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Abstract 

This paper presents the modelling and control of a hybrid 
electric vehicle powertrain. The powertrain, which has a 
series-parallel hybrid topology, was used as a case study. 
Mathematical models were developed for the internal 
combustion engine, electric motors, batteries and vehicle 
dynamics. A computational model was implemented in 
Matlab/Simulink and validated against experimental data, 
showing good agreement for fuel consumption. A rules-
based control strategy was developed to approximate the 
logic used in the real vehicle. Global powertrain 
optimisation was then conducted using dynamic 
programming to minimise fuel consumption. Two cases 
were analysed, one optimising only the torque 
distribution and another also optimising the operating 
points of the internal combustion engine. The optimal 
control resulted in 9.5% and 10% lower fuel consumption 
than the non-optimal strategy, demonstrating the 
potential for consumption reduction. The results illustrate 
the importance of optimising multiple degrees of freedom 
in the powertrain and not only confining the engine to its 
optimal operating line. This study provides a methodology 
for developing optimal control strategies for hybrid 
vehicles using easily implementable tools. The findings 
highlight the importance of synergizing technology with 

informed driving habits to support global sustainability 
goals. 

Keywords: Hybrid electric vehicles, Powertrain modeling, 
Dynamic programming, Optimal control, Fuel 
consumption 

1. Introduction 

Hybrid electric vehicles (HEVs) have gained popularity in 
recent years due to their potential for reducing fuel 
consumption and emissions compared to conventional 
vehicles. HEVs combine an internal combustion engine 
and electric motor(s), allowing the powertrain to operate 
more efficiently by optimising the power split between 
the two energy sources. However, complex interaction 
between components means realising this potential 
requires sophisticated control strategies to manage the 
torque distribution. 

Dynamic programming is an optimisation technique that 
can find the global optimal solution for a system over time 
by discretising the state and control variables. It has been 
applied for hybrid vehicle energy management with 
promising results. However, most studies simplify the 
system dynamics or do not validate the optimal results 
against real driving data. Furthermore, the high 
computational cost makes implementing dynamic 
programming on an engine control unit difficult. 
Therefore, methodologies need to use dynamic 
programming with high-fidelity plant models that can be 
simulated quickly to develop optimal control strategies. 

Allouhi (2024): Proposed optimal hybrid PV/wind/battery 
system to power supermarkets and electric vehicle 
charging in Morocco. Allouhi & Rehman (2023): Optimised 
PV/wind/battery system for supermarkets with EV 
charging in Morocco; high wind site had lowest cost of 
energy. Anselma et al. (2021): Validated optimal 
predictive energy management strategy for hybrid 
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vehicles considering battery ageing; showed potential to 
downsize battery. Barman et al. (2023): Reviewed smart 
charging approaches for integrating renewable energy 
and electric vehicles. Dan & Zhou (2023): Reviewed 
energy integration between flexible buildings and e-
mobility using demand-side management and model 
predictive control. Donateo et al. (2021): Optimised 
energy management strategy for hybrid electric 
helicopters using dynamic programming; reduced fuel 
consumption up to 22%. Er et al. (2024): Optimised rural 
microgrid design with PV, wind, battery, hydrogen 
storage, and vehicle-to-grid; hybrid storage lowered costs. 
Gabbar & Siddique (2023): Evaluated hybrid nuclear-
renewable system for fast EV charging station; reduced 
emissions and costs. Gobbi et al. (2024): Reviewed 
traction motor design aspects to maximise electric vehicle 
efficiency. Hernández-Nochebuena et al. (2021): Analysed 
household renewable hydrogen production for fuel cell 
vehicles; energy storage dynamics affect feasibility. 
HomChaudhuri et al. (2016): Developed a hierarchical 
strategy for connected hybrid vehicles using traffic data; 
improved fuel efficiency. Itani & De Bernardinis (2023): 
Reviewed energy management strategies for dual-source 
hybrid electric vehicles. Jayakumar et al. (2022): Assessed 
the potential of hydrogen for sustainable mobility in India; 
costs need to decrease. Khalafian et al. (2024): An 
optimised renewable system for electricity, heat, and 
smart EV charging using compressed air and thermal 
storage. Kyriakou et al. (2024): Developed multi-agent 
control for microgrid with building prosumers and electric 
vehicles. Liu et al. (2021): Reviewed driving cycle-based 
energy management strategies for hybrid electric vehicles. 
Louback et al. (2024): Reviewed the design process for 
energy management systems in dual-motor electric 
vehicles. Ma et al. (2021): Reviewed fuel cell-battery 
hybrid systems for mobility and off-grid applications. 
Machacek et al. (2024): Analysed potential to reduce 
emissions in hydrogen hybrid vehicles through energy 
management. Manirathinam et al. (2024): Assessed 
micro-mobility sharing service quality and user 
satisfaction in South Korea. Mousa (2023): Developed an 
adaptive deep reinforcement learning agent for hybrid 
vehicle energy management. Pramuanjaroenkij & Kakaç 
(2023): Provided an overview of fuel cell electric vehicle 
technology and its importance. Quinteros-Condoretty et 
al. (2021): Analysed lithium supply chain sustainability for 
electric vehicles using system dynamics. Tariq et al. 
(2024): Reviewed integration of fuel cells in hybrid 
microgrid systems for clean energy. Xu et al. (2022): 
Optimised multi-energy microgrid scheduling including 
hydrogen technologies, vehicles and data centres. 

