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Graphical abstract 

Abstract 

A significant problem occurs with natural resources, such 
as air pollution caused by various environmental factors 
and climate change. Air pollution poses a major threat to 
human health and sustainability. The varying levels of air 
pollutants mix dynamically, increasing air pollution and 
impacting human health proportionally to their basic 
health conditions. For example, a severity level of the air 
pollution immediately affects an old person or someone 
with breathing issues and can lead to sudden death. To 
save people, it is essential to develop an accurate and 
timely forecasting system to mitigate its adverse effects 
and take immediate action. Conventional forecasting 
systems use statistical and basic AI methods, often struggle 
to process complex and large amounts of continuous data 
generated from the air. Also, spatiotemporal dependencies 
from the air quality data were not extracted. Thus, this 
paper proposed a hybrid DL model, integrating a CNN with 
LSTM to analyse and accurately forecast the severity levels 
of air pollution. Basically, CNN model helps to extracts the 
spatial features from the air quality data while the LSTM 
model used to extract the temporal dependencies. The 

proposed CNN-LSTM can provide a robust prediction
model for air pollution. The CNN-LSTM model is evaluated
by implementing it in Python and experimenting with real-
world datasets from various surveillance monitoring
stations. The overall performance of the proposed CNN-
LSTM is compared with the standalone LSTM, CNN and
traditional ML models such as RF and SVM. The final result
indicate that proposed DL-based hybrid CNN-LSTM model 
performs healthier than the others and obtains the highest 
forecasting accuracy.

Keywords: Air Pollution, Deep Learning Model, CNN-LSTM, 
Pollutant Level Estimation, Air Pollution Vs. Human Health. 

1. Introduction

Air pollution is the pollution of the air by harmful 
substances such as particulates, gases, and biological
molecules. It may cause allergies, diseases, and human
death (Manisalidis et al. 2020). It may also cause damage
to other living organisms such as food crops, animals, and
the natural environment. It can be both man-made and
natural. Man-made air pollution contains emissions from
power generation, motor vehicles, industrial processes,
and agricultural activities. Air pollution is an environmental 
issue affecting millions of people's health. It occurs only
when harmful substances are introduced into the Earth's
atmosphere. Some human activities that affect the quality
of the air by making it pollutants like vehicle emission and
burning fossil fuels like coal, oil, and natural gas which are
the major reason for the air pollution, particularly in urban
areas (Ghorani-Azam et al. 2016). Industrial activities also
play a vital role in air pollution. It emits extensive pollutants
like heavy metals, volatile organic compounds, and other
toxic substances. The agricultural industry also contributes
to it. Pesticides and fertilizers release VOCs, PM, and
ammonia (NH3) into the air. Farming produces a potent 
greenhouse gas, NH3, and methane (CH4), combined with
other pollutants in order to create fine particulate matter 
(PM2.5) (Ogwu et al. 2024). PM2.5 can pass through the
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lungs and get into the blood, having an effect on such 
health-related issues like heart attack, strokes, an asthma 
attack, chronic obstructive pulmonary disease (COPD) and 
lung cancer (Wang and Liu et al. 2023). 

Air pollution detection is crucial for environmental 
monitoring and people health protection. Various methods 
are used for detecting, such as sensors, air quality 
monitoring systems, remote monitoring, analytical 
methods, and particulate air sampling techniques 
(Mohammed et al. 2025). Using sensors to detect some 
pollutants like nitrogen dioxide (NO2), sulphur dioxide 
(SO2), particulate matter (PM), carbon monoxide (CO) and 
ozone (O3) (Meo et al. 2024). Remote monitoring 
techniques contain ground and satellite-based remote 
sensing, allowing large-scale air quality assessments across 
broad geographic areas. Satellite remote sensing uses 
some instruments like Ozone Monitoring Instrument (OMI) 
and the Moderate Resolution Imaging Spectroradiometer 
(MODIS) which helps to measure pollutants like ozone and 
aerosols (de Graaf et al. 2019). Ground-based remote 
sensing uses Differential Optical Absorption Spectroscopy 
(DOAS), Light Detection and Ranging (LiDAR) to detect and 
track pollutants (Panda et al. 2016). Mobile monitoring 
includes vehicles equipped with air quality sensors to 
measure pollution levels while traveling to various places. 
It is mainly useful for urban areas where high pollution 
levels vary over short distances. Advanced analytical 
methods like gas chromatography-mass spectrometry (GC-
MS) and high-performance liquid chromatography (HPLC) 
used to determine the pollution level. HPLC is mainly used 
to analyse air pollutants for organic and inorganic 
compounds. GC-MS is especially effective for analysing 
volatile organic compounds like VOCs (Kiani et al. 2024).  

The efficiency of DL models, especially, LSTM networks, in 
detecting and predicting air pollution. It is a type of 
recurrent neural network (RNN) especially designed to 
capture long-term dependencies and trends in sequential 
data, making it highly effective for air pollution prediction 
(Drewil and Al-Bahadili 2022). It is also valuable for real-
time monitoring, assessing the effect of interventions, and 
anomaly detection. It also has some challenges, such as 
computational resources and data quality. LSTM and other 
deep learning models will be crucial in air pollution 
management and mitigation. The following sections 
discuss the literature survey, the proposed approach, the 
results of the model, and the conclusion. 

2. Contribution of the paper 

This research makes several important contributions to the 
context of air pollution analysis and detection, specifically 
within the Indian environmental region. 

1. This paper presents an advanced hybrid model that 
integrates the work of a Convolutional Neural Network 
(CNN) and a Long-Short-Term Memory (LSTM) model 
to analyse the temporal and spatial dependencies in 
the air quality data. This hybrid approach helps to 
enable more robust, accurate, and context-aware 
forecasting of air pollution levels. 

2. The CNN portion is applied to recognize intricate 
spatial connections of several air pollutant variables, 
and the LSTM layer is used to obtain long-term 
tendencies and fluctuations in time. Such a combined 
framework effectively overcomes the shortcomings of 
conventional models that do not take into 
consideration dynamic interactions inherent in the air 
quality data over time and across regions.  

3. This model not only helps to forecast the future air 
pollutant result but also classifies the levels and types 
of air pollution. This enables alerts for vulnerable 
pollution and timely interventions, which helps to 
enhance the public health response mechanisms.  

4. Further experiments were conducted using real-time 
air pollution data taken from multiple monitoring 
stations across various Indian regions. This ensures 
that the models' performance impacts the real-time 
challenges and conditions of the environment, 
including meteorological influences, different types of 
pollutants, and differences in various regions.  

5. To evaluate the overall performance of the proposed 
hybrid CNN-LSTM model, it was compared with some 
existing ML and DL models like CNN, SVM, Random 
Forest (RF), and LSTM. The experimental result stated 
that this proposed CNN-LSTM model provides more 
robustness and accuracy in analysing and forecasting 
the severity levels of air pollution.  

6. The execution of the CNN-LSTM model in Python and 
the model's ability to adapt to large-scale data support 
environmental surveillance systems and smart city 
infrastructures. 

