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Abstract 8 

Agriculture, as a pillar sector of the national economy, plays a crucial role in influencing the quality 9 

of the ecological environment through its carbon emissions. Jiangsu Province is a major agricultural 10 

region in China. Measuring agricultural carbon emission efficiency (ACEE), analyzing its 11 

spatiotemporal evolution characteristics, along with the influencing factors are of great significance 12 

for advancing the achievement of agricultural sustainable development goals in Jiangsu. This paper 13 

focuses on the 13 prefecture-level cities in Jiangsu Province and initially conducts a quantitative 14 

assessment of the carbon emission efficiency in the agricultural sector from 2010 to 2020 using the 15 

Super-SBM model. Subsequently, the paper investigates the temporal and spatial evolutionary 16 

characteristics of ACEE using spatial autocorrelation models and kernel density estimation. Finally, 17 

the paper employs the geographically weighted regression method to systematically analyze and 18 

interpret the key factors influencing efficiency. Based on the empirical research findings, three main 19 

conclusions can be drawn. (1) Regarding efficiency levels, the carbon emission efficiency in Jiangsu 20 

Province's agricultural sector has gradually improved, but it remains relatively low overall, with 21 
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significant efficiency loss issues. (2) In terms of spatiotemporal evolution, the ACEE in Jiangsu 22 

Province improves over time and exhibits positive spatial clustering characteristics in space. (3) 23 

Concerning influencing factors, MCI, labor-land allocation efficiency, and other factors all have a 24 

significant impact on ACEE. 25 

Keywords: Agricultural carbon emission efficiency, spatiotemporal characteristics, efficiency 26 

measurement, regional disparities 27 
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1. Introduction 29 

1.1. Literature review 30 

The intensifying trend of global warming, coupled with the frequent occurrence of extreme weather 31 

events, has posed severe environmental challenges that have become major obstacles on the path to 32 

sustainable development. Consequently, reducing carbon emissions to effectively address global 33 

climate change has become a core issue of widespread concern for governments worldwide. IPCC34 

《AR6 Synthesis Report: Climate Change 2023》shows that the agriculture, forestry and other land 35 

uses sector, accounted for 13–21% of global total anthropogenic greenhouse gas (GHG) emissions in 36 

the period 2010–2019. As a major global player in the agricultural sector, the prominent carbon 37 

emission issues from China's agriculture have become a significant challenge that cannot be ignored 38 

in the field of environmental protection. Currently, China's agriculture is at a critical juncture, 39 

transitioning from extensive scale expansion to intensive deepening. During this phase, the 40 

widespread use of fertilizers, pesticides, and various agricultural production inputs, while enhancing 41 

agricultural output efficiency, also imposes more severe pressures and challenges on China's carbon 42 

emission management(Wang et al., 2020). 43 

Traditional agricultural efficiency assessment primarily focuses on desirable outputs such as 44 

agricultural output value and grain yield, while often overlooking undesirable outputs including 45 

various pollution emissions generated during agricultural production. This evaluation method tends 46 

to overestimate efficiency and underestimate policy effectiveness. Incorporating undesirable outputs 47 

such as carbon emissions allows for a more accurate measurement of agricultural efficiency. Scholars 48 

have employed various models, including DEA and SFA, to explore this topic from multiple 49 

perspectives. Research in this field not only reflects the academic community's high regard for 50 

environmental protection issues but also demonstrates proactive exploration of sustainable 51 

agricultural development pathways. In the course of academic research, the issue of agricultural 52 

carbon emissions initially attracted extensive attention in developed countries such as the United 53 

States, Germany, and Australia (Franzluebbers et al., 2017; Nong, 2019; Vos et al., 2019). 54 



 

 

Subsequently, academic attention has gradually expanded to developing countries that play an 55 

important role in global economic development, such as Brazil, India, China, and Egypt (Garofalo et 56 

al., 2022; Radwan et al., 2022; Sah & Devakumar, 2018; Zhu & Huo, 2022). As research deepened, 57 

some scholars have chosen representative organization members, such as EU member states and 58 

BRICS countries, as the object of comparative analysis. This approach aims to further broaden the 59 

theoretical perspective on agricultural carbon emissions research and enhance the understanding of 60 

issues within this field (Pata, 2021; Selvanathan et al., 2023). 61 

Taken together, discussions on agricultural carbon emissions primarily focus on two core topics. The 62 

first is the quantitative assessment of carbon emissions and the measurement of agricultural carbon 63 

emission efficiency (ACEE) (Zhang et al., 2024). This area includes not only determining total 64 

emissions and defining efficiency metrics, but also analyzing spatiotemporal variations and regional 65 

interactions (Balsalobre-Lorente et al., 2019; Cui et al., 2021; Garnier et al., 2019; Gui et al., 2023; 66 

