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ABSTRACT: Rice straw incorporation technique is one of the better alternatives for sustainable
agro-industry fertilizers. But its impact on nutrient uptake capacities of green manure crops has
still not been studied. This study aimed to investigate the effects of two different rice straw (RS)
treatments on various green manure peas (Pisum sativum L.), chickpea (Cicer arietinum L.),
cowpea (Vigna unguiculata), alfalfa (Medicago sativa), and ryegrass (Lolium multiflorum)
varieties. Further investigate the biomass yield and nutrient use efficiency. The rice straw
treatment is as follows: (T1) no straw incorporation, (T2) RS incorporation at an amount of 3750
kg ha™!, and (T3) RS incorporation at an amount of 7500 kg ha™!. Compared to the no straw
treatment, peas showed the highest dry shoot and root biomass production by 79.5% and 87.3%,
respectively, on the T3 treatment. While the greatest shoot P uptake abilities were recorded in
peas at 127.7%, and chickpeas were 51.8% under the T3 compared to T1 treatment. Green
manure species improved K accumulation capacities under rice straw treatments compared to
the control. The plant's shoot and root nutrients (N, P, and K) uptake capacities showed a
significant positive relationship with soil properties. It is concluded that rice straw treatment
(particularly in the amount of 7500kg ha™!) is an effective practice for enhancing nutrient uptake

capacities in green manure crops and developing soil fertility status.

Keywords: rice straw; green manures; soil nutrients; biomass production; arid soils.
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1. Introduction

It is expected that the world's population will increase by 9.7 billion in 2050. Therefore,
agricultural methods are also required to significantly develop food production (X. Wang et al.,
2020). However, high fertilizer efforts have been used to get a better plant yield (X. Yang et al.,
2024). The overdose of chemical fertilization supplies in Western Europe, China, India, Pakistan,
and North America has led to environmental pollution, whereas in Africa and Latin America it
causes soil degradation (Noureldin et al., 2013). Management of nutrient efficiency is a difficult
task for future agriculture, and numerous methods, separately and in combination, have been
engaged to achieve its effectiveness (H. S. Saudy & El-Metwally, 2019). The lack of
macronutrients such as nitrogen (N), phosphorus (P), and potassium (K) has become a significant
problem in the modern agricultural environment, adversely affecting crop production (S. Qiu et
al., 2023). Nitrogen plays a role in photosynthesis through various enzymatic reactions and is
part of the chlorophyll molecules (Rasool et al., 2020). Phosphorus and K are significant
nutrients for energy formation, nucleic acid synthesis, photosynthesis processes, respiration,
enzyme activation, and other physiological processes (T. Zhang et al., 2023). Nitrogen and P are
important nutrients that are required for the proper growth and yield of grain legumes (H. Saudy
et al., 2020). Potassium is an important element for plant photosynthesis and could also help
transfer nutrients through the root mechanisms of a plant, which can increase soil K availability’s
(Jinetal., 2020). It is necessary for early root development, boosts leaf size, enhances nodulation,

improves flowering and grain yield, and fastens maturity (El-Mageed et al., 2022).

Generally, Pakistani soils are alkaline and calcareous due to a high amount of Ca®>" and Mg*" in
the soil, resulting in insufficient uptake of nutrients by plants (K. A. Solangi et al., 2019). It has
been observed that 80% of the P fertilizer applied to the soil transforms into an unavailable form,
mostly in calcareous soils (Shaaban et al., 2023). In other words, nutrient-deficient soils that
have low N, P, and K availability can impose significant constraints on plant growth and
development (Anwar et al., 2025). Utilization of straw incorporation techniques is mostly used
as organic fertilizer to increase soil fertility. However, rice straw is an excellent source for
sustainable agricultural production due to the presence of vital nutrients and organic material
that can improve soil health and crop yield. Short-term straw application induces
microorganisms that help to improve N and reduce N mineralization, thereby increasing the net
retention grain yield. In this regard, green manure species were grown under straw treatments to

improve soil nutrient availability in green manuring practices (Mubarak et al., 2021).

Green manure plays a significant role in the nutrient cycle, increases soil organic matter (SOM)
and N content through biological N fixation, and can also provide the soil N supply for next
year's crops (F. Solangi et al., 2019). The plantation of legumes is important for maintaining
essential elements and could be used as an alternative source of nutrients (Stagnari et al., 2017).
Chickpeas and cowpeas are crucial nutritional legume pulses; they are a vital resource of low-
cost, high protein content next to cereal grains (Jukanti et al., 2012). Green peas belong to the
Fabaceae family; these crops have the ability to fix N in the soil. Peas are an essential winter

vegetable crop in Pakistan due to their nutritional capacity. Alfalfa and ryegrass are fodder crops
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that have high nutrition amounts and are broadly cultivated throughout the world. Green manure
crops enhance N, P, and K availability due to a number of mechanisms by which they can survive
in nutrients stress environmental conditions. For example, by releasing organic acids from their
roots, which could solubilize stable P, and secreting phosphatase enzymes to convert organic P

into the inorganic P compounds (Du et al., 2024).

