Global NEST Journal, Vol 27, No X, pp 1-16
Copyright© 2025 Global NEST
Printed in Greece. All rights reserved

% Global NEST

A hybrid deep learning framework for analyzing, predicting, and
forecasting the severity level of air pollution in indiaisotope
hydrology model and stable isotopes in sediment records from

Balkan lakes

P. Aruna Rani'* and Dr.V. Sampathkumar?

1Research Scholar, Department of Civil Engineering, Sathyabama Institute of Science and Technology, Chennai-600119.
2professor, Department of Civil Engineering, Sathyabama Institute of Science and Technology, Chennai-600119.
Received: 16/05/2025, Accepted: 27/09/2025, Available online: 10/10/2025

*to whom all correspondence should be addressed: e-mail: arunaranip76@gmail.com, arunanates@gmail.com

https://doi.org/10.30955/gnj.07658

Graphical abstract

Abstract

A significant problem occurs with natural resources, such
as air pollution caused by various environmental factors
and climate change. Air pollution poses a major threat to
human health and sustainability. The varying levels of air
pollutants mix dynamically, increasing air pollution and
impacting human. health proportionally to their basic
health conditions. For example, a severity level of the air
pollution immediately affects an old person or someone
with breathing issues and can lead to sudden death. To
save people, it is essential to develop an accurate and
timely forecasting system to mitigate its adverse effects
and take immediate action. Conventional forecasting
systems use statistical and basic Al methods, often struggle
to process complex and large amounts of continuous data
generated from the air. Also, spatiotemporal dependencies
from the air quality data were not extracted. Thus, this
paper proposed a hybrid DL model, integrating a CNN with
LSTM to analyse and accurately forecast the severity levels
of air pollution. Basically, CNN model helps to extracts the
spatial features from the air quality data while the LSTM
model used to extract the temporal dependencies. The

proposed CNN-LSTM- can provide a robust prediction
model for air pollution. The CNN-LSTM model is evaluated
by implementing it in Python and experimenting with real-
world datasets from various surveillance monitoring
stations. The overall performance of the proposed CNN-
LSTM is compared with the standalone LSTM, CNN and
traditional ML models such as RF and SVM. The final result
indicate that proposed DL-based hybrid CNN-LSTM model
performs healthier than the others and obtains the highest
forecasting accuracy.

Keywords: Air Pollution, Deep Learning Model, CNN-LSTM,
Pollutant Level Estimation, Air Pollution Vs. Human Health.

1. Introduction

Air pollution is the pollution of the air by harmful
substances such as particulates, gases, and biological
molecules. It may cause allergies, diseases, and human
death (Manisalidis et al. 2020). It may also cause damage
to other living organisms such as food crops, animals, and
the natural environment. It can be both man-made and
natural. Man-made air pollution contains emissions from
power generation, motor vehicles, industrial processes,
and agricultural activities. Air pollution is an environmental
issue affecting millions of people's health. It occurs only
when harmful substances are introduced into the Earth's
atmosphere. Some human activities that affect the quality
of the air by making it pollutants like vehicle emission and
burning fossil fuels like coal, oil, and natural gas which are
the major reason for the air pollution, particularly in urban
areas (Ghorani-Azam et al. 2016). Industrial activities also
play a vital role in air pollution. It emits extensive pollutants
like heavy metals, volatile organic compounds, and other
toxic substances. The agricultural industry also contributes
to it. Pesticides and fertilizers release VOCs, PM, and
ammonia (NH3) into the air. Farming produces a potent
greenhouse gas, NH3, and methane (CH4), combined with
other pollutants in order to create fine particulate matter
(PM2.5) (Ogwu et al. 2024). PM2.5 can pass through the

P. Aruna Rani and Dr.V. Sampathkumar (2025), A hybrid deep learning framework for analyzing, predicting, and forecasting
the severity level of air pollution in indiaisotope hydrology model and stable isotopes in sediment records from Balkan
lakes, Global NEST Journal, 27(XX), 1-16.


https://doi.org/10.30955/gnj.07658

lungs and get into the blood, having an effect on such
health-related issues like heart attack, strokes, an asthma
attack, chronic obstructive pulmonary disease (COPD) and
lung cancer (Wang and Liu et al. 2023).

Air pollution detection is crucial for environmental
monitoring and people health protection. Various methods
are used for detecting, such as sensors, air quality
monitoring systems, remote monitoring, analytical
methods, and particulate air sampling techniques
(Mohammed et al. 2025). Using sensors to detect some
pollutants like nitrogen dioxide (NO2), sulphur dioxide
(502), particulate matter (PM), carbon monoxide (CO) and
ozone (03) (Meo et al. 2024). Remote monitoring
techniques contain ground and satellite-based remote
sensing, allowing large-scale air quality assessments across
broad geographic areas. Satellite remote sensing uses
some instruments like Ozone Monitoring Instrument (OMI)
and the Moderate Resolution Imaging Spectroradiometer
(MODIS) which helps to measure pollutants like ozone and
aerosols (de Graaf et al. 2019). Ground-based remote
sensing uses Differential Optical Absorption Spectroscopy
(DOAS), Light Detection and Ranging (LiDAR) to detect and
track pollutants (Panda et al. 2016). Mobile monitoring
includes vehicles equipped with air quality sensors to
measure pollution levels while traveling to various places.
It is mainly useful for urban areas where high pollution
levels vary over short distances. Advanced analytical
methods like gas chromatography-mass spectrometry (GC-
MS) and high-performance liquid chromatography (HPLC)
used to determine the pollution level. HPLC is mainly used
to analyse air pollutants for organic and inorganic
compounds. GC-MS is especially effective for analysing
volatile organic compounds like VOCs (Kiani et al. 2024).

The efficiency of DL models, especially, LSTM networks, in
detecting and predicting air pollution. It is a type of
recurrent neural network (RNN) especially designed to
capture long-term dependencies and trends in sequential
data, making it highly effective for air pollution prediction
(Drewil and Al-Bahadili 2022). It is also valuable for real-
time monitoring, assessing the effect of interventions, and
anomaly detection. It also has some challenges, such as
computational resources and data quality. LSTM and other
deep learning models will be crucial in air pollution
management and mitigation. The following sections
discuss the literature survey, the proposed approach, the
results of the model, and the conclusion.

2. Contribution of the paper

This research makes several important contributions to the
context of air pollution analysis and detection, specifically
within the Indian environmental region.

1. This paper presents an advanced hybrid model that
integrates the work of a Convolutional Neural Network
(CNN) and a Long-Short-Term Memory (LSTM) model
to analyse the temporal and spatial dependencies in
the air quality data. This hybrid approach helps to
enable more robust, accurate, and context-aware
forecasting of air pollution levels.
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2. The CNN portion is applied to recognize intricate
spatial connections of several air pollutant variables,
and the LSTM layer is used to obtain long-term
tendencies and fluctuations in time. Such a combined
framework effectively overcomes the shortcomings of
conventional models that do not take into
consideration dynamic interactions inherent in the air
quality data over time and across regions.

3. This model not only helps to forecast the future air
pollutant result but also classifies the levels and types
of air pollution. This enables alerts for vulnerable
pollution and timely interventions, which helps to
enhance the public health response mechanisms.