3. Literature survey 

Due to advancements in deep learning models, DL-based 
models have recently gained widespread use in air 
pollution detection. Among various air pollutants, NO2 and 
SO2 are the primary pollutants that cause several health 
issues. For accurate prediction of these pollutant particles 
in the air, A. Heydari et al. (2022) have proposed a hybrid 
DL model (LSTM-MVO), for pollution detection. The result 
of the LSTM-MVO model is compared with the other 
models. The comparison outcome depicts that the LSTM-
MVO model predicts the presence of pollutant particles 
with high accuracy and low RMSE. Due to various 
environmental factors, the pollutant level increases in 
smart cities. This creates multiple types of health problems, 
especially respiratory diseases.  Thus, a hybrid CNN-LSTM-
based approach is designed to analyse and forecast air 
pollution levels in Beijing, China (A. Bekkar et al. (2021). The 
model's performance is compared with other models like 
standalone CNN, LSTM, GRU, Bi-GRU, and Bi-LSTM. The 
overall comparison result proves that the CNN-LSTM model 
performs better in predicting air pollutant levels with lower 
RMSE and MAE rates of 23,921 and 6,742, respectively. L. 
Zhu et al. (2023) have proposed a deep learning-based 
model, CNN, to detect water quality and an LSTM for 
predicting air quality in urban areas. The model's 
performance is evaluated using F1-score, accuracy, etc, and 
compared to the existing models. Compared to other 
methods, the CNN-LSTM has achieved 92% and 91% 
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accuracy on predicting water and air pollution levels in 
urban areas. Xing. J. et al. (2020) demonstrated a novel 
model that integrates chemical indicator data with a DL 
model to forecast pollutant levels. Using the chemical 
transport simulator, the AQI ratio is estimated. That can be 
classified using the deep learning model. The simulation 
output is compared with the earlier machine learning 
methods and found that the CTM-deep learning 
outperforms the others. However, its computational 
complexity is high and takes more time to simulate and 
forecast. 

Periyanan and Palanivel Rajan (2024) have proposed a 
modified Gated Recurrent Unit architecture for forecasting 
air pollution. It uses a Dual-Slope Leaky ReLU activation 
function to activate the internal layers and filter functions 
to process the data efficiently. The activation function fine-
tunes the parameters with the help of the female SWO 
algorithm. By combining the robustness of SWO, GRU 
improves its predictive efficacy in air pollution forecasting. 
Yoo and Oh (2020) demonstrated that deep learning 
models have powerful data learning abilities and provide 
more efficiency in time-series data analysis for forecasting. 
The LSTM model outperforms time-series data prediction, 
and thus, it has been used for air quality analysis in Madrid, 
Navares, and Aznarte (2020). However, LSTM fails to 
process seasonal data effectively. Hence, a seasonal-LSTM 
(SLSTM) was proposed to solve the issues in processing 
seasonal air quality data (Skarlatos et al., 2023).  From the 
experiment, it is identified that LSTM performs better in 
analyzing and predicting time-series data.  Zhao et al. 
(2023) have used Gated Recurrent Units and stated that 
they are similar to LSTM, but their training time is high. 
Some parameters are adjusted and tuned to reduce the 
model’s training time (Chen et al., 2019). Several research 
fields have widely used the GRU model (Qin et al., 2022). 
Following the seasonal data processing, the GRU model is 
extended to address the existing challenges and proposed 
seasonal-GRU(SGRU) (Groenen, 2018).  

In 2020, ShuWang et al. applied a GRNN for AQI prediction, 
comparing it to MLP and SVR. Because sensor drifts are less 
invariant, the gas recurrent neural network performs well, 
but it is also more susceptible to atmospheric variability 
and humidity. In 2020, Pasupuleti et al. compared decision 
trees, linear regression, and random forests. Significant air 
pollutants and meteorological conditions are obtained 
through the application of Arduino. Due to its overfitting 
ability, Random Forest provides accurate outcomes that 
minimize errors. The main limitation of Random Forest is 
that it requires more memory and incurs higher costs. In 
2019, Desislava Ivanova and Angel Elenkov applied the 
Raspberry Pi platform along with MLP algorithms from ML 
for accurate air pollutant predictions. The multilayer 
perceptron surpasses the classification problem applied to 
discrete values and the regression used for continuous 
values. Due to the use of discrete values, multilayer 
perceptrons with backpropagation result in inputs that, 
when not passing the activation function, yield outputs of 
0 or 1. The attainment of the coefficient of determination 
(R2) is better when the need for incremental feeding is 

enhanced.  Fan et al. (2018) presented a study that defines 
the impacts of air pollution and solar radiation. Using an 
SVM model, six air pollutants, PM2.5, PM10, SO2, NO2, CO, 
and O3, are analyzed and predicted. The result of the 
model shows that this model has achieved better results 
with a lower RMSE value. In polluted regions, enhancing 
the accuracy of Rs and Rd predictions depends on selecting 
suitable air pollution inputs.  

Bhuvaneshwari et al. (2022) have proposed a Gaussian 
SVM model for Air Pollution Prediction. Monitoring air 
pollution in dynamic real-time environments is not 
accurate; despite using advanced WSN technology, there 
are limitations, such as insufficient coverage of wide 
regions. To overcome this barrier, the paper primarily 
focuses on a region-based air pollution system for 
monitoring real environments in smart cities. The system 
consists of two phases for predicting heavy and light traffic 
areas, utilizing the Gaussian SVM model to forecast air 
pollutants like PM10, CO, NO2, PM2.5 and O3. Meta-
heuristic algorithms are employed to select the predicted 
areas, where sensor nodes are subsequently placed. For 
the cross-validation process, the dataset is divided into 
training and testing sets. As a result, a Mean Error 
prediction value of 9.83 is achieved, which is lower than 
that of traditional model solutions, and this SVM-based 
model attains 95% accuracy. Farooq et al. (2024) have 
presented a paper on an enhanced approach for predicting 
air pollution using quantum support vector machines. In 
machine learning-based models, SVM is commonly used 
for classification and proves to be more effective. The 
increased dataset complicates the selection of suitable 
features, which must outperform the classification process. 
This proposed model utilizes the SVM for feature map 
selection and employs a standard dataset for air quality 
prediction. In the experiment, by utilizing the quantum lab 
and IBM quantum computing cloud, the accuracy of the 
quantum SVM outperforms the classical SVM model in air 
quality prediction. As a result, using the same dataset for 
both classical SVM and quantum-based SVM, the accuracy 
attained by the classical SVM model ranges from 87% to 
91%, while the quantum SVM model's accuracy ranges 
from 94% to 97%. This result indicates that optimal feature 
map selection is key for accurately predicting air pollution.  

4. Limitations of the Existing model  

The traditional approaches have several limitations for 
predicting air quality. The convolutional model primarily 
addresses temporal trends by utilizing time-series data or 
capturing spatial correlations, but it is not able to process 
both simultaneously. Meteorological variables like wind 
speed and temperature are not considered, yet these are 
important for pollutant accumulation and dispersion. 
These limitations affect prediction accuracy and 
generalizability. The existing models lack the capability to 
capture spatiotemporal dependencies and dynamic 
environmental factors, which leads to failures in handling 
high-resolution time series data and regional 
generalization. Current ML models and some single DL 
models, such as CNN or LSTM, demonstrate limited 
adaptability across different geographical areas, resulting 
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in decreased accuracy for new geographic locations or 
extreme scenarios. 

