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Abstract 

Many problems arise from the increasing rain, especially in 
urban areas where the drainage pipeline typically cannot 
quickly manage large amounts of water. Flood prediction is 
critical for effective disaster management and mitigation, 
particularly in urban regions prone to severe flooding. 
Meanwhile, large amounts of data cannot be handled by 
typical flood detection models, which are unreliable for 
complicated processes. Deep learning (DL) approaches are 
frequently used in flood control to solve these issues and 
enhance the functionality of conventional flood detection 
systems. A new deep hybrid model called MobileNet-
DenseNet, which uses a training method, is presented to 
predict floods. The filtering approach is used to pre-process 
the raw satellite image. Next, the weighted clustering 
technique divides the pre-processed image into segments. 
Using the retrieved feature set, a hybrid model is applied 
to the features to predict floods. Additionally, during the 
training phase, the combination data augmentation is used 
to choose the optimal weights for the hybrid models, thus 
improving their prediction performance. By adding extra 
neural layers to deep neural networks, this hybrid method 
increases their effectiveness while reducing the number of 
errors. The experimental findings unequivocally show that 

the suggested study project has met the following 
analytical standards: sensitivity of 94%, specificity of 98%, 
accuracy of 95%, FNR of 0.02%, and FPR of 0.02%.  

Keywords- Flood Prediction, Deep Learning, Prediction, 
Accuracy, Features. 

1. Introduction 

One of nature's worst disasters, floods cause a great deal 
of death, destruction of property, and disruption of the 
economy. Flood occurrences are anticipated to grow more 
common and severe as environmental issues increase, 
putting people worldwide in greater danger. The need for 
accurate and timely flood prediction has never been more 
critical. Traditional flood detection systems, often reliant 
on statistical models and sensor networks, have 
demonstrated limitations in predicting flood events with 
the precision and speed required for effective disaster 
management. To reduce danger during weather events and 
enable remote monitoring of floods, cities must prepare 
flood maps (Arshad et al. 2019). However, the complexity 
of urban environments is such that the degree of flooding 
is discontinuous due to ponding, narrow, transient floods, 
streams at submeter resolutions, and ponding (Bai et al. 
2018). It is challenging to map urban flood episodes 
because of these three variables. Applying methods to 
hydrologic systems in flood prediction is complex because 
of these variables (Basnyat et al. 2018). 

Conventional methods are employed to map flood risk and 
urban flooding. Small-scale high-resolution hydrologic 
modeling is successful; nevertheless, acquiring the 
necessary computational capability with current 
technology is challenging. Correct assessment of the urban 
floods at the community level depends on precisely 
accurate inputs (Bochkovskiy et al. 2020). These restricting 
variables highlight the need for less computationally 
demanding mapping or forecasting methods for flooding 
(Bulti & Abebe 2020; Chia et al. 2023). Over the past 
decade, several novel technologies have been 
incorporated to improve the collection of flood depth data 
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in metropolitan settings. These technologies include object 
detection in flood imaging, remote sensing, DL, and social 
media or crowdsourced data. In the work by 
(Faramarzzadeh et al. 2023), the authors devised a method 
to differentiate between "flood" and "non-flood" events 
using over 100,000 online images, leveraging artificial 
intelligence and content-based image retrieval. In addition, 
by examining text from internet news sources, the author 
created a DL classifier to identify flooding situations (Feng 
et al. 2021). Although these developments have opened up 
new avenues for urban flood monitoring, there is still a 
need for improvement in accurately and consistently 
monitoring floodwater levels in several locations. The 
utility of flood images has been enhanced by using high-
resolution images from water level meters in CCTV systems 
to infer water levels using image recognition technology 
(Gauen et al. 2017). 

Additionally, a low-cost, low-power cyber-physical system 
model detects rising water levels using a Raspberry Pi 
camera, image processing, and word recognition. This 
prototype may help a low-human-interaction flash flood 
detection system become widely used (Guo et al. 2021; 
Ichiba et al. 2018). The requirement for on-site video 
systems and water level meters in crowded metropolitan 
regions makes it difficult to install these systems in urban 
environments (Jiang et al. 2019; Kankanamge et al. 2020). 
Considering the mentioned constraints, this study attempts 
to provide a novel method for continuously monitoring 
urban flood levels at specific sites for flash floods. Traffic 
images during floods are analyzed using image recognition 
technology to assess flood levels by comparing the water 
surface's position relative to reference objects, such as 
people and vehicles. 

1.1. Problem statement 

DL techniques have revolutionized various domains 
recently, offering new approaches to complex problems 
such as flood prediction. DL models, with their ability to 
learn and extract features from vast datasets, have shown 
promise in improving the accuracy of flood forecasts. 
However, these models are not without their challenges. 
High computing costs, overfitting, and the necessity for 
vast amounts of labeled data are some issues that have 
limited their widespread adoption in real-time flood 
prediction systems (Hammond et al. 2015). To address 
these challenges, this paper presents a new hybrid 
methodology for flood rate prediction and analysis, 
combining the strengths of two state-of-the-art DL 
architectures: MobileNet and DenseNet. The proposed 
model utilizes the lightweight and efficient nature of 
MobileNet, designed for mobile and embedded vision 
applications, and the densely connected layers of 
DenseNet, known for mitigating the vanishing gradient 
problem and promoting feature reuse.  

