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Abstract

Agriculture, as a pillar sector of the national economy, plays a crucial role in influencing the quality
of the ecological environment through its carbon emissions. Jiangsu Province is a major agricultural
region in China. Measuring agricultural carbon emission efficiency (ACEE), analyzing its
spatiotemporal evolution characteristics, along with the influencing factors are of great significance
for advancing the achievement of agricultural sustainable development goals in Jiangsu. This paper
focuses on the 13 prefecture-level cities in Jiangsu Province and initially conducts a quantitative
assessment of the carbon emission efficiency in the agricultural sector from 2010 to 2020 using the
Super-SBM model. Subsequently, the paper investigates the temporal and spatial evolutionary
characteristics of ACEE using spatial autocorrelation models and kernel density estimation. Finally,
the paper employs the geographically weighted regression method to systematically analyze and
interpret the key factors influencing efficiency. Based on the empirical research findings, three main
conclusions can be drawn. (1) Regarding efficiency levels, the carbon emission efficiency in Jiangsu

Province's agricultural sector has gradually improved, but it remains relatively low overall, with
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significant efficiency loss issues. (2) In terms of spatiotemporal evolution, the ACEE in Jiangsu
Province improves over time and exhibits positive spatial clustering characteristics in space. (3)
Concerning influencing factors, MCI, labor-land allocation efficiency, and other factors all have a
significant impact on ACEE.

Keywords: Agricultural carbon emission efficiency, spatiotemporal characteristics, efficiency

measurement, regional disparities

1. Introduction

1.1. Literature review

The intensifying trend of global warming, coupled with the frequent occurrence of extreme weather
events, has posed severe environmental challenges that have become major obstacles on the path to
sustainable development. Consequently, reducing carbon emissions to effectively address global
climate change has become a core issue of widespread concern for governments worldwide. IPCC

{ARG6 Synthesis Report: Climate Change 2023) shows that the agriculture, forestry and other land

uses sector, accounted for 13—21% of global total anthropogenic greenhouse gas (GHG) emissions in
the period 2010-2019. As a major global player in the agricultural sector, the prominent carbon
emission issues from China's agriculture have become a significant challenge that cannot be ignored
in the field of environmental protection. Currently, China's agriculture is at a critical juncture,
transitioning from extensive scale expansion to intensive deepening. During this phase, the
widespread use of fertilizers, pesticides, and various agricultural production inputs, while enhancing
agricultural output efficiency, also imposes more severe pressures and challenges on China's carbon
emission management(Wang et al., 2020).

Traditional agricultural efficiency assessment primarily focuses on desirable outputs such as
agricultural output value and grain yield, while often overlooking undesirable outputs including
various pollution emissions generated during agricultural production. This evaluation method tends
to overestimate efficiency and underestimate policy effectiveness. Incorporating undesirable outputs
such as carbon emissions allows for a more accurate measurement of agricultural efficiency. Scholars
have employed various models, including DEA and SFA, to explore this topic from multiple
perspectives. Research in this field not only reflects the academic community's high regard for
environmental protection issues but also demonstrates proactive exploration of sustainable
agricultural development pathways. In the course of academic research, the issue of agricultural
carbon emissions initially attracted extensive attention in developed countries such as the United

States, Germany, and Australia (Franzluebbers et al., 2017; Nong, 2019; Vos et al., 2019).
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Subsequently, academic attention has gradually expanded to developing countries that play an
important role in global economic development, such as Brazil, India, China, and Egypt (Garofalo et
al., 2022; Radwan et al., 2022; Sah & Devakumar, 2018; Zhu & Huo, 2022). As research deepened,
some scholars have chosen representative organization members, such as EU member states and
BRICS countries, as the object of comparative analysis. This approach aims to further broaden the
theoretical perspective on agricultural carbon emissions research and enhance the understanding of
issues within this field (Pata, 2021; Selvanathan et al., 2023).

Taken together, discussions on agricultural carbon emissions primarily focus on two core topics. The
first is the quantitative assessment of carbon emissions and the measurement of agricultural carbon
emission efficiency (ACEE) (Zhang et al., 2024). This area includes not only determining total
emissions and defining efficiency metrics, but also analyzing spatiotemporal variations and regional
interactions (Balsalobre-Lorente et al., 2019; Cui et al., 2021; Garnier et al., 2019; Gui et al., 2023;
Hossain & Chen, 2022; Rong et al., 2023; Zytowski & Kozyra, 2023). The second core topic is the
exploration of the factors influencing carbon emissions. Scholars have employed a variety of
empirical models, such as LMDI, GMM, mediation effects, and moderation effects. In terms of
driving factors, researchers have thoroughly studied the mechanisms by which a series of key factors,
such as economic level, industrial structure, agricultural specialization, agricultural emission
reduction policies, and urbanization level, affect carbon emissions (Agovino et al., 2019; Solazzo et
al., 2016; Yang et al., 2022; Yu et al., 2020).

