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Abstract

Carbon emissions have consistently been a focal point of attention for the Chinese government.
As one of the key drivers of China's economy, Jiangsu province plays a pivotal role in achieving the
dual carbon goals. This study is grounded in data from Jiangsu province spanning 2003 to 2022 and
constructs an extended STIRPAT model to delve into the impact of factors such as population, GDP

per capita, urbanization rate, industrial structure, energy consumption intensity, and per capita energy
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consumption on carbon emissions. Additionally, this paper forecasts the future carbon emission trends
of the 13 cities in Jiangsu province under different scenarios and explores the possibility of the
province reaching its carbon peak.The findings reveal that cities exhibit varying degrees of sensitivity
to influencing factors. Under the baseline scenario, cities like Wuxi and Zhenjiang are expected to
achieve carbon peaking by 2030, whereas in more economically developed areas such as Nanjing and
Suzhou, the timing of carbon peak may be relatively delayed. In the green development scenario, all
cities across the province are projected to reach carbon peak ahead of schedule. Moreover, scenarios
of industrial structure optimization and energy conservation are also found to accelerate the process
of carbon peaking. However, under the extensive development scenario, only a few cities are likely
to achieve carbon peaking before 2030. Accordingly, Jiangsu province should formulate differentiated
carbon peak targets based on the specific circumstances of each city and strengthen inter-regional
coordinated development. Simultaneously, the government needs to adopt more robust policy
measures to facilitate the optimization and adjustment of the energy structure, the upgrading of
industrial structures, and the enhancement of energy efficiency, thereby ensuring the successful
realization of the province's carbon peak goals.

Keywords: STIRPAT model; carbon emissions; carbon peak; scenario analysis
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1. Introduction

Global climate change is undoubtedly one of the greatest challenges for future economic and
social development, with human activities being the primary driving force (IPCC, 2014). This has
compelled governments worldwide to attach great importance and assume the responsibility of
addressing climate change. As the largest emitter of carbon dioxide in the world, China faces immense
pressure to reduce emissions (Yu and Qu, 2013; Liu et al., 2022; Bai et al., 2024). On September 22,
2020, China solemnly announced at the 75th United Nations General Assembly its commitment to
peaking carbon dioxide emissions by 2030 and achieving carbon neutrality by 2060. The realization
of these goals requires not only top-level design at the national level but also effective carbon
reduction measures in regions, especially in economically developed and densely populated provinces
like Jiangsu. As an economically prominent province, Jiangsu faces substantial energy demands from
both its population and industrial sectors, making energy conservation and emission reduction
particularly challenging (Zhang and Huang, 2012; Long et al., 2015; Li et al., 2023). Therefore, a
thorough analysis of the factors influencing carbon emissions in Jiangsu and the prediction of the
timing and peak of carbon emission peaking are crucial for formulating regional carbon reduction
strategies.

In terms of research methods for predicting carbon emission trends and timing of carbon peak,
the main approaches include the input-output model, system dynamics model, neural network model,
and STIRPAT model, among others (Tarancon and Del Rio, 2012; Anser, 2019; Huo et al., 2022).