Hossain & Chen, 2022; Rong et al., 2023; Żyłowski & Kozyra, 2023). The second core topic is the 67 

exploration of the factors influencing carbon emissions. Scholars have employed a variety of 68 

empirical models, such as LMDI, GMM, mediation effects, and moderation effects. In terms of 69 

driving factors, researchers have thoroughly studied the mechanisms by which a series of key factors, 70 

such as economic level, industrial structure, agricultural specialization, agricultural emission 71 

reduction policies, and urbanization level, affect carbon emissions (Agovino et al., 2019; Solazzo et 72 

al., 2016; Yang et al., 2022; Yu et al., 2020). 73 

In recent years, key paradigms such as technological innovation and digital transformation have been 74 

increasingly integrating with multiple fields and gradually extending into the agricultural sector, 75 

emerging as frontier issues promoting sustainable agricultural development (Cai et al., 2025a; Cai et 76 

al., 2025b; Jin & Lei, 2023; Lei & Xu, 2025; Tian et al., 2024). Against this backdrop, emerging 77 

factors such as agricultural green technology innovation and digital inclusive finance have entered 78 

the academic spotlight, providing new theoretical research directions for exploring pathways to 79 

reduce agricultural carbon emissions (Abbasi & Zhang, 2024; Cai et al., 2024; Deng & Zhang, 2024; 80 

Li, 2023). However, existing research has largely focused on macro-level national or provincial 81 

analyses. Limited by the availability and completeness of micro-level statistical data, rigorous 82 

empirical research on how micro-level units respond to these emerging factors remains relatively 83 

scarce. 84 

In summary, scholars have conducted extensive research and analysis on the topic of carbon emissions 85 

in agriculture, covering carbon emission sources, quantitative assessment, and influencing factors. 86 

Although these studies have accumulated rich research results and provided important references for 87 

further exploration of ACEE, there is still room for improvement in certain core areas that require 88 



 

 

further research. In terms of research methodology, existing studies have predominantly focused on 89 

desired outcomes such as agricultural yield improvement and economic benefits, while relatively 90 

neglecting the environmental pollution issues associated with agricultural production. Furthermore, 91 

they have not incorporated carbon emissions, a critical indicator, into the assessment of undesired 92 

outputs. Regarding research perspective, the current literature largely centers on comprehensive 93 

analyses at the national macro level, with a noticeable lack of detailed investigations at the provincial 94 

or municipal levels. In terms of research content, ACEE exhibit significant spatial heterogeneity 95 

across geographical spaces and at different time points. However, there is still insufficient in-depth 96 

exploration and analysis of this characteristic. 97 

1.2. Study area 98 

As an eastern coastal area, Jiangsu Province has vast plains, favorable natural conditions, and a good 99 

economic foundation. Jiangsu is a large economic province, and its economic development has 100 

always been the focus of attention of all sectors of society. In 2023, Jiangsu Province realized a GDP 101 

of 1,282.22 billion yuan, an increase of 5.8% over 2022 at constant prices. This figure highlights the 102 

strong momentum and vitality of Jiangsu Province's dynamic development. At the same time,  as a 103 

major agricultural region with outstanding natural endowments, Jiangsu possesses a solid foundation 104 

in its agricultural industry. In 2023, Jiangsu maintained good growth rates in grain area, yields, and 105 

total production, with total production remaining above 3.5x108 tons for 10 consecutive years. As one 106 

of China's economically developed provinces with a high level of agricultural development, Jiangsu 107 

Province is remarkably representative of the results of carbon emission research and practice in 108 

agriculture. This representativeness is not only reflected in the scale and structure, but also in the 109 

exploration of sustainable agricultural development and low-carbon transition.  110 

Based on the "green carbon reduction" perspective, this paper defines carbon emissions as undesired 111 

outputs. This paper quantitatively evaluates the ACEE in Jiangsu Province using the Super-SBM 112 

model. Subsequently, relying on spatial autocorrelation analysis and kernel density estimation, the 113 

distribution characteristics and evolution laws of this efficiency indicator in time and space 114 

dimensions are deeply explored. In addition, to examine the main elements influencing ACEE, this 115 

paper adopts the geographically weighted regression analysis method, which provides a more 116 

geographically oriented and detailed explanatory perspective. 117 

1.3. Research Innovations 118 

The innovations of this paper are primarily reflected in the following aspects: First, it incorporates 119 

carbon emissions from the agricultural sector as an undesirable output into the indicator system for 120 

measuring the ACEE in Jiangsu Province. This allows for a more scientific and rational assessment 121 

of agricultural environmental performance. Second, the research perspective focuses on prefecture-122 



 

 

level cities, enabling a more precise revelation of the differences and characteristics of regional ACEE. 123 