Compared to non-leguminous plants, legume crops have higher P requirements for optimal N
fixation, as P plays a vital role in energy conversion in nodules. Previously, (Moll et al., 1982)
defined nutrient use efficiency as the yield of grain/unit of nutrient supplied. Similarly, some
researchers (Hammond et al., 2009) defined P uptake efficiency (PUpE) as referring to the
capacity of plants to uptake P from the soil and the P use capacity (PUtE) of P absorption and
use by a plant for biomass yield. Improving phosphorus use efficiency (PUE) could be dependent
on higher P absorption abilities and optimizing its utilization (Martinez-Feria et al., 2018).
Improving nutrient uptake efficiency by legumes requires better availability of nutrients from
the soil, which is used to accelerate biomass growth and distribution to the above-ground parts
(Schonleber & Ivers-Tiffée, 2015). These crops also reduce fertilizer input in the ecosystem due
to their biological N fixation (Tsialtas et al., 2018). In addition, the application of straw
incorporation could supply a higher amount of major nutrients, which is an excellent value for
maintaining soil fertility (Tan et al., 2017). The practice of straw incorporation has become
widespread because it helps improve soil nutrient efficiency and reduce soil erosion and water
loss, thus contributing to the basic practices that promote sustainable agricultural systems (X.-Z.
Hanetal., 2012). In an agricultural environment, straw incorporation practices have been defined
as an easy and effective method to enhance soil nutrient utilization efficiency and subsequent
crop production (F. Solangi et al., 2024). It is also necessary to identify the good sources of
organic fertilizer that can be used as fertilizer and their best combination with a suitable portion

of inorganic fertilizer for crops.

It is reported that rice straw incorporation practices can increase N (0.5-0.8%), P (0.07-0.12%),
K (1.16-1.66%), content, and other elements in soil, thereby improving the efficiency of soil
nutrients and increasing crop yields (Lan et al., 2012). The incorporation of rice straw directly
into the soil can provide favorable environmental conditions (Chivenge et al., 2020). The straw-
applied practices could be utilized as a natural organic source and as an alternative to synthetic
fertilizers (X. Wang et al., 2015). The crop straw is the main source of organic matter, which
provides nutrients to soils that could improve biological properties activities (P. Zhang et al.,
2016). Therefore, the changes in soil properties under both short and long-term applications of
straw are valuable to soil microbes because they have a significant influence on nutrient cycling,
microbial activity, and overall soil (Li et al., 2022). Long-term crop cultivation reduces soil
fertility by incorporating crop straw that has decomposed into the soil, while this decomposing
process provides nutrient to the plant (Gaind & Nain, 2007). Further, long-term trials, straw
incorporation practices are mainly used to improve the wheat yield quality and are mainly
incorporated in paddy fields. Furthermore, many studies emphasize rice straw incorporation

practices to improve soil organic carbon and carbon nitrogen ratios through different practices
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in the soil, including the direct application of straw and incorporation with tillage at various soil
depths (X. Han et al., 2018; Yao et al., 2015), and various amounts of straw incorporated with
high amounts of N chemical fertilizer (S.-J. Qiu et al., 2012). The limited literature available on
the cultivation of green manure crops under straw treatments to improve plant macronutrients
uptake abilities and soil nutrient contents. Part of the current research focuses on the response of
green manure to the transformation of nutrients into above-ground plant parts under straw
treatments. We hypothesize that the rice straw incorporation practice could affect the ability of
green manure species to take in nutrients. Keeping this opinion in mind, the present research was
shown to study the effect of in situ incorporations of rice straw treatments on different species
of green manure crop biomass production and nutrient uptake. The important objectives of the
present research are (1) to investigate the effects of two different RS treatments on the nutrient
(N, P, and K) uptake capacities of green manure varieties, and the highest PUE among different
varieties was further investigated; and (2) to explore soil nutrient availabilities and their