5. Motivation for the proposed model  

To address these limitations, a new hybrid CNN-LSTM 
architecture is proposed for both spatial patterns and 
temporal sequences. The proposed CNN-LSTM model 
integrates convolutional layers and LSTM units for spatial 
feature extraction and captures long-term dependencies 
while combining meteorological variables. This study 
makes a novel contribution to air pollution forecasting by 
initially combining CEEMDAN-based feature extraction 
with a PSO-optimized CNN-LSTM. The proposed approach 
incorporates hyperparameter tuning, deep learning in a 
separate framework, and single decomposition, whereas 
the traditional approach applies CNN-LSTM or optimization 
individually. As evidenced by experimental results with a 
real-time air pollution dataset, the proposed model 
enhances both trustworthiness and prediction accuracy. 

6. Problem statement 

One of India's emerging and most pressing environmental 
challenges is air pollution. It increases the death rate 
among elderly individuals and severely impacts those with 
respiratory illnesses. Accurately assessing and predicting 
air quality is complex because the concentration of 
pollutants in the air is highly dynamic. Earlier methods 
utilized machine learning and other conventional AI 
algorithms that performed adequately. However, they 
exhibited several limitations in accurately analyzing and 
extracting spatiotemporal feature patterns from air quality 
and pollution data. Moreover, earlier systems often failed 
to promptly provide precise prediction outputs, which are 
essential for warning the public to take preventive actions.  

To overcome these challenges, it is essential to develop an 
advanced data analytics and forecasting framework 
capable of managing high-dimensional air quality data 
while maintaining spatial and temporal features. This paper 
seeks to bridge the gap by establishing a hybrid deep 
learning framework that combines a convolutional neural 
network and a long short-term memory network to 
effectively handle high-dimensional data, analyze, predict, 
and accurately forecast the severity level of air pollution. 
The CNN model addresses spatial dependencies, while the 
LSTM model addresses temporal dependencies, allowing 
the hybrid CNN-LSTM to manage spatiotemporal 
dependencies for precise predictions of air pollution 
severity levels. The aim of designing the hybrid deep 
learning framework model is to enhance the predictive 
accuracy and perform better than conventional methods, 
supporting proactive decision-making regarding public 
health management. 

7. Existing Method 

Traditionally, various research works have been performed 
to forecast air quality. For example, the authors C.H. 
Cordova et al. (2021) have proposed an MLP and LSTM 
recurrent ANN model to predict the air pollutant level in 
metropolitan Lima, Peru. The air pollutant level is observed 
based on the values observed from five stations. The final 

result of the model indicates that the LSTM combined with 
recurrent ANN model performed better and had a high 
precision value. Though this model performed better, it 
required additional features and a self-identification 
technique for future development and model 
identification. To overcome these issues, this paper 
proposes an LSTM-based Knowledge discovery extraction 
system to predict and identify the air pollutant level 
accurately.  

8. Proposed methodology  

The proposed methodology introduces a DL-based hybrid 
(CNN-LSTM) for accurate and robust prediction of air 
pollution by leveraging spatial and temporal air quality data 
features. The framework consists of several key 
components, as indicates in Figure-1.  

 

Figure-1. Overall Workflow of the Proposed Model. 

9. Data Pre-Processing 

The air quality data accumulated from openly accessible 
platforms like Kaggle, IoT-based sensor networks, and 
Indian Pollution Control Boards is followed by the data 
collection and preprocessing stage. This dataset contains 
various features consisting of pollutant concentrations like 
NO2, SO2, PM2.5, CO, and O3, as well as atmospheric 
conditions like humidity, temperature, atmospheric 
pressure, weather, and equivalent temporal codes. 
Applying the combined mean imputation, interpolation, 
and forward filling approaches addresses the missing value 
to maintain data completeness. The performance and the 
overlap are improved in the neural network models, 
particularly in the DL technique, where the feature 
generalisation outperforms the Min-Max Scalling. By this 
approach, it converts the given input features into a certain 
range of 0 and 1, and it is mathematically formulated as, 
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min
normalization

max min
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x

x x
 

Here, the original feature value is shown as x , the 

minimum value of the feature is represented as 
minx  and 

maximum values of the features are presented as . maxx

LSTM network was used to prepare sequence modelling, 
this dataset was modified to time series windows, allowing 
the proposed model to learn time links and complex 
patterns throughout continuous past monitoring. 

10. Feature extraction and pollutant concentration 
prediction  

The main goal is to enhance the precision of predicting air 
pollution concentration by applying an advanced model 
called Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise (CEEMDAN). This method is used for 
feature extraction, allowing the model to effectively 
analyze and break down complex environmental signals 
into simpler components. Doing so can identify and utilize 
the most relevant features contributing to pollution levels, 
leading to more accurate and reliable predictions.  

11. Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise (CEEMDAN) 

It is the process that used to optimise the feature 
extraction process by altering the complex non-stationary 
and nonlinear time series 𝑥(𝑡) into a perfect set of simpler 
oscillatory components is known as Intrinsic Mode 
Functions (IMFs). Mathematically, CEEMDAN was 
evaluated using the following equation: 

     
1

 
n

i n

i

x t IMF t r t

 

In the above equation, 𝑟𝑛(𝑡)  Denoted the final residual 
components once all the IMFs are extracted and 𝐼𝑀𝐹𝑖(𝑡) 
denoted the 𝑖 − 𝑡ℎ  intrinsic mode functions. Unlike the 
traditional EEMD or EMD approach, the CEEMDAN 
approach performs ensemble averaging, which helps to 
improve reconstruction stability, reduce mode fixing, and 
introduce adaptive white noise in the decomposition 
process. This multiscale analysis helps capture important 
temporal frequency patterns and filter the frequency 
noise, making this model more suitable for analysing 
environmental data such as air pollutant levels. The IMFs 
obtained by decomposition, each representing a specific 
band, serve as an input to DL models like CNN-LSTM, which 
helps to improve the learning process by providing more 
relevant and cleaner feature sets. The parameter settings 
are commonly the number of realisations (e.g., 100). For 
instance, (0 2) is the noise standard deviation and the 
stopping criterion of IMF extraction. This CEEMDAN-based 
decomposition, as illustrated in the document, enhances 
the overall performance of the CNN-LSTM network by 
identifying complex trends, which are modeled temporally 
using the LSTM model, and spatial features are analyzed 
using the CNN model, which leads to reducing the errors 
while forecasting and also enhances the prediction 
accuracy in predicting pollutant concentration. The 
important parameters that are used for the 
implementation of CEEMDAN are provided in Table 1. 

Table 1. Parameters of CEEMDAN 

Parameters Description Value Used 

Ensemble size (N) 
Number of realizations with different 

noise instances added 
250 

Noise amplitude 
Standard deviation of the added white 

Gaussian noise 
0.2  std(x(t)) 

Max IMF number 
Maximum number of IMFs to be 

extracted 
10 

Stopping criterion 
Threshold on the mean of the standard 

deviation for residual 
0.05 

Shifting iterations 
Number of shifting iterations  for each 

IMF computation 
50 

Noise type 
Nature of added noise during ensemble 

generation 
Gaussian white noise 

12. CEEDAN-based feature Extraction  

The original pollutant time series x(t) is converted into 
Intrinsic Model Functions (IMF), which are represented by 

1 2 3, , ,  ,  nIMF IMF IMF IMF . This can be 

mathematically represented by: 

     
1

   


 
n

i n

i

x t IMF t r t

 