Third, the study examines the spatiotemporal evolution of ACEE, providing a reference for local 124 

governments to formulate differentiated emission reduction policies. 125 

2. Material and methods 126 

2.1. Super-SBM model 127 

The Super-SBM model exhibits superior performance and distinct advantages over classical DEA 128 

models. In contrast, traditional radial DEA models can only proportionally expand outputs or reduce 129 

inputs, while neglecting the influence of slack variables. This limitation tends to overestimate 130 

efficiency scores and often results in multiple efficient units that cannot be further differentiated or 131 

ranked. The Super-SBM model, effectively addresses slack variables by directly incorporating and 132 

minimizing input and output slacks. This capability allows it to capture the potential for non-133 

proportional improvements in performance indicators, thereby achieving more accurate efficiency 134 

measurements. Furthermore, classical DEA models such as CCR and BCC are unable to appropriately 135 

handle undesirable outputs like carbon emissions. The Super-SBM model, on the other hand, formally 136 

integrates undesirable outputs into the analytical framework, thus providing a more realistic 137 

assessment of environmental efficiency(Aldamak & Zolfaghari, 2017; Huang et al., 2021). Therefore, 138 

the Super-SBM model has demonstrated excellent adaptability and utility in assessing various 139 

scenarios such as environmental performance and energy use efficiency. 140 
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 (1) 141 

In Equation (1), we use   as a key indicator to specifically quantify and characterize the value of 142 

ACEE. The size of    is directly related to the level of efficiency. 1   , indicating that the 143 

decision-making unit reaches the efficiency frontier; 1   indicates that there is a loss of efficiency. 144 

Each city in Jiangsu Province is regarded as an independent decision unit consisting of m inputs, 1q  145 

desired outputs, as well as 2q  undesired outputs. The slack variables s− , s+ , bs
−

 represent inputs, 146 



 

 

desired outputs, and undesired outputs, respectively. 147 

2.2. Spatial autocorrelation model 148 

Considering the mobility of carbon emissions, it is particularly necessary to analyze the spatial pattern 149 

of carbon emissions in the target regions in depth, and to reveal their intrinsic distribution patterns 150 

and trends. This initiative aims to accurately characterize the geographical distribution of carbon 151 

emissions and provide a scientific basis for the formulation of regional emission reduction strategies.  152 

Compared to simple spatial visualization methods, Moran's I enables statistical inference regarding 153 

spatial autocorrelation through rigorous hypothesis testing, thereby effectively identifying spatial 154 

dependence and providing a theoretical foundation for further in-depth research. The global Moran's 155 

I, constructed on the spatial weight matrix, provides a comprehensive assessment framework for the 156 

spatial interconnectedness of regional carbon emission efficiency (Huang et al., 2019). The 157 

expression is as follows: 158 
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In Equation (2), ij is the spatial weight matrix. The Global Moran's index, denoted by I , is between 160 

-1 and 1. When I>0, there is positive spatial autocorrelation, indicating that the observations tend to 161 

be concentrated in the spatial dimension; when I<0, it indicates that the data show negative spatial 162 

autocorrelation, i.e., the outliers tend to be spatially clustered; and when I=0, it indicates that the data 163 

are randomly disordered in the spatial distribution. In addition, researchers can further combine the 164 

calculation results of the global Moran index with the P-value test and the Z-value statistics for in-165 

depth statistical inference analysis. iY， jY  and Y  denote the observations and overall sample means 166 

of evaluation units i , j , respectively. 167 

2.3. Kernel density estimation 168 

To comprehensively analyze the level and characteristics of ACEE in Jiangsu Province, focusing only 169 

on efficiency measurement and spatial autocorrelation analysis is not deep enough, and further 170 

analysis of its dynamic distribution and change patterns is needed. In contrast to simple graphical 171 

representations, the Kernel density estimation (KDE) captures complex distributional features of 172 

datasets through a nonparametric approach, producing a smooth probability density function. This 173 

capability allows it to clearly reveal the distributional morphology of efficiency values over time, 174 

thereby effectively uncovering regional differentiation in efficiency (Lu et al., 2018; Wen et al., 2022). 175 

It is assumed that there exists an independent and identically distributed data set containing the 176 



 

 

elements  1 2, , , nx x x . For these data points, an approximation of their potential probability density 177 

function f (x) can be obtained by the kernel density estimation method. The expression is shown in 178 

Equation (3): 179 
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 is the kernel function; n  is the number of samples; h  is the bandwidth; and ix ，181 

x  denote the sample observation and mean value, respectively. 182 

2.4. Geographically weighted regression 183 

Geographically weighted regression (GWR) can effectively can efficiently handle geographical 184 

variation in data. In many fields such as economics, natural resource management, etc., the 185 

influencing factors of the research object will produce different estimated coefficients with the change 186 

of spatial location. Traditional global regression models cannot deal with nonlinear and nonstationary 187 

spatial data, resulting in inaccurate regression results. GWR has a good ability to deal with this kind 188 

of data, and can estimate the regression parameters more accurately based on building a local 189 

regression model for each observation (Wang et al., 2018; Xu & Zhang, 2021). Consequently, GWR 190 

has a wide range of applications in exploring the relative drivers of spatial changes in research objects. 191 

In ArcGIS software, the optimal bandwidth of the GWR model can be determined by minimizing the 192 

corrected Akaike Information Criterion (AICc) through the integration of optimization algorithms. 193 

The regression model is constructed as follows: 194 
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iy  is the value of the dependent variable for the ith observation; ( ),i iu v  is the spatial coordinate 196 

position of the observation point; ( ),k i iu v   is a function of geographic location ( ),i iu v   and 197 

indicates the extent to which the independent variable affects the dependent variable at a particular 198 

location; ( )0 ,i iu v   represents a constant term at a specific location; ikx   is the value of the kth 199 

independent variable at the ith observation; and i  is the random error term for the ith observation. 200 