This paper presents the modelling and optimal control of 
a powertrain using Matlab/Simulink and dynamic 
programming. The combustion engine, electric motors, 
battery and vehicle dynamics were modelled based on 
data from literature. A computational model was created 
and validated by comparison with experimental data from 
chassis dynamometer testing. This validated non-optimal 
model provided a basis for global optimisation using 
dynamic programming. Two cases were analysed – one 

optimised only torque distribution and the other 
optimised the engine operating points. 

The validated plant model enables high-fidelity evaluation 
of control strategies prior to real implementation. 
Dynamic programming results demonstrate the potential 
for reducing fuel consumption below the non-optimal 
baseline. The methodology followed allows systematically 
developing and assessing optimal control solutions. Future 
work should focus on strategies optimised for real-world 
driving cycles using local optimisation methods that can 
be deployed on engine control units. The introduction of 
electrification in vehicles is only projected to increase; 
therefore, the importance of optimal energy management 
will continue growing. 

2. Materials and Methods 

2.1. Vehicle Architecture 

The vehicle architecture modelled in this study was the 
Toyota Prius Generation 2, which has a series-parallel 
hybrid topology. This combines aspects of series and 
parallel configurations, allowing flexible operating modes. 
The powertrain consists of a 1.5L Atkinson cycle gasoline 
engine, two electric motor-generators, a planetary gear 
transmission, and a nickel-metal hydride battery pack. 

 

Figure 1. Illustration of the powertrain of the adopted vehicle. 

The main components illustrated in Figure 1 are planetary 
transmission, internal combustion engine (MCI), motor-
generator with main power generation function (MGI 
motor-generator with main traction function (MG2)), and 
high voltage battery. The transmission system also has a 
speed reduction, a differential and the semi-axle 
connected to the wheels. The frequency inverters of each 
motor and the DC/DC converter are not illustrated in the 
figure; however, the modelling includes the losses they 
introduce into the system. The engine and motor-
generator 1 (MG1) connect to the planetary gearset. MG1 
primarily controls engine speed. Motor-generator 2 (MG2) 
is coupled to the gearset output and drives the wheels. 
The battery pack provides power to MG1 and MG2. 
During electric driving, the engine is off and MG2 propels 
the vehicle. In hybrid mode, the engine provides power to 
MG1 and the wheels, while MG2 supplements traction. 
MG2 also recovers braking energy. The planetary gearing 
enables a power split between engine and electric paths. 

2.2. Modelling 

Individual component models were developed for the 
engine, MG1, MG2, battery and vehicle dynamics. Using a 
brake-specific fuel consumption map, the engine model 
calculates fuel consumption based on speed and torque. 
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MG1 and MG2 use efficiency maps to determine electrical 
power from mechanical power. The battery model 
simulates open-circuit voltage and internal resistance. 
Vehicle longitudinal dynamics were modelled accounting 
for tractive force, drag, rolling resistance and inertia. 

The component models were implemented in 
Matlab/Simulink. The closed-loop system is simulated by 
combining the models with a driver model that follows 
the target speed profile. Restrictions on state and control 
variables are included. The cost function for optimisation 
is total fuel consumption. 

