the machine learning classifier.



Byeong M. Oh, et al[ll] made an organic chemo sensor probe called DEAH
dimethylcyclohex-1-en-1-yl)vinyl)-N,N-diethylbenzenamine chloride that is able to identify
amines with the ability to respond in two different modes like colorimetric and fluorometric
changes. Feiyi Chu, et al, [12] Presented a strategy involve the pKa manipulation in order to
address the problem leading to logical development of high-efficiency colorimetric and
fluorescent sensor, CFB-H2S, that is capable of functioning within a wide pH range of 6.0-
10.0. Noteworthy, the sensor is highly sensitive with a wonderful signal-noise ratio of 81-fold
which also offers great advantages to the applications of detecting H2S. Test strips were made
successfully, and their utility in real life was also validated in the case of food wastages.
Jingjiang Lv, et al, [13] had been suggested a versatile TEG-based multifunctional information
interaction system, leveraging body heat to facilitate information exchange via finger touch.
To enhance energy conversion efficiency, the flexible TEG was said to achieve superior
performance enhancement via tuning of the filling factor and material thermal properties,
resulting in a normalized power density of 1.43 pW/cm? K. As a proof-of-concept, the system
was employed in food systems wastage nursing, utilizing an MXene-based sensor to attain

reliable and highly efficient detection of ammonia.

In response to the urgent need for high-performance volatile amine-sensitive sensors used
across food, healthcare, and environmental domains, Jian-Hao Zhao, et al [14] proposed an
advanced fluorescent sensing probe. This probe, based on an indacenodithiophene structure
with a m-conjugated system, was designed and synthesized to address these requirements.
Xianghong Xie, et al, [15] proposed a strategy, stated that Fluorescein isothiocyanate (FITC)
was used as an indicator by being mixed with Eu/SA nanoemulsion and then physically applied
to a commercial filter membrane to create intelligent fluorescent labels. The freshness of
shrimp, both with and without the Eu/SA nanoemulsion coating, was monitored using a non-
contact tagging method. Yong Gao,et al,[16] had been developed a novel rhodol-based
fluorescent probe, RSMA (formyl-rhodol Schiff base with methoxyaniline), for the detection
of putrescine. Furthermore, RSMA was successfully fabricated into solid-state sensors for on-
site putrescine detection in shrimp, demonstrating its practical deployment in monitoring food

quality wastage.

Hydrogen sulfide (H2S), a common hazardous gas, endangers the assessment of water and
food safety parameters. To address this issue, Wenjuan Cai, et al, [17] created and

characterized an innovative near-infrared fluorescence probe designated as DTCM, through X-



ray diffraction study on single crystals for the detection of H2S. Maria Maddalena Calabretta,
et al, [18] presented an easy-to-use colorimetric sensing paper capable of detecting biogenic
amines with the naked eye. The sensing compound is aglycone genipin, a natural cross-linking
agent derived from gardenia fruit, which binds to biogenic amines and produces water-soluble
blue pigments. Yuqing Qin, et al, [19] A biosensor based on Bacillus subtilis spores was
introduced for the rapid, highly sensitive, and visual detection of biogenic amines. This
innovative system, integrated with smartphone-based analysis for real-time histamine

monitoring.

Alexander Altmann, et al, [20] have developed a porphyrin-derived sensing membrane
designed for detecting biogenic amines. This porphyrin-based sensor is incorporated into
mesoporous silica. Sensitivity to medium humidity level was negated by dispersing the
modified silica in polyethylene (PE), then thermally extruding it into PE films. Jing Liu, et al,
[21] had presented a bioelectronic olfactory system based on MXene and hydrogel for highly
sensitive detection of liquid and gaseous hexanal, a distinctive odor compound found in wasted
food. The conducting MXene/hydrogel architecture was established on a sensor through
physical adsorption. Zahra Mohammadi, et al, [22] examined the sensory characteristics of
nanomaterials, encompassing metallic and magnetic nanoparticles, carbon nanostructures such
as nanotubes, graphene and its derivatives, and nanofibers produced via electrospinning.
Ricarda Torre, et al, [23] proposed a Sensor technology utilizing screen-printed electrodes
(SPEs) have become more prominent due to their beneficial attributes, such as user-friendly
operation and mobility, enabling rapid analysis in point of need scenarios. Utilized insights
from various existing methods for detection of food wastage using various Internet of Things

and Bio sensors.