The paper proposes a new method for surface water depth 
detection in images that is more computationally and 
economically efficient than conventional approaches that 
measure flood depths using sensors and numerical models. 
This approach performs better when flood depth data is 
provided over vast areas. The proposed technology might 

also give real-time flood-level data by analyzing existing 
traffic surveillance images. Given the widespread use of 
traffic surveillance cameras in metropolitan areas 
worldwide, this method can significantly enhance urban 
flood monitoring and facilitate early warning systems. 
Remote sensing increases control over flood threats by 
enabling large-scale flooding without requiring incredibly 
accurate inputs or computationally demanding methods. 
Studies on predicting floods have been conducted in 
satellite or aerial imaging domains. No matter how much 
cloud cover there is, the radar is a sensor that continuously 
scans the surface of the Earth. Because of their shadow and 
latency in a complex metropolitan setting, it has been 
demonstrated that SAR data are unsuitable for tracking 
floods in metropolitan settings (Jiang et al. 2020). In real-
world applications, ground truth data is scarcer; hence, 
unsupervised detection techniques are typically used to 
provide rapid flood mapping. However, with new image 
processing algorithms, improved data, additional 
information, and better processes, some progress has been 
made in applying SAR to applications related to urban 
floods. The following are this work's main contributions: 

1.2. Research Contribution 

Integrating MobileNet and DenseNet in this hybrid model 
creates a robust framework capable of handling the diverse 
and dynamic nature of flood-related data. A customized 
technique that maximizes the performance of both 
architectures is used to train the model, guaranteeing that 
the predictions are both accurate and computationally 
efficient. Because of this, the suggested model can be used 
in situations where prompt decision-making is necessary 
for efficient flood control. In this study, researchers 
compare the performance of the suggested hybrid model 
to other cutting-edge DL methods and conventional flood 
prediction models. The results demonstrate that the 
MobileNet-DenseNet hybrid model outperforms existing 
methods. The successful integration of these two 
architectures provides a promising direction for future 
research in flood prediction and other environmental 
monitoring programs.  

1.3. Aim 

To design an efficient and lightweight hybrid deep learning 
framework by integrating MobileNet and DenseNet 
architectures to deliver accurate real-time flood rate 
predictions to support proactive disaster response and 
reduce flood-induced damage. 

1.4. Objectives 

✓ To develop a hybrid deep learning model that 
synergizes the computational efficiency of MobileNet 
with the advanced feature representation capabilities 
of DenseNet for accurate flood rate prediction. 

✓ Pre-processing and consolidating heterogeneous data 
sources—such as satellite imagery, precipitation 
levels, river water heights, and soil moisture—into a 
unified format optimized for deep learning 
applications. 

✓ To assess the proposed model’s performance by 
benchmarking it against existing approaches using key 
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evaluation metrics, including accuracy, precision, 
recall, and F1-score. 

✓ To optimize the model for real-time deployment by 
balancing prediction accuracy with computational 
efficiency, enabling effective operation on mobile or edge 
devices in flood-prone and resource-constrained regions. 

1.5. Scope 

The study is centered on forecasting flood intensity—
specifically the rate of water level rise—through applying 
deep learning techniques to environmental and 
meteorological datasets. 

✓ It encompasses integrating data from various sources, 
including satellite imagery, IoT-based sensor networks, 
and meteorological databases. 

✓ The hybrid model is trained and validated using 
historical flood records from geographically diverse 
regions to ensure generalizability and robustness. 

✓ The research also explores potential real-world 
deployment within smart city frameworks, early 
warning systems, and disaster management platforms 
to facilitate timely and effective responses. 

1.6. Motivation 

Floods are among the most destructive natural disasters, 
frequently resulting in significant loss of life, widespread 
property damage, and the disruption of critical 
infrastructure. 

✓ Traditional hydrological models often entail intricate 
manual calibration and demand substantial 
computational resources, making them unsuitable for 
real-time prediction and deployment. 

✓ In contrast, recent advancements in deep learning 
have shown strong capabilities in capturing 
spatiotemporal dependencies, essential for reliable 
flood forecasting. 

✓ The proposed hybrid MobileNet-DenseNet 
architecture combines the lightweight efficiency of 
MobileNet with DenseNet’s capacity for intricate 
feature extraction, offering a powerful solution for 
real-time flood prediction in resource-constrained and 
remote settings. 

✓ Enhancing predictive accuracy empowers decision-
makers to initiate timely interventions, thereby 
mitigating flood-related consequences and bolstering 
the resilience of vulnerable communities. 

This research article is set up as follows: The analysis of the 
relevant literature in flood prediction using DL techniques 
is in Section 2. The following section details the proposed 
hybrid model's architecture, training methodology, and 
dataset used for evaluation. The experimental findings and 
a comparison of the model's performance with existing 
approaches are shown in Section 4. The work eventually 
ends in Section 5, which summarizes the key results and 
prospective avenues for additional research. 

2. Related works 

Li et al. (2018) created a unique time series analytic 
processing method to determine the Mekong Delta's 
floodable areas using current satellite imagery. 
Professionals were interested in these significant issues, 