Qiao et al. (2021) used a new cumulative grey model (DGM (f,1)) to predict the CO> emissions of
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17 APEC member countries through taking 2014-2019 data as the original data and testing the model
accuracy by the MAPE value, suggesting that among these 17 countries, 13 are expected to show an
upward trend in CO; emissions while 4 present a downward trend during 2020-2023, and all countries
should pay more attention to the issue of CO> emissions and adjust their climate and energy policies.
Chaudry et al. (2022) employed a novel coupled multi-scale energy and transport system model to
simulate Britain's net-zero carbon emission scenario for 2050, concluding that smart electrification
of heat and transport is the most cost-effective pathway for Britain to achieve net-zero carbon
emissions by 2050. Sang and Shen (2024) employed an innovative two-step method (Mann-Kendall
trend test + Tapio decoupling model) to analyze the carbon peaking status of 154 countries in three
dimensions, classified the countries into four income groups, and provided references for targeted
carbon reduction and global carbon neutrality. Yang et al. (2024) used a data-driven rule-based model
to predict the carbon peak trajectories of China’s 30 provinces through time-series forecasting,
suggesting that most provinces are expected to achieve carbon peak before 2030 under policy
interventions. Xia et al. (2024) categorized provinces based on the Environmental Kuznets Curve
theory and constructed a carbon emission prediction model integrating time-series and impact factor
models, combined with Monte Carlo simulation for scenario analysis, concluding that there are
differences in carbon peak timing among China’s provinces. Zhang and Luo (2023) utilized the LEAP
model for scenario analysis of carbon emissions from public buildings in China, exploring carbon
peak predictions and pathways through setting baseline and mitigation scenarios, suggesting that the
carbon peak may occur between 2030 and 2035. Tian et al. (2022) analyzed the driving factors of
carbon emissions in different cities in Shandong province using an extended STIRPAT model and

predicted the timing and peak of carbon emissions for various cities and the province through scenario
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analysis. Yin et al. (2023) proposed a novel grey model PGM(1, N) based on multi-parameter
combination optimization for predicting China’s CO> emissions, which optimizes the driving terms
by differentiating the definition and optimization of variable orders and introducing a smoothing
generation operator, suggesting that China’s carbon emissions will continue to grow.

Nevertheless, there is still controversy among scholars regarding whether China can achieve its
carbon emission peaking target by 2030. Particularly for Jiangsu, an economically developed region,
the analysis of carbon emissions and their peaking predictions at the municipal level is insufficient,
lacking a comprehensive regional prediction of peaking scenarios and corresponding policy
recommendations. Therefore, this paper employs the extended STIRPAT model and ridge regression
analysis method to predict the future trends of carbon dioxide emissions for Jiangsu's 13 prefecture-
level cities and to formulate targeted peaking strategies, thereby providing a scientific basis for China
to achieve its overall carbon emission peaking goal.

2. Method and data

Due to the differences in social and economic development and carbon emissions among the 13
prefecture-level cities within Jiangsu province, including Nanjing, Wuxi, Xuzhou, Changzhou,
Suzhou, Nantong, Lianyungang, Huai’an, Yancheng, Yangzhou, Zhenjiang, Taizhou, and Sugqian, this
article first assesses the energy-related carbon emissions of each city from 2003 to 2022. Then, using
the STIRPAT model, factors such as population, per capita GDP, urbanization rate, industrial structure,
energy consumption intensity, and per capita energy consumption are selected as influencing factors.
Through regression fitting, a carbon emission prediction model for the 13 prefecture-level cities in
Jiangsu province is constructed. Different scenarios are then set to predict the future carbon emission

trends of the 13 cities in Jiangsu province. Based on this analysis, the peak carbon emissions of
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Jiangsu province as a whole are analyzed, and policy recommendations are provided for the early
achievement of peak carbon emissions in Jiangsu province and its 13 prefecture-level cities.
2.1. Data sources

This paper has collated data on population, per capita GDP, urbanization rate, industrial structure,
per capita energy consumption, energy consumption intensity, and CO2 emissions for the 13 cities in
Jiangsu province from 2003 to 2022 through various channels. Among these, data on population, per
capita GDP, urbanization rate, and industrial structure are primarily sourced from the “Statistical
Yearbooks” (2003-2022) and “Bulletins of National Economic and Social Development™ (2003-2022)
published by the statistical bureaus of each city. Data on energy consumption are derived from the
“Energy Statistical Yearbooks” of various cities. The CO> emissions from energy consumption are
calculated by multiplying the energy consumption by the carbon emission factors and then
aggregating the results. The conversion coefficients for standard coal and carbon emission factors for
various types of energy are presented in Table 1. Figure 1 presents the carbon emissions for various
cities as calculated through accounting measures.
Table 1. Conversion coefficients to standard coal and carbon emission factors for various types of