interaction with plants nutrient absorption capacities.
2. Materials and Methods

A greenhouse experiment was conducted in Sindh province, situated in southern Pakistan,
longitude 25°42'34" N and latitude 68°54'08" E. The experiment was planned in a completely
randomized design with two factors: rice straw treatment and different species. The rice straw of
the super basmati variety (Oryza sativa) was used in this experiment. The rice straw was cut into
15-cm pieces for use after drying at 70°C and then manually mixed with dry soil at different
levels. The applied straw amount and fertilizer rate are shown in Table 1. Experimental soil was
properly homogenized with 100 mg/kg P (P.Os) and K (K2O) fertilizers with each rice straw
treatment, and every treatment has four replicates. After that, 50% water was added to maintain
water holding capacity (WHC) in every pot. The applied fertilizers were treated as
superphosphate (P2Os, 12%) and potassium chloride (K20, 60%). The pot experiment soil was
collected with a depth of 0—15 cm using an auger, and the initial soil characteristics are as follows:
soil organic matter (SOM) was 6.5 g kg !; total nitrogen (TN) was 1.5 g kg™!; available P was
18.7 mg kg ! and available K was 120.3 mg kg '; soil pH and EC cmol kg™ ! were 7.8, and 0.36
respectively. The texture class was clay loam with a bulk density of 1.20 g cm™. The RS
nutritional composition was N, 1.25% P, 0.28% K, and 4.81%. The green manure seeds were
soaked in water for 1 day before sowing. After soil preparation, 10 to 12 seeds of each green
manure species were sown in pot-!, and covered with dry soil Green manure species such as peas
(Pisum sativum L.), chickpeas (Cicer arietinum L.), cowpea (Vigna unguiculata), alfalfa
(Medicago Sativa L.), and ryegrass (Lolium multiflorum.) were followed as species names (peas
2009, DG 92, CP 1, Sarsabz, and Italian ryegrass), respectively, seeded on 5™ November 2020.
The above mentioned species and experimental soil were collected from the Pulses Research
Sub-station, Tandojam city, Sindh province, Pakistan.

Table 1. The rice straw applied amount and chemical fertilizers dose

Treatment Rice straw Chemical fertilizers

Tl 0 kg ha'! (P,05), (K20) 100 mg/kg




151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

167

168
169
170
171

172
173
174
175
176

177

178

179
180
181

T2 3750 kg ha! (P20s), (K20) 100 mg/kg
T3 7500 kg ha™! (P20s), (K20) 100 mg/kg

2.1. Plant sampling and analysis

All species were harvested on 20" February 2021. The plant parts (shoots and roots) were
separated and weighed, then dried in an oven at 70°C for 2 days, crushed, and stored for nutrient
analyses. The N, P, and K concentrations in plant shoot samples were analyzed using a digestion
method involving a mixture of sulfuric acid (H2SO4) and hydrogen peroxide (H20:) at high
temperatures, followed by an ashing process for nutrient determination. The following methods
determined the plant's nutrient contents: plant N was determined by the Kjeldahl digestion
method (Aleixo et al., 2008), P analysis by the molybdovanadate method (Soon & Kalra, 1995),
and the flame photometry method was used for K determination. Shoot and root PUpE is
examined by the amount at which a plant absorbs a nutrient and the supplied P amount. Shoot
and root PUtP calculates the dry biomass per unit of nutrient accumulated in the plant. PUE was
estimated

as the total amount of nutrients available that the plant utilized. Phosphorus use efficiency
percentages is measured by PUpE x PUtP described by (Moll et al., 1982).

For shoot and roots PUE, and nutrients N, P, and K uptakes were calculated by following
equations.

Uptake = [plant uptake contents (%) in dry matter x dry biomass yield (g pot-1)]/100 (1)

P uptake efficiency (PUpE) % = (Nt) / (Ps) x 100 2)

Where Nt is the amount of P accumulated in the shoot dry matter of a plant at maturity and Ps =

P supplied straw + fertilizer.

P utilization efficiency (PUtE) % = (Nt / Shoot dry Biomass x100) 3)

Where Nt is nutrients accumulate in the dry matter of a plant at maturity and shoot dry biomass

weight at maturity

P use efficiency (PUE) % = (PUpE) % x (PUtE) % 4)

2.2.80il sampling and determination

However, collected soil samples were divided into two portion, while one portion was quickly
kept at -4°C for inorganic N analysis. The second part of samples was dried at room temperature

and further passed through a 2-mm sieve for the analysis of soil P, K, and the soil pH range. The
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sub-samples were passed through a 0.25-mm sieve further to analyze total soil nitrogen and soil
organic matter. Drying experimental soil in an oven for two days at 105 °C provided information
on its moisture content for inorganic N analysis. Determination of soil inorganic N contents by
the Kjeldhal process of steam distillation as described by (Thomas, 1996). Soil total nitrogen
(TN) content was analyzed by the Kjeldahl method (Nelson & Sommers, 2018). SOM was
determined by Walkley-black method (Zelazny et al., 2018). A pH meter (Jenway, Model-3510,
Gransmore Green, Felsted, Dunmow, Essex, CM6 3LB, UK) was used for determining soil pH
at a 1:2.5 soil/water ratio. The Olsen P was extracted with 0.5 M NaHCO3 and analyzed using
visible light spectroscopy in blue light (UV-VIS spectrophotometer, Model UV-2100,
Shimadzu, Kyoto, Japan), following the method in (Murphy & Riley, 1962). Soil available
potassium was examined through flame photometry using 0.5g of soil and 1M of ammonium

acetate (NH40OAc) (Walker & Barber, 1962).