2.3. Control Strategy 

A rules-based control strategy approximating the logic in 
the Prius was developed. The engine on/off threshold and 
operating line were set based on analysis of experimental 
data. The torque distribution between the engine and 
MG2 was controlled based on power demand and battery 
state of charge. 

2.4. Optimisation 

Dynamic programming discretises the state and control 
variables to find the global optimal trajectory over a drive 
cycle. It was implemented using the Snopt optimal control 
software. Two cases were run – one optimising just 
torque distribution and another also optimising engine 
operation. Restrictions on battery charge and component 
limits were included. The cost function was total fuel 
consumption. 

3. Experimental Setup and Procedure 

Experimental data for validating the model and analysing 
the stock Prius control strategy was obtained from testing 
conducted by Argonne National Laboratory using a chassis 
dynamometer. The key elements of the experimental 
setup and test procedure were as follows: 

3.1. Test Vehicle 

A second-generation Toyota Prius with a 1.5L Atkinson 
engine, 43 kW permanent magnet MG1, 50 kW 
permanent magnet MG2, and 6.5 Ah nickel-metal hydride 
battery pack was tested. The vehicle had approximately 
257,000 km total mileage at the time of testing. 

3.2. Testing Equipment 

The vehicle was mounted on a 48-inch single-roll electric 
chassis dynamometer capable of simulating inertial loads. 
The test cell temperature was maintained at 25°C. 
Emissions measurement instrumentation included Horiba 
THC, CO, CO₂, and NOₓ analysers. Fuel consumption was 
measured using a fuel flow meter and balance scale. 
Additional sensors recorded battery current, engine 
speed, vehicle speed, and accelerator pedal position. Data 
was collected via the vehicle CAN bus and a dedicated 
data acquisition system. 

3.3. Test Cycle 

The urban Brazilian NBR6601 drive cycle was used for 
validation tests. It is an ECE-15-derived cycle with a total 
duration of 589 seconds and a distance of 2.09 km. 
Maximum speed is 58 km/h with an average 18.7 km/h. 

Accelerations reach 1.04 m/s². This cycle represents city 
driving conditions. 

3.4. Test Procedure 

Prior to testing, the vehicle battery state of charge was 
adjusted to 60% to represent a partially depleted 
condition. The dynamometer load setting was configured 
to reproduce road load forces for the vehicle weight. The 
vehicle was then driven over consecutive NBR6601 cycles 
with data logged for each cycle. Emissions sampling 
occurred during the fourth cycle with vehicle 
preconditioning occurring over the first three cycles. 
Between cycles, the vehicle was allowed to regen the 
battery through coast down to maintain repeatable initial 
conditions. In total, the vehicle completed four full cycles. 

This section presents the validation of the closed-loop 
simulation of the vehicle control and blueprint. The 
primary objective of validation was to achieve a 
computational model in which the estimated fuel 
consumption presented a deviation of no more than 5% 
compared to test data. 

The data used for validation were obtained from Argonne 
National Laboratory (2013), which conducted tests with 
the Toyota Prius vehicle on a chassis dynamometer. The 
experiment was conducted under the urban area cycle 
specified in the Brazilian standard NBR 6601, which 
regulates the measurement of emissions in light motor 
vehicles. Details of this cycle are provided in APPENDIX C. 
The measured data included signals from the vehicle's 
CAN network and the dynamometer control system. 

3.5. Data Analysis 

The primary data analysed were fuel consumption, 
battery current, battery state of charge, and engine 
speed. Total fuel consumption was determined by the 
difference in fuel tank mass before and after the test. The 
integrated fuel flow over the fourth cycle provided cycle-
specific consumption. Battery current and engine speed 
profiles were used to validate the model. Comparing the 
initial and final battery states of charge assessed the 
charge balance. Additional data provided insights into the 
stock control strategy. 

This chassis dynamometer test provided experimental 
data from a real-world drive cycle under controlled, 
repeatable conditions. The resulting vehicle operating 
parameters and fuel consumption comprise a 
comprehensive data set for validating the Prius plant 
model developed in this research. The test methods 
follow industry standard practices. 

4. Results and Discussion 

4.1. Model Validation 

The simulated speed profile accurately tracked the target 
cycle with minimal control error. Engine speed matched 
well with test data, capturing the on/off pattern and 
transients. Some deviation occurred during the initial 
warm-up where emissions strategies differ. Battery 
current showed similar charging and discharging 
behaviour. However, the modelled state of charge range 
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was narrower than testing. This indicates differences 
between the modelled and actual control logic. 

