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Abstract 5 

Carbon emissions have consistently been a focal point of attention for the Chinese government. 6 

As one of the key drivers of China's economy, Jiangsu province plays a pivotal role in achieving the 7 

dual carbon goals. This study is grounded in data from Jiangsu province spanning 2003 to 2022 and 8 

constructs an extended STIRPAT model to delve into the impact of factors such as population, GDP 9 

per capita, urbanization rate, industrial structure, energy consumption intensity, and per capita energy 10 



 

 

consumption on carbon emissions. Additionally, this paper forecasts the future carbon emission trends 1 

of the 13 cities in Jiangsu province under different scenarios and explores the possibility of the 2 

province reaching its carbon peak.The findings reveal that cities exhibit varying degrees of sensitivity 3 

to influencing factors. Under the baseline scenario, cities like Wuxi and Zhenjiang are expected to 4 

achieve carbon peaking by 2030, whereas in more economically developed areas such as Nanjing and 5 

Suzhou, the timing of carbon peak may be relatively delayed. In the green development scenario, all 6 

cities across the province are projected to reach carbon peak ahead of schedule. Moreover, scenarios 7 

of industrial structure optimization and energy conservation are also found to accelerate the process 8 

of carbon peaking. However, under the extensive development scenario, only a few cities are likely 9 

to achieve carbon peaking before 2030. Accordingly, Jiangsu province should formulate differentiated 10 

carbon peak targets based on the specific circumstances of each city and strengthen inter-regional 11 

coordinated development. Simultaneously, the government needs to adopt more robust policy 12 

measures to facilitate the optimization and adjustment of the energy structure, the upgrading of 13 

industrial structures, and the enhancement of energy efficiency, thereby ensuring the successful 14 

realization of the province's carbon peak goals. 15 
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1. Introduction 3 

Global climate change is undoubtedly one of the greatest challenges for future economic and 4 

social development, with human activities being the primary driving force (IPCC, 2014). This has 5 

compelled governments worldwide to attach great importance and assume the responsibility of 6 

addressing climate change. As the largest emitter of carbon dioxide in the world, China faces immense 7 

pressure to reduce emissions (Yu and Qu, 2013; Liu et al., 2022; Bai et al., 2024). On September 22, 8 

2020, China solemnly announced at the 75th United Nations General Assembly its commitment to 9 

peaking carbon dioxide emissions by 2030 and achieving carbon neutrality by 2060. The realization 10 

of these goals requires not only top-level design at the national level but also effective carbon 11 

reduction measures in regions, especially in economically developed and densely populated provinces 12 

like Jiangsu. As an economically prominent province, Jiangsu faces substantial energy demands from 13 

both its population and industrial sectors, making energy conservation and emission reduction 14 

particularly challenging (Zhang and Huang, 2012; Long et al., 2015; Li et al., 2023). Therefore, a 15 

thorough analysis of the factors influencing carbon emissions in Jiangsu and the prediction of the 16 

timing and peak of carbon emission peaking are crucial for formulating regional carbon reduction 17 

strategies. 18 

In terms of research methods for predicting carbon emission trends and timing of carbon peak, 19 

the main approaches include the input-output model, system dynamics model, neural network model, 20 

and STIRPAT model, among others (Tarancon and Del Rio, 2012; Anser, 2019; Huo et al., 2022). 21 

Qiao et al. (2021) used a new cumulative grey model (DGM (β,1)) to predict the CO2 emissions of 22 



 

 

17 APEC member countries through taking 2014-2019 data as the original data and testing the model 1 

accuracy by the MAPE value, suggesting that among these 17 countries, 13 are expected to show an 2 

upward trend in CO2 emissions while 4 present a downward trend during 2020-2023, and all countries 3 

should pay more attention to the issue of CO2 emissions and adjust their climate and energy policies. 4 