energy

Type of Energy Unit Conversion Carbon
Coefficient to Emission

Standard Coal Factor

Raw Coal 10,000 tons 0.7143 0.7559

Gasoline 10,000 tons 1.4714 0.5538

Kerosene 10,000 tons 1.4714 0.5714

Diesel Oil 10,000 tons 1.4571 0.5921

Fuel Oil 10,000 tons 1.4286 0.6185
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Natural Gas billion cubic meters 13.3 0.4483
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Figure 1. Carbon emission data for the 13 cities in Jiangsu province from 2003 to 2022
2.2. STIRPAT model
The IPAT model, first proposed by American ecologist Ehrlich and Holden (1971), is used to
assess the impact of human activities on the environment. The name of the model is derived from its
four main variables: environmental impact (/), population (P), affluence or per capita consumption
(4), and technology (7). The formula is expressed as:
I=PxAxT (1
However, the IPAT model has certain linear limitations, as it assumes that different factors
contribute equally to environmental pressure, which contradicts the Environmental Kuznets Curve
hypothesis. To overcome the limitations of the model, Dietz and Rosa proposed the STIRPAT model
based on the IPAT model (Dietz and Rosa, 1997; York et al., 2003), with its expression shown in
Equation (2):
I=axP’xA°xTxe )

In the equation, / represents environmental pressure, P denotes population, 4 stands for affluence,
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T indicates technology level, a is the model coefficient, b, ¢, and d are the elasticity coefficients for
P, A, and T respectively, and e is the random error term. The IPAT model is a special form of the
STIRPAT model, where a=b=c=d=e=1.

The STIRPAT model is a multivariate nonlinear model. In empirical analysis, the logarithm of
both sides of equation (2) is generally taken:

Inl =Ina+tblnP+clnA+dinT+Ine 3)

Using /nl as the dependent variable, /nP, [n4, and [nT as independent variables, /na as the
constant term, and /ne as the error term, the logarithmic model can be fitted with multiple linear
regression to obtain a, b, ¢, and d. The elasticity coefficients indicate that a 1 % change in P, 4, and
T will result in b %, ¢ %, and d % changes in /, respectively.

The STIRPAT model rejects the unit elasticity hypothesis, introduces randomness, and facilitates
empirical analysis. Additionally, the STIRPAT model can incorporate various factors affecting
environmental pressure, such as urbanization, industrial structure, and energy consumption intensity
(Tang and Hu, 2021). Therefore, the STIRPAT model is most widely used in quantifying the
relationship between carbon emissions and various influencing factors (Ofori et al., 2023). It is the
most commonly used and recognized model for studying carbon emission peak issues.

Based on existing research, population (p), per capita GDP (4), urbanization rate (U), industrial
structure (ZS), and energy consumption intensity (£7) are widely used in carbon emission studies and
can significantly impact carbon emissions (Wang et al., 2013; Lin and Du, 2015; Lin et al., 2017; Xue
et al., 2022). However, few studies have explored the impact of per capita energy consumption (PEC)
on carbon emissions. Since per capita energy consumption is a crucial indicator of energy utilization

efficiency, reducing it is a key pathway to achieving green and low-carbon energy transformation.
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Therefore, this paper supplements per capita energy consumption as a major influencing factor. In
summary, this paper selects these six factors as the influencing factors of carbon emissions and
constructs an extended STIRPAT model, with its expression as follows:
Inl = binP+cinA+dInU+fInlS+gln PEC+hlIn El+j 4
The equation is as follows: / represents carbon dioxide emissions, P stands for population, 4 is
per capita GDP, U denotes urbanization rate, 1S is industrial structure, PEC refers to per capita energy
consumption, and EI is energy consumption intensity. The coefficients b, c, d, f, g, and & represent
the elasticity of each variable, while j is a constant, calculated as: /na + Ine, where a is the model
coefficient and e is the random error term. The explanations of each variable in the model are shown
in Table 2.

