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Many problems arise from the increasing rain, especially in
urban areas where the drainage pipeline typically cannot
quickly manage large amounts of water. Flood prediction is
critical for effective disaster management and mitigation,
particularly in urban regions prone to severe flooding.
Meanwhile, large amounts of data cannot be handled by
typical flood detection models, which are unreliable for
complicated processes. Deep learning (DL) approaches are
frequently used in flood control to solve these issues and
enhance the functionality of conventional flood detection
systems. A new deep hybrid model called MobileNet-
DenseNet, which uses a training method, is presented to
predict floods. The filtering approach is used to pre-process
the raw satellite image. Next, the weighted clustering
technique divides the pre-processed image into segments.
Using the retrieved feature set, a hybrid model is applied
to the features to predict floods. Additionally, during the
training phase, the combination data augmentation is used
to choose the optimal weights for the hybrid models, thus
improving their prediction performance. By adding extra
neural layers to deep neural networks, this hybrid method
increases their effectiveness while reducing the number of
errors. The experimental findings unequivocally show that

the suggested study project has met the following
analytical standards: sensitivity of 94%, specificity of 98%,
accuracy of 95%, FNR of 0.02%, and FPR of 0.02%.

Keywords- Flood Prediction, Deep Learning, Prediction,
Accuracy, Features.

1. Introduction

One of nature's worst disasters, floods cause a great deal
of death, destruction of property, and disruption of the
economy. Flood occurrences are anticipated to grow more
common and severe as environmental issues increase,
putting people worldwide in greater danger. The need for
accurate and timely flood prediction has never been more
critical. Traditional flood detection systems, often reliant
on statistical models and sensor networks, have
demonstrated limitations in predicting flood events with
the precision and speed required for effective disaster
management. To reduce danger during weather events and
enable remote monitoring of floods, cities must prepare
flood maps (Arshad et al. 2019). However, the complexity
of urban environments is such that the degree of flooding
is discontinuous due to ponding, narrow, transient floods,
streams at submeter resolutions, and ponding (Bai et al.
2018). It is challenging to map urban flood episodes
because of these three variables. Applying methods to
hydrologic systems in flood prediction is complex because
of these variables (Basnyat et al. 2018).

Conventional methods are employed to map flood risk and
urban flooding. Small-scale high-resolution hydrologic
modeling is successful; nevertheless, acquiring the
necessary computational capability with current
technology is challenging. Correct assessment of the urban
floods at the community level depends on precisely
accurate inputs (Bochkovskiy et al. 2020). These restricting
variables highlight the need for less computationally
demanding mapping or forecasting methods for flooding
(Bulti & Abebe 2020; Chia et al. 2023). Over the past
decade, several novel technologies have been
incorporated to improve the collection of flood depth data
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in metropolitan settings. These technologies include object
detection in flood imaging, remote sensing, DL, and social
media or crowdsourced data. In the work by
(Faramarzzadeh et al. 2023), the authors devised a method
to differentiate between "flood" and "non-flood" events
using over 100,000 online images, leveraging artificial
intelligence and content-based image retrieval. In addition,
by examining text from internet news sources, the author
created a DL classifier to identify flooding situations (Feng
et al. 2021). Although these developments have opened up
new avenues for urban flood monitoring, there is still a
need for improvement in accurately and consistently
monitoring floodwater levels in several locations. The
utility of flood images has been enhanced by using high-
resolution images from water level meters in CCTV systems
to infer water levels using image recognition technology
(Gauen et al. 2017).

Additionally, a low-cost, low-power cyber-physical system
model detects rising water levels using a Raspberry Pi
camera, image processing, and word recognition. This
prototype may help a low-human-interaction flash flood
detection system become widely used (Guo et al. 2021;
Ichiba et al. 2018). The requirement for on-site video
systems and water level meters in crowded metropolitan
regions makes it difficult to install these systems in urban
environments (Jiang et al. 2019; Kankanamge et al. 2020).
Considering the mentioned constraints, this study attempts
to provide a novel method for continuously monitoring
urban flood levels at specific sites for flash floods. Traffic
images during floods are analyzed using image recognition
technology to assess flood levels by comparing the water
surface's position relative to reference objects, such as
people and vehicles.

1.1. Problem statement

DL techniques have revolutionized various domains
recently, offering new approaches to complex problems
such as flood prediction. DL models, with their ability to
learn and extract features from vast datasets, have shown
promise in improving the accuracy of flood forecasts.
However, these models are not without their challenges.
High computing costs, overfitting, and the necessity for
vast amounts of labeled data are some issues that have
limited their widespread adoption in real-time flood
prediction systems (Hammond et al. 2015). To address
these challenges, this paper presents a new hybrid
methodology for flood rate prediction and analysis,
combining the strengths of two state-of-the-art DL
architectures: MobileNet and DenseNet. The proposed
model utilizes the lightweight and efficient nature of
MobileNet, designed for mobile and embedded vision
applications, and the densely connected layers of
DenseNet, known for mitigating the vanishing gradient
problem and promoting feature reuse.

The paper proposes a new method for surface water depth
detection in images that is more computationally and
economically efficient than conventional approaches that
measure flood depths using sensors and numerical models.
This approach performs better when flood depth data is
provided over vast areas. The proposed technology might
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also give real-time flood-level data by analyzing existing
traffic surveillance images. Given the widespread use of
traffic surveillance cameras in metropolitan areas
worldwide, this method can significantly enhance urban
flood monitoring and facilitate early warning systems.
Remote sensing increases control over flood threats by
enabling large-scale flooding without requiring incredibly
accurate inputs or computationally demanding methods.
Studies on predicting floods have been conducted in
satellite or aerial imaging domains. No matter how much
cloud cover there is, the radar is a sensor that continuously
scans the surface of the Earth. Because of their shadow and
latency in a complex metropolitan setting, it has been
demonstrated that SAR data are unsuitable for tracking
floods in metropolitan settings (Jiang et al. 2020). In real-
world applications, ground truth data is scarcer; hence,
unsupervised detection techniques are typically used to
provide rapid flood mapping. However, with new image
processing algorithms, improved data, additional
information, and better processes, some progress has been
made in applying SAR to applications related to urban
floods. The following are this work's main contributions:

1.2. Research Contribution

Integrating MobileNet and DenseNet in this hybrid model
creates a robust framework capable of handling the diverse
and dynamic nature of flood-related data. A customized
technique that maximizes the performance of both
architectures is used to train the model, guaranteeing that
the predictions are both accurate and computationally
efficient. Because of this, the suggested model can be used
in situations where prompt decision-making is necessary
for efficient flood control. In this study, researchers
compare the performance of the suggested hybrid model
to other cutting-edge DL methods and conventional flood
prediction models. The results demonstrate that the
MobileNet-DenseNet hybrid model outperforms existing
methods. The successful integration of these two
architectures provides a promising direction for future
research in flood prediction and other environmental
monitoring programs.