Chaudry et al. (2022) employed a novel coupled multi-scale energy and transport system model to 5 

simulate Britain's net-zero carbon emission scenario for 2050, concluding that smart electrification 6 

of heat and transport is the most cost-effective pathway for Britain to achieve net-zero carbon 7 

emissions by 2050. Sang and Shen (2024) employed an innovative two-step method (Mann-Kendall 8 

trend test + Tapio decoupling model) to analyze the carbon peaking status of 154 countries in three 9 

dimensions, classified the countries into four income groups, and provided references for targeted 10 

carbon reduction and global carbon neutrality. Yang et al. (2024) used a data-driven rule-based model 11 

to predict the carbon peak trajectories of China’s 30 provinces through time-series forecasting, 12 

suggesting that most provinces are expected to achieve carbon peak before 2030 under policy 13 

interventions. Xia et al. (2024) categorized provinces based on the Environmental Kuznets Curve 14 

theory and constructed a carbon emission prediction model integrating time-series and impact factor 15 

models, combined with Monte Carlo simulation for scenario analysis, concluding that there are 16 

differences in carbon peak timing among China’s provinces. Zhang and Luo (2023) utilized the LEAP 17 

model for scenario analysis of carbon emissions from public buildings in China, exploring carbon 18 

peak predictions and pathways through setting baseline and mitigation scenarios, suggesting that the 19 

carbon peak may occur between 2030 and 2035. Tian et al. (2022) analyzed the driving factors of 20 

carbon emissions in different cities in Shandong province using an extended STIRPAT model and 21 

predicted the timing and peak of carbon emissions for various cities and the province through scenario 22 



 

 

analysis. Yin et al. (2023) proposed a novel grey model PGM(1, N) based on multi-parameter 1 

combination optimization for predicting China’s CO2 emissions, which optimizes the driving terms 2 

by differentiating the definition and optimization of variable orders and introducing a smoothing 3 

generation operator, suggesting that China’s carbon emissions will continue to grow. 4 

Nevertheless, there is still controversy among scholars regarding whether China can achieve its 5 

carbon emission peaking target by 2030. Particularly for Jiangsu, an economically developed region, 6 

the analysis of carbon emissions and their peaking predictions at the municipal level is insufficient, 7 

lacking a comprehensive regional prediction of peaking scenarios and corresponding policy 8 

recommendations. Therefore, this paper employs the extended STIRPAT model and ridge regression 9 

analysis method to predict the future trends of carbon dioxide emissions for Jiangsu's 13 prefecture-10 

level cities and to formulate targeted peaking strategies, thereby providing a scientific basis for China 11 

to achieve its overall carbon emission peaking goal. 12 

2. Method and data 13 

Due to the differences in social and economic development and carbon emissions among the 13 14 

prefecture-level cities within Jiangsu province, including Nanjing, Wuxi, Xuzhou, Changzhou, 15 

Suzhou, Nantong, Lianyungang, Huai’an, Yancheng, Yangzhou, Zhenjiang, Taizhou, and Suqian, this 16 

article first assesses the energy-related carbon emissions of each city from 2003 to 2022. Then, using 17 

the STIRPAT model, factors such as population, per capita GDP, urbanization rate, industrial structure, 18 

energy consumption intensity, and per capita energy consumption are selected as influencing factors. 19 

Through regression fitting, a carbon emission prediction model for the 13 prefecture-level cities in 20 

Jiangsu province is constructed. Different scenarios are then set to predict the future carbon emission 21 

trends of the 13 cities in Jiangsu province. Based on this analysis, the peak carbon emissions of 22 



 

 

Jiangsu province as a whole are analyzed, and policy recommendations are provided for the early 1 

achievement of peak carbon emissions in Jiangsu province and its 13 prefecture-level cities. 2 

2.1. Data sources 3 

This paper has collated data on population, per capita GDP, urbanization rate, industrial structure, 4 

per capita energy consumption, energy consumption intensity, and CO2 emissions for the 13 cities in 5 

Jiangsu province from 2003 to 2022 through various channels. Among these, data on population, per 6 

capita GDP, urbanization rate, and industrial structure are primarily sourced from the “Statistical 7 

Yearbooks” (2003-2022) and “Bulletins of National Economic and Social Development” (2003-2022) 8 

published by the statistical bureaus of each city. Data on energy consumption are derived from the 9 

“Energy Statistical Yearbooks” of various cities. The CO2 emissions from energy consumption are 10 

calculated by multiplying the energy consumption by the carbon emission factors and then 11 

aggregating the results. The conversion coefficients for standard coal and carbon emission factors for 12 

various types of energy are presented in Table 1. Figure 1 presents the carbon emissions for various 13 

cities as calculated through accounting measures. 14 

Table 1. Conversion coefficients to standard coal and carbon emission factors for various types of 15 

energy 16 

Type of Energy Unit Conversion 

Coefficient to 

Standard Coal 

Carbon 

Emission 

Factor 

Raw Coal 10,000 tons 0.7143 0.7559 

Gasoline 10,000 tons 1.4714 0.5538 

Kerosene 10,000 tons 1.4714 0.5714 

Diesel Oil 10,000 tons 1.4571 0.5921 

Fuel Oil 10,000 tons 1.4286 0.6185 
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Figure 1. Carbon emission data for the 13 cities in Jiangsu province from 2003 to 2022 2 