Table 2. Model variable description

Variable Explanation or Description Unit
Carbon dioxide Energy consumption carbon 103t
emissions(/) dioxide emissions
Population (P) Year-end permanent population ~ Ten thousand people
Per capita GDP(A4) Gross Domestic Product (GDP)  Yuan per person

/ Year-end Permanent

Population

Urbanization rate(U) Proportion of Urban Residents %

in Total Population

Industrial structure(/S)  Proportion of the Secondary %

Industry in Gross Domestic

Product (GDP)
Per capita energy Energy consumption / Year-end  Tonnes of coal equivalent per
consumption(PEC) Permanent Population person
Energy consumption Energy Consumption per Unit Million tonnes of coal equivalent
intensity(E1) of Gross Domestic Product per billion yuan

(GDP)




1 3. Analysis of model regression fitting results
2 3.1. Analysis of multicollinearity
3 When performing multiple regression calculations, if there is a correlation among multiple
4 independent variables, it will cause the coefficients in the model to lose practical significance.
5  Therefore, it is necessary to perform multicollinearity diagnosis on the logarithmic values of the
6  original data of the independent variables in the model (Xu and Wang, 2020). Taking Nanjing as an
7  example, based on the collected data, SPSS software was used to perform multiple regression analysis
8 and calculate the variance inflation factor, as shown in Table 3. By analyzing the model fitting
9  situation through the R? value, and analyzing the variance inflation factor (VIF), if VIF is greater than
10 10 or 5, strictly 10, then the model exhibits collinearity (Shrestha, 2020). From Table 3, it can be seen
11  that the variance inflation factors of various factors are much higher than 10, and the variance inflation
12 factor of per capita GDP is as high as 760.6, indicating that there is severe multicollinearity among
13 variables. Therefore, it is not possible to make judgments based on the results fitted by ordinary least
14 squares, and the multicollinearity of independent variables must be eliminated to obtain reasonable
15  results.
16  Table 3. Multicollinearity test of independent variables
Influencing factors Coefficient ~ Standard  t-statistic Probability(P) VIF
error(S)
Constant -14.367 8.55 -1.68 0.117 —
Population (InP) 1.594 1.054 1.512 0.154 130.4
Per capita GDP(InA4) -0.687 0.523 -1.314 0.212 760.6
Urbanization rate(InU) 0.565 0.917 0.616 0.548 28.4
Industrial structure(InZS) 1.756 0.545 3.225 0.007 39.4
Per capita energy consumption(InPEC) 1.174 0.532 2.208 0.046 70.5
Energy consumption intensity(InE7) -1.057 0.508 -2.08 0.058 525.1




R? 0.979
F F=100.752  P=0.000
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3.2. Ridge regression analysis

Due to the issue of multicollinearity among the logarithms of the five influencing factors, the
ridge regression analysis method can be employed to address this problem (Meng et al., 2021). Ridge
regression analysis serves as a complement to the ordinary least squares regression, effectively
mitigating the multicollinearity issue, and enhancing the computational accuracy, stability, and
reliability of the model (Shariff and Duzan, 2018). Therefore, this paper selects ridge regression
analysis to resolve the multicollinearity problem, taking Nanjing as an example. The ridge regression
function in SPSS software is utilized to fit Equation (4), with the ridge regression coefficient k ranging
within the interval (0,1) and taking values at a step size of 0.01. When k equals 0.184, the Ridge trace
plot exhibits a gradual stabilization, as shown in Figure 2. The specific Ridge Regression estimation

results are presented in Table 4.
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Figure 2. Ridge trace

Table 4. Estimates by ridge regression

Influencing factors

Unstandardized coefficients

t-statistic  Probability(P)

B Standard error(S)

Constant -10.383 1.542 -6.733 0.000%***
Population (InP) 0.691 0.112 6.149 0.000%***
Per capita GDP(InA4) 0.083 0.012 7.155 0.000%**
Urbanization rate(InU) 0.842 0.268 3.135 0.008***
Industrial structure(InZS) 0.158 0.139 1.135 0.277
Per capita energy consumption(InPEC) 0.33 0.107 3.086 0.009%**
Energy consumption intensity(InE7) -0.093 0.022 -4.337 0.001 ***

R? 0.927

F F=27.529  P=0.000

Note: *** indicates P<0.01.

