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Graphical abstract 

 

Abstract 

Electricity demand is increasing day by day and hence 
power utilities are slowly shifting towards renewable 
energy, mainly solar, as it is more reliable and 
environment friendly. However, solar power generation 
systems have very low efficiency and this is the major 
challenge faced by the researchers. Some of the reasons 
for the low efficiency is the presence of dust particles, bird 
droppings, shadows, rain droplets, micro cracks etc. Micro 
cracks are the major issue to reduce solar panel efficiency. 
Microcracks are estimated to contribute to a power loss 
of approximately 80–90%, severely affecting the efficiency 
and overall performance of solar panels.In this article, the 
cracked panel and non-cracked panel can be identified by 
using complex wavelet transform. The Gaussian filter is 

used to eliminate the distortions in the cracked panel. And 
this image can be decomposed by sub band images. The 
corresponding statistical and texture features can be 
calculated for sub band images and these features are 
classified using ANFIS classifier. Finally the segmentation 
algorithm is used to detect the cracked and non-cracked 
panel images. By comparing with existing methods like 
Electroluminescence imaging technique, ResNet152 
model, Xception model, UAV based thermal imaging 
technique. The Proposed ANFIS leverages the advantages 
of both neural networks and fuzzy logic, enhancing the 
accuracy and adaptability in distinguishing cracked from 
non-cracked panels. This approach can be deployed in 
automated inspection systems for large-scale solar farms, 
enabling early crack detection. By identifying issues 
sooner, it helps lower maintenance costs while improving 
the efficiency and longevity of solar panels. Additionally, 
the method can be integrated with drone-based 
monitoring systems for remote inspections. 

Keywords: ANFIS classifier, Machine Learning, complex 
Wavelet Transform 

1. Introduction 

Micro cracks are mainly due to manufacturing defects as 
well as improper handling during transportation and 
installation. Manual testing of panels for the detection of 
micro cracks is very difficult and time consuming 
especially for panels of large dimensions and high-power 
rating. For precise fractures being identified, image quality 
is essential. If the image resolution is inadequate, surface 
sounds could be mistaken for cracks. As a consequence, a 
minimum pixel range needs to be defined to perform the 
function correctly. Careful algorithm selection is crucial to 
the process' accuracy since it produces a model that 
performs better and has greater identifying potential.  An 
examination of research revealed that soft computing 
methods fared better in terms of precision than other 
methods. Some methods for the automated detection of 
cracks are available in the literature. The performance 
metrics of these methods along with the time taken for 
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the detection of cracks is also available in the literature. 
This work addresses the process of detection of micro 
cracks using an improved technology which detects the 
crack within very less time as compared to the existing 
technologies.  If the cracks in the solar panels are 
detected using automated methods, it becomes easier to 
change the defected panel with a new one so as to 
improve the production rate. This paper deals with ANFIS 
machine learning algorithm as a soft computing technique 
to detect the defective panel images. 