1.3. Aim

To design an efficient and lightweight hybrid deep learning
framework by integrating MobileNet and DenseNet
architectures to deliver accurate real-time flood rate
predictions to support proactive disaster response and
reduce flood-induced damage.

1.4. Objectives

v To develop a hybrid deep learning model that
synergizes the computational efficiency of MobileNet
with the advanced feature representation capabilities
of DenseNet for accurate flood rate prediction.

v" Pre-processing and consolidating heterogeneous data
sources—such as satellite imagery, precipitation
levels, river water heights, and soil moisture—into a
unified format optimized for deep learning
applications.

v To assess the proposed model’s performance by
benchmarking it against existing approaches using key
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evaluation metrics,

recall, and F1-score.
v" To optimize the model for real-time deployment by

balancing prediction accuracy with computational

efficiency, enabling effective operation on mobile or edge

devices in flood-prone and resource-constrained regions.
1.5. Scope

including accuracy, precision,

The study is centered on forecasting flood intensity—
specifically the rate of water level rise—through applying
deep learning techniques to environmental and
meteorological datasets.

v' It encompasses integrating data from various sources,
including satellite imagery, loT-based sensor networks,
and meteorological databases.

v' The hybrid model is trained and validated using
historical flood records from geographically diverse
regions to ensure generalizability and robustness.

v The research also explores potential real-world
deployment within smart city frameworks, early
warning systems, and disaster management platforms
to facilitate timely and effective responses.

1.6. Motivation

Floods are among the most destructive natural disasters,
frequently resulting in significant loss of life, widespread
property damage, and the disruption of critical
infrastructure.

v' Traditional hydrological models often entail intricate
manual calibration and demand substantial
computational resources, making them unsuitable for
real-time prediction and deployment.

v" In contrast, recent advancements in deep learning
have shown strong capabilities in capturing
spatiotemporal dependencies, essential for reliable
flood forecasting.

v The proposed hybrid MobileNet-DenseNet
architecture combines the lightweight efficiency of
MobileNet with DenseNet’s capacity for intricate
feature extraction, offering a powerful solution for
real-time flood prediction in resource-constrained and
remote settings.

v' Enhancing predictive accuracy empowers decision-
makers to initiate timely interventions, thereby
mitigating flood-related consequences and bolstering
the resilience of vulnerable communities.

This research article is set up as follows: The analysis of the

relevant literature in flood prediction using DL techniques

is in Section 2. The following section details the proposed
hybrid model's architecture, training methodology, and
dataset used for evaluation. The experimental findings and

a comparison of the model's performance with existing

approaches are shown in Section 4. The work eventually

ends in Section 5, which summarizes the key results and
prospective avenues for additional research.

2. Related works

Li et al. (2018) created a unique time series analytic
processing method to determine the Mekong Delta's
floodable areas wusing current satellite imagery.
Professionals were interested in these significant issues,

and researchers employed the image LiDAR/image RADAR
to monitor and identify changes in floodable regions,
manage flood hazards, and map flood zones. Maps,
assessments, and forecasts of floods resulting from ice
jams and snowmelt were conducted by Li et al. (2019) using
operational meteorological satellites. When paired with
temperature  measurements, satellite-based flood
forecasts were meant to yield more precise locations and
timings of floods brought on by ice jams and snowmelt.
Wide-end users could now dynamically detect and forecast
floods induced by ice jams and snowmelt thanks to the
efforts and outcomes of this study's flood products from
VIIRS and GOES-R. The method for identifying floods in a
time series was extended by (Mignot et al. 2019), and they
looked at the forecasting of flood episodes by contrasting
two subsequent Sentinel-2 images. Three water-sensitive
satellite bands were tested as input series, and DCNN,
which had been pre-trained and fine-tuned, was used to
identify floods. Different remote sensing-based baseline
CD techniques were used to compare the suggested
strategy (Misra 2019). More precise determination and
assessment of the floods' impact was made possible by the
proposed method by the crisis management authority.
Using Google Earth Engine (Nigussie & Altunkaynak 2019),
an ML-based method was created to map and forecast the
daily downscaling of 30-m flooding. The NOAA global
prediction model's rainfall forecasts and SMAP and Landsat
retrievals were combined to create and train the CART
technique (Park et al. 2021; Rangari et al. 2019). When FW
projections over randomly selected dates were compared
against Landsat readings, an independent verification
process found a significant correlation (R = 0.87). A flood
segmentation method was created by (Rong et al. 2020)
and was successful on the accelerator on the PhiSat-1
(Singh et al. 2018) (Wang et al. 2021), producing flood
masks to be sent in place of the raw images. An effort was
made to make this concept easier to illustrate by the
current ESA PhiSat-1 project, which integrates a power-
constrained ML accelerator, hardware capabilities for
onboard processing, and software for running custom
applications. U-Net ensembles can yield trust estimates, as
proposed by Wang et al. (2013); they proposed a semi-
supervised learning approach with progressive accuracy
gains through pseudo-labeling. A three-stage cycle
approach was employed: 1) Utilizing a hand-labeled
dataset with early availability and high confidence to train
multiple U-Net frameworks in an ensemble method; 2)
Removing poorly generated labels; and 3) Integrating the
dataset with the created labels.

Urban flood forecasting utilizing machine learning (ML) and
geographic information systems was proven by Wang et al.
(2018). This study will integrate GIS methods and ML
classifiers to develop a flood forecasting system that could
be a helpful instrument for urban planning. The approach
above proved beneficial in formulating a long-term
strategy for smart cities, as it yielded reasonable flood risk
indices and components. Random Forest was a successful
ML methodology with 96% accuracy. The increased false-
positive rate brought about by the increased sensitivity
implies that a higher system threshold is required. The



author developed two deep-learning neural network
architectures in 2021 for mapping and predicting the
probability of spatial floods: CNN and RNN. In the Golestan
Province in northern Iran, environmental factors and
historical flood disaster data were compiled into a
geospatial database, which was used to create and
evaluate the predictive models. Following their training
using the SWARA weights, the CNN and RNN models
underwent the standard procedure for validation. The
outcomes demonstrated that in terms of forecasting future
floods, with an AUC of 0.814 and an RMSE of 0.181, the
CNN model outperformed the RNN model. They aim to
simplify the complicated structure of flood disasters, yet
they frequently result in inaccurate results.