3. Developed Methodology

Identification of wasted food is an issue that is constantly causing problems to food industries
across the globe. Old methodologies like visual inspection and smell though used to, fail in
reliability to detect at early stages wastage. As an example, a large food processing facility can
be considered, and several loads of fresh produce are processed daily. There are cases where
despite the stringent steps implemented to provide quality control and assurance, slip-ups will
occur primarily due to the human factor or the variation of our senses in terms of smell, feel,
sight etc. with others of the inspectors. Still, one must mention that a lot of problems are related

to the further evolution of this technology which can be anticipated in the future: To start with,



the sensor and data analysis systems can be optimized in the future which can result in more
efficient wastage detection. The most recent developments, including the MIL-125-based
bimetallic oxide sensors suggested by Li et al, [4] may be taken as an example of the manner
in which nanocomposition design can increase signal sensitivity and the effectiveness of
detection, which justified the approach of multi-sensor optimization chosen in the given work.
The industry will thus aim at enhancing the properties of the sensors and the algorithms with
which the data will be analyzed to address the issue of accuracy in detecting the food products
that are wasted and minimize the wastage. It also says a lot about the pursuit of a new
innovation in the existing food safety process in order to ensure that the consumers are served
with fresher products, which are safe to consume as well as improving the productivity of the
operations. The proposed A Comprehensive loT-Based Multi-Sensor Framework To Predict

Food Wastage Analysis is as follows as shown in the Figure 2 below.

Microcontroller
(ESP8266)

Machine
Learning Model

Figure 2. Architecture of Proposed Model

The suggested system involves the combination of loT-powered sensors and cloud analytics
to improve the visualization of food spoilage. The hardware setup consists of an NDIR CO 2
sensor to measure the concentration of carbon dioxide, a DHT22 sensor to measure temperature
and humidity, and an MQ-4 sensor employed to quantify methane levels an indicator of

anaerobic decomposition. These sensors are able to capture real time information that is sent



wirelessly to an IoT cloud service through an ESP8266 microcontroller. To make the data
accurate, the collected data are subjected to various preprocessing stages such as noise filtering,
normalization and calibration. Machine learning algorithms are then applied to classify food
items as fresh, lightly wasted, or spoiled. This integrated architecture enables continuous
monitoring, early detection, and automated alert generation to minimize food losses and

maintain product quality.

The data then goes through several preprocessing steps once it gets into the cloud to make it
more reliable and reliable for its users [24]. Machine learning is of two types which are the
supervised learning and the unsupervised learning algorithms [25]. food freshness data and a
buzzer activation model. If there are signs of food wastage, changes in the CO: or methane
level, during testing, the system gives a continuous buzzer sound [26]. At the same time, the
threshold and the current reading is displayed, it gives feedback to the users and the users can
monitor the food status through an application. On the contrary if the foods stay fresh as they
are, the system beeps once using the buzzer and shows the current values on the sensors which
is fit for consumption. It enhance food safety as well as management but also improves

operations and reduces wastage through proper spoils identification at the earliest time [27].

3.1. NDIR Co2 Sensor:

An NDIR CO: sensor is one that can measure the concentration of carbon dioxide in food
through the use of infrared light at a particular wave length. In this process, a CO: sensor placed
in the food environment uses light to penetrate through the molecules of the gas and, when
these molecules are illuminated, the amount of transmitted light diminishes. This is due to the
fact that dissolution of CO: reduces with a decrease in its concentration present in solution. The
sensor then then determines the state of the gaseous mixture by using the Beer-Lambert’s law
which is a simple method that tells us the amount of light absorbed by a gas in relation to the
concertation of the gas. In food storage and processing atmosphere, high concentrations of CO:
usually signify the wastage caused by activity or chemical reactions from microbes [28]. Real-
time monitoring by the NDIR sensor helps in early detection of the wastage hence enhancing
food quality and food safety. This technology is important as it is used for detection of spoilt
products that are not in a condition that can be consumed hence helpful in the management of

food supply chain [29].

Early spoilage detection: Might require continuous or hourly monitoring to catch changes.



Routine quality control (e.g., after transport): A single measurement after 12—24 hours in transit

may be sufficient.

Safety assessment (e.g., risk of toxic buildup): Monitoring over the entire transport duration is

recommended.

CO: from produce is measurable within hours. Volatile spoilage gases (H-S, amines, ammonia,

VOCs) usually need 12—48 hours to reach detectable levels, depending on conditions.

The functionality of an NDIR CO: sensor with regards to the absorption of an infrared light.
The main principle of this experiment is that it is based on Beer-Lambert’s law which is

described by the following mathematic al equation (1);

Itransmitted — e—a.L.C (1)

Iincident
Where:

o Iiransmittea 18 the intensity of transmitted light through the sample.

incidgent 18 the intensity of incident (initial) light.

a is the absorption coefficient of the gas (CO: in this case).