2.2. STIRPAT model 3 

The IPAT model, first proposed by American ecologist Ehrlich and Holden (1971), is used to 4 

assess the impact of human activities on the environment. The name of the model is derived from its 5 

four main variables: environmental impact (I), population (P), affluence or per capita consumption 6 

(A), and technology (T). The formula is expressed as: 7 

                              I = P×A×T                                   (1) 8 

However, the IPAT model has certain linear limitations, as it assumes that different factors 9 

contribute equally to environmental pressure, which contradicts the Environmental Kuznets Curve 10 

hypothesis. To overcome the limitations of the model, Dietz and Rosa proposed the STIRPAT model 11 

based on the IPAT model (Dietz and Rosa, 1997; York et al., 2003), with its expression shown in 12 

Equation (2): 13 

                           I = a×Pb×A
c
×Td×e                                (2) 14 

In the equation, I represents environmental pressure, P denotes population, A stands for affluence, 15 

Liquefied Petroleum Gas 10,000 tons 1.7143 0.5042 

Natural Gas billion cubic meters 13.3 0.4483 



 

 

T indicates technology level, a is the model coefficient, b, c, and d are the elasticity coefficients for 1 

P, A, and T respectively, and e is the random error term. The IPAT model is a special form of the 2 

STIRPAT model, where a = b = c = d = e = 1. 3 

The STIRPAT model is a multivariate nonlinear model. In empirical analysis, the logarithm of 4 

both sides of equation (2) is generally taken: 5 

                      ln I  = ln a +b ln P +c ln A +d ln T + ln e                     (3) 6 

Using lnI as the dependent variable, lnP, lnA, and lnT as independent variables, lna as the 7 

constant term, and lne as the error term, the logarithmic model can be fitted with multiple linear 8 

regression to obtain a, b, c, and d. The elasticity coefficients indicate that a 1 % change in P, A, and 9 

T will result in b %, c %, and d % changes in I, respectively. 10 

The STIRPAT model rejects the unit elasticity hypothesis, introduces randomness, and facilitates 11 

empirical analysis. Additionally, the STIRPAT model can incorporate various factors affecting 12 

environmental pressure, such as urbanization, industrial structure, and energy consumption intensity 13 

(Tang and Hu, 2021). Therefore, the STIRPAT model is most widely used in quantifying the 14 

relationship between carbon emissions and various influencing factors (Ofori et al., 2023). It is the 15 

most commonly used and recognized model for studying carbon emission peak issues. 16 

Based on existing research, population (p), per capita GDP (A), urbanization rate (U), industrial 17 

structure (IS), and energy consumption intensity (EI) are widely used in carbon emission studies and 18 

can significantly impact carbon emissions (Wang et al., 2013; Lin and Du, 2015; Lin et al., 2017; Xue 19 

et al., 2022). However, few studies have explored the impact of per capita energy consumption (PEC) 20 

on carbon emissions. Since per capita energy consumption is a crucial indicator of energy utilization 21 

efficiency, reducing it is a key pathway to achieving green and low-carbon energy transformation. 22 



 

 

Therefore, this paper supplements per capita energy consumption as a major influencing factor. In 1 

summary, this paper selects these six factors as the influencing factors of carbon emissions and 2 

constructs an extended STIRPAT model, with its expression as follows: 3 

             ln I  = bln P +c ln A +d ln U +f ln IS +g ln PEC +h ln EI +j                (4) 4 

The equation is as follows: I represents carbon dioxide emissions, P stands for population, A is 5 

per capita GDP, U denotes urbanization rate, IS is industrial structure, PEC refers to per capita energy 6 

consumption, and EI is energy consumption intensity. The coefficients b, c, d, f, g, and h represent 7 

the elasticity of each variable, while j is a constant, calculated as: lna + lne, where a is the model 8 

coefficient and e is the random error term. The explanations of each variable in the model are shown 9 

in Table 2. 10 

Table 2. Model variable description 11 

Variable Explanation or Description Unit 

Carbon dioxide 

emissions(I) 