and researchers employed the image LiDAR/image RADAR 
to monitor and identify changes in floodable regions, 
manage flood hazards, and map flood zones. Maps, 
assessments, and forecasts of floods resulting from ice 
jams and snowmelt were conducted by Li et al. (2019) using 
operational meteorological satellites. When paired with 
temperature measurements, satellite-based flood 
forecasts were meant to yield more precise locations and 
timings of floods brought on by ice jams and snowmelt. 
Wide-end users could now dynamically detect and forecast 
floods induced by ice jams and snowmelt thanks to the 
efforts and outcomes of this study's flood products from 
VIIRS and GOES-R. The method for identifying floods in a 
time series was extended by (Mignot et al. 2019), and they 
looked at the forecasting of flood episodes by contrasting 
two subsequent Sentinel-2 images. Three water-sensitive 
satellite bands were tested as input series, and DCNN, 
which had been pre-trained and fine-tuned, was used to 
identify floods. Different remote sensing-based baseline 
CD techniques were used to compare the suggested 
strategy (Misra 2019). More precise determination and 
assessment of the floods' impact was made possible by the 
proposed method by the crisis management authority. 
Using Google Earth Engine (Nigussie & Altunkaynak 2019), 
an ML-based method was created to map and forecast the 
daily downscaling of 30-m flooding. The NOAA global 
prediction model's rainfall forecasts and SMAP and Landsat 
retrievals were combined to create and train the CART 
technique (Park et al. 2021; Rangari et al. 2019). When FW 
projections over randomly selected dates were compared 
against Landsat readings, an independent verification 
process found a significant correlation (R = 0.87). A flood 
segmentation method was created by (Rong et al. 2020) 
and was successful on the accelerator on the PhiSat-1 
(Singh et al. 2018) (Wang et al. 2021), producing flood 
masks to be sent in place of the raw images. An effort was 
made to make this concept easier to illustrate by the 
current ESA PhiSat-1 project, which integrates a power-
constrained ML accelerator, hardware capabilities for 
onboard processing, and software for running custom 
applications. U-Net ensembles can yield trust estimates, as 
proposed by Wang et al. (2013); they proposed a semi-
supervised learning approach with progressive accuracy 
gains through pseudo-labeling. A three-stage cycle 
approach was employed: 1) Utilizing a hand-labeled 
dataset with early availability and high confidence to train 
multiple U-Net frameworks in an ensemble method; 2) 
Removing poorly generated labels; and 3) Integrating the 
dataset with the created labels.  

Urban flood forecasting utilizing machine learning (ML) and 
geographic information systems was proven by Wang et al. 
(2018). This study will integrate GIS methods and ML 
classifiers to develop a flood forecasting system that could 
be a helpful instrument for urban planning. The approach 
above proved beneficial in formulating a long-term 
strategy for smart cities, as it yielded reasonable flood risk 
indices and components. Random Forest was a successful 
ML methodology with 96% accuracy. The increased false-
positive rate brought about by the increased sensitivity 
implies that a higher system threshold is required. The 
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author developed two deep-learning neural network 
architectures in 2021 for mapping and predicting the 
probability of spatial floods:  CNN and RNN. In the Golestan 
Province in northern Iran, environmental factors and 
historical flood disaster data were compiled into a 
geospatial database, which was used to create and 
evaluate the predictive models. Following their training 
using the SWARA weights, the CNN and RNN models 
underwent the standard procedure for validation. The 
outcomes demonstrated that in terms of forecasting future 
floods, with an AUC of 0.814 and an RMSE of 0.181, the 
CNN model outperformed the RNN model. They aim to 
simplify the complicated structure of flood disasters, yet 
they frequently result in inaccurate results. 

Sentinel-1 and Sentinel-2 employed multitemporal 
techniques in a CNN-based guided flood mapping 
demonstration (Yin et al. 2015). Introduced was 
OmbriaNet, which is reliant on CNN. It utilized the 
variations in time among flood episodes to differentiate 
between permanent and flooded water areas that multiple 
sensors can extract. This research demonstrated the 
process of generating a supervised dataset using novel 
platforms to aid in handling flood-related emergencies. 
However, CNNs have demonstrated decent performance 
when used for supervised categorization on a small 
geographic scale. In 2022, the author examined changes in 
the northeastern Caspian Sea's coastline using geographic 
information systems (GIS) and remote sensing methods to 
forecast the intensity of floods caused by sea level rise. The 
suggested technique for making dynamic maps- utilizing 
GIS and remote sensing was applied to follow the shoreline 
and predict the amount of flooding in a specific location. 
Predicting when the northeast coast would flood was easy 
with just one map. However, the forecast quality is 
decreased by the constant ecological degradation and 
fluctuating sea level.  

A DL system (CNN–LSTM) was presented by Yu et al. (2018) 
to analyze rainfall radar maps in two dimensions and 
calculate runoff directly. The CNN-LSTM model used in this 
study had NSE values comparable to or less than those 
from the previously described study. The Nash-Sutcliffe 
efficiency (NSE) for runoff simulation over time may be 
greater than 0.85 with proper training data selection. Due 
to its disregard for the extreme values in the one-fold 
training dataset, the CNN-LSTM calculated the extreme 
flows inaccurately. The study found that even though the 
satellite data has many errors, the knowledge gleaned from 
it typically exceeds the measurement limitations. The 
location of the flooded area using various remote sensing 
techniques and studies is also unclear due to the poor 
interpretation of the data. To date, various techniques 
have been used to assess systems based on remote 
sensing. Utilizing less training data, running faster, taking 
less time, and offering more computational efficiency make 
unsupervised DL systems more dependable (Zou et al. 
2019). As a result, a hybrid DL model is provided for more 
accurate and efficient flood mapping and detection. It 
provides faster processing and better performance with 
fewer data points. In order to help other towns that are 

vulnerable to flooding, the suggested approach uses 
satellite data to detect floods and reduce the danger of 
flooding related to transportation projects and the 
expansion of urban structures. 