3. Indicators and data sources 201 

3.1. Indicators 202 

3.1.1. Efficiency indicator system 203 

The essence of enhancing low-carbon agriculture lies in maximizing desired returns with less input 204 



 

 

and lower carbon emissions. Establishing a scientific input-output indicator system not only allows 205 

for the accurate quantification and assessment of carbon emission levels in agricultural activities but 206 

also provides a basis for implementing low-carbon agricultural development strategies (Liu et al., 207 

2025). Currently, many researchers have constructed corresponding evaluation frameworks based on 208 

dimensions such as agricultural development level and input conditions. In light of existing studies, 209 

this paper incorporates undesirable outputs into the research scope and establishes an indicator system. 210 

Table 1. The input and output indicators 211 

Indicator type Indicators Definition Unit 

Input 

Labor input Rural employees  
Ten thousand 

persons 

Land input Total sown area Thousand hectares 

Fertilizer input Fertilizer usage Ton 

Pesticide input Pesticide usage Ton 

Agricultural plastic 

film 
Agricultural plastic film usage Ton 

Mechanical input 
Total power of agricultural 

machinery 
Ten thousand kW 

Irrigation input Effective irrigated area Thousand hectares 

Desired output Economic output Gross agricultural output 
Hundred million 

yuan 

Undesired output Carbon output Agricultural carbon emissions Ten thousand tons 

From Table 1, it can be seen that indicators are selected from both socio-economic and natural factors. 212 

Among them, agricultural carbon emissions, as an undesired output, cannot be obtained directly. 213 

Therefore, this paper adopts the emission factor method to calculate the agricultural carbon emissions 214 

in Jiangsu Province according to the latest IPCC guidelines. This study only accounts for carbon 215 

emissions from crop production inputs, excluding CH₄ and N₂O emissions related to livestock 216 

farming as well as sources such as straw open burning. The formula is given below: 217 

 i iC T =   (5) 218 

In Equation (5), C   is the total carbon emissions from agriculture; the carbon emissions and 219 

emission factors for each source are iT  and i , respectively.  220 

The specific coefficient values are as follows: sown area 16.47 ( ( ) 2/kg C hm  ), fertilizer 0.8956 221 

( ( ) /kg C kg ), pesticide 4.9341 ( ( ) /kg C kg ), agricultural film 5.18 ( ( ) /kg C kg ), machinery 0.18 222 

( ( ) /kg C kW ), irrigation 266.48 ( ( ) 2/kg C hm ). 223 



 

 

3.1.2. Influencing factor index system 224 

Apart from the allocation effects of land resources, labor inputs, and diversified agricultural resource 225 

factors, agricultural characteristics, economic indicators, and social development factors, also have a 226 

significant impact on ACEE. When selecting an indicator system for influencing factors, it is essential 227 

to comprehensively and thoroughly examine various relevant factors to ensure the rigor and validity 228 

of the analytical conclusions. Based on existing research findings, this paper selects the following 229 

key influencing factors for in-depth exploration: 230 

Table 2. Definition and description of variables 231 

Category of variables Definition Symbol Unit 

Cultivated land utilization 

efficiency 
Crop sown area/cultivated land MCI % 

Labor-land allocation 

efficiency 

Area of grain sown/ rural 

employees 
LAE 

2 /hm person   

Agricultural mechanization 

level 

Total power of agricultural 

machinery/cultivated land 
AML 2/kW hm   

Economic development 
Per capita disposable income of 

rural residents 
PCDI /Yuan person  

Urban-rural development Urbanization rate UR % 

Population ageing 
Proportion of the population aged 

65 and over 
PA % 

Environmental regulation 

Energy conservation and 

environmental protection 

expenditures/GDP 

ECEP % 

Technological innovation 
Science and education 

expenditure/fiscal expenditure 
TI % 

3.2. Data sources 232 

The data utilized in this paper are sourced from the Jiangsu Statistical Yearbook, the Jiangsu Rural 233 

Statistical Yearbook, and statistical yearbooks compiled by the 13 prefecture-level cities in Jiangsu 234 

Province, as well as their respective statistical bulletins on national economic and social development. 235 

This ensures the authority, credibility, and comprehensive coverage of the data sources. Due to 236 

missing data on agricultural plastic film consumption and pesticide application in 2017 for cities such 237 

as Yancheng and Suqian, this paper employed an interpolation method to estimate the missing values. 238 

Additionally, the GWR model is sensitive to the units of measurement of variables. To prevent bias 239 

in regression coefficients resulting from differences in measurement units and to ensure comparability 240 

among various influencing factors in the model. All explanatory variables were normalized to the 241 



 

 

[0,1] range using min-max scaling before running the GWR model. This approach effectively 242 

eliminates the influence of measurement units while preserving the distribution characteristics of the 243 

original data (Cao et al., 2019; Peng et al., 2024). 244 

4. Results and discussion 245 

4.1. Efficiency measurement and analysis 246 

The following table summarizes the specific values of ACEE in Jiangsu Province between 2010 and 247 

