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Abstract: Resource-based cities are an important source area of carbon emissions in China. Urban carbon

emissions are significantly affected by territorial space development and protection (TSDP). Based on the panel

data of 110 resource-based cities in China from 2005 to 2020, an empirical model is constructed. The

heterogeneous impacts of TSDP on carbon emissions are explored at multiple levels and angles, key influencing

factors are identified, and carbon emission reduction strategies and differentiated low-carbon development paths

are proposed. The results of the study: (1) On the global scale, the degree of explanation of TSDP on the carbon

emissions of the overall cities reaches 76.2%, in which the GDP, energy consumption per unit of GDP and the

proportion of tertiary industry make the greatest positive contribution. (2) At the local scale, the impact of TSDP

is heterogeneous by type. GDP has no significant influence on economically backward cities, and the total

population has the strongest positive contribution to less populated cities. (3) At the urban scale, the impact of

TSDP has spatial heterogeneity. Economic development has the greatest influence on carbon emissions, while

population aggregation has the opposite effect. GDP and energy consumption per unit of GDP are no longer the



dominant factors in all cities. (4) The impact of TSDP is time-differentiated. During the study period, GDP and

energy consumption per unit of GDP significantly and positively affect carbon emissions, and their

contributions show “W”-shaped and “U”-shaped fluctuation changes respectively. The proportion of

construction land area significantly and positively affects carbon emissions in 10 years, and the effect increases

with time. The research results can provide theoretical support and decision-making reference for

resource-based cities to realize low-carbon sustainable development.

Key words: Resource-based cities; territorial space development and protection; carbon emissions; impact of

heterogeneity; multi-perspective empirical modeling

1 Introduction

China is the world's largest fossil energy consumer and carbon emitter, with carbon emissions reaching

11.47 billion t in 2021, accounting for 31% of the world's total carbon emissions (Energy 2022). The Chinese

government has actively undertaken the task of carbon emission reduction and formulated a series of related

policies. In September 2021, strengthening the role of territorial space planning and use control in the

ecosystem's carbon sequestration and sink enhancement was explicitly proposed. In October 2021, constructing

a TSDP pattern conducive to carbon peaking and carbon neutrality, and promoting the green and low-carbon

transformation of urban and rural construction was proposed. As the core content of territorial space planning,

TSDP influences the urban carbon balance through the land use structure and intensity and its changes, as well

as the way of human activities carried (Bao et al. 2022; Ding et al. 2022), which is an important factor affecting

carbon emissions. Therefore, the study of the impact of TSDP on carbon emission has important academic value

and urgent practical significance.

Resource-based cities are cities with mining and processing of natural resources as their leading industries,

accounting for 40% of the total number of cities in China (Yu et al. 2018), and they are an important region for

the source of carbon emissions(Liao et al. 2022; Xu et al. 2023). In 2020, China's prefectural-level



resource-based cities carried about 30% of population and contributed 22% of the GDP, but they accounted for

one-third of carbon emissions. Their per capita carbon emissions, and 10,000 yuan of GDP carbon emissions are

7.56 t/person and 1.68 t/million yuan, which are 1.16 and 1.60 times higher than those of non-resource-based

cities, respectively(Liao et al. 2022; Wu et al. 2023). In 2013, China promulgated the National Sustainable

Development Plan for Resource-Based Cities (2013-2020) (hereinafter referred to as “the Plan”), which restricts

the resource development activities of resource-based cities and guides them to explore low-carbon

development models (State 2013). At the end of 2021, China called for categorization of policies, tailoring to

local conditions, accelerating the low-carbon transformation of resource-based areas, and promoting

high-quality development of resource-based cities. In the context of carbon peaking and carbon neutrality, it is

necessary to reduce anthropogenic carbon emissions from the perspective of territorial space development. On

the other hand, it is necessary to enhance the carbon sequestration capacity of different ecosystems from the

perspective of territorial space protection (Huang et al. 2022). As resource-based cities are important

contributors to China's “dual-carbon” goal, exploring the impacts of TSDP on carbon emissions is a prerequisite

for proposing low-carbon transition paths.