Sentinel-1 and Sentinel-2 employed multitemporal
techniques in a CNN-based guided flood mapping
demonstration (Yin et al. 2015). Introduced was
OmbriaNet, which is reliant on CNN. It utilized the
variations in time among flood episodes to differentiate
between permanent and flooded water areas that multiple
sensors can extract. This research demonstrated the
process of generating a supervised dataset using novel
platforms to aid in handling flood-related emergencies.
However, CNNs have demonstrated decent performance
when used for supervised categorization on a small
geographic scale. In 2022, the author examined changes in
the northeastern Caspian Sea's coastline using geographic
information systems (GIS) and remote sensing methods to
forecast the intensity of floods caused by sea level rise. The
suggested technique for making dynamic maps- utilizing
GIS and remote sensing was applied to follow the shoreline
and predict the amount of flooding in a specific location.
Predicting when the northeast coast would flood was easy
with just one map. However, the forecast quality is
decreased by the constant ecological degradation and
fluctuating sea level.

A DL system (CNN-LSTM) was presented by Yu et al. (2018)
to analyze rainfall radar maps in two dimensions and
calculate runoff directly. The CNN-LSTM model used in this
study had NSE values comparable to or less than those
from the previously described study. The Nash-Sutcliffe
efficiency (NSE) for runoff simulation over time may be
greater than 0.85 with proper training data selection. Due
to its disregard for the extreme values in the one-fold
training dataset, the CNN-LSTM calculated the extreme
flows inaccurately. The study found that even though the
satellite data has many errors, the knowledge gleaned from
it typically exceeds the measurement limitations. The
location of the flooded area using various remote sensing
techniques and studies is also unclear due to the poor
interpretation of the data. To date, various techniques
have been used to assess systems based on remote
sensing. Utilizing less training data, running faster, taking
less time, and offering more computational efficiency make
unsupervised DL systems more dependable (Zou et al.
2019). As a result, a hybrid DL model is provided for more
accurate and efficient flood mapping and detection. It
provides faster processing and better performance with
fewer data points. In order to help other towns that are
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vulnerable to flooding, the suggested approach uses
satellite data to detect floods and reduce the danger of
flooding related to transportation projects and the
expansion of urban structures.

Flood prediction has been the subject of numerous studies
that have used statistical and machine learning methods to
increase accuracy and give real-time updates. For example,
models such as Multi-Layer Perceptron (MLP), Random
Forest (RF), and Convolutional Neural Networks (CNN) have
demonstrated significant success. CNNs have been used
with UAVs (drones) to evaluate real-time flood damage to
infrastructure. In contrast, RF models have demonstrated a
remarkable 98.5% accuracy in recognizing flooded areas in
one instance. Furthermore, many watershed simulations
have used hydrological models, like the Hydrologic
Engineering Center's Hydrologic Modeling System (HEC-
HMS), to forecast floods. The Tabouk watershed research
demonstrates that these models mimic rainfall and runoff
using information from topography, land use, soil types,
and historical storm events. HEC-HMS is key in estimating
peak flow rates and identifying flood-prone zones. These
studies highlight the growing trend of combining machine
learning with traditional hydrological models, often
incorporating data from GIS, remote sensing, and UAVs to
increase flood detection precision and efficacy forecasting
and risk mitigation strategies (Subramanian et al. 2024;
Sundarapandi et al. 2024; Venkatraman & Surendran 2023;
Venkatraman et al. 2024).

In recent years, DL models have emerged as a promising
advancement offering significant improvements in
prediction accuracy, scalability, and regional applicability
for food forecasting (Babu et al. 2024). Several DL
techniques are commonly employed in food forecasting,
including convolutional neural networks (CNN) (Surendran
et al. 2021), recurrent neural networks (RNN) (Arun et al.
2022), deep belief networks (DBN), long short-term
memory (LSTM) (Jasmine et al. 2025), and gated recurrent
units (GRU). These DL algorithms excel at handling high-
dimensional and spatiotemporal data, which are critical
factors in food forecasting (Nirmal et al. 2025). RNNSs, in
particular, have attracted significant attention due to their
capacity to effectively capture sequential data through
specialized recurrent hidden units (Babu et al. 2024).
However, traditional RNNs face limitations such as the
vanishing and exploding gradient problems, making it
challenging to process long-term sequential data
(Venkatraman et al. 2025). Numerous studies have shown
that LSTM, an enhanced variant of RNN, outperforms in
food prediction tasks (Nirmal et al. 2025). LSTM models
have been applied successfully to food forecasting, yielding
impressive predictive accuracy (Karthick et al. 2018).
Nonetheless, there remains a lack of comparative studies
examining the relative effectiveness of ML versus DL
approaches in food prediction.

2.1. Research Gap

The existing literature highlights significant advancements
in flood prediction and analysis through various DL and ML
models, including time-series analysis, satellite imagery,
and GIS integration. However, these approaches exhibit
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limitations, such as dependency on large datasets,
computational inefficiencies, and challenges in achieving
accurate predictions across diverse geographic scales.
While methods like CNNs, RNNs, and hybrid models like
CNN-LSTM have shown promise, they often struggle with
high false-positive rates, inaccurate extreme value
estimation, and limited scalability. Furthermore, many
models require extensive data pre-processing and face
difficulties in real-time flood prediction, particularly in
resource-constrained environments. These gaps highlight
the need for a more robust, efficient, and scalable
approach to deliver accurate flood predictions with less
reliance on extensive datasets and computational
resources. The proposed hybrid model, combining
MobileNet and DenseNet, aims to address these gaps by
providing improved prediction accuracy and better
adaptability to varying data conditions, finally enhancing
flood management systems.

3. Proposed Methodology

The proposed research methodology focuses on
developing a hybrid deep learning model combining
DenseNet and MobileNet to enhance flood prediction
accuracy. The process starts with the input samples, which
are first put through pre-processing procedures to
guarantee the consistency and quality of the data. The next
step is image augmentation, which increases the dataset
and improves the model's capacity to generalize in various
contexts. After that, the augmented photos are divided
into areas that have been flooded and those that have not,
which is crucial for model training. The pre-processed data
is subjected to a dimensionality reduction procedure,
which helps optimize the model's efficiency and lower its
computational complexity. The hybrid model then uses the
reduced-dimensional data to efficiently predict flood
occurrences by combining the advantages of DenseNet and
MobileNet. In order to provide precise and timely flood
prediction findings, the last step entails prediction modules
that distinguish between flooded and non-flooded
locations. This project aims to create a technique for
identifying floods in satellite photos. The suggested hybrid
model's general block diagram is displayed in Figure 1. The
study's five phases include feature extraction,
segmentation, pre-processing, dataset gathering, and flood
prediction.