 Where the ith intrinsic mode function is 
represented by  iIMF t  and the final residual is 

represented by 𝑟𝑛(𝑡) The information features offer 
decomposed IMFs that separate the specific frequency 
components from the pollutant data. The extracted 
features are stored in the hybrid CNN–LSTM framework. 
CNN is used to extract features from the input of the 
pollutant matrix, and the LSTM model captures the 
temporal dependencies across time series data. The 
performance predictions are improved by applying PSO 
(Particle swarm optimization) which helps to optimize 
hyperparameters from the LSTM model. The PSO simulated 
the swarm of particles used to explore an ideal solution by 
upgrading the position and velocity based on personal and 



UNCORRECTED PROOFS

6  ARUNA RANI and SAMPATHKUMAR 

global best performances. These velocity and position-
enhanced metrics from PSO are formulated by, 

         
     

1

1 1 2 2

1 1

t t t tbest best

i i i i i

t t t

i i i

v wv c r p x c r g x

x x v



 

    

 
 

Where, ix  represents the position and iv  represents the 

velocity of the thi  particle, 
best

ip
 is the personal best 

position of a particle I, gbest represents the best position in 

the global among all particles, w  represents the inertia 
weight, C1 and C2 represents the acceleration constants, 
and r1 and r2 represents the random numbers from the 
range between [0,1].  The intersection of CEEMDAN-CNN-
LSTM-PSO techniques majorly improves the model's 
capability to leverage meaningful patterns, noise 
minimization, and enhanced pollutant concentration 
assumption through conventional methods. 

13. CNN-LSTM Architecture for Air Quality Examination 

The CNN and LSTM network model is a powerful hybrid 
deep learning technique for studying earthly and space-
related dependencies in air quality data. This technique is 
particularly effective for environmental datasets, which are 
typically multivariate, non-linear, and time-dependent.  

14. Convolutional Neural Network (CNN) 

A CNN is one of the DL-based models which is mainly 
developed to learn spatial patterns automatically and 
adaptively from the input data, particularly CNNs used in 
tasks like images and spatial data. CNNs are specifically 
effective in tasks like image classification, time-series 
prediction, and object detection because they can capture 
the spatial dependencies and local patterns within the 
data. This model initiates with a Convolutional layer, where 
small filters, like kernels, extract local features like 
textures, patterns, or edges. These features develop a 
feature map, which is passed through non-linear activation 
functions such as ReLU activation function to present a 
non-linearity to the model.   Then pooling layers helps to 
minimize the dimensionality and computational cost, 
maintaining the more vital data from every region. The 
resultant feature maps are in the format of a 1D vector and 
passed into fully connected layers, then it is used to extract 
the features with high-level reasoning. Finally, the output 
layer generates the final predictions.  

 

Figure 2. Structure of CNN 

The core operation in a Convolutional Neural Network 
(CNN) can be mathematically represented as: 

       , 

,  ,  1,  1

1 1 1

  .     

  

 
   

 


qM P
l m l m l

i j p q i p j q

m p q

Z f W X b  

 

Where the final output feature of the model is represented 

as  
, 
l

i jZ  , the activation function is represented as f , the 

weight of the kernel filter at position (p, q) is represented 

as  , 
, 
m l

p qW , Input feature map value from the mth channel at 

position (i+p−1, j+q−1) is represented by  
1,  1

m

i p j q
X

    The 

bias time added to the output term is denoted as  l
b The 

total number of input channels is represented by M  and 
the dimension of the filter is represented by  P Q . 

15. Long Short-Term Memory (LSTM) 

LSTM model was also used in the integration with other 
networks such as CNN, mainly to analyze data like images 
and videos. The LSTM architecture includes three main 
gates that manage its memory cell which inlcudes input 
gate, the forget gate, and the output gate. They control 
which pieces of information get into and leave the memory 
cell at any time. Specifically, the input gate plays a key role 
in determining how much new data should be stored within 
the memory, helping the model manage and retain 
important information over time. It also considers the 
present input and last hidden state input and output 
values, which range from 0 to 1 for each data point present 
in the memory cell. The data should be rejected when the 
value is 0, and the data should be stored when the value is 
1. The garbage gate decides which data needs to be 
eliminated from the memory cell. The hidden data of the 
memory cell is analyzed through data controlled by the 
output gate. The system selectively stores, updates, and 
retrieves the information over the long-term data by using 
these gates. Using the following equations, the output of 
each gate is evaluated and detected. 

            *  1       t f t fforgot gate f W h b
 

(1) 

Where 𝑤𝑓 , 𝑏𝑓 , ℎ𝑡 − 1, 𝑓𝑡  and 𝜎 , represents the weight 

value, bias value, hidden state value, input data point, 
forget gate, and sigmoid function. 

            *  1,        t i t t Iinput gate I W h x b
 

(2) 

Where, 𝑊𝑖 , 𝑎𝑛𝑑 𝑊𝐶 ,  represent the weighted value and  
𝑏𝐼 𝑎𝑛𝑑 𝑏𝐶  represent the bias value. Now, by multiplying 
the forget gate 𝑓𝑡  with old cell state and  𝐼𝑡 ∗  𝐶𝑡 The 
updated element chosen by the input gate is updated to 
the cell state. 

  tanh(  * 1,   t C t t CC W h x b
 

(3) 

1        t t t t tC f C I C  (4) 
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Figure 3. Structure of LSTM 

And the ⊙ denotes the element-wise multiplication and 𝐶𝑡 
denotes the updated element in the cell state. 

 )   (    *tanhg g ghiddenaget h f C
 

(5) 

       (  * 1,      g O g g OOutput Gate O W h x b
 
(6) 

16. Convolutional Neural Network (CNN) Component 

Basically, CNN model helps to extracts features from 
images and predicts the air quality index. Structured 
tabular data, such as air pollution, is noted to predict the 
future. Pollutants across locations and time windows are 
an example of CNN. CNN can automatically detect and 
learn features within the data through convolution. 

For example: 

 Patterns between PM2.5 and NO2 levels in a specific 
region 

 Spatial variations across multiple monitoring stations 
or locations 

CNN helps detect beyond images, like natural language 
processing, essential for understanding how air 
components mix or influence one another. 

17. Long Short-Term Memory (LSTM) Component 

LSTMs are used to learn complex pattern in the time-series 
data to predict the air quality. This helps understand how 
air pollution levels change over time and captures long-
term dependencies, enabling more accurate pollution 
levels. After the CNN extracts features, the LSTM layer 
processes this data to learn the temporal evolution of 
pollutant concentrations and how they change over time. 
LSTM is a RNN type that can predict air pollution levels, 
helping the model make more accurate long-term pollution 
forecasts. 

18. Combined CNN-LSTM Workflow for Air Quality 

A suitable format model is created, and the Raw air quality 
data and other relevant data (e.g., PM2.5, NO2, O3) are 
transformed into it. CNN identifies patterns within data and 
pollutant interaction features and extracts spatial 
relationships. The process involves extracting features 
from the CNN across time to capture and analyze 
sequential trends. The LSTM network predicts the air 
quality metric (e.g., PM2.5 to SO2 ratio) based on the 
learned patterns and temporal relationships (Table 2). 

Table 2. Advantages of CNN-LSTM in Air Quality Applications 

Feature Benefit 

Spatial Feature Learning (CNN) Understands inter-pollutant and inter-location relationships 

Temporal Modeling (LSTM) Captures time-based pollution trends and patterns 

Multivariate Capability Handles multiple pollutants simultaneously 

Scalability  Suitable for integration with real-time IoT sensor data 

Accuracy Outperforms many traditional ML models in RMSE, MAE, etc.. 