Scholars have paid great attention to the study of carbon emission influencing factors, and explored the

influence of economic level, population size, technological progress, energy intensity and industrial structure on

carbon emissions. Li et al. (2021) analyzed the impact of structural changes on carbon emissions from the four

aspects of the economy, energy, society and trade, found that the economic growth and the economic structure

are the most significant positive and negative factors respectively. Koilakou et al. (2023) analyzed the link

between energy-related carbon emissions and economic growth, and found that economic growth and energy

intensity were the main factors. Ren and Long (2022) found that economic growth, population size and

industrial structure would positively promote carbon emissions, while technological progress, foreign trade

volume, and energy structure are the opposite. Wang et al. (2021) concluded that the structural adjustment of



socio-economic development is an important way to reduce carbon emissions. Xu and Lin (2016) and Meirun et

al. (2020) demonstrated that the green technological innovation can effectively reduce carbon emissions. Luo et

al. (2022) found that in the context of rapid urbanization, upgrading the consumption structure can significantly

increase carbon emissions. Qi ef al. (2023) found that the proportion of secondary industry is significantly

negatively correlated with carbon emissions. Wang et al. (2018) found that the scale effect (income and

population) is the main influencing factor, whereas the technological effect (energy intensity and emission

coefficients) is the slowing down of the emission key drivers. According to the study by Wu et al. (2025),

digital trade can effectively reduce carbon emission intensity. Liu and Liu (2025) indicated that digital finance

and green finance enhance carbon emission efficiency through technological innovation and the reduction of

carbon emission intensity. Other studies have found that factors such as direct investment (Dong et al. 2023;

Zhao and Zhu 2022), the digital economy (Qin et al. 2023; Wu et al. 2021), urbanization (Wang et al. 2021; Xu

et al. 2018), population age structure (Zhao and Sun 2023), and institutions (Jiang and Lu 2022; Ma et al. 2023)

also have an impact on carbon emissions.

In addition, a few scholars have studied the relationship between TSDP and carbon emissions. Xiong et al.

(2021) and Cui and Zhu (2022) explored the inherent logical relationship between the “dual-carbon” goal and

territorial space planning. Xiao et al. (2015) elaborated the low-carbon oriented spatial planning theories and

technologies. Glaeser and Kahn (2010) found that the more restrictive the constraints and limitations on land

development and utilization are, the greater carbon emissions reduction from residents' lives. Zhang et al.

(2025)indicated that the urban expansion of China's Yangtze River Delta Urban Agglomeration promoted an

increase in carbon emissions, but decoupling also occurred. Wang ef al. (2018) found that compact urban

transportation system planning helped to reduce per capita carbon emissions. Zhang et al. (2016) found that the

intensity of construction land development and its carbon emission efficiency were dynamically changing. Ren

et al. (2022) established a carbon emission calculation model for the coal development process, and proposed to



promote the application of coal development energy saving and efficiency technology to reduce carbon
emissions. Huang et al. (2021) pointed out that carbon emission reduction and carbon sink enhancement are the
ways to realize low-carbon territorial space development.

To summarize, the current research has the following shortcomings: first, the relationship between carbon
emissions and their influencing factors is not fixed but has spatial and temporal heterogeneity. However, most of
the existing studies are based on the overall analysis of time series, ignoring the spatial heterogeneity. Second,
empirical studies on the impact of TSDP on carbon emissions are still insufficient, and most of the existing
literature is centered on the theory of low-carbon territorial spatial planning. Thirdly, the main contradictions
and problems faced by different types of cities are not the same, and thus the carbon emission levels,
influencing factors and low-carbon development paths of different types of cities are also significantly different.
However, focusing on different development stages, dominant resource types and geographic locations of cities,
there is still a lack of research on the impact of TSDP of resource-based cities on carbon emissions.