Flood prediction has been the subject of numerous studies 
that have used statistical and machine learning methods to 
increase accuracy and give real-time updates. For example, 
models such as Multi-Layer Perceptron (MLP), Random 
Forest (RF), and Convolutional Neural Networks (CNN) have 
demonstrated significant success. CNNs have been used 
with UAVs (drones) to evaluate real-time flood damage to 
infrastructure. In contrast, RF models have demonstrated a 
remarkable 98.5% accuracy in recognizing flooded areas in 
one instance. Furthermore, many watershed simulations 
have used hydrological models, like the Hydrologic 
Engineering Center's Hydrologic Modeling System (HEC-
HMS), to forecast floods. The Tabouk watershed research 
demonstrates that these models mimic rainfall and runoff 
using information from topography, land use, soil types, 
and historical storm events. HEC-HMS is key in estimating 
peak flow rates and identifying flood-prone zones. These 
studies highlight the growing trend of combining machine 
learning with traditional hydrological models, often 
incorporating data from GIS, remote sensing, and UAVs to 
increase flood detection precision and efficacy forecasting 
and risk mitigation strategies (Subramanian et al. 2024; 
Sundarapandi et al. 2024; Venkatraman & Surendran 2023; 
Venkatraman et al. 2024). 

In recent years, DL models have emerged as a promising 
advancement offering significant improvements in 
prediction accuracy, scalability, and regional applicability 
for food forecasting (Babu et al. 2024). Several DL 
techniques are commonly employed in food forecasting, 
including convolutional neural networks (CNN) (Surendran 
et al. 2021), recurrent neural networks (RNN) (Arun et al. 
2022), deep belief networks (DBN), long short-term 
memory (LSTM) (Jasmine et al. 2025), and gated recurrent 
units (GRU). These DL algorithms excel at handling high-
dimensional and spatiotemporal data, which are critical 
factors in food forecasting (Nirmal et al. 2025). RNNs, in 
particular, have attracted significant attention due to their 
capacity to effectively capture sequential data through 
specialized recurrent hidden units (Babu et al. 2024). 
However, traditional RNNs face limitations such as the 
vanishing and exploding gradient problems, making it 
challenging to process long-term sequential data 
(Venkatraman et al. 2025). Numerous studies have shown 
that LSTM, an enhanced variant of RNN, outperforms in 
food prediction tasks (Nirmal et al. 2025). LSTM models 
have been applied successfully to food forecasting, yielding 
impressive predictive accuracy (Karthick et al. 2018). 
Nonetheless, there remains a lack of comparative studies 
examining the relative effectiveness of ML versus DL 
approaches in food prediction. 

2.1. Research Gap 

The existing literature highlights significant advancements 
in flood prediction and analysis through various DL and ML 
models, including time-series analysis, satellite imagery, 
and GIS integration. However, these approaches exhibit 
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limitations, such as dependency on large datasets, 
computational inefficiencies, and challenges in achieving 
accurate predictions across diverse geographic scales. 
While methods like CNNs, RNNs, and hybrid models like 
CNN-LSTM have shown promise, they often struggle with 
high false-positive rates, inaccurate extreme value 
estimation, and limited scalability. Furthermore, many 
models require extensive data pre-processing and face 
difficulties in real-time flood prediction, particularly in 
resource-constrained environments. These gaps highlight 
the need for a more robust, efficient, and scalable 
approach to deliver accurate flood predictions with less 
reliance on extensive datasets and computational 
resources. The proposed hybrid model, combining 
MobileNet and DenseNet, aims to address these gaps by 
providing improved prediction accuracy and better 
adaptability to varying data conditions, finally enhancing 
flood management systems. 

3. Proposed Methodology 

The proposed research methodology focuses on 
developing a hybrid deep learning model combining 
DenseNet and MobileNet to enhance flood prediction 
accuracy. The process starts with the input samples, which 
are first put through pre-processing procedures to 
guarantee the consistency and quality of the data. The next 
step is image augmentation, which increases the dataset 
and improves the model's capacity to generalize in various 
contexts. After that, the augmented photos are divided 
into areas that have been flooded and those that have not, 
which is crucial for model training. The pre-processed data 
is subjected to a dimensionality reduction procedure, 
which helps optimize the model's efficiency and lower its 
computational complexity. The hybrid model then uses the 
reduced-dimensional data to efficiently predict flood 
occurrences by combining the advantages of DenseNet and 
MobileNet. In order to provide precise and timely flood 
prediction findings, the last step entails prediction modules 
that distinguish between flooded and non-flooded 
locations. This project aims to create a technique for 
identifying floods in satellite photos. The suggested hybrid 
model's general block diagram is displayed in Figure 1. The 
study's five phases include feature extraction, 
segmentation, pre-processing, dataset gathering, and flood 
prediction. 

 
Figure 1. Workflow of the Proposed Model 

3.1. Details of the Dataset 

Access to the data set is available at 
https://earthobservatory.nasa.gov/images/92669/beforea

nd-after-the-kerala-floods. Homes in Kerala have been 
destroyed by a "once-in-a-century" flood that has driven 
almost a million people from their homes and taken 
hundreds of lives. Heavy rain descended across the region 
on August 8 2018. The left image was taken before the 
flood on February 6, 2018, using the Landsat 8 operational 
land imager (OLI) (bands 6-5-3). The image was taken on 
August 22, 2018, after the area had flooded, using the 
Multispectral Instrument on the Sentinel-2 satellite of the 
European Space Agency (bands 11–8–3). Several rivers in 
the region have spilled over onto the beaches. 