L is the path length of the light through the gas sample.

C is the concentration of the gas (CO- concentration).

The optical absorption coefficient a also depends on the spectral intervals of the light produced
by the NDIR sensor and physical-chemical characteristics of CO.. When sensor receives the
values of Iiransmittea @4 lincident, through the formula above, it can determine the value of C
which signifies the degree of CO- concentration in the sampled air. Thus, this calculation makes
it possible for the sensor to capture and transmit the value of CO: in real-time to indicate when

the food is spoilt, or to keep stock of quality in other industries or environments.

3.2. DTH2?2 Sensor:

The DHT22 sensor serves a crucial function in detecting food wastage by determining the
temperature and humidity the food stored in a particular environment. These two factors are
very significant in influencing the growth rate of wastage microorganisms which includes

bacteria and Mold. The sensor provides digital readings of the temperature and the relative



humidity that can be employed in order to control the temperature in order to extend the shelf

life of the food products.

Relative Humidity (RH) :

The DHT22 sensor directly provides the relative humidity (RH) as a percentage:

Water vapour pressure
RH=

Saturation vapour pressure

* 100 (2)

Temperature (T) :

The sensors measures temperature in Celsius, which can be converted into Fahrenheit.
9

Where, Tr is the temperature in Fahrenheit and T, is the temperature in Celsius.

Dew Point (Td):

The dew point, indicating the temperature at which air become saturated with moisture, can

be calculated using the following equations:

o (T,RH) = —=" + In(RH/100) (4)
_ 237.7%(T,RH)
d ™ 17.27-«(T,RH) ®)

Where, T, is the dew point temperature, T is the current temperature in Celsius, and RH is the

relative humidity as a percentage.

Heat Index (HI):

The heat index, reflecting the perceived temperature considering humidity, can be

approximated using:

HI = T-((0.55-0.0055*RH)* (T-14.5)) (6)

here, T refers to temperature in Celsius, while RH indicates relative humidity as a percentage.



3.2. MQ-4 Sensor

The MQ-4 sensor measuring methane (CH4CH_4CH4) levels In a food, a gas produced during
the anaerobic decomposition of organic matter by microorganisms. Spoiled food that is stored
in low oxygen conditions causes greater activity of anaerobic bacteria resulting in an increase
in methane emissions. These emissions are sensed by the MQ-4 sensor and give an indication

of the wastage.

The MQ-4 sensor provides an analogue signal as output which is associated with the
concentration of methane in the air. The correlation between the sensor resistance (Rs) and the
methane concentration (CCH 4) may be expressed in terms of the sensor sensitivity
characteristics, which is normally indicated on the sensor datasheet. This correlation is most

frequently logarithmic and may be written as:
Rs
Log (R_o) = —alog(Ccus) +b (7

Where, R; is the sensor resistance at the detected methane concentration, R is the sensor
resistance in clean air, C.py4 1s the methane concentration, a and b are constants specific to the

sensor, obtained from the calibration curve.
By rearranging this equation, the methane concentration can be derived:

R
b—log(ﬁ)

CCH4- = 10(T (8)

To monitor food wastage, the microcontroller was used to receive raw data provided by the
DHT?22 sensor (measuring temperature and humidity), the NDIR CO 2 sensor (measuring
carbon dioxide levels) and the MQ-4 sensor (measuring methane levels). This data is relayed
to a cloud platform using an inbuilt Wi-Fi technology. Before analysing, preprocessing has
been done and includes noise filtering, calibration, normalization, aggregation and error
checking. This preprocessing makes the pre-processed data to be accurate, consistent, and can
be used in the analysis that will follow, making it easy to monitor the process and intervene in

a timely manner to stop wastage of food.

3.3. Preprocessing:



Apache Spark and PySpark, in our research, Apache Spark is a powerful distributed computing
platform which enables you to run large data with efficiency. PySpark, the Python API for
Spark, provides a seamless way to use Spark with Python. When preprocessing data using
PySpark, can perform various transformations and actions to clean and prepare data for

machine learning tasks.

3.3.1. Loading Data: PySpark had read data obtained from diverse sources, such as AWS.
Data is typically ingested into a Spark DataFrame, a distributed tabular dataset
defined by named columns.

3.3.2. Data Cleaning: Data Cleaning involves 2 techniques. Such as (i) handling missing
values and removing duplicates.

3.3.3. Data Transformation: Features are normalized to a standard range using methods

such as Min-Max Scaling or Standard Scaling.
Min-max scaling: Min—Max normalization transforms feature values into a specified range,

typically [0, 1] or [-1, 1].