The simulation was conducted using the Matlab/Simulink 
program. A time step of 0.01s was used, and the method 
for solving ordinary differential equations was Dormand-
Prince (RK5). 

 

Figure 2. Vehicle speed (above) and pilot controller error (below) 

for the model simulation is not optimal. 

 

Figure 3. Comparison of the MCI rotator.for simulation of the 

non-optimal model wih the rotation obtained in tests 

The torque demand from the driving cycle is the input 
parameter of the simulation. It must be accurate before 
validating the model. Therefore, the first module to be 
validated was the driver model. Figure 2 shows the graphs 

of the vehicle's actual and desired speeds and the PID 
controller's performance. The NBR 6601 standard 
stipulates that the speed error should be no more than 1 
km/h. The maximum error of the PID controller in the 
resulting driver model is within the range (-0.4, 0.4). 

In Figure 2, the simulation results and tests for the 
rotation of the MCI (Motor Control Interface) are 
presented. While the simulation indicates that the MCI 
employs a turn-off strategy at the start of the cycle (0 to 
150 s), the test data reveal that it remains operational 
during this period. The MCI in the actual vehicle 
implements a strategy to heat the exhaust system at the 
beginning of the test as part of the emissions reduction 
strategy, a phenomenon not accounted for in the MCI 
model. The second graph in Figure 3 focuses on a specific 
section of the driving cycle. Despite instances where there 
is a deviation between the measured and simulated MCI 
rotation of 500 rpm, it is observed that, overall, the 
simulation closely replicates the MCI dynamics. 

The fuel consumption for the simulated cycle was 0.377 L 
versus 0.373 L measured, an error of only 1.2%. This 
demonstrates the model accurately represents the real 
system efficiency and captures the interactions between 
components. The small state of charge error contributes 
minimally to fuel consumption. Additional minor 
discrepancies are likely attributable to unmodeled 
behaviors. 

 

Figure 4. Comparison of the battery's electrical current for 

simulating the non-optimal model with the electric current 

Figure 4 compares the electric current in the battery 
within the same visualization space as the figure above. 
Once again, a good overall adherence of the simulation to 
the test data is observed. The electric current in the 
battery is directly proportional to the battery power, and, 
therefore, the graph serves as a reliable representation of 
the torque distribution ratio adherence of the simulation 
to the actual vehicle. This comparison underscores the 
simulation's ability to accurately replicate the electrical 
behavior of the battery as observed in real-world tests 
conducted by Argonne National Laboratory in 2013. 

Figure 5 presents the battery's State of Charge (SOC) 
graph over time. The initial SOC in the test was 59.2%, 
while it was set at 60% in the simulation. It's crucial that 
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the SOC at the end of the cycle does not significantly differ 
from the SOC at the beginning to ensure that fuel 
consumption is not unduly influenced by electrical energy 
consumption. The variation in SOC observed in the 
experimental data and the simulation were and, 
respectively. This minor difference was deemed negligible, 
and no subsequent adjustment was made to the value of 
energy consumption. The figure provides a side-by-side 
comparison of the battery's State of Charge (SOC) and fuel 
consumption, showcasing the simulation's accuracy 
against real-world test results obtained from Argonne 
National Laboratory in 2013. 

 

Figure 5. Comparison of battery state of charge (SOC) (above) 

and power consumption 

 

Figure 6. Result of case 1 for the battery SOC. The contour plot 

shows all 6optimal control solutions resulting from global 

optimization. 

Figure 6 likely illustrates the results of a simulation or 
optimization process concerning the State of Charge (SOC) 
of a vehicle's battery (possibly an electric or hybrid 
vehicle) under certain operational conditions (case 1). The 
figure might show a trajectory or path that represents 
how the SOC changes over time or through different 
stages of vehicle operation. Accompanying this trajectory 
could be a contour map that visualizes the values of a 
control variable (denoted as \(r\) in this context) at 
various SOC levels. These control variable values are 
critical for understanding how the vehicle's control system 
adjusts or should adjust under different SOC conditions to 
optimize performance, efficiency, or other objectives. The 
colors and operational modes indicated in the legend, 
referenced as detailed in Equation (33), categorize the 
control strategies or states the vehicle's system adopts at 

different SOC levels. The interception points between the 
SOC trajectory and the contours of the control variable 
\(r\) signify the optimal control solutions determined 
through dynamic programming, a method often used in 
optimization problems to find the most efficient way to 
achieve a certain objective. 