2.3. Statistical analyses

One-way ANOVA was used to evaluate the effects of straw incorporation treatments on various
types of green manure varieties and soil properties, and SPSS Statistics Version 20.0 (Corp.,
Armonk, NY, USA) was used for Duncan's multiple values of tests at (p < 0.05) measure the
treatment differences. The IBM SPSS Statistics Version 20.0 was also used (Corp., Armonk,
NY, USA) for correlation analysis. According to Pearson's correlation coefficient analysis, we
evaluated the correlation between shoot and root nutrient uptake of green manure varieties and
its relationship with soil properties using *, which presented a p level at < 0.05, and ** which

indicated a p range at < 0.01 probability levels.

3. Results
3.1.5hoots and roots dry biomass

Significant changes in shoots and root dry biomass of the different green manures including
peas, chickpeas, cowpeas, alfalfa, and ryegrass were observed under both RS treatments, T2 and
T3, compared to the no straw (control) treatment (Figure 1). Peas provided the highest shoot and
root biomass by 79.5% and 87.3%, respectively, on the T3 treatment compared to the control.
Chickpeas increased shoot dry biomass yield and root dry biomass i.e., 37.5% and 10.9% on T3,
which was higher than T1 treatment. Cowpeas produced maximum shoot and root biomass of
45.3% and 48.0% under the T3 treatment than without the straw treatment, respectively.
Compared with the control, alfalfa improved shoot dry biomass, i.e., 32.9% on T3 treatment,

while ryegrass decreased shoot biomass by 20.7% under the T3 which is lower than T1 treatment.
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Figure 1. Effects of straw incorporation treatments on shoots and roots dry biomass of green
manure crops. Small letters indicate a significant difference at P < 0.05, based on Duncan's
multiple range test, repeats n = 4, mean + standard error.

Note: T1: no straw incorporation; T2: incorporation of rice straw at a rate of 3750 kg ha!, T3:

incorporation of rice straw at a rate of 7500 kg ha™.
3.2. Shoot N, P, and K uptakes

The RS treatments significantly (P < 0.05) enhanced the shoot N uptake of different green
manure species (Table 2). Compared with the control, the shoot N uptake capacity of different
species such as pea, chickpea, cowpea, alfalfa, and ryegrass, followed by 193.4%, 52.0%, 29.5%,
59.5%, and 14.9%, respectively, was significantly increased on T3 straw treatment. Straw
treatments also showed changes in the P and K uptake abilities of various species; the highest
shoot P uptake was recorded in peas at 127.7%, and chickpeas were 51.8% on T3 compared to
without straw treatment. However, T3 treatment also enhanced P uptake capacities in cowpeas
and alfalfa, i.e., 35.4% and 48.4%, respectively, as compared to control. In contrast, ryegrass
reduced P uptake ability in T3, which is lower than T1 treatment. While greater K uptake abilities
were increased in alfalfa by 356.8% and pea by 289.1%, respectively, in the T3 straw treatment,
which was higher than no straw treatments. Peas, chickpeas, and cowpeas significantly improved

K uptake abilities under straw treatments.

Table 2. Shoots nutrient uptake (g kg'') in green manure species under rice straw treatments,
repeats n = 4, mean + standard error.

Shoots
Species Treatment uptake (g kg'') P uptake (gkg!) K uptake (gkg?)
T1 0.284+0.073b 0.069+0.003b 0.270+0.020c
Peas T2 0.926+0.051a 0.101+0.005ab 0.835+0.020b
T3 1.834.£0.061a 0.158+0.037a 1.049+0.063a
T1 1.527+0.417a 0.159+ 0.039b 1.0491+0.149b
Chickpeas T2 2.527+0.525a 0.200+0.057b 1.006+0.261ab
T3 2.513+0.525a 0.241£0.010a 2.352+0.132a
Tl 1.285+0.196b 0.148+0.011a 1.142+0.048¢
Cowpeas
T2 1. 848+0.177ab 0.199+0.034a 1.450+0.193b
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T3 1.665+0.111ab 0.200+0.021a 1.721£0.130a

T1 0.495+0.025b 0.074+0.003a 0.363+0.064b

Alfalfa T2 0.514+0.027b 0.081+0.008a 0.910+0,058ab
T3 0.787+0.037a 0.110+0.001a 1.657+£0.059a

T1 0.496+0.030a 0.103+£0.016a 0.461+0.029b

Ryegrass T2 0.570+0.081a 0.070+0.021a 1.150+0.112a
T3 0.570+0.031a 0.081+0.007a 1.260+£0.072a