The coefficients of the ridge regression, with the exception of the industrial structure, have all
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passed the significance level test at 1%. The R? value is 0.927, indicating a good overall fit, and the
F-statistic has also passed the significance level test at 1%, suggesting that the six factors including
population, per capita GDP , urbanization rate , industrial structure, per capita energy consumption
and energy consumption intensity can explain 92.7% of the variation in carbon emissions from energy
consumption. This validates the rationality of selecting these six factors. Consequently, a carbon
emission prediction model for Nanjing can be derived, with the model equation as follows:

Inl = 0.691/nP+0.083 In4+0.842 [n U+0.158 In IS +0.33 In PEC -0.093 /n EI-10.383 (5)

Based on the positive and negative effects reflected by the elasticity coefficients, the elasticity
coefficients for population, per capita GDP, urbanization rate, industrial structure, and per capita
energy consumption are positive, indicating a positive effect. This suggests a significant positive
correlation between these factors and carbon emissions, with their changes driving the increase in
carbon emissions from energy consumption in Nanjing. Conversely, the elasticity coefficient for
energy consumption intensity is negative, indicating a negative effect and a significant negative
correlation with carbon emissions. The results demonstrate that economic and social development
drives the growth in energy demand, leading to increased carbon emissions. The peak of carbon
emissions and the time to reach this peak depend on the combined action of these factors. The
comparison between the fitted values of carbon emissions by the model and the actual values is
illustrated in Figure 3. It can be observed that the model effectively simulates the growth and trends

in carbon emissions from energy consumption in Nanjing.
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Figure 3. Comparison chart of fitted and actual carbon emissions from energy consumption

Similarly, through ridge regression analysis, fitting the carbon emissions with various
influencing factors, carbon emission prediction models were constructed for the remaining 12 cities
in Jiangsu province, with the relevant results shown in Table 5. The table indicates that carbon
emissions in different cities exhibit varying sensitivities to influencing factors. This discrepancy may
arise from the unequal economic development among cities, or it could be due to the differing
resource endowments and technological capabilities across these urban areas. In Table 5, we note an
anomalous phenomenon: the population regression coefficients for cities such as Xuzhou, Yancheng,
and Taizhou exhibit negative values, which is contrary to our general understanding. A deeper analysis
reveals that this phenomenon is due to the year-on-year decline in the population of these cities, as
residents increasingly migrate to more developed areas in search of opportunities. However, the
carbon emissions of these cities have not decreased correspondingly; on the contrary, they have been
increasing annually. Therefore, the observed negative coefficients are actually an illusion. When
assessing the positive or negative impact of regression coefficients, we must consider a variety of

specific circumstances and influencing factors, and conduct a systematic analysis and judgment.