X—Xmin

©)

X =
scaled X X
max—Amin

Where, X is the original feature value. X,,;,, is the minimum value of X in the dataset, X,

1s the maximum value of X in the dataset.

Standard Scaling (Z-score normalization): Standard scaling transforms features to have a

mean of 0 and a standard deviation of 1.

(10)

Where, X is the original feature value, p is the mean of X in the dataset, ¢ is the standard

deviation of X in the dataset.

Algorithm

df = spark.read.csv("s3a://bucket name/data.csv", header=True, inferSchema=True) //

Loading data

mean_value = df.select(mean(df['column_name'])).collect()[0][0]



df = df fillna(mean_value, subset=['column name']) // Handling

Missing Values

df = df.dropDuplicates() // Removing
Duplicates

scaler = MinMaxScaler(inputCol="features", outputCol="scaledFeatures") // min-max

Scaling

OutputCol="scaledFeatures", withStd=True, withMean=True) //Standard

Scaling

encoder = OneHotEncoder (inputCol="categoryIndex", outputCol="categoryVec) // encoding

train_df, test df = df.randomSplit([0.8, 0.2], seed=42) // Splitting data
3.4. Random Forest Algorithm

The Random Forest algorithm is a versatile and powerful ensemble learning method, it is a
commonly employed algorithm in machine learning for both classification and regression,
functioning by building multiple decision trees and aggregating their outputs as either the mode
(for classification) or the mean (for regression). In the Random Forest model, each tree is
constructed with the random sample of the training dataset, and at the time of splitting,
considers random features. Once the data has been pre-processed, it is then split into two parts:
a training set and a testing set to find out its accuracy of the system. The given dataset is divided
into the training set and the testing set, where 75% of the dataset is being used for training the
Random Forest and the rest 25% is used for accessing the model’s performance. This prospect
also guarantees that the model has enough data training to make the required patterns and
relationships discernible and, at the same time, maintain the chance of testing out its accuracy
and proficiencies on new data not used in its training. It enables one to determine the ability of
the model to generalize data which are new and unknown which are always crucial in judging

the reliability and accuracy of the proposed model in practical applications.

Splitting Process: In order to give a formal definition of how the data set is splitted into train

set and test set, we define the notation as follows.

Train set = {(x;, y;)|i = 1,2,..... ,train size x N} (11)

Test set = {(x;,¥;)|i = trainsize* N +1,...,N} (12)



Here, x; represents the input features (or independent variables) and y; represents the

corresponding target values (or dependent variables).

This also tends to discourage overfitting and also increase the amount of robustness in the
model. Random Forests are particularly popular as they can work with the large number of
predictor variables and with noisy data. Especially, they are easier to be tuned and have less
overfitting risk compared with IDT, which are widely applied in fields of finance, health and
ecology.

3.5. Alert:

An application has been developed for android operating system for testing and monitoring of
the environmental factors that affect the freshness of food and wastage. This application was
created with the sole purpose of generating testing values for temperature, humidity, methane,
and carbon dioxide in real-time. If it matches the monitored food with that of what was stored
in the refrigerator and were declared fresh, then the current values of each parameter are shown
on the screen and a small beep sound is heard, signifying that the food is safe for consumption.
On the other hand, if the food is, for instance, found to be spoilt, then the application reveals
to the user the recommended threshold values of the parameters and the actual output values
of the parameters that went high or low. Moreover, in the event of wastage, the application
generates an unbroken sound to inform the user about the quality of food that has gone bad.
The application will allow seeing a bright and direct signal of the quality of the food, and the
use of audio-visual effects will increase the usability and efficiency of the wastage detection

system.
4. Experimental setup

The objective of this experiment is to monitor and analyze the environmental conditions

(temperature, humidity, CO, and methane gases) for various fruits and vegetables.
4.1. Dataset

We used the Random Forest method to train a model based on a dataset of 28 vegetables/fruits
(apples, bananas, carrots, beetroot, cabbage, peas, beans, okra, grapes, watermelon) available
at Table 1 and 20 common foods (bread, milk, cheese, yogurt, butter etc.) at Table 2. Each
group was defined by the particular environmental conditions of its temperature, humidity,
methane, and carbon dioxide in degree Celsius, Percentage and parts per million (ppm)

respectively.