Note: T1: no straw incorporation, T2: incorporation of rice straw at a rate of 3750 kg ha™!, T3:
incorporation of rice straw at a rate of 7500 kg ha!. The small letter shows significant changes

(» <0.05) using Duncan's multiple range tests.
3.3.Roots N, P and K uptake

The RS treatments boost the root N and K absorption capacity while reducing the P uptake
amount in the roots of green manure species (Table 3). Treatment T3 increased the greatest
amounts of root N uptake in peas, chickpeas, and cowpeas, i.e., 181.4% and 32.9%, and 17.3%,
respectively, compared to the control. Alfalfa reduced root N uptake ability, which is lower than
control. While root P uptake trends decreased in green manure species in the following
directions; 38.8%, 24.4%, and 12.5% for peas, ryegrass, and cowpeas on T3 treatment, then no
straw incorporation. The higher root K uptake was recorded in peas and alfalfa, i.e., 205.6% and
130.8%, on the T3 treatment which is greater than T1. The lowest K absorption was in cowpea,
54.5%, on T2 which was higher than without straw incorporation.

Table 3. Root nutrients (N, P, and K) uptake (g kg!) in different legumes under rice straw

treatments repeats n = 4, mean + standard error.

Roots
Species Treatment
N uptake (g kg') P uptake (gkg') K uptake (gkg?)
T1 0.042+0.004b 0.022+0.001a 0.039+0.003b
Peas T2 0.084+0.009a 0.019+0.002a 0.118+0.015a
T3 0.092+0.004a 0.021+0.002a 0.120+0.008a
T1 0.095+0.013a 0.041£ 0.003a 0.094+0.06a
Chickpeas T2 0.119+0.020a 0.020+0.002a 0.125+0.018a
T3 0.126+0.009a 0.013+0.001a 0.121+0.03a
T1 0.143+0.022a 0.046:0.009a 0.099+0.014b
Cowpeas T2 0.167+£0.019a 0.021+0.001a 0.161+0.012a
T3 0.167+0.009a 0.025+0.001a 0.170+£0.011a
T1 0.145+0.018a 0.029+0.001a 0.137+0.010c
Alfalfa T2 0.161+0.008a 0.018+0.002a 0.221+0.008b
T3 0.139+£0.004a 0.027+0.001a 0.316+0.019a
T1 0.129+0.025a 0.029+0.007a 0.144+0.022b
Ryegrass T2 1.134+0.012a 0.021+0.003a 0.255+0.043a
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T3 0.120+0.016a 0.019+£0.001a 0.249+0.024a

Note. T1: no straw incorporation; T2: incorporation of rice straw at a rate of 3750 kg ha™!, T3:
incorporation of rice straw at 7500 kg ha'!. The small letters showed significant modifications

(» <0.05) using Duncan tests.
3.4. Shoot and root P use efficiency

Straw treatments affect the shoot and root PUE of different species. Among all species, peas
recorded the highest shoot PUE by 186.2% on the T3 treatment compared to the no straw
incorporation treatment (Table 4). Other species shoot PUE trends follow cowpeas, chickpeas,
and alfalfa by 78.5%, 59.5%, and 67.2%, respectively, on T3, as compared to without straw
incorporation. While ryegrass decreased the shoot PUE trend by 40.0% compared to the control.
Similar to the PUE of the shoots, the highest root PUE was also observed on T3 in alfalfa, which
was 144.6% higher than T1 treatment. However, T3 significantly increased root PUE of
chickpeas and cowpeas by 7.3% and 37.2%, respectively, compared to no straws. In contrast,

pea and ryegrass reduced root PUE with straw incorporation.

Table 4. Shoot and root P uptake effeciency PUpE (%), P utilization efficiency PUtE (%), and

P use efficiency PUE (%) of different green manure species under straw treatments.

Species  Treatments Shoots Roots
PUpE PUtE PUE PUpE PUtE PUE
(%) (%) (%) (%) (%) (o)
Peas T1 0.564 0313 0.177 0.101 0.662 0.072
T2 0.821 0.364 0.299 0.134 0.453 0.061
T3 1.283 0.395 0.506 0.168 0.412 0.069
Chickpeas T1 1.291 0.218 0.281 0.104 0.256 0.027
T2 1.626  0.213 0.347 0.116 0.224 0.022
T3 1.960  0.225 0.441 0.157 0.252 0.029
Cowpeas T1 1.203 0.210 0.252 0.157 0.345 0.054
T2 1.617  0.240 0.389 0.140 0.239 0.033
T3 1.628  0.276 0.450 0.204 0.363 0.074
Alfalfa T1 0.602  0.288 0.173 0.166 0.286 0.047
T2 0.660  0.297 0.196 0.163 0.286 0.048
T3 0.894 0324 0.289 0.185 0.296 0.115
Ryegrass T1 0.837  0.462 0.387 0.248 0.464 0.060
T2 0.572  0.300 0.172 0.151 0.299 0.045
T3 0.662  0.350 0.232 0.152 0.344 0.052