In recent years, key paradigms such as technological innovation and digital transformation have been
increasingly integrating with multiple fields and gradually extending into the agricultural sector,
emerging as frontier issues promoting sustainable agricultural development (Cai et al., 2025a; Cai et
al., 2025b; Jin & Lei, 2023; Lei & Xu, 2025; Tian et al., 2024). Against this backdrop, emerging
factors such as agricultural green technology innovation and digital inclusive finance have entered
the academic spotlight, providing new theoretical research directions for exploring pathways to
reduce agricultural carbon emissions (Abbasi & Zhang, 2024; Cai et al., 2024; Deng & Zhang, 2024;
Li, 2023). However, existing research has largely focused on macro-level national or provincial
analyses. Limited by the availability and completeness of micro-level statistical data, rigorous
empirical research on how micro-level units respond to these emerging factors remains relatively
scarce.

In summary, scholars have conducted extensive research and analysis on the topic of carbon emissions
in agriculture, covering carbon emission sources, quantitative assessment, and influencing factors.
Although these studies have accumulated rich research results and provided important references for

further exploration of ACEE, there is still room for improvement in certain core areas that require
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further research. In terms of research methodology, existing studies have predominantly focused on
desired outcomes such as agricultural yield improvement and economic benefits, while relatively
neglecting the environmental pollution issues associated with agricultural production. Furthermore,
they have not incorporated carbon emissions, a critical indicator, into the assessment of undesired
outputs. Regarding research perspective, the current literature largely centers on comprehensive
analyses at the national macro level, with a noticeable lack of detailed investigations at the provincial
or municipal levels. In terms of research content, ACEE exhibit significant spatial heterogeneity
across geographical spaces and at different time points. However, there is still insufficient in-depth

exploration and analysis of this characteristic.

1.2. Study area

As an eastern coastal area, Jiangsu Province has vast plains, favorable natural conditions, and a good
economic foundation. Jiangsu is a large economic province, and its economic development has
always been the focus of attention of all sectors of society. In 2023, Jiangsu Province realized a GDP
of 1,282.22 billion yuan, an increase of 5.8% over 2022 at constant prices. This figure highlights the
strong momentum and vitality of Jiangsu Province's dynamic development. At the same time, as a
major agricultural region with outstanding natural endowments, Jiangsu possesses a solid foundation
in its agricultural industry. In 2023, Jiangsu maintained good growth rates in grain area, yields, and
total production, with total production remaining above 3.5x108 tons for 10 consecutive years. As one
of China's economically developed provinces with a high level of agricultural development, Jiangsu
Province is remarkably representative of the results of carbon emission research and practice in
agriculture. This representativeness is not only reflected in the scale and structure, but also in the
exploration of sustainable agricultural development and low-carbon transition.

Based on the "green carbon reduction" perspective, this paper defines carbon emissions as undesired
outputs. This paper quantitatively evaluates the ACEE in Jiangsu Province using the Super-SBM
model. Subsequently, relying on spatial autocorrelation analysis and kernel density estimation, the
distribution characteristics and evolution laws of this efficiency indicator in time and space
dimensions are deeply explored. In addition, to examine the main elements influencing ACEE, this
paper adopts the geographically weighted regression analysis method, which provides a more

geographically oriented and detailed explanatory perspective.

1.3. Research Innovations

The innovations of this paper are primarily reflected in the following aspects: First, it incorporates
carbon emissions from the agricultural sector as an undesirable output into the indicator system for
measuring the ACEE in Jiangsu Province. This allows for a more scientific and rational assessment

of agricultural environmental performance. Second, the research perspective focuses on prefecture-
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level cities, enabling a more precise revelation of the differences and characteristics of regional ACEE.
Third, the study examines the spatiotemporal evolution of ACEE, providing a reference for local

governments to formulate differentiated emission reduction policies.

2. Material and methods

2.1. Super-SBM model

The Super-SBM model exhibits superior performance and distinct advantages over classical DEA
models. In contrast, traditional radial DEA models can only proportionally expand outputs or reduce
inputs, while neglecting the influence of slack variables. This limitation tends to overestimate
efficiency scores and often results in multiple efficient units that cannot be further differentiated or
ranked. The Super-SBM model, effectively addresses slack variables by directly incorporating and
minimizing input and output slacks. This capability allows it to capture the potential for non-
proportional improvements in performance indicators, thereby achieving more accurate efficiency
measurements. Furthermore, classical DEA models such as CCR and BCC are unable to appropriately
handle undesirable outputs like carbon emissions. The Super-SBM model, on the other hand, formally
integrates undesirable outputs into the analytical framework, thus providing a more realistic
assessment of environmental efficiency(Aldamak & Zolfaghari, 2017; Huang et al., 2021). Therefore,
the Super-SBM model has demonstrated excellent adaptability and utility in assessing various

scenarios such as environmental performance and energy use efficiency.