3.2. Pre-processing 

In this cenao, ( )    , 1, 2,..., Ib i j b B= = , where B is the number 

of bands, and B=13 is the set of wavelengths that include 
water vapor, blue, green, red, coastal aerosol, NIR, 
vegetation red edge, blue, green, and red. The median filter 
(MF) technique is applied as a pre-processing step to the 
input image. MF aims to replace the value of the center 
pixel with the field median by analyzing the pixel sizes 
inside a domain. In Eq. (1), the noise is represented by r 
open paren i, j close paren. The value of the final pixel 
determines the series' center value, filtering result 

( ),I

bp i j . The sliding filter window pixels are sorted using 

the MF technique (Rong et al. 2020).  

( ) ( ) ( ) ,   , ,  ,I
b b ijp i j median r i j I i j O=   

(1) 

Oij Are the domain windows centered on (I, j)? The 
segmentation algorithm then uses the pre-processed 

image, designated as I
bp , as an input; the next part goes 

more in-depth about this. 

3.3. Image Augmentation 

The model used picture augmentation techniques to 
improve its ability to overfit, extrapolate, and expand the 
dataset. Geometric adjustments are used to create various 
image sizes. The photos are rotated to 30, 60, and 90 
degrees to obtain varying picture sizes. Rotating the photos 
by 30, 60, 90, and 120 degrees replicates patient 
orientation shifts. The model inverted the photos to create 
object variations. Elastic deformation can change the 
position and shape of an image-based object. Artificial 
samples are incorporated into state models using the 
superimposition technique. It aids in assessing how well 
the model can categorize the various labels.  

The production of high-quality synthetic images is made 
possible by generative adversarial networks, or GANs. The 
system comprises two neural networks competing: a 
discriminant and a generator. To rectify the data 
imbalance, the model uses multi-channel GANs to create 
synthetic images. The flood photographs were used to train 
and evaluate the multi-channel GAN model. The images 
were created using pre-processed images. Without further 
training, pre-trained GANs enable the machine to generate 
flood images that resemble actual photographs. In order to 
do semantic interpolation, the images are also generated 
at many locations within the latent space (Wang et al. 
2021). 
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( )  ,  1,2, ,i iI GAN I i n= =   (2) 

3.4. Feature Representation 

Using the weights from the DenseNet-121 model that was 
previously trained, a feature extraction model was 
developed. A series of convolutional layers, batch 
normalization, and the ReLu function are used for feature 
extraction. The suggested feature extraction model's 
design is seen in Figure 2. Using a 1×10-3 learning rate, the 
DenseNet-121 model's weight is utilized to train the 
feature extraction model's final set of layers. Fewer 
parameters are needed for the feature extraction when 
using the frozen pre-trained DenseNet-121 model. At last, 
a fixed-size feature vector for every image is obtained by 
the global average pooling layer. The PET/CT image 
classification process uses as little computer power as 
possible, thanks to the feature extraction procedure (Wang 
et al. 2018). The mathematical representations for creating 
fixed-size features are presented in Eq. (3): 

( )    ,   1,2,normalization iFeature conv ReLU batch I i n= + + = 
 

(3) 

( ).   2  feature avg poolingfixed size Global D features=
 

(4) 

 

Figure 2. DenseNet Architecture for analysing the input flood 

samples 

3.5. Dimensionality Reduction 

By creating a compact latent space representation, deep 
autoencoders are utilized to reduce the dimensionality of 
flood images. With the use of an encoder-decoder 
architecture, the goal of this method is to use the lower-
dimensional compressed representation of the input image 
to reproduce it. To reduce the dimensionality of the 
features, the model employs a multi-layer encoder 
network. The encoder's layers employ learned weights and 
biases to convert input data into a reduced-dimensional 
expression. 

 

Figure 3. MobileNet Architecture for analysing the features and 

prediction 

The dimensionality is decreased using various methods, 
such as convolutions, pooling, and non-linear activations. 
The provided image is subjected to latent space 
compression during the encoder's last stage. This latent 
space has considerably fewer dimensions than the initial 
picture. The autoencoder's design constraint is the latent 
space. The input image's essential components and 
patterns are retained in a condensed form. The decoder 
network aims to replicate the original feature using the 
low-dimensional model of the latent space. As the quantity 
of decoder layers increases, so do the representation's 
dimensions. The latent space constriction is the cause of 
the dimensionality reduction. The encoder network 
eliminates unnecessary or redundant data while 
maintaining the key characteristics of the features. 

3.6. Flood Prediction 

Optimizing embedded system efficiency is MobileNet's 
primary goal, and MobileNet models are perfect for 
creating lightweight image classifiers. In contrast to larger, 
more parameter-heavy models, its tiny size might limit its 
ability to capture intricate shapes and patterns. Complex 
feature extraction activities, such as high-resolution image 
processing or sophisticated object recognition, can be 
beyond the capabilities of the competent MobileNet V3, as 
in Figure 3. The development of MobileNet V3 models is 
centered on mobile devices and real-time applications. 
There are inevitable trade-offs between the accuracy and 
size of the model that need to be considered. Applications 
that demand precision and low processing power might not 
fit a MobileNet V3-Small model well. Its ability to classify 
flood models could be limited in terms of generality. To 
overcome these limitations, the research model uses the 
weights derived from the MobileNet V3-Small framework 
to develop a classification model for image categorization. 
Four convolutional layers are used in total for 
categorization. MobileNet weights are used to train the 
final layers. During training, the model unblocks the three 
MobileNet model layers. The flood is predicted by 
incorporating the softmax function and fully connected 
layers into the model (Misra et al. 2019). The softmax 
function's computational version is presented in Eq. (5): 
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(5) 