 

In India, where pollution levels vary by region and time 
(due to the traffic, climate, festivals, crop burning, etc.), the 
CNN-LSTM model is particularly effective because it adapts 
to regional spatial differences, urban vs rural. It captures 
seasonal and event-based spikes like Diwali and winter fog. 
It can estimate ratios and interactions.  

19. Performance Evaluation 

To evaluate the air pollution forecasting model (CNN-
LSTM) by using some performance metrices like RMSE 
(Root Mean Square Error), MEA (Mean Absolute Error) and 
accuracy. The evaluation techniques and specific relevance 
are not explained in detail. The brief explanation with 
mathematical models is provided below: 

19.1. Root Mean Square Error (RMSE) 

MSE calculates the average magnitude of prediction error. 
In air pollution forecasting, lower RSME values suggest that 
the predicted pollution levels, such as PM2.5 and NO2, 
closely match the actual values. The obtained RMSE value 
reflects the accuracy and trustworthiness of the model. The 
RMSE heavily punishes the greater errors and makes it 
capable when the large deviations are particularly 

undesirable, for instance, the pollution spikes fail to 
predict.  

 
2

1

1
  ˆ



 
n

i i

i

RMSE y y
n

 

Where the true pollutant concentration at a time 𝑡  is 
denoted as 𝑦𝑖 , the model predates the concentration at 
time 𝑡 is denoted as 𝑦̂𝑖  and the total number of data points 
are denoted as 𝑛. 

19.2. Mean Absolute Error (MAE) 

The MAE provides an average absolute difference between 
the actual and predicted values. The MAE is easier to 
explain than RMSE, and it is less sensitive to outliers. The 
MAE value is used to determine how much, on average, the 
model deviates from the true pollutant concentration. 

1

1
  ˆ



 
n

i i

i

MAE y y
n  

Where the true pollutant concentration at a time 𝑡  is 
denoted as 𝑦𝑖 , the model predates the concentration at 
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time 𝑡 is denoted as 𝑦̂𝑖  and the total number of data points 
are denoted as 𝑛. 

19.3. Accuracy 

The severity of air pollution is categorized as safe versus 
unsafe air; accuracy metrics are used to evaluate how 
frequently the model correctly predicts pollution 
categories. These accuracy metrics are vital for innovating 
a new emergency rule or warning.  

Number of correct prediction
Accuracy=   ×100

Total number of predictions  

Where accuracy is utilized for regression, modified metrics 
are frequently used, such as R2 or threshold-based 
classification accuracy. However, the author aims to 
correct the predictions of severity levels in forecasting air 
pollution. 

20. Experimental Setup 

The performance of the proposed hybrid CNN-LSTM model 
for forecasting air pollution is evaluated using the publicly 
available Indian air quality monitoring dataset. The input 

sample data is analyzed with simulation software installed 
on a system equipped with an Intel i7 10th Gen processor, 
NVIDIA GPU, 1 TB HDD, 32GB RAM, and Windows 11 OS. 
Using Python version 3.10, the input samples are trained in 
a Jupyter notebook. These input data samples are collected 
from India's Central Pollution Control Board (CPCB) and 
cover 15 coastal and non-coastal regions in India 
(Manisalidis et al. 2020). They include daily concentrations 
of PM2.5, SO2, NO2, PM10, CO2, and O3 gathered 
annually. The overall characteristics of the proposed model 
are shown in Table-3. To demonstrate the proposed 
model's efficiency, data from 2017 to 2020 were analyzed, 
and the results are graphically represented in the results 
and discussion sections. The Adam optimizer trains the 
hybrid model with a learning rate of 0.001 and a batch size 
of 64. Over 100 epochs, the model's performance, 
including both training and validation, is evaluated. Eighty 
percent of the data is used for training, while 20% is 
reserved for validation. Finally, the model's overall 
performance is assessed using various metrics such as 
recall, accuracy, MAE, F1-score, and RMSE. 

Table-3. Summary table of dataset Characteristics 

Aspect Details 

Period 2017-2025 

Temporal Resolution Daily 

Geographic Coverage 15+ Indian regions (urban, rural, non-coastal, coastal) 

Number of Samples -450,000+total samples (eg.,179,014 from RIRUO type areas) 

Pollutants Monitored PM2.5, PM I O, CO, N02, 03,S02” 

Meteorological Data Temperature, Pressure, Humidity, Wind speed 

Source Type Residential, Sensitive, Mixed, Industrial, Rural 

Data Sources India's Central Pollution Control Board (CPCB)[33] 

Table 4. CNN-LSTM model Parameter 

CNN-LSTM 

Layer Parameter 

Conv_1 64 Filters; Kernel size=3; ReLU Activation  

Conv_2 32 Filters; Kernel size=3; ReLU Activation  

Pooling  Max_pooling size=2 

Dropout  0.3  

LSTM_1 64 units, Dropout=0.2 

LSTM_2 64 units, Dropout=0.2 

Output Layer  Dense (fully connected) 

Optimizer  Adam, learning rate=0.001 

Training Parameter  Epochs=100; Batch Size=64.  

 

21. Result and discussion 

This research develops an efficient DL-based model to 
predict the severity level of air pollution in India. The aim is 
to create a pollution-free India; therefore, this paper 
proposes and implements a hybrid CNN-LSTM model with 
input time-series data. The proposed model utilizes 100 
estimators with a maximum depth of 10 and entropy for 
splitting the standard for the Random Forest model. The 
SVM model with an RBF kernel has a penalty parameter C 
= 10 and gamma set to scale. The CNN architecture includes 
two convolutional layers with 64 and 32 filters, a kernel size 
of 3, followed by ReLU activations, a max pooling size of 2, 
and a dropout rate of 0.3 to avoid overfitting. The LSTM 

model consists of two LSTM layers, each with 64 units and 
a dropout rate of 0.2, followed by a dense output layer. The 
proposed CNN-LSTM hybrid model integrates spatial 
feature extraction and temporal pattern learning by 
utilizing a CNN block of four parameters and an LSTM layer 
with 128 units and a 0.3 dropout rate. The Adam optimizer 
is used to train all models with a learning rate of 0.001, and 
the batch size is 64 for the 100 epochs. The Particle Swarm 
Optimization (PSO) enhances the CNN-LSTM model. The 
comparison of the entire configuration and tuning process 
assures the trustworthiness and accuracy of the proposed 
model. This section elaborates on the simulation results of 
the proposed approach to forecasting air pollution levels. 
Table 4 illustrates the layer-wise structure, number of 



UNCORRECTED PROOFS

A HYBRID DEEP LEARNING FRAMEWORK FOR ANALYZING, PREDICTING, AND FORECASTING  9 

neurons, and other parameters used in the proposed 
approach. 

During preprocessing, approximately 7.3 percent of the 
data has been identified as missing. Various methods have 
been applied to address this issue, including forward fill 
and a combination of mean imputation and linear 
interpolation, ensuring that the data is completed while 
maintaining temporal continuity. For example, in cases 
where some pollutants were missing (i.e., PM2.5, SO2), 
forward filling was used for gaps of less than 3 time steps, 
while gaps longer than this were treated using the linear 
interpolation method. Additionally, noise and outlier 
values greater than 3 standard deviations were smoothed 
using a rolling window average. These measures 
significantly improved the quality of the input data, 
enhancing stability and forecasting accuracy.   

 

Figure 4. Total Number of Input Samples. 