=Ly

¢ m*<3 x,
min p= -
1 il S+ > Sb
1+ P
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X = XA+s (1)
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In Equation (1), we use P as a key indicator to specifically quantify and characterize the value of
ACEE. The size of £ is directly related to the level of efficiency. o >1, indicating that the

decision-making unit reaches the efficiency frontier; o <1 indicates that there is a loss of efficiency.

Each city in Jiangsu Province is regarded as an independent decision unit consisting of m inputs, ¢,

desired outputs, as well as ¢, undesired outputs. The slack variables s, s",¢" represent inputs,
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desired outputs, and undesired outputs, respectively.

2.2. Spatial autocorrelation model

Considering the mobility of carbon emissions, it is particularly necessary to analyze the spatial pattern
of carbon emissions in the target regions in depth, and to reveal their intrinsic distribution patterns
and trends. This initiative aims to accurately characterize the geographical distribution of carbon
emissions and provide a scientific basis for the formulation of regional emission reduction strategies.
Compared to simple spatial visualization methods, Moran's I enables statistical inference regarding
spatial autocorrelation through rigorous hypothesis testing, thereby effectively identifying spatial
dependence and providing a theoretical foundation for further in-depth research. The global Moran's
I, constructed on the spatial weight matrix, provides a comprehensive assessment framework for the
spatial interconnectedness of regional carbon emission efficiency (Huang et al., 2019). The

expression is as follows:
nzn:ia) (Y. —?)(Y —I_/)
Global = —-= Q)

(ii%}i(ﬁj)

i=1 j=I i=1

In Equation (2), @ is the spatial weight matrix. The Global Moran's index, denoted by [, is between

-1 and 1. When >0, there is positive spatial autocorrelation, indicating that the observations tend to
be concentrated in the spatial dimension; when I<0, it indicates that the data show negative spatial
autocorrelation, i.e., the outliers tend to be spatially clustered; and when 1=0, it indicates that the data
are randomly disordered in the spatial distribution. In addition, researchers can further combine the

calculation results of the global Moran index with the P-value test and the Z-value statistics for in-

depth statistical inference analysis. I, Y] and y denote the observations and overall sample means

of evaluation units 7, J, respectively.

2.3. Kernel density estimation

To comprehensively analyze the level and characteristics of ACEE in Jiangsu Province, focusing only
on efficiency measurement and spatial autocorrelation analysis is not deep enough, and further
analysis of its dynamic distribution and change patterns is needed. In contrast to simple graphical
representations, the Kernel density estimation (KDE) captures complex distributional features of
datasets through a nonparametric approach, producing a smooth probability density function. This
capability allows it to clearly reveal the distributional morphology of efficiency values over time,
thereby effectively uncovering regional differentiation in efficiency (Lu et al., 2018; Wen et al., 2022).

It is assumed that there exists an independent and identically distributed data set containing the
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elements {)c1 Xy, ,xn} . For these data points, an approximation of their potential probability density

function f (x) can be obtained by the kernel density estimation method. The expression is shown in

Equation (3):

f(x)ziil((x"}:;] 3)

i=1
x,-x) o . .
Where, K (’TJ is the kernel function; # is the number of samples; / is the bandwidth; and X, ,

x denote the sample observation and mean value, respectively.

2.4. Geographically weighted regression
Geographically weighted regression (GWR) can effectively can efficiently handle geographical

variation in data. In many fields such as economics, natural resource management, etc., the
influencing factors of the research object will produce different estimated coefficients with the change
of spatial location. Traditional global regression models cannot deal with nonlinear and nonstationary
spatial data, resulting in inaccurate regression results. GWR has a good ability to deal with this kind
of data, and can estimate the regression parameters more accurately based on building a local
regression model for each observation (Wang et al., 2018; Xu & Zhang, 2021). Consequently, GWR
has a wide range of applications in exploring the relative drivers of spatial changes in research objects.
In ArcGIS software, the optimal bandwidth of the GWR model can be determined by minimizing the
corrected Akaike Information Criterion (AICc) through the integration of optimization algorithms.