To reveal the impact of TSDP on carbon emissions in resource-based cities and its heterogeneity patterns,
thereby formulating more scientific and targeted low-carbon development strategies for such cities, this paper
takes the panel data of 110 resource-based cities in China from 2005 to 2020 as research samples, analyzes the
connotation and constructs the index system of TSDP in resource-based cities, and analyzes the mechanism of
TSDP on carbon emission. The study explores the heterogeneous effects of TSDP on carbon emissions from the
perspectives of time and space, as well as from the perspectives of the overall and different types of cities, and
identifies the key factors. As a result, carbon emission reduction strategies and differentiated low-carbon
development paths are proposed to provide scientific theoretical basis and policy suggestions for resource-based
cities to realize low-carbon sustainable and high-quality development.

2 Mechanism analysis of the impact of TSDP on carbon emissions in

resource-based cities



2.1 Connotation of TSDP in resource-based cities

“Territorial space development and protection” encompasses both territorial space development and

territorial space protection, emphasizing that the two go hand in hand. Compared with other cities, the economic

development of resource-based cities is dominated by the secondary industry. Large-scale resource development

can easily lead to environmental damage (Liao ef al. 2022; Zhao et al. 2022), and ecological governance and

pollution prevention will become the focus and difficulty of spatial construction (Huang et al. 2021; Zhao ef al.

2012). The connotation of TSDP in resource-based cities is as follows:

(1) Territorial space development involves not only land resource development, economic development

and population aggregation, but also resource exploitation. The most typical manifestation of territorial space

development is the expansion of construction land and the reduction of cultivated land, forest land, grassland

and so on. Compared with construction land, cultivated land has ecological protection functions. However, the

transformation of land use type from ecological land to productive land belongs to the territorial space

development, such as the development of ecological land such as unutilized land, forest land, and grassland into

cultivated land (Yang et al. 2021). Therefore, this study includes the expansion of construction land and

cultivated land into territorial space development.

(2) Territorial space protection includes ecosystem protection, pollution control and resource conservation.

Ecosystem protection refers to the protection of various types of natural ecological land, with the aim of

enhancing the carbon storage and absorption capacity of forests, grasslands and so on. Pollution control mainly

refers to the management of pollutants in the atmosphere, water and soil environment. Resource conservation

mainly including the conservation and utilization of water, land and energy.

2.2 Index system for measuring TSDP in resource-based cities

The index system covering seven elements, including land resource development (Chen and Wang 2023;

Yang et al. 2021), population aggregation (Chen and Wang 2023; Liu et al. 2013), economic development



(Chen and Wang 2023; Li and Li 2023), resource exploitation, ecosystem protection (Cheng et al. 2013),

pollution control (Xu 2023) and resource conservation(Cheng et al. 2013; Deng et al. 2019) is constructed, as

shown in Table 1.