4. Further experiments were conducted using real-time
air pollution data taken from multiple monitoring
stations across various Indian regions. This ensures
that the models' performance impacts the real-time
challenges and conditions of the environment,
including meteorological influences, different types of
pollutants, and differences in various regions.

5. To evaluate the overall performance of the proposed
hybrid CNN-LSTM model, it was compared with some
existing ML and DL models like CNN, SVM, Random
Forest (RF), and LSTM. The experimental result stated
that this proposed CNN-LSTM model provides more
robustness and accuracy in analysing and forecasting
the severity levels of air pollution.

6. The execution of the CNN-LSTM model in Python and
the model's ability to adapt to large-scale data support
environmental surveillance systems and smart city
infrastructures.

3. Literature survey

Due to advancements in deep learning models, DL-based
models have recently gained widespread use in air
pollution detection. Among various air pollutants, NO2 and
SO2 are the primary pollutants that cause several health
issues. For accurate prediction of these pollutant particles
in the air, A. Heydari et al. (2022) have proposed a hybrid
DL model (LSTM-MVO), for pollution detection. The result
of the LSTM-MVO model is compared with the other
models. The comparison outcome depicts that the LSTM-
MVO model predicts the presence of pollutant particles
with high accuracy and low RMSE. Due to various
environmental factors, the pollutant level increases in
smart cities. This creates multiple types of health problems,
especially respiratory diseases. Thus, a hybrid CNN-LSTM-
based approach is designed to analyse and forecast air
pollution levels in Beijing, China (A. Bekkar et al. (2021). The
model's performance is compared with other models like
standalone CNN, LSTM, GRU, Bi-GRU, and Bi-LSTM. The
overall comparison result proves that the CNN-LSTM model
performs better in predicting air pollutant levels with lower
RMSE and MAE rates of 23,921 and 6,742, respectively. L.
Zhu et al. (2023) have proposed a deep learning-based
model, CNN, to detect water quality and an LSTM for
predicting air quality in urban areas. The model's
performance is evaluated using F1-score, accuracy, etc, and
compared to the existing models. Compared to other
methods, the CNN-LSTM has achieved 92% and 91%
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accuracy on predicting water and air pollution levels in
urban areas. Xing. J. et al. (2020) demonstrated a novel
model that integrates chemical indicator data with a DL
model to forecast pollutant levels. Using the chemical
transport simulator, the AQl ratio is estimated. That can be
classified using the deep learning model. The simulation
output is compared with the earlier machine learning
methods and found that the CTM-deep learning
outperforms the others. However, its computational
complexity is high and takes more time to simulate and
forecast.

Periyanan and Palanivel Rajan (2024) have proposed a
modified Gated Recurrent Unit architecture for forecasting
air pollution. It uses a Dual-Slope Leaky RelLU activation
function to activate the internal layers and filter functions
to process the data efficiently. The activation function fine-
tunes the parameters with the help of the female SWO
algorithm. By combining the robustness of SWO, GRU
improves its predictive efficacy in air pollution forecasting.
Yoo and Oh (2020) demonstrated that deep learning
models have powerful data learning abilities and provide
more efficiency in time-series data analysis for forecasting.
The LSTM model outperforms time-series data prediction,
and thus, it has been used for air quality analysis in Madrid,
Navares, and Aznarte (2020). However, LSTM fails to
process seasonal data effectively. Hence, a seasonal-LSTM
(SLSTM) was proposed to solve the issues in processing
seasonal air quality data (Skarlatos et al., 2023). From the
experiment, it is identified that LSTM performs better in
analyzing and predicting time-series data. Zhao et al.
(2023) have used Gated Recurrent Units and stated that
they are similar to LSTM, but their training time is high.
Some parameters are adjusted and tuned to reduce the
model’s training time (Chen et al., 2019). Several research
fields have widely used the GRU model (Qin et al., 2022).
Following the seasonal data processing, the GRU model is
extended to address the existing challenges and proposed
seasonal-GRU(SGRU) (Groenen, 2018).

In 2020, ShuWang et al. applied a GRNN for AQl prediction,
comparing it to MLP and SVR. Because sensor drifts are less
invariant, the gas recurrent neural network performs well,
but it is also more susceptible to atmospheric variability
and humidity. In 2020, Pasupuleti et al. compared decision
trees, linear regression, and random forests. Significant air
pollutants and meteorological conditions are obtained
through the application of Arduino. Due to its overfitting
ability, Random Forest provides accurate outcomes that
minimize errors. The main limitation of Random Forest is
that it requires more memory and incurs higher costs. In
2019, Desislava lvanova and Angel Elenkov applied the
Raspberry Pi platform along with MLP algorithms from ML
for accurate air pollutant predictions. The multilayer
perceptron surpasses the classification problem applied to
discrete values and the regression used for continuous
values. Due to the use of discrete values, multilayer
perceptrons with backpropagation result in inputs that,
when not passing the activation function, yield outputs of
0 or 1. The attainment of the coefficient of determination
(R2) is better when the need for incremental feeding is

enhanced. Fan et al. (2018) presented a study that defines
the impacts of air pollution and solar radiation. Using an
SVM model, six air pollutants, PM2.5, PM10, SO2, NO2, CO,
and O3, are analyzed and predicted. The result of the
model shows that this model has achieved better results
with a lower RMSE value. In polluted regions, enhancing
the accuracy of Rs and Rd predictions depends on selecting
suitable air pollution inputs.

Bhuvaneshwari et al. (2022) have proposed a Gaussian
SVM model for Air Pollution Prediction. Monitoring air
pollution in dynamic real-time environments is not
accurate; despite using advanced WSN technology, there
are limitations, such as insufficient coverage of wide
regions. To overcome this barrier, the paper primarily
focuses on a region-based air pollution system for
monitoring real environments in_smart cities. The system
consists of two phases for predicting heavy and light traffic
areas, utilizing the Gaussian SVM model to forecast air
pollutants like PM10, CO, NO2, PM2.5 and 03. Meta-
heuristic algorithms are employed to select the predicted
areas, where sensor nodes are subsequently placed. For
the cross-validation process, the dataset is divided into
training and testing sets. As a result, a Mean Error
prediction value of 9.83 is achieved, which is lower than
that of traditional model solutions, and this SVM-based
model attains 95% accuracy. Farooq et al. (2024) have
presented a paper on an enhanced approach for predicting
air pollution using quantum support vector machines. In
machine learning-based models, SVM is commonly used
for classification and proves to be more effective. The
increased dataset complicates the selection of suitable
features, which must outperform the classification process.
This proposed model utilizes the SVM for feature map
selection and employs a standard dataset for air quality
prediction. In the experiment, by utilizing the quantum lab
and IBM quantum computing cloud, the accuracy of the
quantum SVM outperforms the classical SVM model in air
quality prediction. As a result, using the same dataset for
both classical SVM and quantum-based SVM, the accuracy
attained by the classical SVM model ranges from 87% to
91%, while the quantum SVM model's accuracy ranges
from 94% to 97%. This result indicates that optimal feature
map selection is key for accurately predicting air pollution.