2020, which provides data support for evaluating the carbon utilization efficiency in Jiangsu 248 

Province's agricultural production process. 249 

Table 3. Statistical table of ACEE in Jiangsu Province 250 

Year TE PTE SE 

2010 0.3511 0.4296 0.8287 

2011 0.3109 0.3697 0.8673 

2012 0.3453 0.4012 0.8814 

2013 0.3997 0.4831 0.8691 

2014 0.4270 0.5027 0.8798 

2015 0.4979 0.5538 0.9049 

2016 0.5338 0.5980 0.9014 

2017 0.5850 0.6375 0.9124 

2018 0.6326 0.6834 0.9112 

2019 0.5630 0.6397 0.8823 

2020 0.7328 0.7769 0.9261 

Note: TE=PTE*SE 251 

The mean Technical Efficiency (TE) of agricultural carbon emissions is 0.4890, with the mean Pure 252 

Technical Efficiency (PTE) at 0.5523 and the mean Scale Efficiency (SE) at 0.8877. As the PTE and 253 

SE improve, the TE has been continuously increasing, rising from 0.3511 in 2010 to 0.7328 in 2020. 254 

It can be observed that the enhancement of agricultural technological levels and the development of 255 

agricultural economies of scale have substantially promoted the overall level of ACEE in Jiangsu 256 

Province. However, this positive change does not imply that Jiangsu's ACEE has reached the 257 

efficiency frontier. The fact that all types of efficiency values remain less than one indicates that there 258 

is still room for efficiency improvement. This also highlights the current issues with efficiency losses 259 

and insufficient resource utilization in the agriculture of Jiangsu Province. Furthermore, the fact that 260 

the PTE values are lower than the SE values indicates that the technology for energy conservation 261 

and carbon reduction in agriculture in Jiangsu Province is still in its initial stages, and agricultural 262 

resources are not being fully and effectively utilized. There is considerable scope for Jiangsu Province 263 

to advance agricultural technological progress. It is urgent to further expand efforts in technology 264 



 

 

research and development and dissemination to achieve the long-term goals of green and low-carbon 265 

development in agriculture. 266 

   267 

Figure 1. 3D waterfall plot of ACEE in Jiangsu Province  268 

Due to dimensional constraints, traditional two-dimensional charts are limited to presenting 269 

unidirectional correlations between spatial or temporal dimensions and efficiency values, making 270 

them inadequate for supporting multi-element coupling analysis. The 3D waterfall plot, by 271 

constructing a three-dimensional data field, effectively enhances the capture capability for dynamic 272 

evolution characteristics of the data, thereby achieving integrated three-dimensional visualization of 273 

spatial-temporal-efficiency dimensions. As illustrated in subplot (a) of Figure 1, this paper conducts 274 

a longitudinal comparison of efficiency values across 13 prefecture-level cities in Jiangsu Province 275 

for the years 2010, 2015, and 2020. Time-series analysis reveals that the comprehensive TE, PTE and 276 

SE of most cities demonstrate a significant upward trend, corroborating the continuous improvement 277 

of ACEE in Jiangsu Province. At the city level, Xuzhou exhibits the most pronounced gains across 278 

all three efficiency values, while Yancheng registers the lowest level of efficiency improvement. In 279 

subplot (b) of Figure 1, the research scope is expanded to the regional scale, dividing Jiangsu Province 280 

into three major regions—South Jiangsu, Central Jiangsu, and North Jiangsu—based on geographical 281 

location. Dynamic analysis reveals that the efficiency values across all three regions generally 282 

maintained a fluctuating upward trend. Among these, South Jiangsu demonstrated outstanding 283 

performance in TE and PTE metrics, leveraging dual advantages in economic foundation and 284 

environmental policies. Central Jiangsu, through its efficient resource allocation mechanisms, 285 

established comparative advantages in SE. In contrast, North Jiangsu faces constraints from the 286 

dominance of traditional cropping patterns, relatively outdated agricultural management practices, 287 

and insufficient large-scale operational capacity. These factors collectively contribute to its relatively 288 

lagging agricultural modernization trajectory, directly limiting the holistic improvement of its ACEE. 289 

4.2. Spatial correlation analysis 290 

Due to differences in geographical environment and agricultural structure, the ACEE in various cities 291 



 