The regression model is constructed as follows:

¥ = B (0,0,)+ Y B (w0 x, 2, @

k=1
V; 1s the value of the dependent variable for the ith observation; (“n"i) 1s the spatial coordinate
position of the observation point; /3, (ui,vi) is a function of geographic location (ul.,vl.) and
indicates the extent to which the independent variable affects the dependent variable at a particular

location; /3, (u,.,vi) represents a constant term at a specific location; X, is the value of the kth
independent variable at the ith observation; and &, is the random error term for the ith observation.
3. Indicators and data sources

3.1. Indicators

3.1.1. Efficiency indicator system

The essence of enhancing low-carbon agriculture lies in maximizing desired returns with less input
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and lower carbon emissions. Establishing a scientific input-output indicator system not only allows
for the accurate quantification and assessment of carbon emission levels in agricultural activities but
also provides a basis for implementing low-carbon agricultural development strategies (Liu et al.,
2025). Currently, many researchers have constructed corresponding evaluation frameworks based on
dimensions such as agricultural development level and input conditions. In light of existing studies,

this paper incorporates undesirable outputs into the research scope and establishes an indicator system.

Table 1. The input and output indicators

Indicator type Indicators Definition Unit
. Ten thousand
Labor input Rural employees
persons
Land input Total sown area Thousand hectares
Fertilizer input Fertilizer usage Ton
Pesticide input Pesticide usage Ton
Input Agricultural plastic
ricultu . .
8 P Agricultural plastic film usage Ton
film
. Total f agricultural
Mechanical input O PR O, qerieuu Ten thousand kW
machinery
Irrigation input Effective irrigated area Thousand hectares
) ) ) Hundred million
Desired output Economic output Gross agricultural output
yuan
Undesired output Carbon output Agricultural carbon emissions Ten thousand tons

From Table 1, it can be seen that indicators are selected from both socio-economic and natural factors.
Among them, agricultural carbon emissions, as an undesired output, cannot be obtained directly.
Therefore, this paper adopts the emission factor method to calculate the agricultural carbon emissions
in Jiangsu Province according to the latest [IPCC guidelines. This study only accounts for carbon
emissions from crop production inputs, excluding CHs+ and N.O emissions related to livestock

farming as well as sources such as straw open burning. The formula is given below:
C=371-3 (5)
In Equation (5), C is the total carbon emissions from agriculture; the carbon emissions and

emission factors for each source are [ and 0, , respectively.
The specific coefficient values are as follows: sown area 16.47 (kg(C )/ hm*), fertilizer 0.8956
(kg (C) / kg), pesticide 4.9341 (kg (C) / kg ), agricultural film 5.18 (kg (C) / kg ), machinery 0.18

(kg(C)/ kW), irrigation 266.48 (kg (C)/ hm*).
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3.1.2. Influencing factor index system

Apart from the allocation effects of land resources, labor inputs, and diversified agricultural resource
factors, agricultural characteristics, economic indicators, and social development factors, also have a
significant impact on ACEE. When selecting an indicator system for influencing factors, it is essential
to comprehensively and thoroughly examine various relevant factors to ensure the rigor and validity
of the analytical conclusions. Based on existing research findings, this paper selects the following

key influencing factors for in-depth exploration:

Table 2. Definition and description of variables

Category of variables Definition Symbol Unit
Cultivated land utilizati
vate a,n HHitzation Crop sown area/cultivated land MCI %
efficiency
Labor-land allocati A f grai / 1
abor an. allocation rea of grain sown/ rura 1 RE It / person
efficiency employees
Agricultural mechanization Total Power of ?grlcultural AML e
level machinery/cultivated land

. Per capita disposable income of
Economic development P P PCDI Yuan/ person

rural residents

Urban-rural development Urbanization rate UR %

Proportion of the population aged

Population agein PA %
Py geme 65 and over °
Energy conservation and
Environmental regulation environmental protection ECEP %
expenditures/GDP
L : Science and education
Technological innovation TI %

expenditure/fiscal expenditure

3.2. Data sources

The data utilized in this paper are sourced from the Jiangsu Statistical Yearbook, the Jiangsu Rural
Statistical Yearbook, and statistical yearbooks compiled by the 13 prefecture-level cities in Jiangsu
Province, as well as their respective statistical bulletins on national economic and social development.
This ensures the authority, credibility, and comprehensive coverage of the data sources. Due to
missing data on agricultural plastic film consumption and pesticide application in 2017 for cities such
as Yancheng and Suqian, this paper employed an interpolation method to estimate the missing values.
Additionally, the GWR model is sensitive to the units of measurement of variables. To prevent bias
in regression coefficients resulting from differences in measurement units and to ensure comparability

among various influencing factors in the model. All explanatory variables were normalized to the
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[0,1] range using min-max scaling before running the GWR model. This approach effectively
eliminates the influence of measurement units while preserving the distribution characteristics of the

original data (Cao et al., 2019; Peng et al., 2024).