Flood prediction
model

DenseNet with

Prep i
J l/ MobileNet

Input Image augmentation

sample for — Hybrid model-
flood /\ Dimensionality e
prediction reduction

prediction ‘

Non- L
Flooded i
regioon region
& Prediction modules

Flooded and Non-Flooded Region
Figure 1. Workflow of the Proposed Model
3.1. Details of the Dataset

Access to the data set is available at
https://earthobservatory.nasa.gov/images/92669/beforea

nd-after-the-kerala-floods. Homes in Kerala have been
destroyed by a "once-in-a-century" flood that has driven
almost a million people from their homes and taken
hundreds of lives. Heavy rain descended across the region
on August 8 2018. The left image was taken before the
flood on February 6, 2018, using the Landsat 8 operational
land imager (OLI) (bands 6-5-3). The image was taken on
August 22, 2018, after the area had flooded, using the
Multispectral Instrument on the Sentinel-2 satellite of the
European Space Agency (bands 11-8-3). Several rivers in
the region have spilled over onto the beaches.

3.2. Pre-processing
In this cenao, (i, j)=b={12,...B}, where B is the number

of bands, and B=13 is the set of wavelengths that include
water vapor, blue, green, red, coastal aerosol, NIR,
vegetation red edge, blue, green, and red. The median filter
(MF) technique is applied as a pre-processing step to the
input image. MF aims to replace the value of the center
pixel with the field median by analyzing the pixel sizes
inside a domain. In Eqg. (1), the noise is represented by r
open paren i, j close paren. The value of the final pixel
determines the series' center value, filtering result

p; (i,j) . The sliding filter window pixels are sorted using
the MF technique (Rong et al. 2020).

Pi (i) = median{r (i, }).1, (i,./) € Oy} (1)

O; Are the domain windows centered on (/, j)? The
segmentation algorithm then uses the pre-processed
image, designated as pé, as an input; the next part goes

more in-depth about this.

3.3. Image Augmentation

The model used picture augmentation techniques to
improve its ability to overfit, extrapolate, and expand the
dataset. Geometric adjustments are used to create various
image sizes. The photos are rotated to 30, 60, and 90
degrees to obtain varying picture sizes. Rotating the photos
by 30, 60, 90, and 120 degrees replicates patient
orientation shifts. The model inverted the photos to create
object variations. Elastic deformation can change the
position and shape of an image-based object. Artificial
samples are incorporated into state models using the
superimposition technique. It aids in assessing how well
the model can categorize the various labels.

The production of high-quality synthetic images is made
possible by generative adversarial networks, or GANs. The
system comprises two neural networks competing: a
discriminant and a generator. To rectify the data
imbalance, the model uses multi-channel GANs to create
syntheticimages. The flood photographs were used to train
and evaluate the multi-channel GAN model. The images
were created using pre-processed images. Without further
training, pre-trained GANs enable the machine to generate
flood images that resemble actual photographs. In order to
do semantic interpolation, the images are also generated
at many locations within the latent space (Wang et al.
2021).
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3.4. Feature Representation

Using the weights from the DenseNet-121 model that was
previously trained, a feature extraction model was
developed. A series of convolutional layers, batch
normalization, and the RelLu function are used for feature
extraction. The suggested feature extraction model's
design is seen in Figure 2. Using a 1x1073 learning rate, the
DenseNet-121 model's weight is utilized to train the
feature extraction model's final set of layers. Fewer
parameters are needed for the feature extraction when
using the frozen pre-trained DenseNet-121 model. At last,
a fixed-size feature vector for every image is obtained by
the global average pooling layer. The PET/CT image
classification process uses as little computer power as
possible, thanks to the feature extraction procedure (Wang
et al. 2018). The mathematical representations for creating
fixed-size features are presented in Eq. (3):

Feature = conv+ ReLU + batchy, .., alization (Ii), i=12,...n (3)

fixed size g4, = Global, 2D( features) (4)

vg. pooling

[J Global Pooling
[l 4x4 Pooling
[l 2x2 Pooling
[ Identity

Figure 2. DenseNet Architecture for analysing the input flood
samples

3.5. Dimensionality Reduction

By creating a compact latent space representation, deep
autoencoders are utilized to reduce the dimensionality of
flood images. With the use of an encoder-decoder
architecture, the goal of this method is to use the lower-
dimensional compressed representation of the input image
to reproduce it. To reduce the dimensionality of the
features, the model employs a multi-layer encoder
network. The encoder's layers employ learned weights and
biases to convert input data into a reduced-dimensional
expression.

Initial
stage
-
/

Transfer learning +
Fine-tuning

Feature
Stage 4 extraction
Stage 5

Classification

=3
=

7x7x160 T

14x14x 112
A 7X7x960

Conv 1 Conv 2
1x1%128

14 x 14 x 80
Depthwise separable
convolution
Inverted residual block
(Bottlenek)

H Adaptative average
’ pooling
1 1x1 point-wise
¥ convolution

Output

28 x 28 x 40

224 x224x3

Figure 3. MobileNet Architecture for analysing the features and
prediction
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The dimensionality is decreased using various methods,
such as convolutions, pooling, and non-linear activations.
The provided image is subjected to latent space
compression during the encoder's last stage. This latent
space has considerably fewer dimensions than the initial
picture. The autoencoder's design constraint is the latent
space. The input image's essential components and
patterns are retained in a condensed form. The decoder
network aims to replicate the original feature using the
low-dimensional model of the latent space. As the quantity
of decoder layers increases, so do the representation's
dimensions. The latent space constriction is the cause of
the dimensionality reduction. The encoder network
eliminates unnecessary or redundant data while
maintaining the key characteristics of the features.

3.6. Flood Prediction

Optimizing embedded system efficiency is MobileNet's
primary goal, and MobileNet models are perfect for
creating lightweight image classifiers. In contrast to larger,
more parameter-heavy models, its tiny size might limit its
ability to capture intricate shapes and patterns. Complex
feature extraction activities, such as high-resolution image
processing or sophisticated object recognition, can be
beyond the capabilities of the competent MobileNet V3, as
in Figure 3. The development of MobileNet V3 models is
centered on mobile devices and real-time applications.
There are inevitable trade-offs between the accuracy and
size of the model that need to be considered. Applications
that demand precision and low processing power might not
fit a MobileNet V3-Small model well. Its ability to classify
flood models could be limited in terms of generality. To
overcome these limitations, the research model uses the
weights derived from the MobileNet V3-Small framework
to develop a classification model for image categorization.
Four convolutional layers are wused in total for
categorization. MobileNet weights are used to train the
final layers. During training, the model unblocks the three
MobileNet model layers. The flood is predicted by
incorporating the softmax function and fully connected
layers into the model (Misra et al. 2019). The softmax
function's computational version is presented in Eq. (5):