Energy consumption carbon 

dioxide emissions 

108t 

Population (P) Year-end permanent population Ten thousand people 

Per capita GDP(A) Gross Domestic Product (GDP) 

/ Year-end Permanent 

Population 

Yuan per person 

Urbanization rate(U) Proportion of Urban Residents 

in Total Population 

% 

Industrial structure(IS) Proportion of the Secondary 

Industry in Gross Domestic 

Product (GDP) 

% 

Per capita energy 

consumption(PEC) 

Energy consumption / Year-end 

Permanent Population 

Tonnes of coal equivalent per 

person 

Energy consumption 

intensity(EI) 

Energy Consumption per Unit 

of Gross Domestic Product 

(GDP) 

Million tonnes of coal equivalent 

per billion yuan 



 

 

3. Analysis of model regression fitting results 1 

3.1. Analysis of multicollinearity 2 

When performing multiple regression calculations, if there is a correlation among multiple 3 

independent variables, it will cause the coefficients in the model to lose practical significance. 4 

Therefore, it is necessary to perform multicollinearity diagnosis on the logarithmic values of the 5 

original data of the independent variables in the model (Xu and Wang, 2020). Taking Nanjing as an 6 

example, based on the collected data, SPSS software was used to perform multiple regression analysis 7 

and calculate the variance inflation factor, as shown in Table 3. By analyzing the model fitting 8 

situation through the R² value, and analyzing the variance inflation factor (VIF), if VIF is greater than 9 

10 or 5, strictly 10, then the model exhibits collinearity (Shrestha, 2020). From Table 3, it can be seen 10 

that the variance inflation factors of various factors are much higher than 10, and the variance inflation 11 

factor of per capita GDP is as high as 760.6, indicating that there is severe multicollinearity among 12 

variables. Therefore, it is not possible to make judgments based on the results fitted by ordinary least 13 

squares, and the multicollinearity of independent variables must be eliminated to obtain reasonable 14 

results. 15 

Table 3. Multicollinearity test of independent variables 16 

Influencing factors Coefficient Standard 

error(S) 

t-statistic Probability(P) VIF 

Constant -14.367 8.55 -1.68 0.117 — 

Population (InP) 1.594 1.054 1.512 0.154 130.4 

Per capita GDP(InA) -0.687 0.523 -1.314 0.212 760.6 

Urbanization rate(InU) 0.565 0.917 0.616 0.548 28.4 

Industrial structure(InIS) 1.756 0.545 3.225 0.007 39.4 

Per capita energy consumption(InPEC) 1.174 0.532 2.208 0.046 70.5 

Energy consumption intensity(InEI) -1.057 0.508 -2.08 0.058 525.1 



 

 

R² 0.979 

F F=100.752   P=0.000 

3.2. Ridge regression analysis 1 

Due to the issue of multicollinearity among the logarithms of the five influencing factors, the 2 

ridge regression analysis method can be employed to address this problem (Meng et al., 2021). Ridge 3 

regression analysis serves as a complement to the ordinary least squares regression, effectively 4 

mitigating the multicollinearity issue, and enhancing the computational accuracy, stability, and 5 

reliability of the model (Shariff and Duzan, 2018). Therefore, this paper selects ridge regression 6 

analysis to resolve the multicollinearity problem, taking Nanjing as an example. The ridge regression 7 

function in SPSS software is utilized to fit Equation (4), with the ridge regression coefficient k ranging 8 

within the interval (0,1) and taking values at a step size of 0.01. When k equals 0.184, the Ridge trace 9 

plot exhibits a gradual stabilization, as shown in Figure 2. The specific Ridge Regression estimation 10 

results are presented in Table 4. 11 



 

 

 1 

Figure 2. Ridge trace 2 

Table 4. Estimates by ridge regression 3 

Influencing factors Unstandardized coefficients t-statistic Probability(P) 

B Standard error(S) 

Constant -10.383 1.542 -6.733 0.000*** 

Population (InP) 0.691 0.112 6.149 0.000*** 

Per capita GDP(InA) 0.083 0.012 7.155 0.000*** 

Urbanization rate(InU) 0.842 0.268 3.135 0.008*** 

Industrial structure(InIS) 0.158 0.139 1.135 0.277 

Per capita energy consumption(InPEC) 0.33 0.107 3.086 0.009*** 

Energy consumption intensity(InEI) -0.093 0.022 -4.337 0.001*** 

R² 0.927 

F F=27.529   P=0.000 

Note: *** indicates P<0.01. 4 

The coefficients of the ridge regression, with the exception of the industrial structure, have all 5 