4. Results and discussion

4.1. Efficiency measurement and analysis

The following table summarizes the specific values of ACEE in Jiangsu Province between 2010 and
2020, which provides data support for evaluating the carbon utilization efficiency in Jiangsu
Province's agricultural production process.

Table 3. Statistical table of ACEE in Jiangsu Province

Year TE PTE SE

2010 0.3511 0.4296 0.8287
2011 0.3109 0.3697 0.8673
2012 0.3453 0.4012 0.8814
2013 0.3997 0.4831 0.8691
2014 0.4270 0.5027 0.8798
2015 0.4979 0.5538 0.9049
2016 0.5338 0.5980 0.9014
2017 0.5850 0.6375 0.9124
2018 0.6326 0.6834 0.9112
2019 0.5630 0.6397 0.8823
2020 0.7328 0.7769 0.9261

Note: TE=PTE*SE

The mean Technical Efficiency (TE) of agricultural carbon emissions is 0.4890, with the mean Pure
Technical Efficiency (PTE) at 0.5523 and the mean Scale Efficiency (SE) at 0.8877. As the PTE and
SE improve, the TE has been continuously increasing, rising from 0.3511 in 2010 to 0.7328 in 2020.
It can be observed that the enhancement of agricultural technological levels and the development of
agricultural economies of scale have substantially promoted the overall level of ACEE in Jiangsu
Province. However, this positive change does not imply that Jiangsu's ACEE has reached the
efficiency frontier. The fact that all types of efficiency values remain less than one indicates that there
is still room for efficiency improvement. This also highlights the current issues with efficiency losses
and insufficient resource utilization in the agriculture of Jiangsu Province. Furthermore, the fact that
the PTE values are lower than the SE values indicates that the technology for energy conservation
and carbon reduction in agriculture in Jiangsu Province is still in its initial stages, and agricultural
resources are not being fully and effectively utilized. There is considerable scope for Jiangsu Province

to advance agricultural technological progress. It is urgent to further expand efforts in technology
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research and development and dissemination to achieve the long-term goals of green and low-carbon

development in agriculture.
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Figure 1. 3D waterfall plot of ACEE in Jiangsu Province

Due to dimensional constraints, traditional two-dimensional charts are limited to presenting
unidirectional correlations between spatial or temporal dimensions and efficiency values, making
them inadequate for supporting multi-element coupling analysis. The 3D waterfall plot, by
constructing a three-dimensional data field, effectively enhances the capture capability for dynamic
evolution characteristics of the data, thereby achieving integrated three-dimensional visualization of
spatial-temporal-efficiency dimensions. As illustrated in subplot (a) of Figure 1, this paper conducts
a longitudinal comparison of efficiency values across 13 prefecture-level cities in Jiangsu Province
for the years 2010, 2015, and 2020. Time-series analysis reveals that the comprehensive TE, PTE and
SE of most cities demonstrate a significant upward trend, corroborating the continuous improvement
of ACEE in Jiangsu Province. At the city level, Xuzhou exhibits the most pronounced gains across
all three efficiency values, while Yancheng registers the lowest level of efficiency improvement. In
subplot (b) of Figure 1, the research scope is expanded to the regional scale, dividing Jiangsu Province
into three major regions—South Jiangsu, Central Jiangsu, and North Jiangsu—based on geographical
location. Dynamic analysis reveals that the efficiency values across all three regions generally
maintained a fluctuating upward trend. Among these, South Jiangsu demonstrated outstanding
performance in TE and PTE metrics, leveraging dual advantages in economic foundation and
environmental policies. Central Jiangsu, through its efficient resource allocation mechanisms,
established comparative advantages in SE. In contrast, North Jiangsu faces constraints from the
dominance of traditional cropping patterns, relatively outdated agricultural management practices,
and insufficient large-scale operational capacity. These factors collectively contribute to its relatively

lagging agricultural modernization trajectory, directly limiting the holistic improvement of its ACEE.

4.2. Spatial correlation analysis

Due to differences in geographical environment and agricultural structure, the ACEE in various cities
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of Jiangsu Province exhibits a certain degree of spatial heterogeneity. Exploring the spatial
distribution characteristics of ACEE is of significant importance for developing a precise and efficient
low-carbon agricultural development strategy in Jiangsu Province. In the Global Moran's I index, the

spatial adjacency matrix serves as the weight matrix.