Table 1. Environmental Threshold Values for Common Fruits/Vegetables

S.No Fruits/ Temperature | Humidity | CO:(ppm) | Methane (ppm)
Vegetables (°O) (%)
1 Apple 1-4 90-95 500-1500 0-10
2 Banana 13-16 85-90 1000-3000 0-5
3 Orange 4-7 85-90 500-2000 0-8
4 Tomato 10-25 85-95 500-3000 0-15
5 Potato 4-10 80-90 500-2000 0-10
6 Carrot 0-4 90-95 500-2500 0-8
7 Cucumber 10-15 85-95 500-2000 0-12
8 Spinach 0-4 90-95 500-1500 0-5
9 Broccoli 0-4 90-95 500-2000 0-8
10 Strawberry 4-10 90-95 500-1800 0-10
11 Pineapple 10-15 85-90 800-2500 0-5
12 Grapes 0-4 85-90 500-1800 0-8
13 Watermelon 10-15 80-85 800-3000 0-5
14 Brussels sprouts 0-4 90-95 500-1800 0-8
15 Cerely 0-4 90-95 500-2000 0-5
16 Egg Plant 10-15 85-90 500-2500 0-12
17 Green Beans 0-4 90-95 500-2000 0-8
18 Peas 0-4 85-90 500-1500 0-10
19 Artichoke 5-10 85-90 500-1800 0-5
20 Radish 0-4 90-95 500-2000 0-8
21 Cabbage 0-4 90-95 500-2500 0-10
22 Beetroot 0-4 85-90 500-2000 0-5
23 Leek 0-4 85-90 500-1500 0-8
24 Sweet Potato 10-15 80-85 800-2500 0-5
25 Pumpkin 10-15 80-85 800-3000 0-10
26 Swiss Chard 0-4 90-95 500-2000 0-8
27 Kale 0-4 90-95 500-1800 0-12
28 Okra 10-15 85-90 500-2500 0-10
Table 2. Environmental Threshold Values for Common Food Items
S.No Food Items Temperature | Humidity | CO: (ppm) | Methane (ppm)
O (%)
1 Bread 20-25 40-50 400-800 0-2
2 Milk 1-4 85-90 400-800 0-5
3 Cheese 2-6 70-80 400-800 0-2
4 Yogurt 1-4 85-90 400-800 0-3
5 Butter 5-10 40-50 400-800 0-2
6 Eggs 1-4 70-80 400-800 0-5
7 Chicken 0-4 85-90 400-800 0-8
8 Beef 0-4 70-80 400-800 0-10
9 Fish 0-4 85-90 400-800 0-5
10 Shrimp 0-4 85-90 400-800 0-3
11 Potatoes 5-10 80-90 400-800 0-8
12 Rice 20-25 40-50 400-800 0-2




13 Pasta 20-25 40-50 400-800 0-2
14 Flour 20-25 40-50 400-800 0-2
15 Oats 20-25 40-50 400-800 0-2
16 Chocolates 15-20 40-50 400-800 0-2
17 Honey 15-20 40-50 400-800 0-2
18 Nuts 15-20 40-50 400-800 0-2
19 Canned Foods 20-25 40-50 400-800 0-2
20 Frozen Foods -18 to -15 80-90 400-800 0-2

In establishing how much of the fruits, vegetables and common food items can go to waste,
we have developed a sequence of conditions depending on the jointness of environmental
conditions such as temperature, humidity, methane and carbon dioxide. An example would be
Scenario 1, according to which, when CO 2 and methane are beyond their respective thresholds,
this would be a good sign to show that the food is likely to go to waste. In Scenario 2, when
the level of humidity and temperature is high, but the amount of CO 2 and methane is under
the acceptable limits the food may still be fresh, but this state of affairs is an indication that
wastage will soon follow unless the environmental parameters are modified as soon as possible.
Scenario 3 takes into account that when two of the parameters like CO 2 and temperature go
beyond their limiting values, this may be as a sign of wastage, despite the other two parameters
of humidity and methane being within acceptable limits. These scenarios indicate the
complexity of the interaction between various environmental factors as concerns food wastage
and the necessity to monitor various parameters in terms of food quality and freshness as well

as other stored products and items.

4.2. Required components and Implementation model



In this study, we utilized several hardware components, including an NDIR CO: sensor, a
DHT?22 sensor, an MQ-4 sensor, a WiFi-inbuilt microcontroller, a buzzer, display and Mobile

unit.
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Figure 3. Implementation of Proposed Innovation

The software requirements for this project included AWS Cloud for data storage and
processing, Apache Spark and PySpark for data preprocessing, and the Random Forest machine
learning algorithm for model training and prediction. The system was run on an i5 processor

with 64 GB of RAM to ensure efficient handling of the computational workload.