Table 1 Measurement index system of TSDP in resource-based cities

First-level Second-level . o . . L .
. v e v Third-level indicators (unit) Interpretation of indicators Notation
indicators indicators
Proportion of construction land Proportion of construction land area in X1
area (%) total city area
land resource Proportion of cultivated land area  Proportion of cultivated land area in total X2
development (%) city area
. Proportion of total road area in total cit
Density of road network (km?/km?) P 4 X3
area at the end of the year
. Total resident population of the city at
Total population (ten thousand) 't Y X4
the end of the year
opulation . . Ratio of total resident population to total
pop . Population density (person /km?) . pop X5
aggregation city area
L. Proportion of urban population in total
Urbanization rate (%) P . pop . X6
permanent resident population
GDP (100 million yuan) The gross national product of the city X7
o . . A 1 sal f on-the-job
territorial space Annual income per capita (Yuan) Verage. annua. saaty. of ontiego X8
workers in the city
development . .
. . Ratio of the total value of social
Annual consumption per capita .
(Yuan) consumer goods to the total resident X9
economic population of the city
development . s Proportion of the output value of the
P Proportion of secondary industry P . Ptpu v .u'
%) secondary industry in the city's gross X10
national product
Proportion of the output value of the
Proportion of tertiary industry (%) tertiary industry in the city's gross X11
national product
Proportion of employment . . L
A . .. p. Y Proportion of employment in mining in
personnel in the mining industry X12
resource %) total employment
exploitation . . . . . .
Proportion of investment in fixed Proportion of fixed asset investment in X13
assets in the mining industry (%) mining in total fixed asset investment
Proportion of forest area (%) Proportion of forest area in total city area X14
Proportion of water and wetland Proportion of water and wetland area in X15
ecosystem area (%) total city area
protection . Proportion of the green coverage area in
Green coverage rate of built-up P . g 8
the built-up area to the total area of the X16
area (%) .
built-up area
Proportion of harmless disposal volume
Harmless  treatment rate  of .
of household garbage in total household X17
o household garbage (%)
territorial space garbage
rotection . P ti f treat t vol
P pollution control ~ Sewage treatment rate (%) . roportion o sewage reatment volume X18
in total sewage discharge
. e Proportion of total amount of industrial
Comprehensive utilization rate of . o .
. . . solid waste utilized in total amount of X19
industrial solid waste (%) . . .
industrial solid waste
Energy consumption per unit of . .
Ratio of total energy consumption to the
resource GDP (ton of standard coal/ten . | Nerey wmp X20
) city's gross national product
conservation thousand yuan)
Water consumption per unit of Ratio of total water use to the city's gross X21




GDP (m?/ ten thousand yuan) national product

Output per unit of land (ten Ratio of gross national product to total

X22
thousand yuan /km?) city area

2.3 Mechanism analysis of the impact of TSDP on carbon emissions

Land resource development will lead to the expansion of construction land, which not only leads to the
generation of new carbon sources, but also destroys the carbon sequestration and sink enhancement of the
original carbon sink land (Zhang et al. 2012). Cultivated land is both a carbon source and sink, and the growth
of crops will directly affect carbon emission and absorption (Chuai ef al. 2015). The better the transportation
location conditions, the higher the degree of land use and economic output level is usually higher, and it is also
easier to meet the demand for the expansion of construction land (Gao et al. 2018). The direct motivation for
TSDP is population growth and economic development (Kong et al. 2020). A larger population means more
carbon emissions (Zhang and Wu 2020), and changes in the structure of population will bring about changes in
the type of land use and production and living styles, which in turn will affect carbon emissions. Economic
development will increase the demand for construction land and challenge the protection of cultivated land
(Feng et al. 2023). The improvement of residents' living standards due to economic development will change
the demand for energy consumption, and the economic restructuring makes changes in the way of territorial
space utilization, thus affecting carbon emissions. Resource exploitation has the characteristics of high input,
high energy consumption and high pollution, which contribute to carbon emissions. The idea that protecting
ecosystems is an effective measure to reduce carbon emissions has been widely recognized (Dong et al. 2022).
Pollution control can effectively curb carbon emissions, but some scholars believe that pollution control reduces
the unit production cost through technological advances, and enterprises expand the production scale to obtain
greater profits, but exacerbates carbon emissions (Zeng et al. 2022). Resource conservation means directly
reducing fossil energy use, which is the main way to reduce carbon emissions from the source.

3 Overview of the study area, research methods and data sources



3.1 Study area

According to "the Plan", there are 126 prefecture-level resource-based cities in China. Considering the

removal and merger of administrative regions and the lack of statistical data in some cities, 110 cities are finally

selected as the research objects, and the national prefecture-level administrative region division in 2020 is taken

as the standard. According to the development stage of cities, "the Plan" divides resource-based cities into

growth, mature, declining and regenerative types. According to the dominant resources of cities, resource-based

cities can be divided into metal-based, non-metallic-based, forestry-based, coal-based and oil and gas-based

(Liu 2006). According to the geographical location of cities, resource-based cities are distributed in the eastern,

central, western and northeastern regions. The spatial distribution and type classification of 110 cities are shown

on Fig.1.