Figure-4 summarizes the total number of input samples for 
various area types (residential, rural, industrial, sensitive, 
etc.) as well as for combined types (residential, industrial, 
rural, urban, and others (RIRUO)). The X-axis depicts the 
area categories, while the Y-axis displays the number of 
data samples (count only - no units). The figure indicates 
that 'residential, rural, and other areas' has the most 
samples at 179,014, suggesting that these area types were 
either monitored more frequently or had more data 
available. In contrast, the industrial area had the fewest 
samples, with only 158. This shows that there was less 
monitoring or data available in this area. Distinguishing the 
number of samples from the different area types helps in 
understanding the coverage and identifying potential data 
imbalance, which is beneficial for testing the validity of 
predictive models using this dataset. 

 

Figure-5. SO2 measure on a different type 

Figure 5 illustrates levels of sulfur dioxide (SO₂) in fields, 
measured in micrograms per cubic meter (µg/m³) across 

India. SO₂ is among the top air pollutants known to impact 
human health. Levels of SO₂ below 100 µg/m³ are generally 
not considered harmful to humans. The figure displays a 
category-based x-axis (e.g., industrial, residential, and 
sensitive) representing different area types, providing a 
side-by-side view. The y-axis measures SO₂ concentrations 
in µg/m³. The trends indicated in the figure show that 
industrial areas had the highest SO₂ levels compared to 
other area types, with levels exceeding 25 µg/m³. 
Residential areas ranked second, with values around 15 
µg/m³, while sensitive areas exhibited the lowest levels, 
with SO₂ concentrations below 10 µg/m³. The varying levels 
of SO₂ suggest that working in industrial areas is the main 
reason for increased emissions. The averages for all area 
categories also align with these trends. However, future 
and detailed statistical tests, such as ANOVA, could be 
incorporated into the study design to determine whether 
these differences among areas are statistically significant. 

 

Figure 6. NO2 measure on a different type 

 

Figure 7. SO2 measure on different states 

Figure-6 shows how different areas in India exhibit similar 
levels of nitrogen dioxide (NO₂) pollution. Specifically, the 
areas represented include industrial, residential, rural, 
sensitive, and mixed (RIRUO). The vertical axis indicates 
NO₂ levels in micrograms per cubic meter (µg/m³), the 
standard measure for air pollutants, while the horizontal 
axis represents the types of areas. According to the Central 
Pollution Control Board (CPCB), levels below 80 µg/m³ are 
nominally safe. In fact, all area types remain below this 
nominally safe level, with levels around 100 µg/m³. Overall, 
industrial areas display the highest levels of NO₂ pollution, 
approximately evenly distributed around 70 µg/m³ 
compared to residential, mixed, and rural areas, while 
sensitive areas show the lowest average values under 20 
µg/m³, indicating improved air quality measures. The figure 
effectively illustrates the anthropogenic variability in NO₂ 
pollution levels across different areas in India. 

The amount of sulfur dioxide (SO₂) present in various states 
of India is shown in Figure 7, along with the scale, units, and 
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stated trends. The Y-axis represents the average SO₂ in 
µg/m³, while the X-axis displays the Indian states included 
in the study. The air quality data was collected from 2017 
to 2023. Generally, states such as Uttarakhand and 
Uttaranchal exhibited an average SO₂ level of over 25 
µg/m³, while other states reported no or minimal volcanic 
or SO₂ emissions, including the Andaman and Nicobar 
Islands, Tirupur, and Lakshadweep. This variation indicates 
the localization of industry concerning air pollution levels. 
The information, gathered using simple statistics (average 
concentration), provides a valuable understanding of the 
pollution degree for planning purposes and supports 
targeted policy development. 

 

Figure-8. SO2 measure on a different year 

Figure-8 illustrates the level of sulfur dioxide (SO₂) gases in 
the atmosphere of India each year from 1995 to 2020. The 
x-axis represents the years, while the y-axis indicates the 
mean levels of SO₂ gases (in micrograms per cubic meter 
(µg/m³)). It can be observed that SO₂ levels were extremely 
high (well above 20 µg/m³) during the years 1995 to 2000. 
Beginning around 2003, SO₂ levels started to trend 
downward and fell below 6 µg/m³ in 2020. It is possible that 
air quality pollution control policies and regulations 
achieved their goals or that industries adopted new 
technologies that resulted in fewer emissions, thereby 
lowering SO₂ levels over time. A straight-line trend drawn 
through the data in Figure-8 shows a negative slope, clearly 
suggesting that SO₂ levels declined from 1995 to 2020. The 
control of SO₂ over time is also evident in the comparative 
range, which is greater than that of the 1995-2000 period, 
believed to have resulted in continued stability in 
atmospheric SO₂ levels over time. 

 

Figure-9. NO2 measure on different states 

Figure 9 shows nitrogen dioxide (NO₂) levels by state across 
India. The Y-axis represents NO₂ levels in micrograms per 
cubic meter (µg/m³), while the X-axis displays the states. 
These NO₂ levels were compared against the air quality 
limit of 100 µg/m³; any pollution above this level is 
considered harmful. Several states, including West Bengal 
(~52 µg/m³), Delhi (~47 µg/m³), and Jharkhand (~42 

µg/m³), exhibit elevated NO₂ levels, which may be linked to 
higher urbanization and traffic. Conversely, areas such as 
Andaman and Nicobar, Tirupur, and Lakshadweep show 
very low NO₂ levels or near zero, likely due to their lower 
population or industrial footprint.  

 

Figure-10. NO2 measure for different years 

Figure 10 illustrates the yearly fluctuations in nitrogen 
dioxide (NO₂) levels in India during the study period from 
1990 to 2020. The x-axis displays the years from 1990 to 
2020, while the y-axis indicates the measured 
concentrations of nitrogen dioxide in micrograms per cubic 
meter (µg/m³). The data show that NO₂ levels were 
relatively low (under 20 µg/m³) in the early 1990s and in 
subsequent years after 2015. However, significant 
increases were recorded in certain years in various Indian 
cities, likely due to urban development and/or heightened 
industrial activity as proposed by government agencies.  

 

Figure-11. SPM measure on different states 

 

Figure-12. SPM Measure On Different Years 

Figure 11 presents the levels of Suspended Particulate 
Matter (SPM) across Indian states. The x-axis designates 
the individual states, while the y-axis measures the 
quantities of SPM in µg/m³. The findings indicate that Uttar 
Pradesh, Delhi, and Uttarakhand have very high levels of 
SPM (i.e., 300 µg/m³), while states like Lakshadweep and 
the Andaman & Nicobar Islands have extremely low levels 
(i.e., < 5 µg/m³). This reveals the existing disparity in 
pollution levels regionally. Both graphs use the same units 
of measurement, indicated in µg/m³. The general trend for 
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both analyses was examined by identifying the high and 
low points to understand the differences in temporal shifts 
and regional distinctions. 

Figure 12. illustrates changes in Suspended Particulate 
Matter (SPM) from 1990 to 2020. The SPM data is plotted 
on the y-axis (micrograms of SPM per cubic meter, µg/m³) 
and the year is shown on the x-axis. Overall changes to SPM 
data were minimal and typically exceeded 120 µg/m³. SPM 
was moderately acceptable at the beginning (1990) at 
around 225 µg/m³, declining to around 150 µg/m³, with the 
late 1990s being the high point. While there were subtle 
changes at seasonal and monthly intervals, this exemplifies 
that pollution sources remained fairly stable, indicating a 
potential lack of effort or ineffectiveness in reducing or 
eliminating pollution sources. 