The symbols represent the input vector's conventional 

exponential factors. iIe  and jIe , respectively, and the 

Softmax function is symbolized by () .  i


Represent the 

image. Furthermore, by employing a decay schedule and 
learning rate, the model enhances training stability and 
convergence. Training time is reduced by optimizing the 
pipeline for pre-processing and data loading. The trade-off 
between inference performance and model size is 
maintained through quantization-aware training. Weight 
and activation redundancy in quantization-aware training 
maximize the research model. The final model can achieve 
a fourth of the initial dimensions and memory use. 
Additionally, accuracy is lost little to no when a factor of 
two to four increases inference rates. The suggested model 
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can be utilized in real-time applications and with edge 
devices because of the training process. Early termination 
is the last tactic, shortening training time and preventing 
over-fitting. Flood prediction systems are frequently 
deployed in remote or resource-constrained 
environments, such as riverbanks and rural regions. 
Despite its compact architecture, the model incorporates 
squeeze-and-excitation blocks and hard-swish activation 
functions, which significantly enhance its ability to 
represent features. This makes it particularly effective in 
extracting vital flood-related visual cues from the input 
frames. 

3.7. Optimization 

The proposed model utilizes the Adam (Adaptive Moment 
Estimation) optimizer to iteratively update its parameters 
during training. Adam is a sophisticated optimization 
algorithm that synergistically combines the strengths of 
two widely used methods: Adagrad and RMSProp. 

• Adagrad dynamically adjusts the learning rate for each 
parameter by accumulating the squared gradients 
from previous steps, making it particularly effective for 
handling sparse data. 

• RMSProp, in contrast, addresses Adagrad’s 
diminishing learning rates by employing an 
exponential moving average of squared gradients, 
thereby maintaining a more stable and efficient 
learning process. 

Adam unifies these techniques by computing and 
maintaining: 

• The first moment (mean) of the gradients, akin to 
momentum, to capture the direction of the parameter 
updates. 

• The second moment (uncentered variance), which 
represents the exponentially weighted average of past 
squared gradients, to adaptively scale the learning 
rates. 

In the context of this model: 

• The uncentered variance is dynamically updated to 
ensure training stability. 

• The decay rates of the moving averages governed by 
the hyper-parameters β₁ and β₂—control the influence 
of past gradients on current updates. 

• These adaptive mechanisms enable the model to 
achieve faster convergence and effectively avoid local 
minima, which is critical for training robust flood 
detection systems. 

Overall, this optimization strategy leverages the adaptive 
learning rate characteristics of Adagrad and the gradient 
normalization benefits of RMSProp, while Adam effectively 
integrates both through exponential averaging. This makes 
it exceptionally well-suited for complex and noisy learning 
environments, such as those encountered in flood 
prediction tasks. 

4. Numerical Results and Discussion 

Python has been utilized in this study to accomplish the 
recommended flood identification in the satellite image. 
Operating systems: A 64-bit Intel CPU, 12 GB RAM, free disk 
space of 5GB, Windows 11, RHEL 6/7, Linux, and Mac OS X 

10.11 are required. Multi-core CPUs, such as Intel 
processors, are essential for parallel processing, 
particularly when deploying deep learning models that 
require substantial computational power, such as those 
used in flood prediction. Systems with up to 256GB of RAM 
are often necessary, depending on the dataset's size and 
the model's complexity. This robust experimental setup 
allows the flood prediction system to be highly accurate, 
scalable, and capable of processing real-time data, which is 
crucial for early warning and disaster management. The 
subsequent experimental setups are employed 
(Kankanamge et al. 2020): 
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Equations (6) through (14) are used to calculate results like 
F-measure, specificity, sensitivity, FNR, FPR, NPV, and MCC 
to assess the various networks' performance. The efficacy 
of the deep hybrid model for flood prediction is evaluated 
using accuracy, NPV, FPR, and other factors, as opposed to 
long short-term memory (LSTM), recurrent neural 
networks (RNN), deep belief networks (DBN), fully 
convolutional neural networks (FCNN), support vector 
machines (SVM), and bidirectional gated recurrent units 
(Bi-GRU). A study on segmentation accuracy, statistical 
analysis, and ablation is carried out to prove the hybrid's 
effectiveness further. The segmented image is represented 
in the usual k-means algorithm. However, it cannot identify 
a better section for flood-affected locations since it 
overlaps with the existing data in various domains. The 
segmented image was created using one of the most 
popular image segmentation techniques. Also, this 
approach cannot discriminate between objects with 
comparable color intensity. This approach's accuracy is 
almost negligible because it initially identified the flooded 
area and then, over time, identified the static regions close 
to the flood areas. The segmented image created by the 
suggested hybrid approach is shown at the end. This allows 
for the accurate detection of the flood regions (paths) 
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without causing any overlapping with the previously 
collected data. The graphic shows the afflicted area, 
represented by the greenish portion, and the path of 
flooding moving through the affected areas, represented 
by the orange-colored portions. 

 

Figure 4. Training accuracy attained using MobileNet-DenseNet  

 

Figure 5. Training Loss attained using MobileNet-DenseNet 

4.1. Evaluation 

Table 1 compares the evaluation of the hybrid approach for 
detecting floods in satellite images to other metrics such as 
RNN, DBN, SVM, LSTM, Bi-GRU, and FCNN, as in Figure 4 
and Figure 5. The hybrid model achieves a greater precision 
of about 95% at a learning rate of 80%; nevertheless, the 

corresponding values for RNN, DBN, SVM, LSTM, Bi-GRU, 
and FCNN are 79.6%, 78.1%, 78.9%, and 76%, respectively. 
The hybrid achieves a specificity of 98.5% when the 
learning is adjusted to 60%. Conversely, the other 
classifiers have the following specificities: SVM = 58%, Bi-
GRU = 63%, RNN = 84%, DBN = 81%, LSTM = 85%, and FCNN 
= 65%.  