Figure 3, representing the implementation of proposed innovation. The food transferring from
one area to another area in a container. Device placed in a container integrated with speaker
and LCD. When the food going to damage, our device detects the food wastage and
automatically send alert through producing sounds and as well as displays the actual readings
and threshold readings. Along with the truck driver can access the status of food through mobile

unit.

4.3. Performance metrics:

Accuracy: Accuracy measures the proportion of correctly predicted instances out of the total

instances.



TP+TN

Accuracy = —
y TP+TN+FP+FN

(13)

Precision: Precision measures the proportion of correctly predicted positive instances out of

all instances predicted as positive.

Precision = (14)
TP+FP

Recall: Recall measures the proportion of correctly predicted positive instances out of all
actual positive instances.

Recall = —— (15)

TP+FN
F1 Score: The F1 Score is the harmonic mean of precision and recall, providing a single
metric that balances both.
F1 Score = 2x Precision* Recall (16)

Precision + Recall

Where, TP indicates True Positives, TN indicates True Negatives, FP indicated False

Positives and FN indicated False Negatives.

ROC-AUC (Receiver Operating Characteristic - Area Under Curve): The ROC-AUC score
represents the area under the ROC curve, which plots the true positive rate (Recall) against

the false positive rate (1 - Specificity).
AUC = [ TPR(t) dEPR(t) (17)

Where, TPR(t) representsTrue Positive Rate at threshold t, FPR(t) represents False Positive
Rate at threshold t.

4. Result

We did a thorough experiment on the different vegetables, fruits, and other general food stuffs
depending on the environmental conditions in terms of temperature, humidity, CO 2 and
methane content. Apached Spark and PySpark were used to pre-process the data collected by
bringing it together and received by the sensors to handle it efficiently. The training and testing

of the model were done with the aid of the Random Forest algorithm whose accuracy is



enormous, of 95%. Such high precision is what highlights the credibility of the model in

predicting food wastage and freshness. We have effectively tested the combination of the state-

of-the-art data processing and machine learning methods, which can greatly benefit the

improvement of food quality and safety evaluation.

Table 3. Analysis of Environmental Parameter Measurements on Vegetables and Fruit

S.No | Fruits/ Temperature | Humidity(%) | CO: Methane Stage
Vegetables | (°C) (ppm) (ppm)
1 Apple 3 92 1600 11 Wasted
2 Banana 17 95 1500 3 Lightly
wasted
3 Orange 5 87 1500 6 Fresh
4 Tomato 30 93 3200 19 Wasted
5 Potato 6 89 1700 5 Fresh
6 Carrot 8 92 2800 8 Wasted
7 Cucumber 13 89 2500 17 Wasted
8 Spinach 9 99 2500 9 Wasted
9 Broccoli 3 92 1200 1 Fresh
10 | Strawberry 6 97 1800 11 Fresh
11 Pineapple 13 87 2800 9 Wasted
12 Grapes 9 95 1500 7 Lightly
wasted
13 | Watermelon 10 80 800 2 Fresh
14 Brussels 8 99 2800 22 Wasted
sprouts
15 Cerely 2 91 1000 4 Fresh
16 Egg Plant 8 89 2400 11 Fresh
17 Green 21 189 3000 15 wasted
Beans
18 Peas 15 105 1300 8 Lightly
wasted
19 Artichoke 17 108 2290 19 Wasted
20 Radish 2 93 1000 6 Fresh




21 Cabbage 8 99 1500 7 Lightly
Wasted
22 Beetroot 3 87 500 4 Fresh
23 Leek 9 98 1700 21 Wasted
24 Sweet 18 89 2200 3 Lightly
Potato Wasted
25 Pumpkin 20 100 3500 18 Wasted
26 Swiss 3 93 1500 8 Lightluy
Chard wasted
27 Kale 3 92 51500 10 Fresh
28 Okra 19 99 2000 8 Lightly
wasted

The table 3 gives a breakdown of the measurement of the environment parameters

(temperature, humidity, CO 2 and methane concentration) and how they affect the wastage of

different fruits and vegetables. A high level of CO 2 and methane, as well as high humidity, is

usually linked to wastage. As an example, tomatoes and pumpkin have high levels of CO 2 and

methane implying wastage, whereas fruits such as oranges and potatoes which have lower

levels of CO 2 and methane are still fresh. Broccoli and radish are the vegetables that retain

their freshness with low temperature and humidity. Interestingly, there are other items such as

kale and artichoke that show different readings, implying that there are other variables that can

affect wastage.
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Figure 4. Temperature variation of fruits and vegetables under storage conditions




Various temperature conditions for different fruits and vegetables shown in Figure 4, illustrated

that During testing period, we got cerely and Radish exhibits very low temperature as compared

to other vegetables and fruits. Tomato exhibits with a high temperature among the all.
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Figure 5. Humidity (%) and Methane (ppm) levels in fruits and vegetables
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Graphical representation of humidity (%) and methane (ppm) in various vegetables and fruits

represented in Figure 5, illustrating that high-humidity vegetables like Spinach and Brussels

sprouts show increased methane levels, indicating potential wastage risk. Conversely, fruits

like Watermelon have lower humidity and methane levels, suggesting better stability. Elevated

methane in Tomatoes and Artichokes may signal active ripening, while lower levels in Broccoli

and Potatoes reflect more stable conditions.