2. Literature survey 

Deep learning (DL) models are used by some researchers 
for solar cell fracture detection. Improved EL detection of 
solar cell fractures is proposed by Su et al. (2021) by 
implementation of a unique complementary attention 
network. Out of 3629 photos tested by them almost 2129 
have detective sections. 2 to 12% of the output power 
may be lost because of these tractions and it depends on 
the dimensions of the cracks. The research shows that 
fractures also referred to as "cracks" in solar cells might 
diminish the cell's output power by anywhere from 0.9% 
to 42.8%, or even more. Li et al. (2014) have proposed an 
entirely new method for finding cracks in faults with dark 
colours and poor contrast. The original image is divided 
into its component parts and then recreated using the 
FDCT (Fast Discrete Curvelet Transform) technique. In 
order to remove surface textures from the images, 
constraints for the decomposition parameters are derived 
using texture feature measurements. Contours from the 
rebuilt images are obtained, which are free of motifs but 
contain fracture fault contours, to produce the required 
image. A method for spotting cracks in Scanning Electron 
Microscopy(SEM) images is described by Vidal et al. in 
(2016). They have merged the SEM pictures by setting an 
acceptable threshold defined by the image histogram 
after filtering out nodules and background noise. Image 
binarization is achieved to successfully detect fractures 
from the backdrop of the image.  The spatial area of the 
fractures are more accurately determined by combining 
the second derivative of the histogram acquired using the 
Laplacian of Gaussian (LoG) with the Prewitt vertical edge 
detector. A method for locating near-surface faults in 
specimens that are both magnetizable and conductible is 
proposed by Heideklang et al. (2015). Their approach 
integrates information from thermography, magnetic flux 
leakage, and eddy current testing. For pixel-level fusion of 
data, a variety of signal processing methods are provided 
to normalise the information. The signal-level fusing of 
disparate Non-Destructive Testing (NDT) image results are 
achieved utilising pixel-wise, multi-scale, and signal 
normalisation methods. Fundamental algebraic fusion 
techniques are used to combine the findings of signal 
normalisation. Zahra Anvari and Vassilis Athitsos et 
al.(2021) The deep learning techniques used for 
document picture enhancement tasks, such as 
binarization, deblurring, denoising, defading, watermark 
removal, and shadow removal, are thoroughly reviewed in 
this work. The authors identify difficulties and constraints 
and offer potential avenues for further research while 

discussing the different deep learning architectures, 
datasets, and metrics employed in these tasks. 
Muhammad Imran Razzak, Saeeda Naz, and Ahmad Zaib 
(2017) This paper presents an overview of deep learning 
architectures and their optimization techniques used in 
medical image segmentation and classification. It 
discusses the unique challenges faced in medical image 
processing and outlines open research issues, emphasizing 
the potential of deep learning to improve healthcare 
services. 

The novelties of this proposed solar panel crack detection 
system are constructed from the literature survey section 
and they are highlighted in the below points. 

• The novel ANFIS Classifier is proposed in this work to 
perform the solar panel image classification process. 

• The novel crack segmentation algorithm is proposed 
in this work model. 

The generic procedure for the image processing technique 
is shown in the Figure 1. 

 

Figure 1. Generic Procedures for Image Processing. 

3. Proposed Methodologies 

In this paper ANFIS classification method used in the panel 
and divided like cracked and Non-cracked panels. The 
Gaussian filter is applied and the noise removed. By using 
image processing technique the panel can be separated 
by cracked and Non-cracked panels.The proposed block 
diagram is given below in Figure 2. 
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Figure 2. ANFIS classifier based solar panel image classification scheme 

Table 1 shows that training and testing dataset values and Detection Rate values. 

Panel Type Training Dataset Testing Dataset Detection Rate 

Cracked Panel 285 665 99.8% 

Non-cracked Panel 300 700 98.4% 

 

Table 1 Training and Testing Dataset 

In this work, MATLAB 2020 is used here as simulation 
platform on computer with the following specifications. 

Processor :  Intel i5 

Hard disk : 2 TB 

RAM  :   8 GB RAM. 

3.1. Optical System Specifications 

Here, FIMI X 8 drone is utilized to take pictures of the 
solar arrays. The camera on the drone can rotate in three 
axes and has a catching range of up to five thousand 
meters. Drone camera units weigh 790 grams, and they 
can transmit data at 64 km per hour. The optical system 
employed in this study is characterized by its resolution 
and optical transfer properties. The optical system of this 
research makes use of various kinds of photo detectors. 
The drone instrument's optical system takes pictures of 
the solar panels. The qualities of the object being tested 
may be determined without physically touching it due to 
the optical measuring procedures. This method uses the 
physics of absorption and reflection to record information 
about surfaces as a whole. The drone instrument has a 
variety of optical components and assemblies, all of which 
must be meticulously constructed for optimal image 
performance. When designing optical components, it is 
common practice to strive for the smallest feasible 
footprint in terms of size, weight, and energy 
consumption. Drones and other autonomous systems may 
have their lenses made from a wide variety of substrates, 
including plastic, glass, metal, and plastic. UAV 
applications that collect distant pictures need long focus 
lengths. However, this viewpoint results in a deformed 
picture; to fix this, the perspective image registration 
approach is employed.  