. i (5)
ofi ):4—

>
J=1

The symbols represent the input vector's conventional
. I I, .
exponential factors. €' and e’ , respectively, and the

Softmax function is symbolized by o () .1 Represent the

image. Furthermore, by employing a decay schedule and
learning rate, the model enhances training stability and
convergence. Training time is reduced by optimizing the
pipeline for pre-processing and data loading. The trade-off
between inference performance and model size is
maintained through quantization-aware training. Weight
and activation redundancy in quantization-aware training
maximize the research model. The final model can achieve
a fourth of the initial dimensions and memory use.
Additionally, accuracy is lost little to no when a factor of
two to four increases inference rates. The suggested model
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can be utilized in real-time applications and with edge
devices because of the training process. Early termination
is the last tactic, shortening training time and preventing
over-fitting. Flood prediction systems are frequently
deployed in remote or resource-constrained
environments, such as riverbanks and rural regions.
Despite its compact architecture, the model incorporates
squeeze-and-excitation blocks and hard-swish activation
functions, which significantly enhance its ability to
represent features. This makes it particularly effective in
extracting vital flood-related visual cues from the input
frames.

3.7. Optimization

The proposed model utilizes the Adam (Adaptive Moment
Estimation) optimizer to iteratively update its parameters
during training. Adam is a sophisticated optimization
algorithm that synergistically combines the strengths of
two widely used methods: Adagrad and RMSProp.

e Adagrad dynamically adjusts the learning rate for each
parameter by accumulating the squared gradients
from previous steps, making it particularly effective for
handling sparse data.

e RMSProp, in contrast, addresses Adagrad’s
diminishing learning rates by employing an
exponential moving average of squared gradients,
thereby maintaining a more stable and efficient
learning process.

Adam unifies these techniques by computing and

maintaining:

e The first moment (mean) of the gradients, akin to
momentum, to capture the direction of the parameter
updates.

e The second moment (uncentered variance), which
represents the exponentially weighted average of past
squared gradients, to adaptively scale the learning
rates.

In the context of this model:

e The uncentered variance is dynamically updated to
ensure training stability.

e The decay rates of the moving averages governed by
the hyper-parameters B, and B.—control the influence
of past gradients on current updates.

e These adaptive mechanisms enable the model to
achieve faster convergence and effectively avoid local
minima, which is critical for training robust flood
detection systems.

Overall, this optimization strategy leverages the adaptive
learning rate characteristics of Adagrad and the gradient
normalization benefits of RMSProp, while Adam effectively
integrates both through exponential averaging. This makes
it exceptionally well-suited for complex and noisy learning
environments, such as those encountered in flood
prediction tasks.

4. Numerical Results and Discussion

Python has been utilized in this study to accomplish the
recommended flood identification in the satellite image.
Operating systems: A 64-bit Intel CPU, 12 GB RAM, free disk
space of 5GB, Windows 11, RHEL 6/7, Linux, and Mac OS X

10.11 are required. Multi-core CPUs, such as Intel
processors, are essential for parallel processing,
particularly when deploying deep learning models that
require substantial computational power, such as those
used in flood prediction. Systems with up to 256GB of RAM
are often necessary, depending on the dataset's size and
the model's complexity. This robust experimental setup
allows the flood prediction system to be highly accurate,
scalable, and capable of processing real-time data, which is
crucial for early warning and disaster management. The

subsequent experimental setups are employed
(Kankanamge et al. 2020):
TP+TN (6)
Accuracy =
TP+TN + FP+ FN
7
Precision = L =1-FDR )
+FP
TP 8
Sensitivity = ———— =1-FNR (®)
+FN
TN )
Specificity = —— =1—-FPR
pecificity TN + FP
10
FPR:L:I—TNR (10)
FP+FN
11
R = _IN =1-TPR (1)
TP+ FN
12
NPV:L:FFOR 12)
TN + FN
2TP (13)
F —measure = ——
2TP+FP+FN
MCC = TP*TN — FP* FN (14)

J(TP+FP)+(TP+ FN)+(IN + FP)+(TP+FN)

Equations (6) through (14) are used to calculate results like
F-measure, specificity, sensitivity, FNR, FPR, NPV, and MCC
to assess the various networks' performance. The efficacy
of the deep hybrid model for flood prediction is evaluated
using accuracy, NPV, FPR, and other factors, as opposed to
long short-term memory (LSTM), recurrent neural
networks (RNN), deep belief networks (DBN), fully
convolutional neural networks (FCNN), support vector
machines (SVM), and bidirectional gated recurrent units
(Bi-GRU). A study on segmentation accuracy, statistical
analysis, and ablation is carried out to prove the hybrid's
effectiveness further. The segmented image is represented
in the usual k-means algorithm. However, it cannot identify
a better section for flood-affected locations since it
overlaps with the existing data in various domains. The
segmented image was created using one of the most
popular image segmentation techniques. Also, this
approach cannot discriminate between objects with
comparable color intensity. This approach's accuracy is
almost negligible because it initially identified the flooded
area and then, over time, identified the static regions close
to the flood areas. The segmented image created by the
suggested hybrid approach is shown at the end. This allows
for the accurate detection of the flood regions (paths)



without causing any overlapping with the previously
collected data. The graphic shows the afflicted area,
represented by the greenish portion, and the path of
flooding moving through the affected areas, represented
by the orange-colored portions.
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Figure 4. Training accuracy attained using MobileNet-DenseNet

Figure 5. Training Loss attained using MobileNet-DenseNet

4.1. Evaluation

Table 1 compares the evaluation of the hybrid approach for
detecting floods in satellite images to other metrics such as
RNN, DBN, SVM, LSTM, Bi-GRU, and FCNN, as in Figure 4
and Figure 5. The hybrid model achieves a greater precision
of about 95% at a learning rate of 80%; nevertheless, the

Table 1. Overall Performance Evaluation Comparison
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corresponding values for RNN, DBN, SVM, LSTM, Bi-GRU,
and FCNN are 79.6%, 78.1%, 78.9%, and 76%, respectively.
The hybrid achieves a specificity of 98.5% when the
learning is adjusted to 60%. Conversely, the other
classifiers have the following specificities: SVM = 58%, Bi-
GRU =63%, RNN =84%, DBN =81%, LSTM = 85%, and FCNN
=65%.