Table 4. Global Moran's index of ACEE in Jiangsu Province

Year I Z p

2010 0.365 3.31 0.001
2011 0.149 1.707 0.088
2012 0.454 3.92 0.000
2013 0.47 4.024 0.000
2014 0.515 4.333 0.000
2015 0.469 4.052 0.000
2016 0.434 4.106 0.000
2017 0.505 4.301 0.000
2018 0.404 3.569 0.000
2019 0.197 2.016 0.044
2020 0.322 2.953 0.003

As shown in Table 4, the Global Moran's [ statistics for ACEE in Jiangsu Province during 2010-2020
are all positive and statistically significant, indicating robust positive spatial autocorrelation in ACEE
over the study period. This implies a spatial clustering pattern of efficiency values among adjacent
regions. Despite variations in economic foundation, social structure, and environmental governance
capacity across Jiangsu's prefecture-level cities, the high homogeneity of natural baseline
characteristics such as climatic conditions and soil types, coupled with similarities in dominant
agricultural industrial structures, collectively shape the convergent development pattern of inter-
regional ACEE. In addition to environmental homogeneity, factors such as knowledge spillover and
technology diffusion must also be considered. Cities with advanced low-carbon agricultural
technologies often exert positive spillover effects on neighboring regions, facilitating cross-regional
technology mobility and promoting spatial convergence of efficiency levels. Furthermore, within the
unified provincial administrative framework, policy coordination and emulation mechanisms fostered
by this structure drive synchronized changes in regional ACEE performance.

4.3. Dynamic evolution feature analysis

To analyze the dynamic changes in ACEE in Jiangsu Province, the non-parametric kernel density

estimation is adopted for evaluation. The method overcomes the limitations of traditional estimation
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methods and can flexibly show the subtle dynamics of efficiency changes, increasing the uniqueness

and innovation of the study. Figure 2 presents the regression results.

(a) Jiangsu Province (b) South Jiangsu

(b) Central Jiangsu (d) North Jiangsu

002

Figure 3. Kernel density estimation of ACEE in Jiangsu Province

Figure 2 presents the spatiotemporal distribution characteristics of ACEE across Jiangsu Province
and its three major regions. First, regarding the evolution of the distribution centroid, a notable
rightward shift is observed in the ACEE distribution centroids of Jiangsu Province and its southern,
central, and northern regions during the period, indicating sustained optimization of agricultural
ecological efficiency across all regions. This also indicates that alongside the overall enhancement of
provincial ACEE, certain "leading cities" have emerged. Therefore, proactive efforts should be made
to establish cross-regional technology promotion service platforms. These platforms will facilitate
technology transfer from high-efficiency cities to low-efficiency cities, narrow the spatial disparity
in efficiency distribution, and ultimately foster coordinated and balanced ACEE development across
the entire region. Second, based on peak characteristic analysis, the peak values of the horizontal

ACEE distribution for Jiangsu Province and its three regions showed a declining trend during the
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observation period. The peak shape gradually transformed from sharp peaks to broader peaks.
Traditional one-size-fits-all policies would prove ineffective, necessitating tailored strategies that
differentiate between cities with varying efficiency levels. Finally, further analysis of the number of
peaks and the distribution pattern reveals that the number of side peaks in South Jiangsu is higher
than in Central Jiangsu and North Jiangsu. Specifically, South Jiangsu exhibits multi-peak distribution
characteristics accompanied by a distinct right-skewed tail. In contrast, Central Jiangsu and North
Jiangsu have fewer side peaks and less prominent tailing characteristics, reflecting a relatively
balanced distribution of ACEE levels in these two regions. Overall, while the ACEE in Jiangsu
Province demonstrates an upward trajectory, the issue of inter-regional development disparity persists.

4.4. Influencing factors analysis

There are significant differences in socio-economic factors in different regions, which may have a
direct or indirect effect on the efficiency of agricultural carbon emissions. In this paper, the
geographically weighted regression (GWR) is used, with the ArcGIS software, and the coefficient
estimates of the influencing factors were presented in a spatial visualization. The GWR model
achieved an adjusted R* of 0.7664, outperforming the global OLS model (adjusted R* = 0.6940),
indicating that spatial heterogeneity is important in explaining ACEE.

L L L L
M V. AML K11
S St o e
= = = =
o (- 1195 0 Wim = 3161 0 Mmoo (B8 0, Wim o (660700 0, Mim
m Rn P j I
S S =h i i
O 4B — | —
o 09 128 L 5 R0 LA = 00R-086 e = mab R

Figure 4. Spatial distribution of estimated regression coefficients for influencing factors of the GWR

model

(1) The Multiple Cropping Index (MCI) is a comprehensive indicator used to quantify the intensity

of cultivated land utilization under specific topographic and climatic conditions(Li et al., 2023).
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Regression analysis shows that the impact of MCI on ACEE exhibits significant spatial dependence.
The regression coefficients of MCI exhibit a distinct latitudinal gradient, increasing progressively
from north to south. The northern region constitutes a negative-value zone, the central region
represents a transition zone, and the southern region is a positive-value zone. Previous studies in
agricultural domains have similarly identified spatial heterogeneity in MCI impacts, analyzing from

perspectives of natural endowments and socioeconomic factors (Zhang et al., 2019; Zhao et al., 2016).
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Figure 4. Scatter plot of fertilizer and pesticide usage in three regions of Jiangsu

Specifically in Jiangsu Province, as shown in Figure 4, the agricultural production in North Jiangsu
heavily relies on the input of fertilizers and pesticides, resulting in a decrease in carbon emission
efficiency. In contrast, the South Jiangsu has achieved a more low-carbon and intensive agricultural
management model with its higher level of economic development and technological capabilities.
The transitional characteristics observed in Central Jiangsu reflect a dynamic interplay between these

opposing effects.