Figure 3 (a) depicts the original picture recorded, whereas 
Figure 3 (b) shows the rectified image after preprocessing. 
The resulting solar panel pictures are registered using the 
feature image registration approach described by Wang et 
al. (2022). 

 

Figure 3. (a) Image captured by using Drone (b) Registered image 

The licensed solar panel picture has six rows of ten solar 
cells, every single one of which measures 0.16 m X 0.16 m. 

3.2. Preprocessing 

The extracted picture of the solar panel suffers from 
blurring in the broken areas, which in turn affects the 
clarity of the individual pixels. These unnecessary blurs 
should be eliminated so that fractured spots in solar 
panels may be detected and segmented. Even though 
many conventional blur detection methods as stated in 
Awais Khan et al. (2021) and Renting Liu et al. (2008) 
available to detect and remove the blur from the solar 
images, these methods exhibits pixel losses during deblur 
process. The Data Augmentation Methods (DAM) is used 
in the solar panel images of the training data set to 
increase the number of solar panel images during the 
training of the ANFIS classifier. This work uses left shift 
and right shift DAM methods in the training dataset solar 
panel images. 

The 'Gaussian' filter, whose response to impulses is a 
Gaussian function, is used to identify and get rid of the 
blurry pixels in the solar cell picture. The formula below 
represents the kernel of the Gaussian filter given in the 
Equation (1) 
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The filter has a mean of zero and a window size of 5  5, 
hence the standard deviation is zero. To identify and 
eliminate the haze around the cracks in the solar cell, a 
Gaussian filter is used in the picture. The original picture 
of the solar panels is shown in Figure 4 (a), while the 
filtered version is shown in Figure 4 (b). 

 

Figure 4. (a) Source solar panel image (b) Gaussian filtered image 

(Pre-processed image) 

The picture may be decomposed into smaller scales using 
CWT. This study uses a 4-stage CWT to separate the solar 
panel picture into 12 individual sun band images. The 
suggested CWT is made up of two filters with four phases 
each: a Low Pass Filter (G) and a High Pass Filter (H). At 
each step of the disintegration, the input picture is 
concurrently processed by these filter banks to generate 
the sub spectrum images.  The output of each step is 
down filtered by a factor of 2, as shown in Figure 5. 
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Figure 5. Four stage Complex Wavelet Transform 

In a CWT structure, real and scaling properties are given in 
the Equations (2) and (3) respectively. 

( ) 2 0 (2 ) =  −t G t n  
(2) 

( ) 2 1 (2 ) =  −t G t n  
(3) 

The CWT structure's high pass filter banks' real valued 
function and scaling function are given in the Equations 
(4) and (5) respectively. 

( ) 2 0 (2 ) =  −t H t n  
(4) 

( ) 2 1 (2 ) =  −t H t n  
(5) 

Figure 6 shows the pre-processed solar panel picture 
broken down into 12 sub band images. The statistical and 
texture features can be computed for all the sub band 
images. 

 

Figure 6. DTCWT sub band images 

3.3. Computation of Features 

Pixels in a picture may be distinguished from one another 
based on their features, which are their unique 
characteristics. CWT is used to split pictures into sub 
bands before computing texture and statistical 

information from those images. The next sections 
elaborate on these aspects. 

3.3.1. Statistical features 

These characteristics use the coefficient fluctuations and 
their mean value in each decomposed sub band picture to 
differentiate between images of cracked and uncracked 
solar panels. 

3.3.2. Mean 

The following formula is used to get the average value of 
each sub band picture. 