4. Limitations of the Existing model

The traditional approaches have several limitations for
predicting air quality. The convolutional model primarily
addresses temporal trends by utilizing time-series data or
capturing spatial correlations, but it is not able to process
both simultaneously. Meteorological variables like wind
speed and temperature are not considered, yet these are
important for pollutant accumulation and dispersion.
These limitations affect prediction accuracy and
generalizability. The existing models lack the capability to
capture spatiotemporal dependencies and dynamic
environmental factors, which leads to failures in handling
high-resolution time series data and regional
generalization. Current ML models and some single DL
models, such as CNN or LSTM, demonstrate limited
adaptability across different geographical areas, resulting



in decreased accuracy for new geographic locations or
extreme scenarios.

5. Motivation for the proposed model

To address these limitations, a new hybrid CNN-LSTM
architecture is proposed for both spatial patterns and
temporal sequences. The proposed CNN-LSTM model
integrates convolutional layers and LSTM units for spatial
feature extraction and captures long-term dependencies
while combining meteorological variables. This study
makes a novel contribution to air pollution forecasting by
initially combining CEEMDAN-based feature extraction
with a PSO-optimized CNN-LSTM. The proposed approach
incorporates hyperparameter tuning, deep learning in a
separate framework, and single decomposition, whereas
the traditional approach applies CNN-LSTM or optimization
individually. As evidenced by experimental results with a
real-time air pollution dataset, the proposed model
enhances both trustworthiness and prediction accuracy.

6. Problem statement

One of India's emerging and most pressing environmental
challenges is air pollution. It increases the death rate
among elderly individuals and severely impacts those with
respiratory illnesses. Accurately assessing and predicting
air quality is complex because the concentration of
pollutants in the air is highly dynamic. Earlier methods
utilized machine learning and other conventional Al
algorithms that performed adequately. However, they
exhibited several limitations in accurately analyzing and
extracting spatiotemporal feature patterns from air quality
and pollution data. Moreover, earlier systems often failed
to promptly provide precise prediction outputs, which are
essential for warning the public to take preventive actions.

To overcome these challenges, it is essential to develop an
advanced data analytics and forecasting framework
capable of managing high-dimensional air quality data
while maintaining spatial and temporal features. This paper
seeks to bridge the gap by establishing a hybrid deep
learning framework that combines a convolutional neural
network and a long short-term memory network to
effectively handle high-dimensional data, analyze, predict,
and accurately forecast the severity level of air pollution.
The CNN model addresses spatial dependencies, while the
LSTM model addresses temporal dependencies, allowing
the hybrid CNN-LSTM to manage spatiotemporal
dependencies for precise predictions of air pollution
severity levels. The aim of designing the hybrid deep
learning framework model is to enhance the predictive
accuracy and perform better than conventional methods,
supporting proactive decision-making regarding public
health management.

7. Existing Method

Traditionally, various research works have been performed
to forecast air quality. For example, the authors C.H.
Cordova et al. (2021) have proposed an MLP and LSTM
recurrent ANN model to predict the air pollutant level in
metropolitan Lima, Peru. The air pollutant level is observed
based on the values observed from five stations. The final
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result of the model indicates that the LSTM combined with
recurrent ANN model performed better and had a high
precision value. Though this model performed better, it
required additional features and a self-identification
technique for future development and model
identification. To overcome these issues, this paper
proposes an LSTM-based Knowledge discovery extraction
system to predict and identify the air pollutant level
accurately.

8. Proposed methodology

The proposed methodology introduces a DL-based hybrid
(CNN-LSTM) for accurate and robust prediction of air
pollution by leveraging spatial and temporal airquality data
features. The framework consists of - several key
components, as indicates in Figure-1.

Data Preprocessing
Feature Extraction
using CEEMDAN

Air Quality Data /
Air Pollution Dats

Handling Missing
values, rormalization,
and partitiening

Optimal Feature
Selection using P50

Diats analytics using
CNN-LSTM

Prediction output

(a) Overall Workflow

L ool
N, —% g
s
IMF; —* oy
Preprocessed (%]
data M¥, —* @ E
a3
NF, —» W E
LU
e

[ P—
ad cutput comparhion

Optnal feature
elaction using PLO

Feabure extraction ssisg CEEMDAN

(b) Core Data Processing

Figure-1. Overall Workflow of the Proposed Model.

9. Data Pre-Processing

The air quality data accumulated from openly accessible
platforms like Kaggle, loT-based sensor networks, and
Indian Pollution Control Boards is followed by the data
collection and preprocessing stage. This dataset contains
various features consisting of pollutant concentrations like
NO2, SO2, PM2.5, CO, and 03, as well as atmospheric
conditions like humidity, temperature, atmospheric
pressure, weather, and equivalent temporal codes.
Applying the combined mean imputation, interpolation,
and forward filling approaches addresses the missing value
to maintain data completeness. The performance and the
overlap are improved in the neural network models,
particularly in the DL technique, where the feature
generalisation outperforms the Min-Max Scalling. By this
approach, it converts the given input features into a certain
range of 0 and 1, and it is mathematically formulated as,
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X — X Xuin
normalization — X
max ~_ /‘min
Here, the original feature value is shown as X , the

minimum value of the feature is represented as X ; and

maximum values of the features are presented as Xinax -

LSTM network was used to prepare sequence modelling,
this dataset was modified to time series windows, allowing
the proposed model to learn time links and complex
patterns throughout continuous past monitoring.

10. Feature extraction and pollutant concentration
prediction

The main goal is to enhance the precision of predicting air
pollution concentration by applying an advanced model
called Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN). This method is used for
feature extraction, allowing the model to effectively
analyze and break down complex environmental signals
into simpler components. Doing so can identify and utilize
the most relevant features contributing to pollution levels,
leading to more accurate and reliable predictions.

11. Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN)

It is the process that used to optimise the feature
extraction process by altering the complex non-stationary
and nonlinear time series x(t) into a perfect set of simpler.
oscillatory components is known as Intrinsic Mode
Functions (IMFs). Mathematically, CEEMDAN - was
evaluated using the following equation:

Table 1. Parameters of CEEMDAN

x(t)=i2l:IME(t)+rn (t)

In the above equation, 7;,(t) Denoted the final residual
components once all the IMFs are extracted and IMF;(t)
denoted the i — th intrinsic mode functions. Unlike the
traditional EEMD or EMD approach, the CEEMDAN
approach performs ensemble averaging, which helps to
improve reconstruction stability, reduce mode fixing, and
introduce adaptive white noise in the decomposition
process. This multiscale analysis helps capture important
temporal frequency patterns and filter the frequency
noise, making this model more suitable for analysing
environmental data such as air pollutant levels. The IMFs
obtained by decomposition, each representing a specific
band, serve as an input to DL models like CNN-LSTM, which
helps to improve the learning process by providing more
relevant and cleaner feature sets. The parameter settings
are commonly the number of realisations (e.g., 100). For
instance, (0 2) is the noise standard deviation and the
stopping criterion of IMF extraction. This CEEMDAN-based
decomposition, as illustrated in the document, enhances
the overall performance of the CNN-LSTM network by
identifying complex trends, which are modeled temporally
using the LSTM model, and spatial features are analyzed
using the CNN model, which leads to reducing the errors
while forecasting and also enhances the prediction
accuracy in predicting pollutant concentration. The
important parameters that are used for the
implementation of CEEMDAN are provided in Table 1.