The research model produced an accuracy of 95%; in
contrast, the RNN, DBN, SVM, LSTM, Bi-GRU, and FCNN
produced lower accuracy of 85%, 83%, 84%, 89%, 88%,
73%, 86%, 84%, 90%, 91% and 79%, respectively. At the
90th learning percentage, the proposed model reported a
sensitivity of 94%, whereas at the 70th learning
percentage, it recorded a sensitivity of 81%. In addition,
whereas the proposed model establishes a sensitivity of
92% at the 60th learning percentage, it maintains a
sensitivity of 84% at the 80th learning percentage. The
hybrid model study is computed over RNN, DBN, SVM,
LSTM, Bi-GRU, and FCNN and is based on recognizing floods
in satellite images. In contrast, the suggested model
produced the following results at the 90% learning rate: Bi-
GRU =0.009, RNN =0.185, SVM =0.005, LSTM =0.174, DBN
=0.152, and FCNN = 0.091. It also yielded an FNR of 0.02.
The FPR of 0.024 was the lowest for the suggested model;
however, the RNN, DBN, SVM, LSTM, Bi-GRU, and FCNN
produced FPRs of 0.083, 0.094, 0.089, 0.236, 0.338, and
0.273. Consequently, the research model outperforms
traditional classifiers on negative metrics, as shown in
Figure 6.

Methods Accuracy Sensitivity Specificity Error rate
DBN 83.6% 85% 86% 13.56
RNN 78.8% 80% 82% 24.8
LSTM 79.8% 89% 85% 13.5
SVM 80% 90% 88% 11.6
Bi-GRU 82% 91% 88% 15.5
FCNN 81% 80% 85% 25
Proposed Hybrid Model 95% 100% 99.8% 6.50
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Figure 6. Overall Performance Evaluation

4.2. Ablation Study

The shown model, the standard model, and the suggested
model's ablation research are summarized in Table 2. The
accuracy of the flood prediction with optimization, the
flood forecast with the hybrid model, and the
corresponding flood prediction using weighted k-means
clustering and cubic chaotic map was 89.22%, 87.65%, and
93.65%. The flood prediction's FPR is 0.105 without
DenseNet, 0.136 using a cubic chaotic map weighted
according to k-means clustering, and 0.036 using a hybrid
method. The suggested model has a 90.59% net present
value, a false positive rate of 0.085797, and an accuracy of
95%, as in Figure 7. Based on Table 2, it is proven that the
proposed model with DenseNet gives promising outcomes
in flood prediction compared to normal prediction
strategies. The accuracy is 95%, sensitivity is 93%, precision
is 93.7%, F-measure is 87%, specificity is 98%, MCC is 87%
and FNR is 0.08.
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Table 2. Results of the Ablation Study

Metrics Prediction without DenseNet Prediction with DenseNet
Sensitivity 93
Precision 93.7
F-measure 83.2 87
Specificity 98
McCC 87
Accuracy 95
FNR 17.2 0.08
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Figure 7. Graphical Plot of Ablation Study Analysis

Table 3. Results of Statistical Analysis

4.3. Statistical Analysis

Based on five case studies, the statistical analysis examines
the usefulness of suggested flood detection in satellite
images, considering the mean, standard deviation, best,
median, and poor values. Additionally, the proposed model
is evaluated compared to RNN, LSTM, SVM, Bi-GRU, and
FCNN. Table 3 presents the results. The proposed model
kept its error rate at 0.034 while accounting for the best-
case scenario. On the other hand, the LSTM has 0.119, the
Bi-GRU has 0.144, the DBN has 0.113, the RNN has 0.132,
and the FCNN has 0.226. As a result, it was demonstrated
that the suggested model was appropriate for locating
floods in satellite imagery.

Methods Best SD Mean
DBN 0.11 0.003 0.110
RNN 0.13 0.004 0.126
LSTM 0.19 0.004 0.114
SVM 0.12 0.077 0.045

Bi-GRU 0.14 0.104 0.35
FCNN 0.22 0.022 0.175
Proposed 0.03 0.009 0.023

4.4. Data Convergence
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Figure 8. Error Convergence Rated based on approximation and
exact outcomes
In Figure 8, the hybrid models are contrasted with the DBN,
RNN, LSTM, SVM, Bi-GRU, and FCNN to demonstrate their
superiority in flood detection. The proposed model

achieves a first-iteration error rate of roughly 0.45, which
is lower than that of DBN and FCNN. The recommended
model showed an error value of 0.63 at the 17.5th
iteration; however, the current model still displayed error
values of 0.21, 0.23, 0.34, 0.22, and 0.29. This
demonstrates how accurate results for flood detection in
satellite imagery are obtained with the proposed model.
For peer review, the values of x in remote sensing were
0.34, 0.22, and 0.29, respectively. This demonstrates how
accurate results for flood identification in satellite imagery
are obtained with the proposed model.

4.5. Training and Validation Loss

The training loss ratio to validation loss ratio has grown to
be the most used statistic. Validation loss indicates how
well the model fits new data, while training loss indicates
how well the model matches training data. Figure 6
provides a graphic representation of the training and
validation losses. The training loss started to decrease after
100 epochs, reaching a value of 0.02; in contrast, the
validation loss increased to 0.05. The accuracy of recently
acquired data is demonstrated by validation accuracy,
whereas training accuracy shows the correctness of
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previously taught data. Training and validation accuracy
are graphically displayed in Figure 6. The training accuracy
begins at 0.9894, whereas the validation accuracy is 0.9813
at 100 epochs.

The proposed research model offers several key
advantages, including integrating DenseNet and
MobileNet, which allow for enhanced feature extraction
and improved accuracy in flood prediction. Image
augmentation ensures a more robust model capable of
generalizing well across diverse flood scenarios. At the
same time, dimensionality reduction optimizes
computational efficiency, making the model faster and
more resource-effective. Additionally, the hybrid approach
utilized the advantages of both networks, leading to more
precise and timely forecasts, which are essential for efforts
to control and mitigate disasters.

Despite its strengths, the research model has some
limitations. The dependence on high-quality satellite
imagery and pre-processing may limit its applicability in
regions with insufficient data availability or low-resolution
images. The hybrid model's intricacy necessitates
substantial computer resources, which would not be
feasible for real-time applications in resource-constrained
environments. Additionally, the input data's accuracy and
quality may impact the model's performance, making it
susceptible to noise or dataset abnormalities.