( ) 1==


N

i
i
C

Mean C
N  

(6) 

In this equation, N represents the total number of 
coefficients in the decomposed sub band picture, and Ci 
represents the coefficients of image 

3.3.3. Variance 

 Decomposed sub band images have somewhat 
distinct coefficients from one another. The variance 
functions allow for the estimation of these differences. 
Each sub band image's variance is calculated separately 
using the following formula. 
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(7) 

3.3.4. Skewness 

Skewness characteristics, which are calculated using a 
third-order functional factor, characterize the form and 
size of the deconstructed sub band picture. Each sub band 
image's Skewness level may be calculated using the 
following formula. 
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3.3.5. Kurtosis 

Kurtosis characteristics, which are calculated using a 
fourth-order functional factor, characterise the non-linear 
behaviour of each coefficient in a sub-band picture. Using 
the following formula, the kurtosis of each individual sub 
band picture is obtained. 
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i
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(9) 

3.3.6. Pearson’s Index 

For each picture sub-band, Pearson's index is calculated 
based on its skewness and kurtosis. The formula that 
follows is used to get the Pearson's index applying the 
Skewness feature. 

( )'     =
−

C
Pearson s SkewnessIndex PSI

Skewness Variance  

(9) 

( )'     =
−

C
Pearson s SkewnessIndex PSI

Skewness Variance
 (10) 

The formula that follows is used to get the Pearson's index 
utilizing the Kurtosis characteristic. 
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( )'     =
−

C
Pearson sKurtosisIndex PKI

Kurtosis Variance
 (11) 

3.3.7. Texture features 

One alternative name for textures is patterns. Images of 
fractured solar panels have a distinct texture that is not 
present in images of undamaged solar panels. Therefore, 
it is crucial for the classification procedure to compute the 
textures of each deconstructed sub band picture. The 
following texture characteristics are calculated from each 
sub band image's decomposition. 

2

,

( , )=
i j

Energy f i j

 

(12) 

Each deconstructed picture may be reconstructed by 
computing the texture matrix (rows and columns are 
denoted as i and j ) using the formula: 
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where,  

N is the element counts in ( ), .f i j  

4. ANFIS Classification Technique 

It is the classification of calculated characteristics for 
broken solar panel detection. Researchers have employed 
a variety of machine learning methods, including the 
Support Vector Machine (SVM) and the binary 
classification algorithm, to identify solar panels with 

cracks. Using these Machine Learning (ML) techniques to 
identify damaged panels is insufficient. In this study, the 
ANFIS classification architecture is developed for 
differentiating between images of damaged and non-
cracked solar panels. The designed ANFIS structure has 
two modes of operation: training and testing. The ANFIS 
classifier learns using a feature matrix that contains 
information on each picture in the training dataset, 
organized by the bands in which they were taken. The 
ANFIS architecture's binary index is generated at the 
testing level. The ANFIS classification framework returns a 
value of '1' if it is defect one and a value of '0' otherwise. 
In Figure 6, the ANFIS architecture developed for this 
study is shown. Layer 1 nodes A and B are associated with 
the classification nodes and the Layer 2 performs inbuilt 
multiplication work and its nodes are identified by the 
label. This layer conducts the process of multiplication of 
the previous layer output. The weights calculated in 
preceding layers are used as input to Layer 3, where they 
are normalized by calculating their mean. N stands for the 
nodes in this layer. In Layer 4, fuzzy rules are incorporated 
with the nodes laid here and defuzzification process is 
performed here. The output is the result of layer 5's 
summing function, which sums the answers from the 
preceding layers. The ANFIS classification structure is 
shown in Figure 7 (a) and Figure 7 (b) depicts pictures of 
defected and non-defected solar panel PVs, respectively 
(Figure 8). 

 

Figure 7. Architecture of ANFIS model 

 
Figure 8. (a) Non-defected PV images (b) Defected PV images 

5. Segmentation Algorithm 

Crack segmentation algorithm is the method used to 
separate apart the shattered areas of the picture of the 
broken solar panel. The broken pixels may be found using 
the following approach. 

Phase 1: 
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Suppressing the border-connected outlier pixel structure 
in the categorized fractured solar panel picture. 