Table 4. Analysis of Environmental Parameter Measurements on common food items

S.No | Food Temperature | Humidity(%) | CO: Methane Stage
Items (°C) (ppm) | (ppm)
1 Bread 28 60 850 8 Wasted
2 Milk 2 88 600 3 Fresh
3 Cheese 8 90 600 1 Lightly
Wasted
4 Yogurt 6 90 1000 3 Wasted
5 Butter 19 70 1000 5 Wasted
6 Eggs 2 75 500 3 Fresh
7 Chicken 2 87 600 6 Fresh




8 Beef 11 100 1050 28 Wasted
9 Fish 15 95 600 3 Lightly
Wasted
10 Shrimp 10 87 1000 2 Wasted
11 Potatoes 9 70 794 7 Fresh
12 Rice 22 45 480 1 Fresh
13 Pasta 30 80 700 1 Lightly
Wasted
14 Flour 25 45 408 2 Fresh
15 Oats 22 45 400 & Fresh
16 | Chocolates 19 40 400 1 Fresh
17 Honey 18 57 591 1 Fresh
18 Nuts 40 70 900 4 Wasted
19 Canned 30 55 900 4 Wasted
Foods
20 Frozen -3 100 920 6 Wasted
Foods

The table 4 containing the analysis of the measurements of the environmental parameters
(temperature, humidity, CO 2, and methane concentrations) and their effect on the wastage
process of the typical food products. High temperature and high CO 2 and methane levels are
linked to wastage of items such as bread, yogurt, butter, beef, shrimp, nuts, canned foods, and
frozen foods. Milk and eggs, chicken, potatoes, rice, flour, oats, chocolates, and honey are kept
fresh, and are less prone to the presence of CO 2 and methane, as well as moderate
environmental conditions. Marginal wastes like cheese, fish and pasta contain intermediate
amounts of these gases and different temperatures. This information suggests that wastage is
also influenced by a mixture of high humidity and high concentration of CO 2 and methane
gases, and low temperatures and low humidity levels save the perishable goods. This discussion
is another insight that highlights the value of appropriate storage environments in extending

shelf life of common food products.

In order to prove the progress made by the proposed framework, a comparison of the recent

systems based on IoT and biosensors and detecting food spoilage data was conducted [1023].



Table X is a summary of the comparative result in terms of accuracy, response time and
processing efficiency. The model of multi-sensors developed obtained a total accuracy of 95,
which was higher than the previous methods, which obtained an accuracy of between 85 and
92. The average response time was decreased to 1.8 seconds as compared to conventional
single-sensor or colorimetric systems, which took 3-5 seconds to detect. The incorporation of
preprocessing data in the cloud with the help of Apache Spark considerably increased the speed
of computation and lowered the latency in the real-time analysis. These findings prove that the
use of NDIR CO 2, DHT22 and MQ-4 sensors with Random Forest classification to detect food

quality and waste minimization is accurate and reliable to be implemented on a large scale.

Table 5. Evaluation of Proposed and Existing Systems

Method Sensor Type Accuracy (%) | Response Time | Remarks
O]

Dogan et al., Colorimetric 88 4.6 Effective but

2024 ML-based limited to
smartphone colour data
system

Liu et al., 2023 | MXene/Hydrogel | 92 3.2 Sensitive but
bioelectronic high cost
nose

Caietal., 2024 | NIR fluorescent | 90 3.8 Detects specific
H-S probe gases only

Proposed IoT-based Multi- | 95 1.8 Real-time,

Framework Sensor (COs, accurate,
CHa, Temp, scalable
Humidity) monitoring
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Figure 6. Environmental parameters of common food items indicating freshness variation

Graphical Analysis of environmental parameter measurements on standard food items
reflected in Figure 6, and demonstrates that different storage conditions are required to ensure
freshness. To maintain quality of frozen foods, they must have very low temperatures (-30 C)
and high levels of humidity (100 percent) whereas products such as Bread and Nuts have higher
temperatures and different levels of humidity. Some foods like Beef and Yogurt contain CO 2
and Methane in high amounts, which means that the wastage capacity of a product is high as
opposed to low wastage capacity of products like Rice and Pasta. Most perishable products are
usually high in moisture and Cheese and Milk are not an exemption as they are noted to have
high levels of moisture which may make them wastageable especially when they are not stored
in the best possible conditions. All in all, temperature, humidity and gas control are very

essential in extending the shelf life of various food products.