 

 

passed the significance level test at 1%. The R2 value is 0.927, indicating a good overall fit, and the 1 

F-statistic has also passed the significance level test at 1%, suggesting that the six factors including 2 

population, per capita GDP , urbanization rate , industrial structure, per capita energy consumption 3 

and energy consumption intensity can explain 92.7% of the variation in carbon emissions from energy 4 

consumption. This validates the rationality of selecting these six factors. Consequently, a carbon 5 

emission prediction model for Nanjing can be derived, with the model equation as follows: 6 

ln I  =  0.691ln P +0.083 ln A +0.842 ln U +0.158 ln IS +0.33 ln PEC -0.093 ln EI -10.383     (5) 7 

Based on the positive and negative effects reflected by the elasticity coefficients, the elasticity 8 

coefficients for population, per capita GDP, urbanization rate, industrial structure, and per capita 9 

energy consumption are positive, indicating a positive effect. This suggests a significant positive 10 

correlation between these factors and carbon emissions, with their changes driving the increase in 11 

carbon emissions from energy consumption in Nanjing. Conversely, the elasticity coefficient for 12 

energy consumption intensity is negative, indicating a negative effect and a significant negative 13 

correlation with carbon emissions. The results demonstrate that economic and social development 14 

drives the growth in energy demand, leading to increased carbon emissions. The peak of carbon 15 

emissions and the time to reach this peak depend on the combined action of these factors. The 16 

comparison between the fitted values of carbon emissions by the model and the actual values is 17 

illustrated in Figure 3. It can be observed that the model effectively simulates the growth and trends 18 

in carbon emissions from energy consumption in Nanjing. 19 



 

 

 1 

Figure 3. Comparison chart of fitted and actual carbon emissions from energy consumption 2 

Similarly, through ridge regression analysis, fitting the carbon emissions with various 3 

influencing factors, carbon emission prediction models were constructed for the remaining 12 cities 4 

in Jiangsu province, with the relevant results shown in Table 5. The table indicates that carbon 5 

emissions in different cities exhibit varying sensitivities to influencing factors. This discrepancy may 6 

arise from the unequal economic development among cities, or it could be due to the differing 7 

resource endowments and technological capabilities across these urban areas. In Table 5, we note an 8 

anomalous phenomenon: the population regression coefficients for cities such as Xuzhou, Yancheng, 9 

and Taizhou exhibit negative values, which is contrary to our general understanding. A deeper analysis 10 

reveals that this phenomenon is due to the year-on-year decline in the population of these cities, as 11 

residents increasingly migrate to more developed areas in search of opportunities. However, the 12 

carbon emissions of these cities have not decreased correspondingly; on the contrary, they have been 13 

increasing annually. Therefore, the observed negative coefficients are actually an illusion. When 14 

assessing the positive or negative impact of regression coefficients, we must consider a variety of 15 

specific circumstances and influencing factors, and conduct a systematic analysis and judgment. 16 



 

 

Table 5. Carbon emission regression fitting results of the 13 cities in Jiangsu province 1 

City InP lnA lnU lnIS lnPEC lnEI Cons k R2 

Suzhou 0.196* 0.132*** 0.833*** 0.353* 0.269*** -0.108*** -7.934*** 0.075 0.959 

Nanjing 0.691*** 0.083*** 0.842*** 0.158 0.33*** -0.093*** -10.383*** 0.184 0.927 

Wuxi 0.558*** 0.114*** 0.439** 0.46** 0.256** -0.064** -9.642*** 0.116 0.899 

Nantong 0.25 0.177*** 0.295 -0.537 0.622*** -0.179 -5.184 0.102 0.885 

Changzhou 1.491*** 0.139*** -1.034*** 0.149 0.477*** -0.154*** -8.337*** 0.115 0.973 