1  Table 5. Carbon emission regression fitting results of the 13 cities in Jiangsu province
City InP InA nU IniS InPEC InEl Cons k R?
Suzhou 0.196* 0.132%*%  (,833*#* 0.353*  0.269*** -0.108***  -7.934%**  (0.075 0.959
Nanjing 0.691%**  (0.083***  (.842%** 0.158 0.33***  _0.093***  .10.383*** (0.184  0.927
Wuxi 0.558%**  (.114%** 0.439%* 0.46%* 0.256**  -0.064** -9.642%*%%  0.116  0.899
Nantong 0.25 0.177%** 0.295 -0.537  0.622%%* -0.179 -5.184 0.102  0.885
Changzhou  1.491%%*  (.139%**  -]1.034*** 0.149 0.477%*%%  -0.154%**  _8337***  (0.115 0.973
Xuzhou -2.12%%% - (.095%** -0.135 -0.186  0.278***  -0.094***  14.633*** 0.155 0.956
Yangzhou 1.288 0.055%** 0.58** 0.872%* 0.307%* 0.022 -16.544 0.083  0.837
Yancheng -1.18%* 0.069%** 0.26** -0.903**  0.244%** -0.054 7.859%* 0.097 0.939
Taizhou -3.021 0.181%**  (.684*** 0.36 0.544%*% (0. 177%** 9.639 0.156  0.957
Zhenjiang  1.815%***  (0.063*** 0.205* -0.316 0.134%*  -0.131***  -11.348*** (0.143  0.952
Huai’an -0.773 0.05%*** 0.345%** 0.498 0.262%%%* 0.011 -0.604 0.2 0.863
Sugian -0.585 0.085%**  (Q.211*** 0.038 0.357%%* -0.036 -0.128 0.14  0.949
Lianyungang  2.029 0.145%** 0.263%* 1.078*%  0.328***  -(.163*** -20.567* 0.083  0.964
2 Note: *** ** and * indicate p<0.01, p<0.05, and p<0.1, respectively.
3 4. Analysis of future carbon emission trends in the 13 cities of Jiangsu province
4 4.1. Future carbon emission scenario setting
5 Based on the extended STIRPAT model, scenario analysis is employed to simulate the peak and
6 timing of energy carbon emissions in the 13 cities of Jiangsu from 2023 to 2040. In line with the
7  future economic and social development of Jiangsu and the trend towards green and low-carbon
8 energy transformation, five carbon emission growth scenarios are established: the baseline
9  scenario(S1), green development scenario(S2), industrial structure optimization scenario(S3), energy
10  conservation scenario(S4) and extensive development scenario(S5). The parameter settings for the
11  six influencing factors refer to relevant policies and historical data trends in population, energy, and
12  urbanization. The rates of change for each influencing factor are set based on the median values, with
13 adjustments made to reflect the low and high ends of the spectrum.
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Despite the issuance of policies such as the “14™ Five-Year Plan for National Economic and
Social Development of Jiangsu province and the Long-Range Objectives for 2035” and the
“Implementation Plan for Carbon Peaking in Industrial Sectors and Key Industries in Jiangsu
province,” which offer some constructive suggestions on the change rates of various factors in the
future, it is necessary to tailor these rates to the actual conditions of each city. Under the guidance of
relevant policy documents and in conjunction with the historical data trends of each city, the change
rates of influencing factors are set for each city. Taking Nanjing as an example, Table 6 presents the
change rates of influencing factors from 2023 to 2040 for Nanjing.

Nanjing has achieved significant success in controlling population, improving the quality of
economic growth, and optimizing the process of urbanization. Through the implementation of
stringent ecological and environmental protection policies and the promotion of high-quality
economic development, Nanjing has progressively decoupled population growth from economic
expansion. As a result, although the growth rates of population(P), per capita GDP(4), and
urbanization(U) continue to be positive, the magnitude of growth has been decreasing annually.

Simultaneously, Nanjing has accelerated the optimization and upgrading of its industrial
structure, encouraging the development of low-energy-consuming and high-value-added industries,
while intensifying the elimination of high-energy-consuming industries. In addition, the effective
promotion of energy-saving technologies and clean energy has led to a significant reduction in per
capita energy consumption and energy consumption intensity. Consequently, the growth rates for
industrial structure(ZS), per capita energy consumption(PEC), and energy consumption intensity(£7)
are set to be negative, with the magnitude of decline increasing year by year.

Table 6. Annual average rate of change settings for each factor in different scenarios
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Years Scenario P A U JAY PEC El

S1 1% 6% 09% -22% -32% -3.3%
S2 0.95% 5.5% 0.85% -2.6% -3.6% -3.7%
2023-2025 S3 1% 6% 09% -2.6% -32% -3.3%
S4 1% 6% 09% -22% -3.6% -3.7%