Legend
City type
@ Coal-based [ Growth type
D Oil and gas-based [ Mature type

A Metal-based [ Declining type !
o Non-metallic-based [l Regenerative type ; - / e /S\omh
~+ Forestry-based [ JUnstudied area . (" 7 China
. ) 0 500 1,000 ¥ 3 / s Sea
Four regional boundaries 1km Islands

Fig.1 Distribution and types of 110 resource-based cities in China

3.2 Multi-perspective empirical modeling of carbon emission impacts

This study involves a total of 1,760 city-annual observations, with the dependent variable set as carbon

emissions and the independent variables set as indicators of TSDP. The multiple linear regression model is used

to explore the multiple heterogeneity of the impact of TSDP on carbon emissions. Linear regression analysis

10



can effectively establish quantitative relationships between variables and has been widely used in various
studies (Xu et al. 2019). Stepwise regression can eliminate model multicollinearity, which is one of the
important methods to establish the optimal linear regression model (Whittingham et al. 2006; You and Yan
2017).
Given n independent variables, the model can be expressed as (Chen et al. 2022):
y=ﬂ0+z;ﬁixi+8 (1)
where y is the dependent variable, x; is the independent variable, [, is the intercept, n is the
number of potential independent variables, and & is the residual term. f; is the regression coefficient
of the i-th independent variable, which indicates the contribution of x; to y. Standardized regression
coefficients eliminates the effect of different independent variables' units and can be used to compare the
relative magnitude of the effect of different independent variables on the dependent variables(Chen et al.
2022).

The model is developed using SPSS 26.0 software, and the modeling procedure is as follows:

(1) Correlation analysis. Pearson correlation analysis is conducted between each indicator and carbon
emissions to initially determine whether there is a correlation between each independent variable and the
dependent variable.

(2) A collinearity diagnostic was performed on the 22 indicators using the Variance Inflation Factor (VIF).
The results indicated that all VIF values of the explanatory variables were below the empirical threshold of 10,
demonstrating the absence of significant multicollinearity. This confirms the reliability of individual indicator
contributions and supports the feasibility of constructing a regression model.

(3) Multi-perspective carbon emission impact empirical model construction.

1) In the global scale, based on the regression model and the indicator data of each city from 2005 to 2020,

the overall impact of the indicators of TSDP on carbon emissions is explored.

11



2) In the local scale, the contribution of each indicator to carbon emissions in different types of
resource-based cities are calculated.

3) In the city scale, the contribution of each indicator to carbon emissions is calculated separately for 110
cities to reveal the spatial variability of the impact of TSDP on carbon emissions.

4) In the time series, the overall contribution of all cities each year are calculated to reveal the annual
variability of the impact of TSDP on carbon emissions.
3.3 Data sources

The socio-economic data of each city mainly come from China City Statistical Yearbook (2006-2021),
China Urban Construction Statistical Yearbook (2005-2020), Statistical Yearbooks of provinces (autonomous
regions) and prefecture-level cities (2006-2021), and Statistical Bulletin of National Economic and Social
Development (2005-2020), and linear interpolation method is used to supplement some missing data (Jasmine
et al. 2025). The city's land use data from Annual China Land Cover Dataset (Yang and Huang 2021), which
has good accuracy and continuity, has been widely used in academic research (Feng et al. 2023; Yan et al.
2025). 110 resource-based cities carbon emissions data from the municipal carbon listing
(https://www.ceads.net.cn/data/city/) provided by China Emission Accounts and Datasets (CEADs). This data is
obtained from DMSP/OLS and NPP/VIIRS night light satellite images, and the goodness of fit R? reaches 0.998
(Shan et al. 2022; Shan et al. 2019), which is considered as the authoritative and scientific carbon emission
accounting database in China, and widely used in academia (Feng et al. 2023; Li et al. 2022; Wang et al. 2021).
4 Results and analysis
4.1 Impacts of TSDP on carbon emissions at the global scale
4.1.1 Overall regression results

The results of Pearson correlation analysis show that there is a significant correlation between carbon

emissions and the 22 indicators of TSDP (p-value is less than 0.01), and all 22 indicators can be used for



modeling. Table 2 shows the fitting results of the multivariate linear stepwise regression model, and the
goodness-of-fit R? is 0.762. It indicates that the degree of explanation of TSDP on carbon emissions is 76.2%.
The F value of the model is 4.444, which is significant at 5% level, indicating that the constructed model is
effective. According to the regression coefficients, a total of 16 variables enter the model and significantly affect

the carbon emissions of overall cities.