(2) This paper selects “area of grain sown/ rural Employees” as a key influencing factor reflecting
labor-land allocation efficiency (LAE). An increase in LAE corresponds to a lower degree of land
fragmentation, facilitating the adoption of mechanized farming and precision agriculture technologies
(Li et al., 2024). The GWR results indicate that the regression coefficient for LAE remains positive

across the entire province, suggesting that expanding per capita cultivated land area serves as a
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positive driver for enhancing ACEE. As illustrated in Figure 3, the intensity of this factor forms
distinct high-value aggregation clusters in central Jiangsu. Compared to southern Jiangsu, where per
capita arable land resources face urbanization-induced constraints, and northern Jiangsu, which is
limited by capital and technological constraints, the central region effectively converts scale
advantages into improvements in ACEE. Previous studies examining the impact of per capita
cultivated land on agricultural sectors in other regions have also identified spatial heterogeneity,
leading to recommendations for differentiated policy approaches (Chen et al., 2022). Regarding the
spatial characteristics exhibited by LAE, northern and southern regions should further explore highly
intensive agricultural management models, while central regions need to continue encouraging land
circulation and scale-based cultivation practices.

(3) The agricultural mechanization level (AML), serving as an indicator of agricultural production
modernization, exerts a negative impact on ACEE without demonstrating a significant spatial
clustering pattern. This finding contradicts some previous studies, primarily due to the following two
reasons(Chen et al., 2024; Cheng et al., 2023). On one hand, agricultural mechanization heavily relies
on fossil energy consumption, and its energy intensity increases proportionally with the
mechanization rate. On the other hand, a technological path dependency has formed between
mechanization and high-carbon agricultural practices, reinforcing the use of inputs such as pesticides
and chemical fertilizers, thereby creating a feedback loop that generates substantial carbon emissions.
Consequently, cities in Jiangsu must shift their policy focus from general mechanization promotion
to targeted adoption of green energy agricultural machinery.

(4) Per capita disposable income (PCDI) serves as an indicator for assessing economic development
levels. Regression analysis reveals that higher income level significantly promotes the reduction of
agricultural carbon emissions(Wang et al., 1996). Although no spatially heterogeneous pattern is
observed, this finding suggests that increased income drives agricultural green transformation beyond
traditional regional gradients, functioning as a common motivating force across regions. This also
implies that raising farmers’ income could stimulate intrinsic motivation for adopting green
production practices at the micro-level, thereby facilitating the overall transition to low-carbon
agricultural development in Jiangsu Province.

(5) The urbanization rate (UR) serves as a critical indicator for assessing urban-rural development.
Urbanization has accelerated rural-to-urban population migration. As illustrated in Figure 3,
regression coefficients for UR's impact on ACEE remain universally positive across the province,
indicating that urbanization progress significantly enhances agricultural sustainable development
(Zhao et al., 2023). However, a distinct spatial pattern of "high in the north, low in the south" emerges,

reflecting the interplay between modernization effects and negative land-use consequences. In North
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Jiangsu, urbanization's positive modernization effects dominate. Rural labor outflow stimulates
socialized service development, thereby enhancing agricultural scale management and resource
efficiency. Conversely, in highly urbanized South Jiangsu, arable land scarcity weakens the marginal

benefits of urbanization while intensifying environmental constraints on agricultural production.

(6) The intensification of population ageing (PA) leads to a decline in physical labor capacity and
exacerbates environmental constraints. Experience from Japan has demonstrated that, with supportive
policy frameworks, land consolidation and mechanization can partially alleviate labor shortages.
However, studies by scholars from different countries have reached divergent conclusions regarding
the impact of PA on agricultural development (Akdemir et al., 2021; Seok et al., 2018). Regression
results from this study indicate that PA exerts a positive effect on ACEE, particularly more in the
northern regions. Labor shortages have accelerated land transfer and the expansion of large-scale
farming, thereby enhancing land use efficiency and reducing carbon emissions. Furthermore, in recent
years, cities in Jiangsu Province have promoted the application of novel farming techniques while
continuously improving socialized services and ecological compensation mechanisms, actively
responding to the dual challenges of demographic transition and "carbon neutrality", which has
yielded positive outcomes.