Xuzhou -2.12*** 0.095*** -0.135 -0.186 0.278*** -0.094*** 14.633*** 0.155 0.956 

Yangzhou 1.288 0.055*** 0.58*** 0.872* 0.307** 0.022 -16.544 0.083 0.837 

Yancheng -1.18* 0.069*** 0.26** -0.903** 0.244*** -0.054 7.859* 0.097 0.939 

Taizhou -3.021 0.181*** 0.684*** 0.36 0.544*** -0.177*** 9.639 0.156 0.957 

Zhenjiang 1.815*** 0.063*** 0.205* -0.316 0.134** -0.131*** -11.348*** 0.143 0.952 

Huai’an -0.773 0.05*** 0.345*** 0.498 0.262*** 0.011 -0.604 0.2 0.863 

Suqian -0.585 0.085*** 0.211*** 0.038 0.357*** -0.036 -0.128 0.14 0.949 

Lianyungang 2.029 0.145*** 0.263** 1.078* 0.328*** -0.163*** -20.567* 0.083 0.964 

Note: ***, **, and * indicate p<0.01, p<0.05, and p<0.1, respectively. 2 

4. Analysis of future carbon emission trends in the 13 cities of Jiangsu province 3 

4.1. Future carbon emission scenario setting 4 

Based on the extended STIRPAT model, scenario analysis is employed to simulate the peak and 5 

timing of energy carbon emissions in the 13 cities of Jiangsu from 2023 to 2040. In line with the 6 

future economic and social development of Jiangsu and the trend towards green and low-carbon 7 

energy transformation, five carbon emission growth scenarios are established: the baseline 8 

scenario(S1), green development scenario(S2), industrial structure optimization scenario(S3), energy 9 

conservation scenario(S4) and extensive development scenario(S5). The parameter settings for the 10 

six influencing factors refer to relevant policies and historical data trends in population, energy, and 11 

urbanization. The rates of change for each influencing factor are set based on the median values, with 12 

adjustments made to reflect the low and high ends of the spectrum. 13 



 

 

Despite the issuance of policies such as the “14th Five-Year Plan for National Economic and 1 

Social Development of Jiangsu province and the Long-Range Objectives for 2035” and the 2 

“Implementation Plan for Carbon Peaking in Industrial Sectors and Key Industries in Jiangsu 3 

province,” which offer some constructive suggestions on the change rates of various factors in the 4 

future, it is necessary to tailor these rates to the actual conditions of each city. Under the guidance of 5 

relevant policy documents and in conjunction with the historical data trends of each city, the change 6 

rates of influencing factors are set for each city. Taking Nanjing as an example, Table 6 presents the 7 

change rates of influencing factors from 2023 to 2040 for Nanjing. 8 

Nanjing has achieved significant success in controlling population, improving the quality of 9 

economic growth, and optimizing the process of urbanization. Through the implementation of 10 

stringent ecological and environmental protection policies and the promotion of high-quality 11 

economic development, Nanjing has progressively decoupled population growth from economic 12 

expansion. As a result, although the growth rates of population(P), per capita GDP(A), and 13 

urbanization(U) continue to be positive, the magnitude of growth has been decreasing annually. 14 

Simultaneously, Nanjing has accelerated the optimization and upgrading of its industrial 15 

structure, encouraging the development of low-energy-consuming and high-value-added industries, 16 

while intensifying the elimination of high-energy-consuming industries. In addition, the effective 17 

promotion of energy-saving technologies and clean energy has led to a significant reduction in per 18 

capita energy consumption and energy consumption intensity. Consequently, the growth rates for 19 

industrial structure(IS), per capita energy consumption(PEC), and energy consumption intensity(EI) 20 

are set to be negative, with the magnitude of decline increasing year by year. 21 

Table 6. Annual average rate of change settings for each factor in different scenarios 22 



 

 

Years Scenario P A U IS PEC EI 

 

 

2023-2025 

 

 

S1 1% 6% 0.9% -2.2% -3.2% -3.3% 

S2 0.95% 5.5% 0.85% -2.6% -3.6% -3.7% 

S3 1% 6% 0.9% -2.6% -3.2% -3.3% 

S4 1% 6% 0.9% -2.2% -3.6% -3.7% 

S5 1.05% 6.5% 0.95% -2% -3% -2.9% 

 

 

2026-2030 

 

 

S1 0.95% 5.5% 0.7% -2.4% -3.4% -3.5% 

S2 0.9% 5% 0.65% -2.8% -3.8% -3.9% 

S3 0.95% 5.5% 0.7% -2.8% -3.4% -3.5% 

S4 0.95% 5.5% 0.7% -2.4% -3.8% -3.9% 

S5 1% 6% 0.75% -2.2% -3.2% -3.1% 

 