Parameters

Description

Value Used

Ensemble size (N)

Number of realizations with different
noise instances added

250

Noise amplitude

Standard deviation of the added white
Gaussian noise

0.2 x std(x(t))

Maximum number of IMFs to be

Max IMF number 10
extracted
. o Threshold on the mean of the standard
Stopping criterion L . 0.05
deviation for residual
L. N . Number of shifting iterations for each
Shifting iterations 50

IMF computation

Noise type

Nature of added noise during ensemble
generation

Gaussian white noise

12. CEEDAN-based feature Extraction

The original pollutant time series x(t) is converted into
Intrinsic Model Functions (IMF), which are represented by

IME, IMF,, IMF;,...,IMF, . This can  be

mathematically represented by:

X(t):iZl:IME(t)+rn (t)

Where the i intrinsic mode function is
represented by IMF(t) and the final residual is

represented by 7,(t) The information features offer
decomposed IMFs that separate the specific frequency
components from the pollutant data. The extracted
features are stored in the hybrid CNN-LSTM framework.
CNN is used to extract features from the input of the
pollutant matrix, and the LSTM model captures the
temporal dependencies across time series data. The
performance predictions are improved by applying PSO
(Particle swarm optimization) which helps to optimize
hyperparameters from the LSTM model. The PSO simulated
the swarm of particles used to explore an ideal solution by
upgrading the position and velocity based on personal and



global best performances. These velocity and position-
enhanced metrics from PSO are formulated by,

V-(t+l)

wy +cp, ( o7 — X" ) +C,t, (g best _ xi“))

{ ) _ Xi(t) +Vi(t+1)

Where, x represents the position and v; represents the
best

velocity of the i particle, P is the personal best
position of a particle |, g"*! represents the best position in
the global among all particles, W represents the inertia
weight, C1 and G represents the acceleration constants,
and r1 and r2 represents the random numbers from the
range between [0,1]. The intersection of CEEMDAN-CNN-
LSTM-PSO techniques majorly improves the model's
capability to leverage meaningful patterns, noise
minimization, and enhanced pollutant concentration
assumption through conventional methods.

th

13. CNN-LSTM Architecture for Air Quality Examination

The CNN and LSTM network model is a powerful hybrid
deep learning technique for studying earthly and space-
related dependencies in air quality data. This technique is
particularly effective for environmental datasets, which are
typically multivariate, non-linear, and time-dependent.

14. Convolutional Neural Network (CNN)

A CNN is one of the DL-based models which is mainly
developed to learn spatial patterns automatically and
adaptively from the input data, particularly CNNs used in
tasks like images and spatial data. CNNs are specifically
effective in tasks like image classification, time-series
prediction, and object detection because they can capture
the spatial dependencies and local patterns within the
data. This model initiates with a Convolutional layer, where
small filters, like kernels, extract local features like
textures, patterns, or edges. These features develop a
feature map, which is passed through non-linear activation
functions such as RelU activation function to present a
non-linearity to the model. Then pooling layers helps to
minimize the dimensionality and computational cost,
maintaining the more vital data from every region. The
resultant feature maps are in the format of a 1D vector and
passed into fully connected layers, then it is used to extract
the features with high-level reasoning. Finally, the output
layer generates the final predictions.

Qutput Layer

Input Air

Pollution
Data BE= i
| | BT

Pooling Convolution Pooling

C lutic
onvolution — P s

Layer Fully Connected
Input Layer Layer

Figure 2. Structure of CNN

The core operation in a Convolutional Neural Network
(CNN) can be mathematically represented as:
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M P ¢
20 1| SIS X

m=1 p=L g=1
Where the final output feature of the model is represented
as 201
weight of the kernel filter at position (p, q) is represented

the activation function is represented as f, the

as Wr(JTiI)' Input feature map value from the mth channel at

position (i+p-1, j+q-1) is represented by Xi(ing—l,jJrq—lThe

bias time added to the output term is denoted as b(I)The

total number of input channels is represented by M and
the dimension of the filter is represented by PxQ .

15. Long Short-Term Memory (LSTM)

LSTM model was also used in the integration with other
networks such as CNN, mainly to analyze data like images
and videos. The LSTM architecture includes three main
gates that manage its memory cell which inlcudes input
gate, the forget gate, and the output gate. They control
which pieces of information get into and leave the memory
cell at any time. Specifically, the input gate plays a key role
in determining how much new data should be stored within
the memory, helping the model manage and retain
important information over time. It also considers the
present input and last hidden state input and output
values, which range from 0 to 1 for each data point present
in the memory cell. The data should be rejected when the
value is 0, and the data should be stored when the value is
1. The garbage gate decides which data needs to be
eliminated from the memory cell. The hidden data of the
memory cell is analyzed through data controlled by the
output gate. The system selectively stores, updates, and
retrieves the information over the long-term data by using
these gates. Using the following equations, the output of
each gate is evaluated and detected.

forgot gate( f,) =o (W, *[h -1]+b,)

Where Wf,bf,ht —1,f; and o, represents the weight
value, bias value, hidden state value, input data point,
forget gate, and sigmoid function.

inputgate(1,) =o' (W, *[h,-1,x]+b,) (2

Where, W;,and W, represent the weighted value and
b; and b, represent the bias value. Now, by multiplying
the forget gate f; with old cell state and I, * C; The
updated element chosen by the input gate is updated to
the cell state.

C, =tanh((W, *[h —1x]+h;) (3)

C =foC_+1,0C, (4)
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And the © denotes the element-wise multiplication and C;
denotes the updated element in the cell state.

hiddenaget (hy, = f, *tanh(C, ) )

New Cell
State
tanh
New
X —————*| Hidden
State

Figure 3. Structure of LSTM

Output Gate(Og ) =o(W, *[hg -1x, ] +b, (6)

16. Convolutional Neural Network (CNN) Component

Basically, CNN model helps to extracts features from
images and predicts the air quality index. Structured
tabular data, such as air pollution, is noted to predict the
future. Pollutants across locations and time windows are
an example of CNN. CNN can automatically detect and
learn features within the data through convolution.

For example:

e Patterns between PM2.5 and NO2 levels in a specific
region
Table 2. Advantages of CNN-LSTM in Air Quality Applications

e Spatial variations across multiple monitoring stations
or locations

CNN helps detect beyond images, like natural language

processing, essential for understanding how air

components mix or influence one another.

17. Long Short-Term Memory (LSTM) Component

LSTMs are used to learn complex pattern in the time-series
data to predict the air quality. This helps understand how
air pollution levels change over time and captures long-
term dependencies, enabling more accurate pollution
levels. After the CNN extracts features, the LSTM layer
processes this data to learn the temporal evolution of
pollutant concentrations and how they change over time.
LSTM is a RNN type that can predict air pollution levels,
helping the model make more accurate long-term pollution
forecasts.