The research model produced an accuracy of 95%; in 
contrast, the RNN, DBN, SVM, LSTM, Bi-GRU, and FCNN 
produced lower accuracy of 85%, 83%, 84%, 89%, 88%, 
73%, 86%, 84%, 90%, 91% and 79%, respectively. At the 
90th learning percentage, the proposed model reported a 
sensitivity of 94%, whereas at the 70th learning 
percentage, it recorded a sensitivity of 81%. In addition, 
whereas the proposed model establishes a sensitivity of 
92% at the 60th learning percentage, it maintains a 
sensitivity of 84% at the 80th learning percentage. The 
hybrid model study is computed over RNN, DBN, SVM, 
LSTM, Bi-GRU, and FCNN and is based on recognizing floods 
in satellite images. In contrast, the suggested model 
produced the following results at the 90% learning rate: Bi-
GRU = 0.009, RNN = 0.185, SVM = 0.005, LSTM = 0.174, DBN 
= 0.152, and FCNN = 0.091. It also yielded an FNR of 0.02. 
The FPR of 0.024 was the lowest for the suggested model; 
however, the RNN, DBN, SVM, LSTM, Bi-GRU, and FCNN 
produced FPRs of 0.083, 0.094, 0.089, 0.236, 0.338, and 
0.273. Consequently, the research model outperforms 
traditional classifiers on negative metrics, as shown in 
Figure 6. 

Table 1. Overall Performance Evaluation Comparison 

Methods Accuracy Sensitivity Specificity Error rate 

DBN 83.6% 85% 86% 13.56 

RNN 78.8% 80% 82% 24.8 

LSTM 79.8% 89% 85% 13.5 

SVM 80% 90% 88% 11.6 

Bi-GRU 82% 91% 88% 15.5 

FCNN 81% 80% 85% 25 

Proposed Hybrid Model 95% 100% 99.8% 6.50 

 

 

Figure 6. Overall Performance Evaluation 

4.2. Ablation Study 

The shown model, the standard model, and the suggested 
model's ablation research are summarized in Table 2. The 
accuracy of the flood prediction with optimization, the 
flood forecast with the hybrid model, and the 
corresponding flood prediction using weighted k-means 
clustering and cubic chaotic map was 89.22%, 87.65%, and 
93.65%. The flood prediction's FPR is 0.105 without 
DenseNet, 0.136 using a cubic chaotic map weighted 
according to k-means clustering, and 0.036 using a hybrid 
method. The suggested model has a 90.59% net present 
value, a false positive rate of 0.085797, and an accuracy of 
95%, as in Figure 7. Based on Table 2, it is proven that the 
proposed model with DenseNet gives promising outcomes 
in flood prediction compared to normal prediction 
strategies. The accuracy is 95%, sensitivity is 93%, precision 
is 93.7%, F-measure is 87%, specificity is 98%, MCC is 87% 
and FNR is 0.08. 
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Table 2. Results of the Ablation Study 

Metrics Prediction without DenseNet Prediction with DenseNet 

Sensitivity 86 93 

Precision 90 93.7 

F-measure 83.2 87 

Specificity 89 98 

MCC 85 87 

Accuracy 90 95 

FNR 17.2 0.08 

 

Figure 7. Graphical Plot of Ablation Study Analysis 

4.3. Statistical Analysis 

Based on five case studies, the statistical analysis examines 
the usefulness of suggested flood detection in satellite 
images, considering the mean, standard deviation, best, 
median, and poor values. Additionally, the proposed model 
is evaluated compared to RNN, LSTM, SVM, Bi-GRU, and 
FCNN. Table 3 presents the results. The proposed model 
kept its error rate at 0.034 while accounting for the best-
case scenario. On the other hand, the LSTM has 0.119, the 
Bi-GRU has 0.144, the DBN has 0.113, the RNN has 0.132, 
and the FCNN has 0.226. As a result, it was demonstrated 
that the suggested model was appropriate for locating 
floods in satellite imagery. 

 

Table 3. Results of Statistical Analysis 

Methods Best SD Mean 

DBN 0.11 0.003 0.110 

RNN 0.13 0.004 0.126 

LSTM 0.19 0.004 0.114 

SVM 0.12 0.077 0.045 

Bi-GRU 0.14 0.104 0.35 

FCNN 0.22 0.022 0.175 

Proposed 0.03 0.009 0.023 

 

4.4. Data Convergence 

 
Figure 8. Error Convergence Rated based on approximation and 

exact outcomes 

In Figure 8, the hybrid models are contrasted with the DBN, 
RNN, LSTM, SVM, Bi-GRU, and FCNN to demonstrate their 
superiority in flood detection. The proposed model 

achieves a first-iteration error rate of roughly 0.45, which 
is lower than that of DBN and FCNN. The recommended 
model showed an error value of 0.63 at the 17.5th 
iteration; however, the current model still displayed error 
values of 0.21, 0.23, 0.34, 0.22, and 0.29. This 
demonstrates how accurate results for flood detection in 
satellite imagery are obtained with the proposed model. 
For peer review, the values of x  in remote sensing were 

0.34, 0.22, and 0.29, respectively. This demonstrates how 
accurate results for flood identification in satellite imagery 
are obtained with the proposed model.  