• Purpose: Removes noise from the edges of the 
image to prevent false detections. 

• Impact on Accuracy: Reduces the chances of 
misclassifying background elements as cracks. 

• Intermediary Result: Show an image before and 
after outlier removal. 

Phase 2: 

If the pixel's value is below 50, set it to Zero in the picture. 

• Purpose: Eliminates low-intensity pixels 
(background noise), keeping only significant crack 
regions. 

• Impact on Accuracy: Enhances contrast between the 
crack and background, making segmentation more 
reliable. 

• Intermediary Result: Show an image where faint 
background noise is eliminated. 

Phase 3: 

In order to create the enlarged picture, use the dilation 
operator with the 'disc' structural element and a 13 mm 
radius. 

• Purpose: Expands and connects broken crack 
segments. 

• Impact on Accuracy: Helps in detecting complete 
cracks rather than fragmented parts. 

• Intermediary Result: Compare an image before and 
after dilation to show how small gaps are filled. 

Phase 4: 

The enhanced picture should undergo the same steps as 
before. 

• Purpose: Reinforces the dilation effect to ensure no 
crack is missed. 

• Impact on Accuracy: Prevents under-segmentation, 
making sure all cracks are considered. 

• Intermediary Result: Show how cracks are 
progressively becoming more distinct. 

Phase 5: 

Figure 7 (a) shows the eroded result of using an erosion 
operator with a 'disc' structural element and a 5 mm 
radius for generating erode image. 

• Purpose: Reduces over-segmentation caused by 
dilation, retaining only meaningful crack structures. 

• Impact on Accuracy: Eliminates falsely expanded 
regions, improving precision. 

• Intermediary Result: Show a comparison where 
unwanted noise is removed. 

Phase 6: 

As shown in Figure 7 (b), the final crack area segmented 
picture is created by employing the 'thin' operator to 
convert the numerically degraded image into a logical 
image by removing pixels without holes. 

• Purpose: Converts the processed image into a 
logical binary form while preserving essential crack 
features. 

• Impact on Accuracy: Ensures that only relevant 
crack pixels remain, making detection more precise. 

• Intermediary Result: Final segmented crack image 
with clear boundaries. 

 
Figure 9. (a) Eroded image (b) Crack segmented image 

6. Results and Discussion 

The algorithm stated in this article is tested on the real 
time constructed dataset solar panel images. This 
constructed dataset consists of 950 fractured solar panel 
images and 1000 non-fractured solar panel images. The 
solar panel image size is about 512 x 512 pixels as width 
and height. The proposed system splits the constructed 
dataset into 30:70 ratio for training and testing. Hence, 
the training solar panel image dataset consists of 285 
fractured solar panel images and 300 non-fractured solar 
panel images. Similarly, the testing solar panel image 
dataset consists of 665 cracked solar panel images and 
700 non-cracked solar panel images. The detection rate 
for cracked solar panel is 99.8% by correctly detecting 664 
cracked solar panel images over 665 images. The 
detection rate for non-cracked solar panel is 98.4% by 
correctly detecting 689 cracked solar panel images over 
700 images. Therefore, the mean detection rate is about 
99.1%. 

The performance of the ANFIS based solar panel defect 
system is evaluated using the following equations. 

( ) 100%= 
+

TP
Sensitivity Se

TP FN
 

(19) 

( ) 100%= 
+

TN
Specificity Sp

TN FP
 

(20) 

( ) 100%
+

= 
+ + +

TP TN
Accuracy Ac

TP TN FP FN
 

(21) 

( ) 100%= 
+

TP
Precision Pr

TP FP
 

(22) 

( )( ) ( )

* *

( )

−
=

+ + + +

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN
 (23) 

The correctly detected defected and non-defected images 
are TP and TN and the incrrectly detected defected and 
non-defected images are FP and FN respectively. The 
average values of 97.6% for Se, 97.6% for Sp, 98 