18. Combined CNN-LSTM Workflow for Air Quality

A suitable format model is created, and the Raw air quality
data and other relevant data (e.g., PM2.5, NO2, 0O3) are
transformed into it. CNNidentifies patterns within data and
pollutant interaction features and extracts spatial
relationships. The process involves extracting features
from the CNN across time to capture and analyze
sequential trends. The LSTM network predicts the air
quality metric (e.g., PM2.5 to SO2 ratio) based on the
learned patterns and temporal relationships (Table 2).

Feature

Benefit

Spatial Feature Learning (CNN)

Understands inter-pollutant and inter-location relationships

Temporal Modeling (LSTM)

Captures time-based pollution trends and patterns

Multivariate Capability

Handles multiple pollutants simultaneously

Scalability

Suitable for integration with real-time IoT sensor data

Accuracy

In India, where pollution levels vary by region and time
(due to the traffic, climate, festivals, crop burning, etc.), the
CNN-LSTM model is particularly effective because it adapts
to regional spatial differences, urban vs rural. It captures
seasonal and event-based spikes like Diwali and winter fog.
It can estimate ratios and interactions.

19. Performance Evaluation

To evaluate the air pollution forecasting model (CNN-
LSTM) by using some performance metrices like RMSE
(Root Mean Square Error), MEA (Mean Absolute Error) and
accuracy. The evaluation techniques and specific relevance
are not explained in detail. The brief explanation with
mathematical models is provided below:

19.1. Root Mean Square Error (RMSE)

MSE calculates the average magnitude of prediction error.
In air pollution forecasting, lower RSME values suggest that
the predicted pollution levels, such as PM2.5 and NO2,
closely match the actual values. The obtained RMSE value
reflects the accuracy and trustworthiness of the model. The
RMSE heavily punishes the greater errors and makes it
capable when the large deviations are particularly

Outperforms many traditional ML models in RMSE, MAE, etc..

undesirable, for instance, the pollution spikes fail to
predict.

RMSE =

Where the true pollutant concentration at a time t is
denoted as y;, the model predates the concentration at
time t is denoted as J; and the total number of data points
are denoted as n.

19.2. Mean Absolute Error (MAE)

The MAE provides an average absolute difference between
the actual and predicted values. The MAE is easier to
explain than RMSE, and it is less sensitive to outliers. The
MAE value is used to determine how much, on average, the
model deviates from the true pollutant concentration.

13 .
MAE =13y, -
N

Where the true pollutant concentration at a time t is
denoted as y;, the model predates the concentration at



time t is denoted as ¥; and the total number of data points
are denoted as n.

19.3. Accuracy

The severity of air pollution is categorized as safe versus
unsafe air; accuracy metrics are used to evaluate how
frequently the model correctly predicts pollution
categories. These accuracy metrics are vital for innovating
a new emergency rule or warning.

Number of correct prediction
Total number of predictions

x100

Accuracy=

Where accuracy is utilized for regression, modified metrics
are frequently used, such as R? or threshold-based
classification accuracy. However, the author aims to
correct the predictions of severity levels in forecasting air
pollution.

20. Experimental Setup

The performance of the proposed hybrid CNN-LSTM model
for forecasting air pollution is evaluated using the publicly
available Indian air quality monitoring dataset. The input
Table-3. Summary table of dataset Characteristics
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sample data is analyzed with simulation software installed
on a system equipped with an Intel i7 10th Gen processor,
NVIDIA GPU, 1 TB HDD, 32GB RAM, and Windows 11 OS.
Using Python version 3.10, the input samples are trained in
a Jupyter notebook. These input data samples are collected
from India's Central Pollution Control Board (CPCB) and
cover 15 coastal and non-coastal regions in India
(Manisalidis et al. 2020). They include daily concentrations
of PM2.5, SO2, NO2, PM10, CO2, and O3 gathered
annually. The overall characteristics of the proposed model
are shown in Table-3. To demonstrate the proposed
model's efficiency, data from 2017 to 2020 were analyzed,
and the results are graphically represented in the results
and discussion sections. The Adam optimizer trains the
hybrid model with a learning rate of 0.001 and a batch size
of 64. Over 100 epochs, the model's performance,
including both training and validation, is evaluated. Eighty
percent of the data is used for training, while 20% is
reserved for validation.  Finally, the model's overall
performance is assessed using various metrics such as
recall, accuracy, MAE, F1-score, and RMSE.

Aspect Details
Period 2017-2025
Temporal Resolution Daily

Geographic Coverage

15+ Indian regions (urban, rural, non-coastal, coastal)

Number of Samples

-450,000+total samples (eg.,179,014 from RIRUO type areas)

Pollutants Monitored

PM2.5,PM 10, CO, N02, 03,502”

Meteorological Data

Temperature, Pressure, Humidity, Wind speed

Source Type

Residential, Sensitive, Mixed, Industrial, Rural

Data Sources

India's Central Pollution Control Board (CPCB)[33]

Table 4. CNN-LSTM model Parameter

CNN-LSTM
Layer Parameter

Conv_1 64 Filters; Kernel size=3; ReLU Activation
Conv_2 32 Filters; Kernel size=3; ReLU Activation

Pooling Max_pooling size=2

Dropout 0.3

LSTM_1 64 units, Dropout=0.2

LSTM_2 64 units, Dropout=0.2

Output Layer Dense (fully connected)

Optimizer Adam, learning rate=0.001

Training Parameter

Epochs=100; Batch Size=64.

21. Result and discussion

This research develops an efficient DL-based model to
predict the severity level of air pollution in India. The aim is
to create a pollution-free India; therefore, this paper
proposes and implements a hybrid CNN-LSTM model with
input time-series data. The proposed model utilizes 100
estimators with a maximum depth of 10 and entropy for
splitting the standard for the Random Forest model. The
SVM model with an RBF kernel has a penalty parameter C
=10and gamma set to scale. The CNN architecture includes
two convolutional layers with 64 and 32 filters, a kernel size
of 3, followed by ReLU activations, a max pooling size of 2,
and a dropout rate of 0.3 to avoid overfitting. The LSTM

model consists of two LSTM layers, each with 64 units and
a dropout rate of 0.2, followed by a dense output layer. The
proposed CNN-LSTM hybrid model integrates spatial
feature extraction and temporal pattern learning by
utilizing a CNN block of four parameters and an LSTM layer
with 128 units and a 0.3 dropout rate. The Adam optimizer
is used to train all models with a learning rate of 0.001, and
the batch size is 64 for the 100 epochs. The Particle Swarm
Optimization (PSO) enhances the CNN-LSTM model. The
comparison of the entire configuration and tuning process
assures the trustworthiness and accuracy of the proposed
model. This section elaborates on the simulation results of
the proposed approach to forecasting air pollution levels.
Table 4 illustrates the layer-wise structure, number of
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neurons, and other parameters used in the proposed
approach.

During preprocessing, approximately 7.3 percent of the
data has been identified as missing. Various methods have
been applied to address this issue, including forward fill
and a combination of mean imputation and linear
interpolation, ensuring that the data is completed while
maintaining temporal continuity. For example, in cases
where some pollutants were missing (i.e., PM2.5, SO2),
forward filling was used for gaps of less than 3 time steps,
while gaps longer than this were treated using the linear
interpolation method. Additionally, noise and outlier
values greater than 3 standard deviations were smoothed
using a rolling window average. These measures
significantly improved the quality of the input data,
enhancing stability and forecasting accuracy.
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Figure 4. Total Number of Input Samples.