 

Figure-13. Date-Wise Analysis of SO2 

 

Figure-14. Year End Analysis of SO2 Ratio in Air 

 

Figure-15. SO2 Actual Vs Forecast Result  

Figure 13 illustrates SO₂ levels over time using consistent 
measurement units. SO₂ levels from 1989 to 2003 ranged 
between 35 and 15 µg/m³, indicating a moderate pollution 
level. After 2004, SO₂ levels drifted below 15 µg/m³ and 
remained relatively unchanged. This standard deviation 
may result from government restrictions and changes in 
industries. The decline in SO₂ is certainly significant (non-
causal) and is supported by evidence indicating less year-

to-year variation after 2003. Both figures highlight a long-
term perspective on pollution behaviors, demonstrating 
that the forecasting model appropriately fits stable 
patterns over time. 

 

Figure-16. Prediction Result of Proposed Model  

Figure 14 illustrates how SO₂ levels changed at the end of 
the year from 1995 to 2020. In 1995, SO₂ levels started 
above 25 µg/m³ and steadily declined to about 10 µg/m³ by 
the end of 2020, indicating improved air quality. Figure 15 
displays the actual SO₂ values plotted alongside the CNN-
LSTM predicted values. The red line represents the 
predicted values alongside the actual values, while the blue 
line shows the actual values. Overall, the predicted SO₂ 
values (red line) closely match the actual values (blue line) 
and, for the most part, fluctuated between 8 and 12 µg/m³ 
from 2009 to 2020. Figure 16 presents the yearly predicted 
SO₂ values, clearly indicating that the predicted SO₂ levels 
have been declining since 2014, remaining below 10 µg/m³. 
This demonstrates that the model effectively predicted 
long-term trend changes and consistently produced very 
low error rates that correlated well with other accuracy 
measures, such as low RMSE. 

 

Figure-17. Training and Validation Accuracy  

 

Figure-18. Training and Validation Loss  
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Figure 17 represents the CNN-LSTM model training versus 
validation accuracy over 100 epochs. The green line shows 
the training accuracy, which slowly increased and stabilized 
around 98%, indicating that the model learns the training 
data well. The purple line represents the validation 
accuracy, which also consistently improves and reaches 
93%, indicating that the new data are generalized well. The 
similar trend between the two curves indicates that the 
model maintains consistent performance and does not 
overfit during the training and validation phases. 

Figure 18 illustrates how the training and validation loss 
evolved over the 100 epochs for the CNN-LSTM model. 

Initially, both losses decreased during the first 50 epochs, 
indicating successful learning. After about 50 epochs, the 
validation loss began to show some separation from the 
training loss, hinting at overfitting. This also demonstrates 
a good application of strategies suggested by common 
validation loss versus epoch plots, such as dropout and 
early stopping, since overfitting would lead to a loss of 
performance on unseen data. Overall, the trends observed 
in the figure illustrate that the model was learning 
effectively and remained stable during training. 

 

Table 5. Performance Metrics 

Features Mean Min Max Std. Dev 

PM 2.5(µg/m2) 67.5 12.0 345.0 42.3 

N02 (ppb) 29.7 5.1 125.0 21.6 

S02 (ppb) 14.2 2.0 58.0 11.0 

CO(mg/m2) 1.05 0.20 3.60 0.74 

03 (ppb) 26.l 4.0 88.0 18.2 

Temperature (°C) 28.4 16.0 42.0 5.7 

Humidity (%) 59.3 22.0 91.0 13.4 

Wind Speed (mis) 2.8 0.3 6.1 1.2 

Table-6. Proposed model comparison 

Model Accuracy (o/o) Precisi on (%) Recall (%) Specificity (%) Fl-Score (%) 
P-Value CNN-
LSTM 

CNN 94.02 + 0.34 93.71 + 0.41 94.10 + 0.38 93.91 + 0.45 93.90 + 0.36 0.0021 

LSTM 94.55 + 0.29 94.30 + 0.35 94.62 + 0.32 94.44 + 0.33 94.45 + 0.30 0.0048 

BiLSTM 94.78 + 0.26 94.56 + 0.30 94.81 + 0.28 94.65 + 0.27 94.68 + 0.29 0.0213 

CNN-LSTM 95.60 + 0.22 95.32 + 0.27 95.75 + 0.25 95.50 + 0.24 95.53 + 0.26 - 

 

Table-5 provides details such as the mean, minimum, 
maximum, and standard deviation values for the main 
input features of the air quality dataset prior to 
normalization. These values illustrate how much the 
original data deviates from the mean. For instance, PM2.5 
levels range from 12.0 to 345.0 µg/m³, with an average of 
67.5. The possible PM2.5 levels reflect a variety of pollution 
types. Additionally, values for gases such as NO₂, SO₂, and 
O₃ are included in the summary, as their ranges vary in both 
directions, consistent with areas populated by cities and 
heavy industry. Climate-related features influencing the 
transportation of pollutants, like temperature, humidity, 
and wind speed, are also mentioned. Understanding the 
characteristics of the input dataset is justified through this 
summary, as the model must normalize the input data 
before using it in deep learning models.  

All the tests are conducted under identical conditions and 
with random seeds over all the models. From Table-6, it is 
noticed that the proposed CNN-LSTM model performed 
better than others. And the model obtained all 
performance metrics with a slight difference, such as 
p<0.05, indicating that the proposed model provides a 
superior performance. The obtained t-test values from the 
experiment for the proposed CNN-LSTM model are 
compared with similar models like CNN, LSTM, and BiLSTM 
in terms of various evaluation metrics, such as accuracy, 
precision, recall, F-1 score, and specificity. The mean value 
calculated for the 10 experimental executions with 

appropriate p-values, like 𝛼 = 0.05 . Table-6 shows the 
statistically significant enhancements ( 𝑝 < 0.05  ) are 
represented with an asterisk (*) symbol. 

 

Figure 19. RMSE Score  

Figure 19 shows that the RMSE value obtained from the 
experiment validates the predictive models for forecasting 
air pollutant concentration. With a low RMSE, the CNN-
LSTM model achieves the best performance, followed by 
LSTM at about 10.2 and CNN at about 12.0. The 
performance of the conventional ML models is poor, with 
Random Forest (RF) displaying an RMSE of approximately 
15.4, while SVM shows the maximum error at about 18.7. 
These results demonstrate that the proposed DL-based 
hybrid CNN-LSTM model attained maximum accuracy in 
forecasting pollutant levels. 

Figure 20 illustrates the accurate prediction (in percentage) 
of the five models used for forecasting air pollutant 
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concentrations. The CNN-LSTM model achieves the highest 
accuracy at approximately 93%, followed by LSTM at about 
90% and CNN at around 6%. The traditional ML model 
shows the lowest performance, with Random Forest (RF) at 
7% and SVM having a minimum accuracy of 72%. The 
experimental results indicate the superior performance of 
the DL model and the hybrid CNN-LSTM in accurately 
capturing complex patterns to predict air pollutants. 