5. Conclusion

This work built a new deep hybrid flood prediction model.
The augmentation strategy was used to pre-process the
input satellite image. The final feature set was used for
hybrid categorization. Both the deep ResNet and DenseNet
classifiers received the final feature set. The outputs from
both updated models were averaged to achieve the desired
result. The deep ResNet and CNN weights were adjusted
using the combination Adam optimizer. In addition, Adam's
efficacy with the hybrid model was evaluated, and the
outcomes were successfully verified. Regarding FNR,
sensitivity, accuracy, and specificity, the results showed
that the suggested model generated the following results:
93.48%, 98.29%, 94.98%, and 0.02% and 0.02%. A
statistical analysis was carried out to find the satellite
image's mean, median, best, standard deviation, and worst
values to assess the efficacy of the suggested flood
identification method.  The  analysis's  findings
demonstrated that even with values for the RNN, DBN,
SVM, LSTM, Bi-GRU, and FCNN, respectively, ranging from
0.113, 0.132, 0.119, 0.124, 0.144, and 0.163, the
recommended model was still able to sustain an error rate
of 0.034. The proposed model gives 95%, 100% sensitivity,
98.5% specificity, and a 6.50% error rate, which is
substantially higher than other approaches. One of CNNs'
primary features is their ability to learn directly from raw
pixel input without requiring human feature engineering or
pre-processing. This suggests that objects, colors, textures,
shapes, and edges—among the most noticeable elements
in the images are automatically identified and modified.
The inference and training processes become quicker and
more effective due to the input data's reduced
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dimensionality and complexity. Nevertheless, deep neural
network design, which is strong and enables the creation
of more intricate and accurate networks, has completely
changed the field of computer vision science. Its poor
interpretability, tendency for overfitting, and complexity
are only a few of its numerous drawbacks. The suggested
study can be extended to investigate more DL with more
hybrid combinations of optimization approaches to
overcome the restrictions and improve the accuracy of
flood predictions. Large, high-quality datasets, such as
historical data (river water levels and rainfall) and real-time
data (such as satellite imaging and IoT sensor data), are
crucial for flood prediction models. These datasets are
essential for training deep learning models and producing
precise and timely predictions. The efficacy of flood
prediction models is hampered by the fact that such data
may be lacking, insufficient, or unavailable in many rural or
underdeveloped areas. Deep learning models' capacity to
learn from previous flood disasters and forecast future
occurrences is reduced without reliable, consistent data.
More work is required to enhance data collection in these
areas, either by creating techniques to deal with sparse or
missing data or utilizing alternate data sources, such as
crowdsourced data or mobile networks. Future studies on
flood prediction can concentrate on combining deep
learning architectures like Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks
with conventional machine learning models like Random
Forest and XGBoost. By integrating these methods, hybrid
models can better capture flood episodes' spatial
(geographical) and temporal (time-series) aspects,
improving prediction accuracy overall. This technique could
considerably improve real-time flood prediction skills and
make them more socially beneficial, offering speedier and
more accurate warnings. The model's performance may be
limited by the availability and variety of high-quality
training data, especially in regions with insufficient
historical flood data or limited sensor infrastructure.
Differences in the spatial and temporal resolutions of
satellite imagery, sensor readings, and weather reports can
introduce noise, potentially diminishing the model's
predictive accuracy. Future advancements could include
the integration of continuous real-time data streams from
loT-based flood monitoring systems to enhance
responsiveness and prediction timeliness. Additionally,
combining deep learning with physical hydrological models
could strengthen the model's robustness by incorporating
domain-specific knowledge into the prediction process.
Developments in this field can be significant for enhancing
flood prediction systems, supporting disaster management
plans, and lowering the death toll, property damage, and
displacement brought on by floods. By improving model
reliability and real-time application, future research will
equip authorities and communities to respond more
effectively to flood hazards and limit their effects on
society.

References

Arshad B., Ogie R., Barthelemy J., Pradhan B., Verstaevel N. &
Perez P. (2019). Computer vision and loT-based sensors in



A HYBRID MOBILENET-DENSENET MODEL FOR FLOOD RATE PREDICTION 11

flood monitoring and mapping: A systematic review, Sensors,
19(22), 5012.

Arun Mozhi Selvi Sundarapandi, Sundara
Navaneethakrishnan, Hemlathadhevi A,
Rajendran*, "A Light-weighted Dense and Tree-structured
Simple Recurrent Unit (LDTSRU) for flood prediction using
meteorological variables", Global NEST Journal. Available at:
https://doi.org/10.30955/gnj.06242

Babu T, Raveena Selvanarayanan, Tamilvizhi Thanarajan and
Surendran Rajendran* (2024) “Integrated Early Flood
Prediction using Sentinel-2 Imagery with VANET-MARL-based
Deep Neural RNN”, Global NEST Journal, 26(10).
https://doi.org/10.30955/gnj.06554.

Bai Y., Zho N., Zhang R. and Zang X. (2018). Stormwater
management of impacts of developments in urban areas
based on SWMM, Water, 11(1), 33.

Basnyat B., Roy N. and Gangopadhay A. (2018). A flash flood
categorization system uses scene-text recognition. In 2018,
IEEE International Conferences on Smart Computing
(SMARTCOMP), 147-154.

Bochkovskiy A., Wang C.Y. & Liao H.Y.M. (2020). Yolov4: Optimal
speed and accuracy of object detections, ArXiv Preprint
ArXiv:2004.10934.

Bulti D.T. & Abebe B.G. (2020). A review of flood modeling
methods for urban pluvial flood applications, Modeling Earth
System and Environments, 6, 1293-1302.

Chia M.Y, Koo C.H, Huang Y.F, Di Chan W. and Pang J.Y. (2023).
Artificial intelligence generated a synthetic dataset to remedy
waters quality index estimations data scarcity, Water
Resources Management, 37(15), 6183-6198.

Faramarzzadeh M., Ehsani M.R., Akbari M., Rahimi R., Moghaddam
M., Behrangi A., Kléve B., Haghighi A.T. & Oussalah M. (2023).
Applying machine learning and remote sensing for gap-filling
daily precipitation data of sparsely gauged basins in East Africa,
Environmental Processes, 10(1), 8.

Feng B., Zang Y. and Borke R. (2021). Urbanization impact on flood
risk based on urban growth data and coupled floods model,
Natural Hazard, 106(1), 613-627.

Gauen K., Dailey R., Laimann J., Ziu Y., Asokan N., Lu Y.H,,
Thiruvatukal G.K.,, Shu M.L. and Cheng S.C. (2017).
Comparisons of the visual dataset for machine learning, In
2017 IEEE International Conferences on Information Reuses
and Integrations (IRI), 346-355.

Guo K., Guan M. & Yu D. (2021). Urban surface water flood
modeling: comprehensive reviews of current models and
future challenges, Hydrology and Earth Systems Science,
25(5), 2843-2860.

Hammond M.J., Chen A.S., Djordjevi¢ S., Butler D. & Mark O.
(2015). Urban floods impact assessments: A state-of-the-art
review, Urban Water Journal, 12(1), 14-29.

Ichiba A., Girres A., Tchiguiriskaia I., Scherttzer D., Bommpard P.
& Ten Velduis M.C. (2018). Scale effects challenge in urban
hydrology is highlighted with a distributed hydrological
model, Hydrology and Earth Systems Science, 22(1), 331-350.