Figure-4 summarizes the total number of input samples for
various area types (residential, rural, industrial, sensitive,
etc.) as well as for combined types (residential, industrial,
rural, urban, and others (RIRUO)). The X-axis depicts the
area categories, while the Y-axis displays the number of
data samples (count only - no units). The figure indicates
that 'residential, rural, and other areas' has the most
samples at 179,014, suggesting that these area types were
either monitored more frequently or had more data
available. In contrast, the industrial area had the fewest
samples, with only 158. This shows that there was less
monitoring or data available in this area. Distinguishing the
number of samples from the different area types helps in
understanding the coverage and identifying potential data
imbalance, which is beneficial for testing the validity of
predictive models using this dataset.
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Figure-5. SO, measure on a different type

Figure 5 illustrates levels of sulfur dioxide (SO,) in fields,
measured in micrograms per cubic meter (ug/m?3) across

India. SO, is among the top air pollutants known to impact
human health. Levels of SO, below 100 pg/m? are generally
not considered harmful to humans. The figure displays a
category-based x-axis (e.g., industrial, residential, and
sensitive) representing different area types, providing a
side-by-side view. The y-axis measures SO, concentrations
in pg/m3. The trends indicated in the figure show that
industrial areas had the highest SO, levels compared to
other area types, with levels exceeding 25 pg/md.
Residential areas ranked second, with values around 15
ug/m3, while sensitive areas exhibited the lowest levels,
with SO, concentrations below 10 pg/m?3. The varying levels
of SO, suggest that working in industrial areas is the main
reason for increased emissions. The averages for all area
categories also align with these trends. However, future
and detailed statistical tests, such as ANOVA, could be
incorporated into the study design to determine whether
these differences among areas are statistically significant.
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Figure 6. NO2 measure on a different type
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Figure 7. SO2 measure on different states

Figure-6 shows how different areas in India exhibit similar
levels of nitrogen dioxide (NO;) pollution. Specifically, the
areas represented include industrial, residential, rural,
sensitive, and mixed (RIRUO). The vertical axis indicates
NO, levels in micrograms per cubic meter (pug/m?3), the
standard measure for air pollutants, while the horizontal
axis represents the types of areas. According to the Central
Pollution Control Board (CPCB), levels below 80 pg/m? are
nominally safe. In fact, all area types remain below this
nominally safe level, with levels around 100 pg/m3. Overall,
industrial areas display the highest levels of NO, pollution,
approximately evenly distributed around 70 pg/m?3
compared to residential, mixed, and rural areas, while
sensitive areas show the lowest average values under 20
pg/m3, indicating improved air quality measures. The figure
effectively illustrates the anthropogenic variability in NO,
pollution levels across different areas in India.

The amount of sulfur dioxide (SO.) present in various states
of India is shown in Figure 7, along with the scale, units, and
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stated trends. The Y-axis represents the average SO, in
pg/m3, while the X-axis displays the Indian states included
in the study. The air quality data was collected from 2017
to 2023. Generally, states such as Uttarakhand and
Uttaranchal exhibited an average SO, level of over 25
ug/m3, while other states reported no or minimal volcanic
or SO, emissions, including the Andaman and Nicobar
Islands, Tirupur, and Lakshadweep. This variation indicates
the localization of industry concerning air pollution levels.
The information, gathered using simple statistics (average
concentration), provides a valuable understanding of the
pollution degree for planning purposes and supports
targeted policy development.
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Figure-8. SO2 measure on a different year

Figure-8 illustrates the level of sulfur dioxide (SO,) gases in
the atmosphere of India each year from 1995 to 2020. The
x-axis represents the years, while the y-axis indicates the
mean levels of SO, gases (in micrograms per cubic meter
(ug/m3)). It can be observed that SO, levels were extremely
high (well above 20 pg/m?) during the years 1995 to 2000.
Beginning around 2003, SO, levels started to trend
downward and fell below 6 pg/m?3in 2020. It is possible that
air quality pollution control policies and regulations
achieved their goals or that industries adopted new
technologies that resulted in fewer emissions, thereby
lowering SO, levels over time. A straight-line trend drawn
through the data in Figure-8 shows a negative slope, clearly
suggesting that SO, levels declined from 1995 to 2020. The
control of SO, over time is also evident in the comparative
range, which is greater than that of the 1995-2000 period,
believed to have resulted in continued stability in
atmospheric SO, levels over time.
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Figure-9. NO2 measure on different states

Figure 9 shows nitrogen dioxide (NO;) levels by state across
India. The Y-axis represents NO, levels in micrograms per
cubic meter (ug/m3), while the X-axis displays the states.
These NO, levels were compared against the air quality
limit of 100 ug/m3; any pollution above this level is
considered harmful. Several states, including West Bengal
(~52 pg/m3), Delhi (~47 pg/m3), and Jharkhand (~42
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pg/m3), exhibit elevated NO, levels, which may be linked to
higher urbanization and traffic. Conversely, areas such as
Andaman and Nicobar, Tirupur, and Lakshadweep show
very low NO; levels or near zero, likely due to their lower
population or industrial footprint.
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Figure-10. NO2 measure for different years

Figure 10 illustrates the yearly fluctuations in nitrogen
dioxide (NO,) levels in India during the study period from
1990 to 2020. The x-axis displays the years from 1990 to
2020, while the y-axis indicates the measured
concentrations of nitrogen dioxide in micrograms per cubic
meter (pug/m3). The data show that NO, levels were
relatively low (under 20 pg/m3) in the early 1990s and in
subsequent years after 2015. However, significant
increases were recorded in certain years in various Indian
cities, likely due to urban development and/or heightened
industrial activity as proposed by government agencies.
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Figure-11. SPM measure on different states
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Figure-12. SPM Measure On Different Years

Figure 11 presents the levels of Suspended Particulate
Matter (SPM) across Indian states. The x-axis designates
the individual states, while the y-axis measures the
quantities of SPM in pg/m3. The findings indicate that Uttar
Pradesh, Delhi, and Uttarakhand have very high levels of
SPM (i.e., 300 pg/m?3), while states like Lakshadweep and
the Andaman & Nicobar Islands have extremely low levels
(i.e., < 5 pug/m3). This reveals the existing disparity in
pollution levels regionally. Both graphs use the same units
of measurement, indicated in pg/m?3. The general trend for
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both analyses was examined by identifying the high and
low points to understand the differences in temporal shifts
and regional distinctions.