 

of Jiangsu Province exhibits a certain degree of spatial heterogeneity. Exploring the spatial 292 

distribution characteristics of ACEE is of significant importance for developing a precise and efficient 293 

low-carbon agricultural development strategy in Jiangsu Province. In the Global Moran's I index, the 294 

spatial adjacency matrix serves as the weight matrix. 295 

Table 4. Global Moran's index of ACEE in Jiangsu Province 296 

Year I Z p 

2010 0.365 3.31 0.001 

2011 0.149 1.707 0.088 

2012 0.454 3.92 0.000 

2013 0.47 4.024 0.000 

2014 0.515 4.333 0.000 

2015 0.469 4.052 0.000 

2016 0.434 4.106 0.000 

2017 0.505 4.301 0.000 

2018 0.404 3.569 0.000 

2019 0.197 2.016 0.044 

2020 0.322 2.953 0.003 

As shown in Table 4, the Global Moran's I statistics for ACEE in Jiangsu Province during 2010-2020 297 

are all positive and statistically significant, indicating robust positive spatial autocorrelation in ACEE 298 

over the study period. This implies a spatial clustering pattern of efficiency values among adjacent 299 

regions. Despite variations in economic foundation, social structure, and environmental governance 300 

capacity across Jiangsu's prefecture-level cities, the high homogeneity of natural baseline 301 

characteristics such as climatic conditions and soil types, coupled with similarities in dominant 302 

agricultural industrial structures, collectively shape the convergent development pattern of inter-303 

regional ACEE.  In addition to environmental homogeneity, factors such as knowledge spillover and 304 

technology diffusion must also be considered. Cities with advanced low-carbon agricultural 305 

technologies often exert positive spillover effects on neighboring regions, facilitating cross-regional 306 

technology mobility and promoting spatial convergence of efficiency levels. Furthermore, within the 307 

unified provincial administrative framework, policy coordination and emulation mechanisms fostered 308 

by this structure drive synchronized changes in regional ACEE performance. 309 

4.3. Dynamic evolution feature analysis 310 

To analyze the dynamic changes in ACEE in Jiangsu Province, the non-parametric kernel density 311 

estimation is adopted for evaluation. The method overcomes the limitations of traditional estimation 312 



 

 

methods and can flexibly show the subtle dynamics of efficiency changes, increasing the uniqueness 313 

and innovation of the study. Figure 2 presents the regression results. 314 

   315 

Figure 3. Kernel density estimation of ACEE in Jiangsu Province 316 

Figure 2 presents the spatiotemporal distribution characteristics of ACEE across Jiangsu Province 317 

and its three major regions. First, regarding the evolution of the distribution centroid, a notable 318 

rightward shift is observed in the ACEE distribution centroids of Jiangsu Province and its southern, 319 

central, and northern regions during the period, indicating sustained optimization of agricultural 320 

ecological efficiency across all regions. This also indicates that alongside the overall enhancement of 321 

provincial ACEE, certain "leading cities" have emerged. Therefore, proactive efforts should be made 322 

to establish cross-regional technology promotion service platforms. These platforms will facilitate 323 

technology transfer from high-efficiency cities to low-efficiency cities, narrow the spatial disparity 324 

in efficiency distribution, and ultimately foster coordinated and balanced ACEE development across 325 

the entire region. Second, based on peak characteristic analysis, the peak values of the horizontal 326 

ACEE distribution for Jiangsu Province and its three regions showed a declining trend during the 327 



 

 

observation period. The peak shape gradually transformed from sharp peaks to broader peaks. 328 

Traditional one-size-fits-all policies would prove ineffective, necessitating tailored strategies that 329 

differentiate between cities with varying efficiency levels. Finally, further analysis of the number of 330 

peaks and the distribution pattern reveals that the number of side peaks in South Jiangsu is higher 331 

than in Central Jiangsu and North Jiangsu. Specifically, South Jiangsu exhibits multi-peak distribution 332 

characteristics accompanied by a distinct right-skewed tail. In contrast, Central Jiangsu and North 333 

Jiangsu have fewer side peaks and less prominent tailing characteristics, reflecting a relatively 334 

balanced distribution of ACEE levels in these two regions. Overall, while the ACEE in Jiangsu 335 

Province demonstrates an upward trajectory, the issue of inter-regional development disparity persists. 336 

4.4. Influencing factors analysis  337 

There are significant differences in socio-economic factors in different regions, which may have a 338 

direct or indirect effect on the efficiency of agricultural carbon emissions. In this paper, the 339 

geographically weighted regression (GWR) is used, with the ArcGIS software, and the coefficient 340 

estimates of the influencing factors were presented in a spatial visualization. The GWR model 341 

achieved an adjusted R² of 0.7664, outperforming the global OLS model (adjusted R² = 0.6940), 342 

indicating that spatial heterogeneity is important in explaining ACEE. 343 

 344 

Figure 4. Spatial distribution of estimated regression coefficients for influencing factors of the GWR 345 

model  346 

(1) The Multiple Cropping Index (MCI) is a comprehensive indicator used to quantify the intensity 347 

of cultivated land utilization under specific topographic and climatic conditions(Li et al., 2023). 348 
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Regression analysis shows that the impact of MCI on ACEE exhibits significant spatial dependence. 349 

The regression coefficients of MCI exhibit a distinct latitudinal gradient, increasing progressively 350 

from north to south. The northern region constitutes a negative-value zone, the central region 351 

represents a transition zone, and the southern region is a positive-value zone. Previous studies in 352 

agricultural domains have similarly identified spatial heterogeneity in MCI impacts, analyzing from 353 

perspectives of natural endowments and socioeconomic factors (Zhang et al., 2019; Zhao et al., 2016).  354 

 355 

Figure 4. Scatter plot of fertilizer and pesticide usage in three regions of Jiangsu 356 