Note. T1: no straw incorporation; T2: incorporation of rice straw at a rate of 3750 kg ha™!, T3:

incorporation of rice straw at 7500 kg ha™’.
3.5.Effects of rice straw treatments on soil nutrient contents

In general, RS treatments changed the amount of available N, P, and K in the soil after harvesting
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different types of green manures (Figure 2). Compared with the control, the cowpea, pea, and
ryegrass increased NOs™ N content by 26.5%, 45.5%, and 79.8%, respectively, in the T3 straw
treatment. Soil TN did not find any significant results under RS treatments. The T3 straw
treatment reduced the soil-available P content in peas by 14.6% compared with the control. Soil
available P contents decreased in chickpeas and cowpeas by 20.9% and 17.8% under T3
treatment, respectively, which is lower than the control. At the same time, compared to the
control, ryegrass and alfalfa decreased soil P, i.e., 21.9% and 46.2% on T3 straw incorporation
treatments, respectively. In contrast, straw applied treatments improved the soil's available K
content in all different species. The maximum K content noted in alfalfa was lower by 126.2%
on T3 compared with the control. While cowpeas improved by 51.7% more soil available K

content of available K by 8.6% in ryegrass, which was higher than the no straw incorporation

treatment.
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Figure. 2. Influence of rice straw treatments on soil (NO73) nitrate nitrogen, total nitrogen,
available phosphorus, and available potassium. Different small letters indicate a significant
difference at P < 0.05, based on Duncan's range test, repeats n = 4 mean + SE.

Note. T1: no straw incorporation; T2: incorporation of rice straw at a rate of 3750 kg ha!, T3:
incorporation of rice straw at 7500 kg ha™!.

3.6.Relationship between shoots and roots nutrients and soil properties

Table 5 shows that there are significant relationships between shoot N, P, and K uptake of
different green manures and the soil properties. The shoot N uptake showed a significant
negative relation with soil K and pH r = -0.336* and -0.294%*, respectively. While P uptake was
shown to have a negative relationship with SOM (r = -0.256*) and a significantly positively
linked with soil pH = 0.505**. Shoot K uptake was significant positive linked with soil TN,
NOs-, and AP by r = 0.364**, 0.381**, and 0.267**, respectively. Shoot K uptake shows a

significant negative relation with soil pH (r = -0.597*%*).



299 Table 5. Pearson correlations (r) between plants shoot N, P, and K uptakes and soil properties.

Parameters N P K SOM TN NHs NO3;— P K pH
Shoot N 1 0.312 0.484 -0.253 - 0.054 -0.068 0.001 0.336 -0.294*
Shoot P 1 - - - - -0.075 0.232 0.162 0.505*
0.037 0.256 0.065 0.156 *
8 *
Shoot K 1 -0.231 0.364 0.146 0.381 0.267 0.084 0.597*
ksk ksk * *
SOM 1 0.321 0.130 0.364 - 0.633 -
ok 0.460  ** 0.557*
* *
TN 1 0.207 0.417 - 0.217 0.522%
0.516 *
sksk
NH4* 1 0.017 - 0.012 0.183
0.204
NOs” 1 - 0.248 0.713*
0560 *
*
AP 1 - -
0.299 0.655*
kk %
AK 1 0.373*
*
pH 1

300  SOM; organic matter, TN (total nitrogen), NH4" and NOs™ (mineral nitrogen), P (phosphorus), K
301 (potassium), and pH (soil pH)

302  However, the uptake capacity of roots for N, P, and K was significantly correlated with soil
303  properties (Table 6). Legume root N uptake was only significantly negatively related to soil pH
304  (r=-0.304*). Root P uptakes showed a significant negative relation with SOM by r = -0.257%*,
305 NOs- by r = -0.393**, and soil pH by r = 0.402**, Root K uptake of green manure species
306  positively interacts with soil properties such as SOM, TN, NOs-, and soil pH, by r = 0.336%,
307 0.357**,0.460**, and 0.590**.