Figure 12. illustrates changes in Suspended Particulate
Matter (SPM) from 1990 to 2020. The SPM data is plotted
on the y-axis (micrograms of SPM per cubic meter, pg/m?3)
and the year is shown on the x-axis. Overall changes to SPM
data were minimal and typically exceeded 120 pg/m?3. SPM
was moderately acceptable at the beginning (1990) at
around 225 pg/m?3, declining to around 150 pg/m3, with the
late 1990s being the high point. While there were subtle
changes at seasonal and monthly intervals, this exemplifies
that pollution sources remained fairly stable, indicating a
potential lack of effort or ineffectiveness in reducing or
eliminating pollution sources.
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Figure-13. Date-Wise Analysis of SO2
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Figure-14. Year End Analysis of SO2 Ratio in Air
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Figure-15. SO2 Actual Vs Forecast Result

Figure 13 illustrates SO, levels over time using consistent
measurement units. SO, levels from 1989 to 2003 ranged
between 35 and 15 pug/m3, indicating a moderate pollution
level. After 2004, SO, levels drifted below 15 ug/m?* and
remained relatively unchanged. This standard deviation
may result from government restrictions and changes in
industries. The decline in SO, is certainly significant (non-
causal) and is supported by evidence indicating less year-

to-year variation after 2003. Both figures highlight a long-
term perspective on pollution behaviors, demonstrating
that the forecasting model appropriately fits stable
patterns over time.
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Figure-16. Prediction Result of Proposed Model

Figure 14 illustrates how SO, levels changed at the end of
the year from 1995 to 2020. In 1995, SO, levels started
above 25 ug/m? and steadily declined to about 10 ug/m3 by
the end of 2020, indicating improved air quality. Figure 15
displays the actual SO, values plotted alongside the CNN-
LSTM predicted values. The red line represents the
predicted values alongside the actual values, while the blue
line shows the actual values. Overall, the predicted SO,
values (red line) closely match the actual values (blue line)
and, for the most part, fluctuated between 8 and 12 pg/m3
from 2009 to 2020. Figure 16 presents the yearly predicted
SO, values, clearly indicating that the predicted SO, levels
have been declining since 2014, remaining below 10 ug/m3.
This demonstrates that the model effectively predicted
long-term trend changes and consistently produced very
low error rates that correlated well with other accuracy
measures, such as low RMSE.

Training and Validation Accuracy
1
e TrANING == \Validation

095

0.9

~ 0.85
]

s 08
v}

< 075

07

0.65

06

0 20 40 £0 80 100
Epochs
Figure-17. Training and Validation Accuracy
Training and Validation Loss
1
=—g=Traning =—e=—"Validation

08

z 06
5

2 0.4

0.2

[

o 20 40 60 &0 100
Epochs

Figure-18. Training and Validation Loss



12

Figure 17 represents the CNN-LSTM model training versus
validation accuracy over 100 epochs. The green line shows
the training accuracy, which slowly increased and stabilized
around 98%, indicating that the model learns the training
data well. The purple line represents the validation
accuracy, which also consistently improves and reaches
93%, indicating that the new data are generalized well. The
similar trend between the two curves indicates that the
model maintains consistent performance and does not
overfit during the training and validation phases.

Figure 18 illustrates how the training and validation loss
evolved over the 100 epochs for the CNN-LSTM model.
Table 5. Performance Metrics
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Initially, both losses decreased during the first 50 epochs,
indicating successful learning. After about 50 epochs, the
validation loss began to show some separation from the
training loss, hinting at overfitting. This also demonstrates
a good application of strategies suggested by common
validation loss versus epoch plots, such as dropout and
early stopping, since overfitting would lead to a loss of
performance on unseen data. Overall, the trends observed
in the figure illustrate that the model was learning
effectively and remained stable during training.

Features Mean Min Max Std. Dev
PM 2.5(pg/m?) 67.5 12.0 345.0 423
NO, (ppb) 29.7 5.1 125.0 21.6
S0, (ppb) 14.2 2.0 58.0 11.0
CO(mg/m2) 1.05 0.20 3.60 0.74
0s (ppb) 26.1 4.0 88.0 18.2
Temperature (°C) 28.4 16.0 42.0 5.7
Humidity (%) 59.3 22.0 91.0 13.4
Wind Speed (mis) 2.8 0.3 6.1 1.2
Table-6. Proposed model comparison
Model Accuracy (o/o) Precisi on (%) Recall (%) Specificity (%) Fl-Score (%) E\.I{:lllue CNN-
CNN 94.02 +0.34 93.71+0.41 94.10 + 0.38 93.91 +0.45 93.90 +0.36 0.0021
LSTM 94.55 +0.29 94.30 + 0.35 94.62 + 0.32 94.44 + 0.33 94.45 + 0.30 0.0048
BiLSTM 94.78 + 0.26 94.56 + 0.30 94.81+0.28 94.65 + 0.27 94.68 + 0.29 0.0213
CNN-LSTM 95.60 + 0.22 95.32 +0.27 95.75+ 0.25 95.50 +0.24 95.53 +0.26 -

Table-5 provides details such as the mean, minimum,
maximum, and standard deviation values for the main
input features of the air quality dataset prior to
normalization. These values illustrate how much the
original data deviates from the mean. For instance, PM2.5
levels range from 12.0 to 345.0 ug/m?3, with an average of
67.5. The possible PM2.5 levels reflect a variety of pollution
types. Additionally, values for gases such as NO,, SO,, and
Oz areincluded in the summary, as their ranges vary in both
directions, consistent with areas populated by cities and
heavy industry. Climate-related features influencing the
transportation of pollutants, like temperature, humidity,
and wind speed, are also mentioned. Understanding the
characteristics of the input dataset is justified through this
summary, as the model must normalize the input data
before using it in deep learning models.

All the tests are conducted under identical conditions and
with random seeds over all the models. From Table-6, it is
noticed that the proposed CNN-LSTM model performed
better than others. And the model obtained all
performance metrics with a slight difference, such as
p<0.05, indicating that the proposed model provides a
superior performance. The obtained t-test values from the
experiment for the proposed CNN-LSTM model are
compared with similar models like CNN, LSTM, and BiLSTM
in terms of various evaluation metrics, such as accuracy,
precision, recall, F-1 score, and specificity. The mean value
calculated for the 10 experimental executions with

appropriate p-values, like @ = 0.05. Table-6 shows the
statistically significant enhancements ( p < 0.05 ) are
represented with an asterisk (*) symbol.

20 RMSE Comparison Result
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Figure 19. RMSE Score

Figure 19 shows that the RMSE value obtained from the
experiment validates the predictive models for forecasting
air pollutant concentration. With a low RMSE, the CNN-
LSTM model achieves the best performance, followed by
LSTM at about 10.2 and CNN at about 12.0. The
performance of the conventional ML models is poor, with
Random Forest (RF) displaying an RMSE of approximately
15.4, while SVM shows the maximum error at about 18.7.
These results demonstrate that the proposed DL-based
hybrid CNN-LSTM model attained maximum accuracy in
forecasting pollutant levels.