Table 2 Results of multiple linear regression based on overall resource-based cities

Independent variable Regression coefficient Standardized regression coefficient

Constant term -17.757

Dependent variable
X1 0.114%* 0.169**
X2 0.216** 0.148**
X5 -0.189%** -0.174%*
X6 0.253** 0.102**
X7 0.905** 0.771**
X9 -0.148** -0.111%**
X10 0.545%* 0.151**
X11 0.888** 0.225%*
X12 0.037** 0.051**
X13 0.041** 0.060**
X14 0.021** 0.055**
X15 -0.060** -0.078**
X16 0.347** 0.126**
X18 0.098** 0.043**
X19 -0.055%* -0.028*
X20 0.948** 0.509**

N 1760

R? 0.762

Adjusted R? 0.760

F 4.444*

Note: ** and * indicate that the variables are significant at the 1% and 5% levels, respectively.

4.1.2 Analysis of the impact of TSDP on carbon emissions

The regression coefficients of the land resource development indicators X1 and X2 are 0.114 and 0.216,
respectively, indicating that the expansion of construction land and cultivated land will contribute to carbon
emissions. In the population aggregation, the regression coefficient of X5 is -0.189, indicating that the increase
in population density suppresses carbon emissions. Relevant studies have shown that the increase of population
density will bring about the innovation of production technology, thus indirectly reducing carbon emissions
(Guo et al. 2023). The regression coefficient of X6 is 0.253, indicating that for every 1% increase in the
urbanization rate, the carbon emissions will increase by 0.253%. The increase in urban population is often
accompanied by the increasing demand for urban construction, transportation, housing, etc., which increases

energy consumption and generates more carbon emissions (Wang and Qin 2015). Among the economic



development, X7, X9, X10, and X11, the other three indicators are positively correlated with carbon emissions,

except for X9. X7 has the largest positive impact, which is the most important factor, which is in line with the

conclusions of the studies by Li (2024) and Guo (2011). X9 has a negative effect on carbon emissions, contrary

to the theoretical analysis. This may be since high consumption is often accompanied by a strong sense of

environmental protection, and people's green and low-carbon consumption will reduce carbon emissions. In

industrial structure, the proportion of secondary and tertiary industries all have a significant positive

contribution to carbon emissions, which means that the expansion of the scale of almost all industries will

promote carbon emissions. The regression coefficients of resource exploitation indicators X12 and X13 are

0.037 and 0.041, respectively, which indicates that large-scale resource extraction will exacerbate urban carbon

emissions, in line with theoretical expectations.

X15 significantly negatively influencing carbon emissions and X14 and X16 the opposite. The higher area

proportion of watersheds and wetlands means that more other land is converted into ecological land, which in

turn reduces carbon emissions. The regression coefficients of X14 and X16 are 0.055 and 0.126, respectively,

which may be attributed to the following reasons: the proportion of forested land area and the greening

coverage rate of the built-up area reflect the greening level of the city, and the higher the level in general, the

higher the level of urban development is also relatively high, which usually brings more carbon emissions.

Pollution control has a relatively small impact on carbon emissions, especially the comprehensive utilization

rate of industrial solid waste has the smallest effect on carbon emissions. The regression coefficient of X20, a

indicator of resource conservation, is 0.948. For every 1% increase in energy intensity, carbon emissions will

increase by 0.948%. In the 11th Five-Year Plan, the Chinese government takes reducing energy intensity and

improving energy efficiency as an important way to reduce carbon emissions, and energy intensity is an

important factor in carbon emissions (Wang and Fan 2022).