To ensure the reliability of the Random Forest classifier, 10-fold cross-validation was applied
to the dataset. This technique partitions the data into ten equal subsets, where nine are used for
training and one for testing in each iteration, ensuring that every sample contributes to both
training and validation. The average accuracy across all folds was 94.8%, confirming model

stability.
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Figure 7. Performance metrics of the proposed Random Forest-based detection model

Table 6. Confusion Matrix for Random Forest

Category Predicted Fresh Predicted Spoiled Total
Actual Fresh 185 8 193
Actual Spoiled 9 190 199

A confusion matrix was also generated to quantify classification outcomes in terms of true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). The model
exhibited high sensitivity and specificity, as shown in Table Y. Additionally, p-value analysis
(< 0.05) confirmed that the observed differences between predicted and actual classes are

statistically significant, reinforcing the reliability of the model’s predictive ability.

Using the Random Forest algorithm, we achieved notable performance metrics in our study on
food freshness and wastage prediction shown in Figure 7. The model demonstrated an accuracy
of 95%, indicating a high rate of correctly predicted instances across the entire range of
predicted outcomes. With a precision of 94%, the model proved to be highly reliable in
identifying true wastage cases out of all predicted wastage cases. The recall rate of 90%
signifies that the model efficiently recognized most of actual wastage cases. Additionally, the
F1-Score, which balances precision and recall, was recorded at 92%. These findings highlight
the efficacy of the Random Forest algorithm in accurately and consistently estimating the
wastage of food items based on environmental parameters, providing a robust solution for food

quality assessment.
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Figure 8. ROC curve showing classification performance (AUC = 0.95)

The Receiver Operating Characteristic (ROC) curve shown in Fig. 8, was plotted to evaluate
the binary classification outcome of the Random Forest model. the ROC-AUC metric was
approximately 0.95, indicating a high competence of the model in distinguishing between fresh
and spoiled food categories. The earlier mention of “9.6” was an unintentional typographical
error. An ROC AUC value close to 1.0 reflects an excellent predictive capacity, confirming that
the proposed framework provides reliable classification results consistent with the observed

accuracy, recall, precision, and F1-score metrics.

The proposed IoT-based multi-sensor system contributes directly to sustainable food
management by minimizing post-harvest losses and improving resource efficiency spanning
all phases of the supply chain operations. By enabling real-time detection of food spoilage, the
framework reduces unnecessary waste and supports responsible consumption practices,
demonstrating adherence to UN SDG 12, aimed at achieving efficiency in consumption and
sustainability in production. Furthermore, early identification of spoilage helps ensure the
availability of safe, nutritious food, aligning with SDG 2 (Zero Hunger). The integration of Al-
driven analytics within IoT networks also promotes digital transformation in agriculture and
food logistics, reducing environmental burden, optimizing storage conditions, and enhancing

overall food system resilience.



Conclusion

For this project, we designed an elaborate system to detect food wastage by incorporating the

use of modern sensors and artificial intelligence. The hardware used consists of an NDIR CO2
sensor, the DHT22 temperature and humidity sensor, the MQ-4 methane gas sensor, the in-built
WiFi microcontroller for the network connection, and a buzzer and display for the alarms and
responses respectively. In data processing and data analysis, we used Big Data framework from
AWS Cloud to deal with big amount of data and used Apache Spark and PySpark for data
preprocessing. The Random Forest technique was selected due to the fact it is very effective in
classification and is very resistant to overfitting. The system was developed and run on an 15
processor of 64 GB RAM so it has enough capacity for commanding powerful operations. The
model reached the accuracy level of 95% which proved that the chances of the food wastage
are rather high accurately. However, the ROC value of 9.6 seems rather high so it can be a
result of a mistake ROC AUC is between 0 and 1. From the high value of the cross-validated
ROC AUC, it is probable that the actual value of ROC AUC is closer to 0.95, which the results
imply that the proposed model demonstrates very well in differentiating between fresh and
wasted food. This work establishes how to combine hardware and software in order to design
and implement a food wastage detecting system for the benefits of food safety and to reduce
food wastage. The further work will be dedicated to the finetuning of the ROC increase and
development of the applicability of the system on other food objects.
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