S5 1.05% 6.5% 095% -2% -3% -2.9%
S1 095% 55% 0.7% -24% -3.4% -3.5%
S2 09% 5% 0.65% -2.8% -3.8% -3.9%
2026-2030 S3 095% 55% 0.7% -2.8% -3.4% -3.5%
S4 0.95% 5.5% 0.7% -2.4% -3.8% -3.9%
S5 1% 6% 0.75% -22% -32% -3.1%
S1 09% 5% 0.5% -2.6% -3.6% -3.7%
S2 0.85% 4.5% 045% -3% -4% -4.1%
2031-2035 S3 09% 5% 05% -3% -3.6% -3.7%
S4 09% 5% 05% -2.6% -4% -4.1%
S5 0.95% 5.5% 0.55% -24% -3.4% -3.3%
S1 0.85% 4.5% 03% -2.8% -3.8% -3.9%
S2 0.8% 4% 0.25% -32% -42% -4.3%
2036-2040 S3 0.85% 4.5% 03% -32% -3.8% -3.9%
S4 0.85% 4.5% 03% -28% -42% -4.3%
S5 09% 5% 0.35% -2.6% -3.6% -3.5%

4.2. Analysis of future carbon emission trends in cities of Jiangsu province
Based on the carbon emission prediction models for various cities, this paper calculates the
carbon emissions from 2023 to 2040 under five different scenarios (Figure 4) and determines the

peak carbon emission times for each city under these scenarios (Table 7).
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Figure 4. Carbon emission forecasting for cities in Jiangsu province
Table 7 reveals that the timing of carbon peak varies across cities in Jiangsu province under
distinct scenarios. In the baseline scenario (S1), most cities are anticipated to achieve carbon peak
around 2030, whereas cities such as Changzhou, Huai’an, and Taizhou have already reached this
milestone prior to 2030. However, in economically advanced regions like Nanjing and Suzhou, the
carbon peak is projected to occur somewhat later than in other urban areas. Within the green

development scenario (S2), all cities notably bring forward their carbon peak, with the majority
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achieving it between 2025 and 2030, which demonstrates that green development strategies are
instrumental in expediting carbon neutrality. In scenarios focused on industrial structure optimization
(S3) and energy conservation (S4), the timing of carbon peak is also earlier, though marginally later
than under the green development scenario, indicating that structural adjustments and energy-saving
initiatives can moderately hasten the emission reduction process, despite some cities experiencing a
slight delay. In the extensive development scenario (S5), only Taizhou and Zhenjiang are projected
to reach carbon peak by 2030, while all other cities will see this event occur after 2030, with certain
cities not achieving it until after 2035.

These findings underscore the pronounced influence of diverse policy contexts on the timing of
carbon peak, emphasizing the critical role of governmental involvement. Policies promoting green
development and energy efficiency are particularly effective in fostering early carbon neutrality.
Given the higher carbon emissions in economically prosperous regions, it is imperative to enhance
environmental conservation measures alongside economic pursuits. The varying abilities of cities to
address climate change, due to disparities in location, resource availability, and development status,
necessitate tailored policy approaches. The extensive development scenario (S5) cautions that a
passive reliance on spontaneous economic transformation is inadequate and could result in prolonged

negative impacts.
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Table 7. Peak carbon emission times for various cities in Jiangsu under different scenarios.

City Peak emission time

S1 S2 S3 S4 S5
Nanjing 2035 2031 2034 2034 2037
Changzhou 2028 2025 2027 2027 2031
Suzhou 2031 2027 2030 2030 2033
Nantong 2032 2030 2031 2031 2033
Huai’an 2029 2025 2024 2028 2033
Sugian 2035 2031 2035 2033 2036
Taizhou 2028 2024 2027 2026 2030
Lianyungang 2031 2027 2030 2030 2035
Zhenjiang 2029 2025 2027 2028 2030
Xuzhou 2031 2028 2030 2029 2031
Wuxi 2029 2025 2025 2028 2031
Yangzhou 2031 2027 2029 2030 2034
Yancheng 2030 2028 2029 2029 2031

5. Discussion

Through comparative analysis with other related studies, it is evident that the peak carbon
emission predictions for most cities in this paper are largely consistent with findings from other
research. For instance, Chen et al. (2023) utilized the LEAP model to study the peak time for Nanjing
and concluded that the target for carbon peak by 2030 would not be achieved; Sun et al. (2022)
suggested that the total CO2 emissions in Suzhou are expected to peak around 2030; According to the
study by Qin et al. (2024), they invoked the KAYA identity model and posited that under the optimal
scenario, the peak carbon emissions for Wuxi city would materialize in either 2025 or 2026.