Table 2 shows the comparisons of Data Augmentation 
Methods (DAM) results for both case of images. 
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Table 2 Comparisons of Data Augmentation Methods (DAM) results  

Cases Procedure analysis DT Results in % 

For cracked solar panel images 
Proposed solar panel image classification incorporating DAM 97.33 

Proposed solar panel image classification without incorporating DAM 95.12 

For cracked solar panel images 
Proposed solar panel image classification incorporating DAM 98.6 

Proposed solar panel image classification without incorporating DAM 96.65 

Table3 shows the index parameter analysis on solar panel 
image dataset. The proposed solar panel image 
classification system obtains 99.3% precision, 98.8% recall 
and 99.3% MCC. (Mathew Correlation Coefficient) 

Table 3 Index parameter analysis 

Index Parameters Results in % 

Precision 99.3 

Recall 98.8 

MCC 99.3 

Figure 10 shows the graphical perspective of Index 
parameter analysis. 

 

Figure 10. Graphical perspective of Index parameter analysis 

Table 4 gives the comparative analysis of image 
classification system and the ANFIS classifier is used. It is 
observed that the results obtained from the proposed 
work are significantly improved in comparison with similar 
models proposed by Fan et al. (2022), Xue et al. (2021) 
and Greulich et al. (2020). The proposed solar panel 
classification system obtains 99.3% precision, 98.8% recall 
and 99.3% MCC using ANFIS classification approach. 

Table 4. Comparative analysis for the solar panel image 

classification system 

Methods 
In %   

Precision Recall MCC 

Proposed ANFIS model 99.3 98.8 99.3 

Fan et al. (2022) 96.3 96.9 96.4 

Xue et al. (2021) 95.1 95.3 95.9 

Greulich et al. (2020) 94.3 94.8 95.1 

Figure 11 shows the graphical comparative analysis for 
the solar panel image classification system. 

 

Figure 11. Graphical comparative analysis for the solar panel 

image classification system 

The comparisons of SDT in automatic signal classification 
system are important because it gives ratio between the 
correctly detected case and the total case. Table 5 is the 
SDT(signal Detection Time) comparisons on BB dataset. 
The proposed solar panel classification system consumes 
0.87 ms for classifying the single solar panel image. 

Table 5. SDT comparisons on BB dataset 

Methods SDT in ms (per signal) 

Proposed ANFIS 0.87 

Fan et al. (2022) 1.76 

Xue et al. (2021) 1.59 

Greulich et al. (2020) 1.97 

Figure 12 shows the graphical analysis of SDT comparisons 
on BB dataset. 

 

Figure 12. Graphical analysis of SDT comparisons on BB dataset 

Validation of this results can be used by k-fold cross 
validation method with K=6 where 120 testing images are 
grouped with 20 images per fold. 75% of the 20 images 
are trained and 25 % are tested. The average accuracy is 
98.2%  

7. Conclusion 

The ANFIS classifier based solar panel image detection and 
classification methods using CWT transform is presented. 
The proposed classification model detects and classifies 
the defected images using ANFIS architecture. The 
classification model was evaluated on a controlled 
dataset, and its resilience in real-world situations, such 
fluctuating lighting, dust deposition, or panel degradation, 
requires additional assessment. The existing methodology 
predominantly emphasizes fracture identification, 
whereas other defect types, including delamination, 
discolouration, and hotspots, might be integrated into the 
categorization process for a more thorough evaluation. 
Integrating this model into automated inspection systems 
utilizing drone-mounted cameras or industrial monitoring 
configurations could substantially improve solar panel 
maintenance. Future research may investigate hybrid 
models based on deep learning to enhance classification 
performance, alongside real-time deployment strategies 
for the effective management of large-scale solar farms. 
Then, the crack detection algorithm is used to classify 
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fractured solar panel images and Non-fractured panel 
images. The proposed solar panel classification system 
obtains 99.3% precision, 98.8% recall and 99.3% MCC 
using ANFIS classification approach. It consumes 0.87 ms 
for classifying a single solar panel image. 
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