308 Table 6. Pearson correlation (r) between plants root N, P, and K uptakes and soil properties.
Parameters N P K SOM TN NHs" NOs3- P K pH
Root N 1 0.522%*  (0.522** -0.242 -0.088 0.037 0.057 0.006 0.323 -0.304*
Root P 1 0.454%* - -0.205 0.073 -0.393** 0.122 -0.171 -0.402%**

0.257
*
Root K 1 0.336 0357 0.156 0.460** 0.224 -0.205 0.590**
* *k
SOM 1 0.321 0.130 0.364* - 0.633*  (0.557**
0.460 *

kK

TN 1 0.207 0.417** 0.516 0.217 = 0.522%%*



kK

NH4* 1 0.017 - 00122 0.183
0.203
NOs- 1 - 0.249  0.713%*
0.560
AP 1 - -0.65%*
0.299%*
x
AK 1 0.373%*
pH 1

309  SOM (organic matter), TN (total nitrogen), NH4" and NOs- (mineral nitrogen), P (phosphorus),
310 K (potassium), and pH (soil pH)
311 4. Discussion

312 4.1.Influence of rice straw on green manure biomass and nutrient uptake

313 The presented data show that the straw incorporation treatment promotes the macronutrients, for
314 example, N, P, and K accumulation abilities of green manure shoots and roots and develops
315 greater biomass production (Figure 1). Previous research has demonstrated that straw application
316 not only provides nutrients but also increases biomass yield and grain yield (X. Wang et al.,
317 2018). Similarly, the incorporation of straw into the soil can reflect plant biomass and production
318  (Karami et al., 2012). A mixture of two fertilizers, including organic and inorganic fertilizers,
319  not only improves N uptake efficiency by plants but also restores N in the soil (Abd—Elrahman
320 etal., 2022; Moe et al., 2017). Crop straw contains several essential nutrients needed for plant
321 growth and impacts N mineralization and possibly N uptake in crops (Zhao et al., 2014).
322 However, the ability of plants to absorb nutrients depends on the ability of the soil to provide
323  sufficient nutrients and the ability of the plant to acquire, transport, and re-migrate to other parts
324 of the plant through the roots and shoots (F. Solangi et al., 2024). In addition, the concentration
325  of crucial nutrients increases due to microbe-promoted mineralization, which can increase the
326  available nutrients absorbed by plants (Osman, 2013; Salem et al., 2022). A previous study by
327 (Y. Zhang et al., 2018) described that cumulative soil pH due to the application of RS compost
328  might have a favorable effect on overall plant uptake availability. The current study indicates
329  straw treatments enhance legume shoots and root K uptake. Relatively high concentrations of K*
330  uptake were found in plants, especially the shoots of all crops (Ashraf, 2004). Even at very low
331 potassium concentrations, the roots of legumes actively absorb large amounts of potassium and

332 transport it from roots to shoots (Z. Zhang et al., 2021).
333 4.2 Influence of straw treatments on shoot and root PUE of different species

334 This research demonstrated that the straw incorporation trend enhanced the plant's nutrient
335  uptake capabilities. Moreover, among all species, chickpea showed the highest N uptake on T3
336  treatments, while greater P and K uptake was observed in T2 (Table 2). Similar results were

337 shown in an earlier study that gives support to the current study, where faba beans accumulated
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high levels of nitrogen in their shoots and roots in comparison with various legumes (Jin et al.,
2020). Straw incorporation treatments increase microbes and improve the high N fixation
capacity of a legume species, which is reflected in the high N uptake in plants. According to the
previous study, based on cluster root analysis, legumes can be classified into different groups.
The cluster root system of soybeans, peanuts, chickpeas, and peas might have quick early shoot
growth and a high lateral root development, which could help increase nutrient uptake from the
soil (H. S. Saudy et al., 2018). The current study showed the highest shoot and root PUE
efficiency recorded in peas among all green manures (Table 4). In consideration, efficient and
inefficient plants were categorized into two classes based on their biomass response to P
availability and the conversion of plant supply nutrients into dry yield (Vose, 1987); a plant that
provides a high biomass yield under a P-sufficient environment is known as a P-efficient cultivar,
and plants that produce a lower yield at low nutrient content are known as P-inefficient cultivars
(F. Solangi et al., 2023). However, green manure species have unique root morphological

characteristics, and root-related traitssignificantly influence PUE (Ozturk et al., 2005).
4.3.Effects of rice straw treatments on soil nutrients availability

The straw incorporation application significantly enhanced soil nutrient availability. Straw
incorporation seems promising for maintaining and restoring soil fertility (Zhao et al., 2019).
Present results have shown RS treatments have maximized a small amount of soil N content
(Figure 2). In addition, using organic and inorganic fertilizers can improve soil physicochemical
properties and serve as a source of nutrient management techniques to reduce nitrogen loss and
improve soil nitrogen efficiency (Chadwick et al., 2015). Crop residues also contain a lot of
organic matter, which, when mixed into the soil, can improve soil quality and ultimately
contribute to increased crop yields. The RS treatments could reduce available soil P contents
under the cultivation of green manure species (Figure 2). The current study confirms earlier
research that found rice straw incorporation decreased soil availability in the pot experiments.
Earlier research (Yan et al., 2016) found that rice straw incorporation reduced soil phosphorus
availability in pot experiments, which supports with the findings of the current study. This
reduction may occur because rice straw treatments enhance microbial biomass and activity,
leading to the transformation and retention of inorganic phosphorus in the soil (X. Wang et al.,
2018). Furthermore, applying straw amounts increases organic matter in the soil's top layer,
thereby decreasing the amount of P absorbed by inorganic particles that attach to soil colloids
(P. Zhang et al., 2016). Similarly, (Yadvinder-Singh et al., 2010) reported that field and pot
experiments showed that the soil solid phase absorbed most of the P released by rotting straw,
but not all of it entered the soil solution. Other previous results demonstrated that straw P
retention takes multiple years to reduce soil adsorption of P and improve the available soil P on