 

2031-2035 

 

 

S1 0.9% 5% 0.5% -2.6% -3.6% -3.7% 

S2 0.85% 4.5% 0.45% -3% -4% -4.1% 

S3 0.9% 5% 0.5% -3% -3.6% -3.7% 

S4 0.9% 5% 0.5% -2.6% -4% -4.1% 

S5 0.95% 5.5% 0.55% -2.4% -3.4% -3.3% 

 

 

2036-2040 

 

 

S1 0.85% 4.5% 0.3% -2.8% -3.8% -3.9% 

S2 0.8% 4% 0.25% -3.2% -4.2% -4.3% 

S3 0.85% 4.5% 0.3% -3.2% -3.8% -3.9% 

S4 0.85% 4.5% 0.3% -2.8% -4.2% -4.3% 

S5 0.9% 5% 0.35% -2.6% -3.6% -3.5% 

4.2. Analysis of future carbon emission trends in cities of Jiangsu province 1 

Based on the carbon emission prediction models for various cities, this paper calculates the 2 

carbon emissions from 2023 to 2040 under five different scenarios (Figure 4) and determines the 3 

peak carbon emission times for each city under these scenarios (Table 7). 4 



 

 

Figure 4. Carbon emission forecasting for cities in Jiangsu province 1 

Table 7 reveals that the timing of carbon peak varies across cities in Jiangsu province under 2 

distinct scenarios. In the baseline scenario (S1), most cities are anticipated to achieve carbon peak 3 

around 2030, whereas cities such as Changzhou, Huai’an, and Taizhou have already reached this 4 

milestone prior to 2030. However, in economically advanced regions like Nanjing and Suzhou, the 5 

carbon peak is projected to occur somewhat later than in other urban areas. Within the green 6 

development scenario (S2), all cities notably bring forward their carbon peak, with the majority 7 



 

 

achieving it between 2025 and 2030, which demonstrates that green development strategies are 1 

instrumental in expediting carbon neutrality. In scenarios focused on industrial structure optimization 2 

(S3) and energy conservation (S4), the timing of carbon peak is also earlier, though marginally later 3 

than under the green development scenario, indicating that structural adjustments and energy-saving 4 

initiatives can moderately hasten the emission reduction process, despite some cities experiencing a 5 

slight delay. In the extensive development scenario (S5), only Taizhou and Zhenjiang are projected 6 

to reach carbon peak by 2030, while all other cities will see this event occur after 2030, with certain 7 

cities not achieving it until after 2035. 8 

These findings underscore the pronounced influence of diverse policy contexts on the timing of 9 

carbon peak, emphasizing the critical role of governmental involvement. Policies promoting green 10 

development and energy efficiency are particularly effective in fostering early carbon neutrality. 11 

Given the higher carbon emissions in economically prosperous regions, it is imperative to enhance 12 

environmental conservation measures alongside economic pursuits. The varying abilities of cities to 13 

address climate change, due to disparities in location, resource availability, and development status, 14 

necessitate tailored policy approaches. The extensive development scenario (S5) cautions that a 15 

passive reliance on spontaneous economic transformation is inadequate and could result in prolonged 16 

negative impacts. 17 

 18 

 19 

 20 

 21 

 22 



 

 

Table 7. Peak carbon emission times for various cities in Jiangsu under different scenarios. 1 

City Peak emission time 

S1 S2 S3 S4 S5 

Nanjing 2035 2031 2034 2034 2037 

Changzhou 2028 2025 2027 2027 2031 

Suzhou 2031 2027 2030 2030 2033 

Nantong 2032 2030 2031 2031 2033 

Huai’an 2029 2025 2024 2028 2033 

Suqian 2035 2031 2035 2033 2036 

Taizhou 2028 2024 2027 2026 2030 

Lianyungang 2031 2027 2030 2030 2035 

Zhenjiang 2029 2025 2027 2028 2030 

Xuzhou 2031 2028 2030 2029 2031 

Wuxi 2029 2025 2025 2028 2031 

Yangzhou 2031 2027 2029 2030 2034 

Yancheng 2030 2028 2029 2029 2031 

5. Discussion 2 

Through comparative analysis with other related studies, it is evident that the peak carbon 3 

emission predictions for most cities in this paper are largely consistent with findings from other 4 

research. For instance, Chen et al. (2023) utilized the LEAP model to study the peak time for Nanjing 5 

and concluded that the target for carbon peak by 2030 would not be achieved; Sun et al. (2022) 6 

suggested that the total CO2 emissions in Suzhou are expected to peak around 2030; According to the 7 

study by Qin et al. (2024), they invoked the KAYA identity model and posited that under the optimal 8 

scenario, the peak carbon emissions for Wuxi city would materialize in either 2025 or 2026. 9 