(7) Energy conservation and environmental protection (ECEP) expenditure serves as a key indicator
for measuring the intensity of environmental regulations, reflecting government policy guidance and
fiscal support, and constitute a vital safeguard for sustainable agricultural development(Chen et al.,
2023; Wang et al., 2022). Empirical results from the GWR model indicate that ECEP exhibits a
positive yet relatively low coefficient for ACEE. First, evaluating environmental fiscal policies
requires a long-term perspective. The impact of fiscal policies exhibits a certain degree of time lag.
The actual effects on agricultural production may only become apparent after an extended period
following the allocation of fiscal funds. This may lead to an underestimation of the ECEP impact
coefficient. Furthermore, the dispersion of fiscal funds across multiple agricultural projects may also
weaken their marginal impact on agricultural carbon sinks.

(8) Technological innovation (TI) is crucial for the agricultural green transition (He et al., 2021). As
shown in Figure 3, the coefficients of TI are positive across all cities, indicating that science and
education expenditure can effectively enhance ACEE. The effect is particularly more pronounced in

northern Jiangsu, where technology is relatively underdeveloped. Government science and education
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expenditure can promptly address technological gaps and generate high marginal benefits.
Furthermore, North Jiangsu can introduce mature agricultural technologies from South Jiangsu,
reducing trial-and-error costs and thereby contributing to the improvement of carbon emission
efficiency. In contrast, as agricultural technology in South Jiangsu is already among the most
advanced in the province, the impact of TI on ACEE exhibits a certain trend of diminishing marginal
returns, resulting in relatively lower regression coefficients. Additionally, the long-time lag between
investment in technological R&D and the application of outcomes may also contribute to the currently
modest regression coefficients of TI.

5. Conclusion and Recommendation

To realize the "Dual Carbon" goal proposed by the Chinese government, it is important to promote a
low-carbon green transition in agriculture. This process requires not only efforts to alleviate
environmental pressure and improve carbon emission efficiency in agricultural production but also
an in-depth exploration of its spatiotemporal evolution characteristics and key influencing factors.
Based on the above research, the following conclusions can be drawn: (1) Although the ACEE in
Jiangsu Province shows a gradual upward trend, the current overall efficiency level remains relatively
low, with a certain degree of efficiency loss. (2) From a spatial perspective, Jiangsu Province's ACEE
has exhibited positive spatial agglomeration characteristics in recent years. From a temporal
perspective, the ACEE has shown an overall improvement trend, but there is also a certain degree of
polarization. (3) As for the influencing factors, MCI, labor-land allocation efficiency, and other
factors all have a significant impact on ACEE. The regression results indicate that the strength of the
impact of some variables on ACEE exhibits significant spatial heterogeneity.

To promote the low-carbon and sustainable development of agriculture in Jiangsu Province, this paper
proposes the following policy recommendations based on empirical findings: (1) Jiangsu should
continue to advance low-carbon agricultural development and enhance the overall level of ACEE.
Efforts should be made to strengthen the promotion and application of low-carbon and intelligent
agricultural machinery, and to organize large-scale training programs on green farming techniques,
so as to consolidate the foundation for overall ACEE improvement. (2) The government should
enhance regional coordination and targeted support mechanisms. On one hand, high-efficiency
regions should be encouraged to pursue technological innovation and facilitate the transfer of low-
carbon technologies and management models. On the other hand, targeted assistance should be
provided to cities with lower efficiency to help them overcome bottlenecks in the transition to green
agriculture. (3) Differentiated strategies tailored to local conditions are necessary. Northern regions

should prioritize the adoption of low-carbon technologies such as side-deep fertilization and slow-
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release fertilizers, as listed in the Jiangsu Agricultural Carbon Reduction Technology Catalogue
(2022), to mitigate the carbon penalty from increased MCI. Southern regions, which possess stronger
economic and agricultural foundations, should focus on developing cutting-edge low-carbon

technologies such as smart agriculture and digital agriculture.

6. Limitation

Currently, many regions face environmental constraints similar to those in Jiangsu Province during
the transition toward green agriculture. The modeling framework and findings of this paper provide
an analytical framework and policy insights for other regions at comparable development stages.
However, this research has certain limitations, mainly including: (1) The study is conducted at the
municipal scale, which may overlook more granular differences at the county level regarding ACEE,
thus failing to fully capture intra-regional heterogeneity. (2) Due to data availability constraints,
several potential influencing factors—such as the level of agricultural digitalization and the
stringency of environmental penalties—were not incorporated into the empirical model, possibly
leading to incomplete model settings.
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