 

Figure 20. MAE Score 

 

Figure 21. Accuracy Comparison 

 

Figure 22. Training Time Comparison 

Figure 21 shows the accuracy comparison of the five 
models used for forecasting air pollutant concentrations. 
This figure depicts five different models and their 
prediction accuracies, which are evaluated as a percentage. 
It demonstrates that the proposed hybrid CNN-LSTM 
model achieves a higher accuracy rate of 93%. The second-
highest accuracy is achieved by the LSTM model, with an 
accuracy of 90%. Meanwhile, the CNN model attains an 
accuracy rate of 86%. However, the RF model only achieves 
78%, and the SVM model has the lowest accuracy rate at 
72%. The prediction results indicate that deep learning 
models, particularly the hybrid CNN-LSTM model, perform 
significantly better than the other learning models in 
predicting pollutants. 

Figure 22 compares the time required to train all the 
models for air pollutant concentration prediction, 
measured in seconds (s). Among the models assessed, the 
CNN-LSTM model takes the longest to train, requiring 
approximately 120 seconds. In contrast, the LSTM model 
takes only 100 seconds, and the CNN model requires just 
80 seconds to complete training. Meanwhile, the 
traditional ML models demonstrate better interpretability 
with shorter training times; the RF model takes just 45 
seconds, followed by the SVM, which requires nearly 30 
seconds for training.   

The overall findings indicate that the SVM trains faster than 
the other models. However, earlier sections of this text 
advocate for implementing a more complex model (CNN-
LSTM), where the trade-offs in speed are outweighed mainly 
by accuracy. The SVM was trained for about 30 seconds but 
had a lower accuracy of around 72%, as shown in Figure 19. 
In contrast, the CNN-LSTM was trained for approximately 
120 seconds but achieved the highest accuracy of 93% 
among the models, along with the lowest RMSE and MAE. 
This demonstrates a greater ability to identify complex 
features in air quality data over time and space as it 
processes the underlying information. The SVM encounters 
the inherent limitations of a simple learning method, as it 
does not adequately handle time-series data with numerous 
variables and fails to capture significant variation over time 
and space, both of which are essential characteristics in 
predicting environmental outcomes. Therefore, although 
the training time is longer, the CNN-LSTM is better suited for 
predicting actual air pollution values. 

 

Figure 23. Gglobal and government air quality monitoring 

The global and local governments implicitly imply the 
necessity of air quality monitoring to save people by 
predicting the severity level. Though various air monitoring 
and prediction systems have been traditionally developed, 
the severity level of air pollution remains uncontrolled. The 
government has introduced various schemes and advanced 
real-time monitoring and control techniques to address 
this issue. In this context, the global real-time AQI ratio is 
analyzed and graphically displayed on the 
https://www.aqi.in/in/dashboard website. For example, 
India's AQI level in the past seven days is examined. The 
result is shown in Figure-23, which illustrates India's Air 
Quality Index (AQI) ratio from May 8 to 14, 2025. During 
these seven days, the AQI level fluctuated between a low 
of 86 on May 9 and a peak of 115 on May 10. On the other 
days, the general AQI ratio was recorded between 90 and 
110, indicating moderate air quality during this period. 
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Through this monitoring result, the government and public 
can make the proper decisions on controlling air pollution. 

The correlation map of the predicted errors among air 
pollutants was obtained using an error correlation heatmap. 
Figure 24 shows that PM10 and CO₂ have the highest 
observed correlation of 0.27, which is the strongest 
correlation and suggests that these two pollutants have 
similar trends in prediction error, likely because they share 
common sources like combustion. There is also a moderate 
correlation between PM2.5 and CO₂ (0.18) and between 
PM10 and CO₂ with a correlation of 0.077, indicating partial 
co-dependence regarding errors in forecasting. In contrast, 
there is a negative correlation (-0.15) between NO₂ and 
PM10, suggesting that they do not behave similarly to the 
previous correlations. The remaining correlations, including 
O₃ with NO₂ (0.014) and SO₂ (0.037), showed very low 
correlation rates, indicating that the predictions are 
independent. This discussion highlights the model's 
deficiencies across all pollutants and where it performs well.  

 

Figure-24. Heatmap  

22. Deploying the proposed model with a real-time IoT 
system 

The use of the proposed CNN-LSTM deep learning model in 
real-time IoT systems presents challenging computing tasks 
due to its complexity. While the CNN component requires 
substantial GPU support for effective convolutional 
implementations and for extracting spatial features from 
rich air quality data, the LSTM part must handle sequential 
data with memory representation constraints to learn long-
term trends over time. Since IoT operates under strict 
limitations regarding latency and power in real-time 
applications, employing techniques such as edge 
computing and model tuning proves to be invaluable 
strategies. For instance, creating lighter versions of CNN-
LSTM through model pruning, quantization, and knowledge 
distillation are effective methods for alleviating model 
computing constraints when applied to air quality 
prediction tasks without significant accuracy loss. 
Additionally, deploying the model on edge devices with 
smaller GPUs/TPUs facilitates rapid processing near the 
data collection point, ensuring lower latencies. Federated 
learning also enables multiple edge devices to train the 
model without the need to aggregate the entire dataset in 
one location, which aids in scaling and enhances data 

protection. Overall, these techniques provide viable 
pathways for implementing deep learning models to 
predict air quality in smart cities, facilitating 

23. Conclusion 

A DL-based air quality prediction was proposed in this 
paper to analyze and predict the air pollution level in India. 
The integrated hybrid CNN-LSTM model effectively 
processes real-time air pollution data gathered from 
several sources, such as IoT-enabled networks, satellite 
data, and sensor-based monitoring systems. The proposed 
model is demonstrated, and results show that this 
proposed model approach offers high accuracy and good 
predictive performance compared with existing ML 
models. Based on this paper, some essential features are 
found: this hybrid integrated CNN-LSTM model enhances 
the pollution level prediction accuracy, specifically for 
pollutants like PM2.5, NO₂, and SO₂. This proposed model 
surpasses the existing model by optimizing data 
preprocessing and effectively managing the missing values. 
In 2003, SO₂ levels decreased, while NO₂ and particulate 
matter (SPM) have changed over the years, and are still 
emphasized by the air pollutant data. This result represents 
that real-time monitoring and predictive analytics are 
essential in pollution control strategies, early warning 
systems, and policy-making decisions. The effectiveness of 
DL-based models is emphasized by this paper, which 
authorities utilize to minimize health risks, combined with 
poor air quality, through the installation of proactive 
pollution control measures.  

In general, the estimated results of the proposed CNN-
LSTM model are pretty good. However, it can be improved 
further. Thus, the model integration with live IoT sensors 
and edge computing would facilitate real-time air quality 
monitoring and response. It also enhances the data 
granularity by deploying low-cost sensors within the urban 
and rural environments. It needs additional pollutants and 
meteorological factors. The CO, O₃, and NH₃ should be 
viewed as other pollutants besides several meteorological 
factors which includes temperature, humidity, and wind 
speed, which play an essential role in improving the 
model's efficiency. Additionally, using XAI techniques for 
the model will enhance the interpretability of the 
prediction made by the model to find out the causes of 
pollution, so that policymakers and environmental 
specialists can deal with the causes. This can also increase 
reliability by cross-validating predictions with other 
satellite-based data such as MODIS, OMI, and Sentinel 5P. 
To improve the data privacy and support training, it uses 
the FL model at multiple locations using the distributed 
learning technique. Last, one can discuss the model's 
applicability to smart cities, developing a targeted policy 
for different regions, and using immediate pollution 
warnings and dynamic traffic management to reduce 
emission levels. By identifying these challenges, future 
research can help develop a solid and sustainable, 
intelligent air quality monitoring system, which in turn 
would help enhance environmental sustainability and 
population health. 
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