While the current study provides valuable insights, it’s important to acknowledge that certain
peak predictions deviate from findings in other research. For instance, our analysis suggests that

Nantong may reach its carbon emissions peak between 2030 and 2033, which contrasts with the
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prediction by Wang and Dong (2024) that Nantong could achieve carbon neutrality before 2030 under
specific scenarios. Similarly, regarding Suqian, our study indicates that reaching the peak before 2030
under various scenarios might be challenging, whereas Wang and Dong (2024) propose a potential
peak between 2025 and 2029. These discrepancies likely stem from the distinct approaches each study
employs in assigning policy implications to different scenarios, ultimately leading to variations in
projected future change rates for influencing factors.

6. Policy suggestions

Achieving carbon peak in the 13 cities of Jiangsu province by 2030 is an arduous task.
Significant variations are observed in the future carbon emission trends across the cities of Jiangsu.
The timing and magnitude of carbon peak differ among cities. Therefore, the emphasis of peak
mitigation measures should be distinct for each city.

(1) Jiangsu province should establish differentiated peak targets based on the specific
circumstances of each city. Economically developed cities such as Nanjing, Suzhou, Wuxi, and
Changzhou should aim to achieve carbon peak by 2025. Cities like Zhenjiang, Yangzhou, and Taizhou
should reach the peak between 2025 and 2030. Cities like Suqgian and Lianyungang, facing greater
challenges, should implement stricter policy measures to strive for an earlier realization of the peak.

(2) Within Jiangsu province, there should be a strengthening of regional coordinated
development. The economically advanced southern region should enhance cooperation with the
central and northern regions to promote technological progress and industrial structural
transformation. There should be an increase in industrial symbiosis among regions, reducing carbon
emissions through industrial chain collaboration and resource sharing.

(3) As an important province in the eastern region of China, Jiangsu should develop a unified
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plan and adjust the policies of each city in a timely manner to ensure that the province’s carbon
emissions peak before 2030, and as early as possible. This will help alleviate the peak pressure on
other regions and provide experience and a model for other provinces in China to achieve their carbon
peak targets.

To ensure the target is met on schedule, it is imperative to introduce more policies and exert
greater efforts in accelerating the adjustment of energy mix, optimizing industrial structure, and
improving energy efficiency. It is recommended to expedite the pace of green and low-carbon energy
transformation by vigorously developing new energy sources such as wind and solar power, focusing
on increasing the proportion of non-fossil energy consumption and reducing the share of fossil energy,
to swiftly achieve the stock replacement of traditional fossil energy with new energy.

7. Conclusions

Among the cities in Jiangsu province, Changzhou, Huai'an, Taizhou, Zhenjiang, Wuxi, and
Yancheng are likely to reach their carbon emission peaks before 2030. Among these, Changzhou and
Taizhou are expected to be the first to experience peak carbon emissions, both occurring in 2028,
while other cities may struggle to peak their carbon emissions before 2030.

The future carbon emission trends in Jiangsu's cities exhibit significant differences, with varying
peak times and magnitudes of peak emissions. It is necessary to establish differentiated peak targets
based on the specific circumstances of each city in Jiangsu.

Overall, the carbon emissions of Jiangsu province are projected to peak between 2028 and 2033.
Consequently, it is feasible for Jiangsu province to reach its overall carbon emission peak before 2030.
In order to better achieve the emission reduction goals of the entire province and the nation, Jiangsu

should prioritize green development strategies, promoting the transformation towards a low-carbon



A~ W

© 00 ~N O O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

economy and development.
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