the soil surface (Gupta et al., 2007).

The present experiment shows straw incorporation treatments enhanced soil available K content
(Figure 2). According to earlier studies described by (Sial et al., 2019), which showed that the
developed K content of soil at a depth of 0-20 cm as a result of rice straw application and rice

straw retention in fields could also release a considerable amount of K to the soil. The changes
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in soil pH during the decomposition of rice straw could enhance a large amount of soil K (Y.
Zhang et al., 2018). It is considered that RS treatments might transform a portion of non-
exchangeable K into one that is exchangeable and available for plants (H. Y. Wang et al., 2011).
Organic materials, mainly recycled rice straw, can provide a considerable amount of K and

sometimes even more than plant requirements (Singh et al., 2018).

4.4.Relationship between legume shoots and roots N, P, and K uptakes and soil properties

Pearson's correlation analysis showed the nutrient uptake capacities of plant shoots and roots
were significantly correlated with soil properties. Current data shows a significant negative
association among shoot and root N uptake and soil pH. This finding supported our study, which
showed short-term applied straw could induce N immobilization by microbe activities due to
straw incorporation and decrease N mineralization (Liu et al., 2023). Early decomposition of
returned straws affects the breakdown of nitrogen-containing substances. In the later stage of
straw decomposition, the N is largely consumed by plants, the NH3" produced is greatly reduced,
the soil pH is maintained at normal, and the activity of soil microorganism’s increases. Straw
incorporation could upgrade microbial biomass and N mineralization in the soil (Eagle et al.,
2000). The present study indicated a relationship between plant nutrient uptake and SOM. Soil
organic matter is an important factor in soil quality because of its effects on soil properties.
According to a previous study, straw incorporation directly correlates with soil carbon and SOM,
which can lead to plant nutrient uptake capacities (Y. Zhang et al., 2018). The addition of RS to
the soil increases SOM because the decomposition of RS increases the release of dissolvable
SOM from the straw, which leads to an increase in potential nutrient availability (Lou et al.,
2011). Several studies have demonstrated that crop residue incorporation is beneficial for soil
fertility and can maintain soil structure and water content (M. Yang et al., 2021). Furthermore,
another study found that when rice straw is applied to the soil, it results in increased P and K
uptake compared to no straw incorporated (Ali et al., 2021; Mao et al., 2022). The rate of
decomposition and the release of nutrients depend on soil type and season, even though nutrients
become available for plant uptake after straw decomposition. Similarly, the plant's shoot K
uptake abilities indicated a significant negative interaction with pH, and root K uptake has a
positive relationship with soil pH (Tables 5 and 6). An earlier study proposed that during the
process of straw decomposition, microbial activities become active, and the increased
microorganism and enzyme activities release a large amount of K that can be exchanged into the
soil (T. Zhang et al., 2014). The straw application might release an alkaline substance that could
increase soil pH and indicate a significant negative relationship between soil pH and K uptakes
(X.-Z. Han et al., 2012). A positive interaction with soil pH might be in the slightly acidic (6.5)
to slightly alkaline (7.5) range, where plant roots can easily uptake the nutrient from the soil

(Hossain et al., 2014).

5. Conclusion

The present study shows incorporation of rice straw treatments was used to evaluate the

accumulation of nutrients and soil availability of nutrients in a variety of green manure species.
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Among all species, shoot and root phosphorus use efficiency improved in peas on T3 treatments
(particularly in the amount of 7500 kg ha!'). The addition of rice straw incorporation (T3)
increased soil nitrogen and available potassium. Treatments involving straw incorporation
decreased the readily available P content in the soil. However, it did not change the pattern of
available phosphorus content in the soil solution during crop growth. The practice of
incorporating straw into the soil can prevent environmental pollution, is an effective method to
improve the quality of soil nutrients in Pakistan and can also reduce the high fertilizer
consumption in crop production. In this regard, more studies are needed to clarify long-term
experiments on legume and non-legumes (green manure) crops under rice straw treatments

combined with fertilizer application.
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