Specifically in Jiangsu Province, as shown in Figure 4, the agricultural production in North Jiangsu 357 

heavily relies on the input of fertilizers and pesticides, resulting in a decrease in carbon emission 358 

efficiency. In contrast, the South Jiangsu has achieved a more low-carbon and intensive agricultural 359 

management model with its higher level of economic development and technological capabilities. 360 

The transitional characteristics observed in Central Jiangsu reflect a dynamic interplay between these 361 

opposing effects. 362 

(2) This paper selects “area of grain sown/ rural Employees” as a key influencing factor reflecting 363 

labor-land allocation efficiency (LAE). An increase in LAE corresponds to a lower degree of land 364 

fragmentation, facilitating the adoption of mechanized farming and precision agriculture technologies 365 

(Li et al., 2024). The GWR results indicate that the regression coefficient for LAE remains positive 366 

across the entire province, suggesting that expanding per capita cultivated land area serves as a 367 



 

 

positive driver for enhancing ACEE. As illustrated in Figure 3, the intensity of this factor forms 368 

distinct high-value aggregation clusters in central Jiangsu. Compared to southern Jiangsu, where per 369 

capita arable land resources face urbanization-induced constraints, and northern Jiangsu, which is 370 

limited by capital and technological constraints, the central region effectively converts scale 371 

advantages into improvements in ACEE. Previous studies examining the impact of per capita 372 

cultivated land on agricultural sectors in other regions have also identified spatial heterogeneity, 373 

leading to recommendations for differentiated policy approaches (Chen et al., 2022). Regarding the 374 

spatial characteristics exhibited by LAE, northern and southern regions should further explore highly 375 

intensive agricultural management models, while central regions need to continue encouraging land 376 

circulation and scale-based cultivation practices. 377 

(3) The agricultural mechanization level (AML), serving as an indicator of agricultural production 378 

modernization, exerts a negative impact on ACEE without demonstrating a significant spatial 379 

clustering pattern. This finding contradicts some previous studies, primarily due to the following two 380 

reasons(Chen et al., 2024; Cheng et al., 2023). On one hand, agricultural mechanization heavily relies 381 

on fossil energy consumption, and its energy intensity increases proportionally with the 382 

mechanization rate. On the other hand, a technological path dependency has formed between 383 

mechanization and high-carbon agricultural practices, reinforcing the use of inputs such as pesticides 384 

and chemical fertilizers, thereby creating a feedback loop that generates substantial carbon emissions. 385 

Consequently, cities in Jiangsu must shift their policy focus from general mechanization promotion 386 

to targeted adoption of green energy agricultural machinery. 387 

(4) Per capita disposable income (PCDI) serves as an indicator for assessing economic development 388 

levels. Regression analysis reveals that higher income level significantly promotes the reduction of 389 

agricultural carbon emissions(Wang et al., 1996). Although no spatially heterogeneous pattern is 390 

observed, this finding suggests that increased income drives agricultural green transformation beyond 391 

traditional regional gradients, functioning as a common motivating force across regions. This also 392 

implies that raising farmers’ income could stimulate intrinsic motivation for adopting green 393 

production practices at the micro-level, thereby facilitating the overall transition to low-carbon 394 

agricultural development in Jiangsu Province. 395 

(5) The urbanization rate (UR) serves as a critical indicator for assessing urban-rural development. 396 

Urbanization has accelerated rural-to-urban population migration. As illustrated in Figure 3, 397 

regression coefficients for UR's impact on ACEE remain universally positive across the province, 398 

indicating that urbanization progress significantly enhances agricultural sustainable development 399 

(Zhao et al., 2023). However, a distinct spatial pattern of "high in the north, low in the south" emerges, 400 

reflecting the interplay between modernization effects and negative land-use consequences. In North 401 



 

 

Jiangsu, urbanization's positive modernization effects dominate. Rural labor outflow stimulates 402 

socialized service development, thereby enhancing agricultural scale management and resource 403 

efficiency. Conversely, in highly urbanized South Jiangsu, arable land scarcity weakens the marginal 404 

benefits of urbanization while intensifying environmental constraints on agricultural production. 405 

(6) The intensification of population ageing (PA) leads to a decline in physical labor capacity and 406 

exacerbates environmental constraints. Experience from Japan has demonstrated that, with supportive 407 

policy frameworks, land consolidation and mechanization can partially alleviate labor shortages. 408 

However, studies by scholars from different countries have reached divergent conclusions regarding 409 

the impact of PA on agricultural development (Akdemir et al., 2021; Seok et al., 2018). Regression 410 

results from this study indicate that PA exerts a positive effect on ACEE, particularly more in the 411 

northern regions. Labor shortages have accelerated land transfer and the expansion of large-scale 412 

farming, thereby enhancing land use efficiency and reducing carbon emissions. Furthermore, in recent 413 

years, cities in Jiangsu Province have promoted the application of novel farming techniques while 414 

continuously improving socialized services and ecological compensation mechanisms, actively 415 

responding to the dual challenges of demographic transition and "carbon neutrality", which has 416 

yielded positive outcomes. 417 

(7) Energy conservation and environmental protection (ECEP) expenditure serves as a key indicator 418 

for measuring the intensity of environmental regulations, reflecting government policy guidance and 419 

fiscal support, and constitute a vital safeguard for sustainable agricultural development(Chen et al., 420 