Jasmine J, Sonia Jenifer Rayen, Ramesh T, Surendran Rajendran*
(2025) “Advanced Weather Prediction based on Hybrid Deep
Gated Tobler’s Hiking Neural Network and robust Feature
Selection for tackling Environmental Challenges”, Global NEST
Journal, 27(4). https://doi.org/10.30955/gnj.06757.&nbsp;

Jiang J., Liu J., Cheng C., Huang J. & Xue A. (2019). Automatic
estimations of urban waterlogging depth from video image

Rajulu
Surendran

based on ubiquitous referenced object, Remote Sensing,
11(5), 587.

JiangJ.,Qin C.Z.,Yu ., Cheng C., Liu J. & HuangJ. (2020). Obtaining
urban waterlogging depth from video image using synthetic
image data, Remote Sensing, 12(6), 1014.

Kankanamge N., Yigitcanllar T., Goonetileke A. and Kamruzaman
M. (2020). Determining disaster severity through social media
analysis: Testing the methodology with South East
Queensland Flood tweets, International Journal of Disaster
Risk Reduction, 42, 101360.

Karthik S, Surendran R*, Sam Kumar G.V, Senduru Srinivasulu
(2025) “Flood Prediction in Chennai based on Extended Elman
Spiking Neural Network using a Robust Chaotic Artificial
Hummingbird optimizer”, Global NEST Journal, 27(4).
Available at: https://doi.org/10.30955/gnj.07113.

Li J., Zhang B., Mu C. & Chen L. (2018). Simulations of a sponge
city's hydrological and environmental effect based on MIKE
FLOOD, Environmental Earth Science, 77, 1-16.

Li Y., Martinis S. and Wieland M. (2019). Urban floods mapping
with an active self-learning convolution neural network based
on TerraSAR-X intensity and interferometric coherences,
ISPRS Journal of Photogrammetry and Remote Sensing, 152,
178-191.

Mignot E., Li X. & Dewals B. (2019). Experimental modeling of
urban flooding: A review, Journal of Hydrology, 568, 334-342.

Misra D. (2019). Mish: A self-regularized non-monotonic neural
activation function, Arxiv Preprint Arxiv: 1908.08681.

Nigussie T.A. and Altunkaynak A. (2019). Modeling the effects of
urbanization on flood risks in Ayamama Watershed, Istanbul,
Turkey, using the MIKE 21 FM model, Natural Hazards, 99,
1031-1047.

Nirmal Kumar, M., Subramanian, P., & Surendran, R. (2025).
"Multivariate time series weather forecasting model using
integrated secondary decomposition and Self-Attentive
spatio-temporal learning network”, Global NEST Journal,
27(4). https://doi.org/10.30955/gnj.06195.&nbsp;

ParkS., Baek F., John J. & Kimm H. (2021). Computer vision—based
estimations of flood depths in flooded vehicle images, Journal
of Computing in Civil Engineering, 35(2), 04020072.

Rangari V.A.,, Umammahesh N.V. & Bhat C.M. (2019).
Assessments of inundation risks in urban flood using HEC RAS
2D, Modeling Earth System and Environments, 5(4), 1839-
1851.

Rong Y., Zhang T., Zheng Y., Hu C., Peng L. and Feng P. (2020).
Three-dimensional urban flood inundation simulations based
on digital aerial photogrammetry, Journal of Hydrology, 584,
124308.

Singh P., Sinha V.S.P., Vijahani A. & Pahja N. (2018). Vulnerability
assessments of urban road networks from urban floods,
International Journal of Disaster Risk Reductions, 28, 237—
250.

Subramanian, S. et al. (2024). "An Automatic Data-Driven Long-
term Rainfall Prediction using Humboldt Squid Optimized
Convolutional Residual Attentive Gated Circulation Model in
India,” Global NEST Journal, 26(10).

Sundarapandi, A.M.S., et al. (2024). "A Light-weighted Dense and
Tree-structured, simple recurrent unit (LDTSRU) for flood
prediction using meteorological variables," Global NEST
Journal, 26(8).

Surendran R*, Tamilvizhi T, Lakshmi S, “Integrating the

Meteorological Data for Smart City using Cloud of Things


https://doi.org/10.30955/gnj.06242

12

(CoT)”, London Metropolitan University, London, United
Kingdom, Springer Nature LNICST, 18(19) Aug 2021.

Venkatraman M & Surendran R (2023). "Aquaponics and Smart
Hydroponics Systems Water Recirculation Using Machine
Learning", 2023 4th International Conference on Smart
Electronics and Communication (ICOSEC), Trichy, India, 998—
1004.

Venkatraman, M. et al. (2024). "Water quality prediction and
classification using Attention-based Deep Differential
RecurFlowNet with Logistic Giant Armadillo Optimization,”
Global NEST Journal [Preprint].

Venkatraman, M., Surendran R *., Senduru Srinivasulu,
Vijayakumar K. (2025) "Water quality prediction and
classification using Attention-based Deep Differential
RecurFlowNet with Logistic Giant Armadillo Optimization”,
Global NEST Journal. https://doi.org/10.30955/gnj.0679.&nbsp;

Wang C.Y., Bochkovskiy A. & Lio H.Y.M. (2021). Scaled-yolov4:
Scaling cross-stages partial networks, In Proceedings of the
IEEE/CVF Conferences on Computer Vision and Pattern
Recognition, 13029-130.

RABIN et al.

Wang X., Yan M., Zhu S. & Lin Y. (2013). Regions for generic object
detections, In Proceedings of the IEEE International
Conferences on Computer Vision, 17-24.

Wang Y., Chen A.S., Fu G., Djordjevic¢ S., Zhang C. & Savi¢ D.A.
(2018). An integrated high-resolution urban flood modeling
framework considering multiple information sources and
urban features, Environmental Modelling & Software, 107,
85-95.

YinJ.,,Ye M., Yin Z.and Xu S. (2015). A review of advances in urban
flood risk analysis over China, Stochastic Environmental
Research and Risk Assessments, 29, 1063-1070.

Yu H., Zhao Y., Fu Y. & Li L. (2018). Spatiotemporal variances
assessments of urban rainstorms waterlogging affected by
impervious surface expansions: A Guangzhou, China case
study. Sustainability, 10(10), 3761.

ZouZ.,ShiZ.,,GuoY.andYeJ. (2019). Object detection in 20 years:
A survey, ArXiv Preprint ArXiv:1905.05055.
https://earthobservatory.nasa.gov/images/92669/beforeand
-after-the-kerala-floods (accessed on 01/08/2025)


https://earthobservatory.nasa.gov/images/92669/beforeand-after-the-kerala-floods
https://earthobservatory.nasa.gov/images/92669/beforeand-after-the-kerala-floods