While the current study provides valuable insights, it’s important to acknowledge that certain 10 

peak predictions deviate from findings in other research. For instance, our analysis suggests that 11 

Nantong may reach its carbon emissions peak between 2030 and 2033, which contrasts with the 12 



 

 

prediction by Wang and Dong (2024) that Nantong could achieve carbon neutrality before 2030 under 1 

specific scenarios. Similarly, regarding Suqian, our study indicates that reaching the peak before 2030 2 

under various scenarios might be challenging, whereas Wang and Dong (2024) propose a potential 3 

peak between 2025 and 2029. These discrepancies likely stem from the distinct approaches each study 4 

employs in assigning policy implications to different scenarios, ultimately leading to variations in 5 

projected future change rates for influencing factors. 6 

6. Policy suggestions 7 

Achieving carbon peak in the 13 cities of Jiangsu province by 2030 is an arduous task. 8 

Significant variations are observed in the future carbon emission trends across the cities of Jiangsu. 9 

The timing and magnitude of carbon peak differ among cities. Therefore, the emphasis of peak 10 

mitigation measures should be distinct for each city. 11 

(1) Jiangsu province should establish differentiated peak targets based on the specific 12 

circumstances of each city. Economically developed cities such as Nanjing, Suzhou, Wuxi, and 13 

Changzhou should aim to achieve carbon peak by 2025. Cities like Zhenjiang, Yangzhou, and Taizhou 14 

should reach the peak between 2025 and 2030. Cities like Suqian and Lianyungang, facing greater 15 

challenges, should implement stricter policy measures to strive for an earlier realization of the peak. 16 

(2) Within Jiangsu province, there should be a strengthening of regional coordinated 17 

development. The economically advanced southern region should enhance cooperation with the 18 

central and northern regions to promote technological progress and industrial structural 19 

transformation. There should be an increase in industrial symbiosis among regions, reducing carbon 20 

emissions through industrial chain collaboration and resource sharing. 21 

(3) As an important province in the eastern region of China, Jiangsu should develop a unified 22 



 

 

plan and adjust the policies of each city in a timely manner to ensure that the province’s carbon 1 

emissions peak before 2030, and as early as possible. This will help alleviate the peak pressure on 2 

other regions and provide experience and a model for other provinces in China to achieve their carbon 3 

peak targets. 4 

To ensure the target is met on schedule, it is imperative to introduce more policies and exert 5 

greater efforts in accelerating the adjustment of energy mix, optimizing industrial structure, and 6 

improving energy efficiency. It is recommended to expedite the pace of green and low-carbon energy 7 

transformation by vigorously developing new energy sources such as wind and solar power, focusing 8 

on increasing the proportion of non-fossil energy consumption and reducing the share of fossil energy, 9 

to swiftly achieve the stock replacement of traditional fossil energy with new energy. 10 

7. Conclusions 11 

Among the cities in Jiangsu province, Changzhou, Huai'an, Taizhou, Zhenjiang, Wuxi, and 12 

Yancheng are likely to reach their carbon emission peaks before 2030. Among these, Changzhou and 13 

Taizhou are expected to be the first to experience peak carbon emissions, both occurring in 2028, 14 

while other cities may struggle to peak their carbon emissions before 2030. 15 

The future carbon emission trends in Jiangsu's cities exhibit significant differences, with varying 16 

peak times and magnitudes of peak emissions. It is necessary to establish differentiated peak targets 17 

based on the specific circumstances of each city in Jiangsu. 18 

Overall, the carbon emissions of Jiangsu province are projected to peak between 2028 and 2033. 19 

Consequently, it is feasible for Jiangsu province to reach its overall carbon emission peak before 2030. 20 

In order to better achieve the emission reduction goals of the entire province and the nation, Jiangsu 21 

should prioritize green development strategies, promoting the transformation towards a low-carbon 22 



 

 

economy and development. 1 
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