 

Figure 7. Torque distribution ratio as a function of power 

demand (above) and 

Figure 7 on the other hand, explores the dynamics of the 
control variable concerning the vehicle's speed and the 
total power demand at the wheels. This figure likely 
presents graphical analyses or plots that elucidate how 
the vehicle's system's control strategies (or operating 
modes) vary with changes in speed and power 
requirements. The mention of "3 operating modes" 
suggests that the analysis categorizes the vehicle's 
performance or control responses into distinct modes 
based on these two parameters (speed and power 
demand). These modes could represent different energy-
use strategies, such as electric-only operation, hybrid 
operation (combining electric and internal combustion 
engine power), and perhaps an efficiency-optimized mode 
that seeks to minimize fuel consumption or emissions 
while meeting the power demands. 

Figures 6 and 7 provide visual and analytical insights into 
how a vehicle's control system manages its energy 
resources (particularly the battery's SOC) in response to 
various operational demands and conditions. These 
insights are crucial for developing and validating advanced 
vehicle control strategies, aiming for optimal 
performance, efficiency, and sustainability. 

The model validation confirms that the component and 
vehicle system models are suitable representations of the 
Toyota Prius. The model has high fidelity in terms of fuel 
consumption, the most relevant metric for optimization. 
Minor control logic differences have negligible impact on 
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total energy use over a full drive cycle. This validated 
model provides a robust platform for evaluating optimal 
control strategies. 

4.2. Optimal Control 

Both dynamic programming cases demonstrated 
substantial reductions in fuel consumption compared to 
the non-optimal rules-based controller. Case 1 lowered 
fuel use 9.5% by optimizing just torque distribution. 
Allowing engine operation to deviate from the optimal 
line in Case 2 realized an additional 1% reduction. 

The results highlight that confining the engine to its 
optimal line does not necessarily yield the true global 
minimum. Other simultaneous efficiency trade-offs 
between components can shift the system-wide optimum. 
The modeling and optimization approach captured these 
complex interactions and revealed additional potential 
consumption reductions. 

However, the predicted savings concern the model 
baseline control, not the actual Prius strategy, which likely 
approaches optimal already. The potential improvement 
on the real vehicle is likely smaller than suggested by 
these percentages. Additional real-world drive cycle 
testing could quantify possible savings. 

In summary, the optimization results prove the concept of 
using dynamic programming to minimize fuel 
consumption. Even without perfectly accurate system 
models, the technique clearly identifies improved 
solutions over heuristic control strategies. Expanding the 
methodology to multipoint local optimal solutions could 
enable online implementation of near-globally optimal 
controllers. 

5. Conclusions 

This research presented a methodology for developing 
and evaluating optimal energy management strategies for 
hybrid vehicles. Models of the Toyota Prius were 
implemented in Matlab/Simulink and validated against 
chassis dynamometer test data. The validated non-
optimal model matched measured fuel consumption to 
within 1.2% over a real-world drive cycle. Dynamic 
programming was then applied to optimize the 
powertrain control globally. 

The optimal control resulted in 9.5-10% lower fuel 
consumption than the non-optimal rules-based strategy. 
This demonstrates the potential for improvement over 
heuristic controllers. The importance of optimizing 
multiple degrees of freedom, not just the engine 
operating line, was shown. The modeling and simulation 
approach enabled systematic analyzing the complex 
system interactions and trade-offs in hybrid vehicle 
optimization. 

However, the actual fuel consumption benefits may be 
less than predicted since the production Prius control is 
likely near-optimal already. Further validation under real-
world driving conditions could provide more accurate 
quantification of potential savings. Additionally, the 
computational expense of dynamic programming 
currently precludes online implementation. Transitioning 

to multipoint local optimization methods is needed to 
develop controllers that could be deployed on vehicle 
engine control units. 

This research presented a novel methodology for 
developing optimal hybrid vehicle energy management 
strategies using simulation tools. The system modeling 
and optimization framework can provide valuable 
guidance for designing control algorithms. However, 
experimental validation and practical implementation 
considerations must also be addressed in translating 
simulation results to real systems. The modeling and 
analysis approach followed lays the groundwork for 
achieving globally optimal energy management in hybrid 
vehicles. 
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