Figure 20 illustrates the accurate prediction (in percentage)
of the five models used for forecasting air pollutant
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concentrations. The CNN-LSTM model achieves the highest
accuracy at approximately 93%, followed by LSTM at about
90% and CNN at around 6%. The traditional ML model
shows the lowest performance, with Random Forest (RF) at
7% and SVM having a minimum accuracy of 72%. The
experimental results indicate the superior performance of
the DL model and the hybrid CNN-LSTM in accurately
capturing complex patterns to predict air pollutants.
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Figure 20. MAE Score
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Figure 22. Training Time Comparison

Figure 21 shows the accuracy comparison of the five
models used for forecasting air pollutant concentrations.
This figure depicts five different models and their
prediction accuracies, which are evaluated as a percentage.
It demonstrates that the proposed hybrid CNN-LSTM
model achieves a higher accuracy rate of 93%. The second-
highest accuracy is achieved by the LSTM model, with an
accuracy of 90%. Meanwhile, the CNN model attains an
accuracy rate of 86%. However, the RF model only achieves
78%, and the SVM model has the lowest accuracy rate at
72%. The prediction results indicate that deep learning
models, particularly the hybrid CNN-LSTM model, perform
significantly better than the other learning models in
predicting pollutants.

Figure 22 compares the time required to train all the
models for air pollutant concentration prediction,
measured in seconds (s). Among the models assessed, the
CNN-LSTM model takes the longest to train, requiring
approximately 120 seconds. In contrast, the LSTM model
takes only 100 seconds, and the CNN model requires just
80 seconds to complete training. Meanwhile, the
traditional ML models demonstrate better interpretability
with shorter training times; the RF model takes just 45
seconds, followed by the SVM, which requires nearly 30
seconds for training.

The overall findings indicate that the SVM trains faster than
the other models. However, earlier sections of this text
advocate for implementing a more complex model (CNN-
LSTM), where the trade-offs in speed are outweighed mainly
by accuracy. The SVM was trained for about 30 seconds but
had a lower accuracy of around 72%, as shown in Figure 19.
In contrast, the CNN-LSTM was trained for approximately
120 seconds but achieved the highest accuracy of 93%
among the models, along with the lowest RMSE and MAE.
This demonstrates a greater ability to identify complex
features in air quality data over time and space as it
processes the underlying information. The SVM encounters
the inherent limitations of a simple learning method, as it
does not adequately handle time-series data with numerous
variables and fails to capture significant variation over time
and space, both of which are essential characteristics in
predicting ‘environmental outcomes. Therefore, although
the training time is longer, the CNN-LSTM is better suited for
predicting actual air pollution values.
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Figure 23. Gglobal and government air quality monitoring

The global and local governments implicitly imply the
necessity of air quality monitoring to save people by
predicting the severity level. Though various air monitoring
and prediction systems have been traditionally developed,
the severity level of air pollution remains uncontrolled. The
government has introduced various schemes and advanced
real-time monitoring and control techniques to address
this issue. In this context, the global real-time AQIl ratio is
analyzed and graphically  displayed on the
https://www.agqi.in/in/dashboard website. For example,
India's AQI level in the past seven days is examined. The
result is shown in Figure-23, which illustrates India's Air
Quality Index (AQl) ratio from May 8 to 14, 2025. During
these seven days, the AQ! level fluctuated between a low
of 86 on May 9 and a peak of 115 on May 10. On the other
days, the general AQI ratio was recorded between 90 and
110, indicating moderate air quality during this period.
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Through this monitoring result, the government and public
can make the proper decisions on controlling air pollution.

The correlation map of the predicted errors among air
pollutants was obtained using an error correlation heatmap.
Figure 24 shows that PM10 and CO, have the highest
observed correlation of 0.27, which is the strongest
correlation and suggests that these two pollutants have
similar trends in prediction error, likely because they share
common sources like combustion. There is also a moderate
correlation between PM2.5 and CO, (0.18) and between
PM10 and CO, with a correlation of 0.077, indicating partial
co-dependence regarding errors in forecasting. In contrast,
there is a negative correlation (-0.15) between NO, and
PM10, suggesting that they do not behave similarly to the
previous correlations. The remaining correlations, including
Oz with NO, (0.014) and SO, (0.037), showed very low
correlation rates, indicating that the predictions are
independent. This discussion highlights the model's
deficiencies across all pollutants and where it performs well.
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22. Deploying the proposed model with a real-time loT
system

The use of the proposed CNN-LSTM deep learning model in
real-time loT systems presents challenging computing tasks
due to its complexity. While the CNN component requires
substantial GPU support for effective convolutional
implementations-and for extracting spatial features from
rich air quality data, the LSTM part must handle sequential
data with memory representation constraints to learn long-
term trends over time. Since loT operates under strict
limitations regarding latency and power in real-time
applications, ‘employing techniques such as edge
computing and model tuning proves to be invaluable
strategies. For instance, creating lighter versions of CNN-
LSTM through model pruning, quantization, and knowledge
distillation are effective methods for alleviating model
computing constraints when applied to air quality
prediction tasks without significant accuracy loss.
Additionally, deploying the model on edge devices with
smaller GPUs/TPUs facilitates rapid processing near the
data collection point, ensuring lower latencies. Federated
learning also enables multiple edge devices to train the
model without the need to aggregate the entire dataset in
one location, which aids in scaling and enhances data
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protection. Overall, these techniques provide viable
pathways for implementing deep learning models to
predict air quality in smart cities, facilitating

23. Conclusion

A DL-based air quality prediction was proposed in this
paper to analyze and predict the air pollution level in India.
The integrated hybrid CNN-LSTM model effectively
processes real-time air pollution data gathered from
several sources, such as loT-enabled networks, satellite
data, and sensor-based monitoring systems. The proposed
model is demonstrated, and results show that this
proposed model approach offers high accuracy and good
predictive performance compared with existing ML
models. Based on this paper, some essential features are
found: this hybrid integrated CNN-LSTM model enhances
the pollution level prediction accuracy, specifically for
pollutants like PM2.5, NO,, and SO,. This proposed model
surpasses the existing model by optimizing data
preprocessing and effectively managing the missing values.
In 2003, SO, levels decreased, while NO, and particulate
matter (SPM) have changed over the years, and are still
emphasized by the air pollutant data. This result represents
that real-time monitoring and predictive analytics are
essential in pollution control strategies, early warning
systems, and policy-making decisions. The effectiveness of
DL-based models is emphasized by this paper, which
authorities utilize to minimize health risks, combined with
poor air quality, through the installation of proactive
pollution control measures.

In general, the estimated results of the proposed CNN-
LSTM model are pretty good. However, it can be improved
further. Thus, the model integration with live l1oT sensors
and edge computing would facilitate real-time air quality
monitoring and response. It also enhances the data
granularity by deploying low-cost sensors within the urban
and rural environments. It needs additional pollutants and
meteorological factors. The CO, O3, and NHs should be
viewed as other pollutants besides several meteorological
factors which includes temperature, humidity, and wind
speed, which play an essential role in improving the
model's efficiency. Additionally, using XAl techniques for
the model will enhance the interpretability of the
prediction made by the model to find out the causes of
pollution, so that policymakers and environmental
specialists can deal with the causes. This can also increase
reliability by cross-validating predictions with other
satellite-based data such as MODIS, OMI, and Sentinel 5P.
To improve the data privacy and support training, it uses
the FL model at multiple locations using the distributed
learning technique. Last, one can discuss the model's
applicability to smart cities, developing a targeted policy
for different regions, and using immediate pollution
warnings and dynamic traffic management to reduce
emission levels. By identifying these challenges, future
research can help develop a solid and sustainable,
intelligent air quality monitoring system, which in turn
would help enhance environmental sustainability and
population health.
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