4.5. Training and Validation Loss 

The training loss ratio to validation loss ratio has grown to 
be the most used statistic. Validation loss indicates how 
well the model fits new data, while training loss indicates 
how well the model matches training data. Figure 6 
provides a graphic representation of the training and 
validation losses. The training loss started to decrease after 
100 epochs, reaching a value of 0.02; in contrast, the 
validation loss increased to 0.05. The accuracy of recently 
acquired data is demonstrated by validation accuracy, 
whereas training accuracy shows the correctness of 
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previously taught data. Training and validation accuracy 
are graphically displayed in Figure 6. The training accuracy 
begins at 0.9894, whereas the validation accuracy is 0.9813 
at 100 epochs.  

The proposed research model offers several key 
advantages, including integrating DenseNet and 
MobileNet, which allow for enhanced feature extraction 
and improved accuracy in flood prediction. Image 
augmentation ensures a more robust model capable of 
generalizing well across diverse flood scenarios. At the 
same time, dimensionality reduction optimizes 
computational efficiency, making the model faster and 
more resource-effective. Additionally, the hybrid approach 
utilized the advantages of both networks, leading to more 
precise and timely forecasts, which are essential for efforts 
to control and mitigate disasters. 

Despite its strengths, the research model has some 
limitations. The dependence on high-quality satellite 
imagery and pre-processing may limit its applicability in 
regions with insufficient data availability or low-resolution 
images. The hybrid model's intricacy necessitates 
substantial computer resources, which would not be 
feasible for real-time applications in resource-constrained 
environments. Additionally, the input data's accuracy and 
quality may impact the model's performance, making it 
susceptible to noise or dataset abnormalities. 

5. Conclusion 

This work built a new deep hybrid flood prediction model. 
The augmentation strategy was used to pre-process the 
input satellite image. The final feature set was used for 
hybrid categorization. Both the deep ResNet and DenseNet 
classifiers received the final feature set. The outputs from 
both updated models were averaged to achieve the desired 
result. The deep ResNet and CNN weights were adjusted 
using the combination Adam optimizer. In addition, Adam's 
efficacy with the hybrid model was evaluated, and the 
outcomes were successfully verified. Regarding FNR, 
sensitivity, accuracy, and specificity, the results showed 
that the suggested model generated the following results: 
93.48%, 98.29%, 94.98%, and 0.02% and 0.02%. A 
statistical analysis was carried out to find the satellite 
image's mean, median, best, standard deviation, and worst 
values to assess the efficacy of the suggested flood 
identification method. The analysis's findings 
demonstrated that even with values for the RNN, DBN, 
SVM, LSTM, Bi-GRU, and FCNN, respectively, ranging from 
0.113, 0.132, 0.119, 0.124, 0.144, and 0.163, the 
recommended model was still able to sustain an error rate 
of 0.034. The proposed model gives 95%, 100% sensitivity, 
98.5% specificity, and a 6.50% error rate, which is 
substantially higher than other approaches. One of CNNs' 
primary features is their ability to learn directly from raw 
pixel input without requiring human feature engineering or 
pre-processing. This suggests that objects, colors, textures, 
shapes, and edges—among the most noticeable elements 
in the images are automatically identified and modified. 
The inference and training processes become quicker and 
more effective due to the input data's reduced 

dimensionality and complexity. Nevertheless, deep neural 
network design, which is strong and enables the creation 
of more intricate and accurate networks, has completely 
changed the field of computer vision science. Its poor 
interpretability, tendency for overfitting, and complexity 
are only a few of its numerous drawbacks. The suggested 
study can be extended to investigate more DL with more 
hybrid combinations of optimization approaches to 
overcome the restrictions and improve the accuracy of 
flood predictions. Large, high-quality datasets, such as 
historical data (river water levels and rainfall) and real-time 
data (such as satellite imaging and IoT sensor data), are 
crucial for flood prediction models. These datasets are 
essential for training deep learning models and producing 
precise and timely predictions. The efficacy of flood 
prediction models is hampered by the fact that such data 
may be lacking, insufficient, or unavailable in many rural or 
underdeveloped areas. Deep learning models' capacity to 
learn from previous flood disasters and forecast future 
occurrences is reduced without reliable, consistent data. 
More work is required to enhance data collection in these 
areas, either by creating techniques to deal with sparse or 
missing data or utilizing alternate data sources, such as 
crowdsourced data or mobile networks. Future studies on 
flood prediction can concentrate on combining deep 
learning architectures like Convolutional Neural Networks 
(CNNs) and Long Short-Term Memory (LSTM) networks 
with conventional machine learning models like Random 
Forest and XGBoost. By integrating these methods, hybrid 
models can better capture flood episodes' spatial 
(geographical) and temporal (time-series) aspects, 
improving prediction accuracy overall. This technique could 
considerably improve real-time flood prediction skills and 
make them more socially beneficial, offering speedier and 
more accurate warnings. The model's performance may be 
limited by the availability and variety of high-quality 
training data, especially in regions with insufficient 
historical flood data or limited sensor infrastructure. 
Differences in the spatial and temporal resolutions of 
satellite imagery, sensor readings, and weather reports can 
introduce noise, potentially diminishing the model's 
predictive accuracy. Future advancements could include 
the integration of continuous real-time data streams from 
IoT-based flood monitoring systems to enhance 
responsiveness and prediction timeliness. Additionally, 
combining deep learning with physical hydrological models 
could strengthen the model's robustness by incorporating 
domain-specific knowledge into the prediction process. 
Developments in this field can be significant for enhancing 
flood prediction systems, supporting disaster management 
plans, and lowering the death toll, property damage, and 
displacement brought on by floods. By improving model 
reliability and real-time application, future research will 
equip authorities and communities to respond more 
effectively to flood hazards and limit their effects on 
society. 
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