2023; Wang et al., 2022). Empirical results from the GWR model indicate that ECEP exhibits a 421 

positive yet relatively low coefficient for ACEE. First, evaluating environmental fiscal policies 422 

requires a long-term perspective. The impact of fiscal policies exhibits a certain degree of time lag. 423 

The actual effects on agricultural production may only become apparent after an extended period 424 

following the allocation of fiscal funds. This may lead to an underestimation of the ECEP impact 425 

coefficient. Furthermore, the dispersion of fiscal funds across multiple agricultural projects may also 426 

weaken their marginal impact on agricultural carbon sinks. 427 

(8) Technological innovation (TI) is crucial for the agricultural green transition (He et al., 2021). As 428 

shown in Figure 3, the coefficients of TI are positive across all cities, indicating that science and 429 

education expenditure can effectively enhance ACEE. The effect is particularly more pronounced in 430 

northern Jiangsu, where technology is relatively underdeveloped. Government science and education 431 



 

 

expenditure can promptly address technological gaps and generate high marginal benefits. 432 

Furthermore, North Jiangsu can introduce mature agricultural technologies from South Jiangsu, 433 

reducing trial-and-error costs and thereby contributing to the improvement of carbon emission 434 

efficiency. In contrast, as agricultural technology in South Jiangsu is already among the most 435 

advanced in the province, the impact of TI on ACEE exhibits a certain trend of diminishing marginal 436 

returns, resulting in relatively lower regression coefficients. Additionally, the long-time lag between 437 

investment in technological R&D and the application of outcomes may also contribute to the currently 438 

modest regression coefficients of TI. 439 

5. Conclusion and Recommendation 440 

To realize the "Dual Carbon" goal proposed by the Chinese government, it is important to promote a 441 

low-carbon green transition in agriculture. This process requires not only efforts to alleviate 442 

environmental pressure and improve carbon emission efficiency in agricultural production but also 443 

an in-depth exploration of its spatiotemporal evolution characteristics and key influencing factors. 444 

Based on the above research, the following conclusions can be drawn: (1) Although the ACEE in 445 

Jiangsu Province shows a gradual upward trend, the current overall efficiency level remains relatively 446 

low, with a certain degree of efficiency loss. (2) From a spatial perspective, Jiangsu Province's ACEE 447 

has exhibited positive spatial agglomeration characteristics in recent years. From a temporal 448 

perspective, the ACEE has shown an overall improvement trend, but there is also a certain degree of 449 

polarization. (3) As for the influencing factors, MCI, labor-land allocation efficiency, and other 450 

factors all have a significant impact on ACEE. The regression results indicate that the strength of the 451 

impact of some variables on ACEE exhibits significant spatial heterogeneity. 452 

To promote the low-carbon and sustainable development of agriculture in Jiangsu Province, this paper 453 

proposes the following policy recommendations based on empirical findings: (1) Jiangsu should 454 

continue to advance low-carbon agricultural development and enhance the overall level of ACEE. 455 

Efforts should be made to strengthen the promotion and application of low-carbon and intelligent 456 

agricultural machinery, and to organize large-scale training programs on green farming techniques, 457 

so as to consolidate the foundation for overall ACEE improvement. (2) The government should 458 

enhance regional coordination and targeted support mechanisms. On one hand, high-efficiency 459 

regions should be encouraged to pursue technological innovation and facilitate the transfer of low-460 

carbon technologies and management models. On the other hand, targeted assistance should be 461 

provided to cities with lower efficiency to help them overcome bottlenecks in the transition to green 462 

agriculture. (3) Differentiated strategies tailored to local conditions are necessary. Northern regions 463 

should prioritize the adoption of low-carbon technologies such as side-deep fertilization and slow-464 



 

 

release fertilizers, as listed in the Jiangsu Agricultural Carbon Reduction Technology Catalogue 465 

(2022), to mitigate the carbon penalty from increased MCI. Southern regions, which possess stronger 466 

economic and agricultural foundations, should focus on developing cutting-edge low-carbon 467 

technologies such as smart agriculture and digital agriculture. 468 

6. Limitation 469 

Currently, many regions face environmental constraints similar to those in Jiangsu Province during 470 

the transition toward green agriculture. The modeling framework and findings of this paper provide 471 

an analytical framework and policy insights for other regions at comparable development stages. 472 

However, this research has certain limitations, mainly including: (1) The study is conducted at the 473 

municipal scale, which may overlook more granular differences at the county level regarding ACEE, 474 

thus failing to fully capture intra-regional heterogeneity. (2) Due to data availability constraints, 475 

several potential influencing factors—such as the level of agricultural digitalization and the 476 

stringency of environmental penalties—were not incorporated into the empirical model, possibly 477 

leading to incomplete model settings. 478 
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