4.1.3 Identification of core influencing factors



Among the 16 indicators of TSDP in the model, X5, X9, X15 and X19 have a significant negative impact

on carbon emissions, while the remaining 12 indicators are on the contrary. The standardized regression

coefficients show that different indicators have different degrees of influence on carbon emissions (Fig.2), from

strong to weak: X7, X20, X11, X5, X1, X10, X2, X16, X9, X6, X15, X13, X14, X12, X18, and X19. GDP,

energy consumption per unit of GDP, and proportion of tertiary industry are the top three indicators, while the

related indicators characterizing pollution control have a smaller degree of influence on carbon emission.

X1

X20 1.0 X2
0.8
X19 0.6 | X5
X18
X16
X15
X14 / X10
X13
X12 X11

Fig.2 Radar chart showing standardized regression coefficients of indicators in overall resource-based cities

4.2 Differences in the impact of different types of cities on carbon emissions at the local scale

4.2.1 Resource-based cities at four development stages

Table 3 shows that land resource development does not have a significant effect on regenerative type cities,

and X1 has a gradually decreasing role in promoting carbon emissions in mature, declining and growth type

cities. Cultivated land expansion has the strongest inhibitory effect in growth type cities, which may be since

this type of city is in the rising stage of resource exploitation, with a high potential for resource security, and the

phenomenon of cultivated land non-agriculturalization is less manifested as a carbon sequestration effect.

Population aggregation has a significant effect on all four types of cities, but the direction and size of the effect

varies. Especially X6, which has the largest positive effect on growth type cities, with a regression coefficient of

1.249. However, it has a negative effect on regenerative type cities with higher urbanization rates, reflecting that

moderate population agglomeration can promote low-carbon development of cities. The total population has a



significant positive effect on the least populated declining type cities and the most populated regenerative type

cities, and the effect on the former is larger than that on the latter. X5 only has a significant negative effect on

mature type cities. Economic development has a smaller effect on declining type cities, and only one indicator,

X8, enters its regression model. This may be since the declining type cities tend to deplete their resources and

lag in economic development. X7 has the greatest impact on mature type cities, while X10 has the greatest

impact on regenerative type cities. Resource exploitation has a significant contributing effect on regenerative

type cities, which may be since the impact of resource exploitation on carbon emissions has a certain lagging

effect, and even if the resource extraction activities are stopped, the carbon emissions will continue for a period.

Ecosystem protection has a significant effect on the carbon emissions of mature and declining type cities.

X14 and X16 are significantly positive, which means that greening construction cannot directly reduce the

carbon emissions. X15 can significantly inhibit the carbon emissions of mature and declining type cities.

Pollution control has a significant effect on mature and regenerative type cities, of which X17 only has a

significant role in promoting carbon emissions of mature type cities, X18 has no significant effect on the four

types of cities, X19 is significantly negatively correlated with carbon emissions of mature and regenerative type

cities, and has the strongest inhibiting effect on regenerative type cities. Resource conservation can significantly

contribute to carbon emissions in declining type cities. X20 has a significant positive effect on carbon emissions

in all four types of cities, and has the greatest effect on growth type cities. X21 only positively affects carbon

emissions in declining type cities, and X22 only significantly positively affects carbon emissions in growth and

declining type cities.

Table 3 Results of multiple linear regression of resource-based cities at different development stages

Types Constant term X1 X2 X4 X5 X6 X7 X8
growth type -13.194 0.100* -0.435%* 1.249%* 0.636%*
mature type -14.840 0.184%* 0.114** -0.064* 0.307%* 0.883%*
declining type -12.992 0.139%* 0.145%%* 0.404** 0.772%*
regenerative type -16.800 0.321%%* -0.279%* 0.628**
Types X9 X10 Xl11 X12 X13 X14 X15 X16
growth type 0.324*
mature type -0.189%* 0.463%* 0.649%* 0.041%* 0.057%* -0.024*



declining type 0.068* 0.041%* -0.105%* 0.822%*

regenerative type 0.405%* 0.738%* 1.134%* 0.184%* 0.046%*

Types X17 X19 X20 X21 X22 N R? F
growth type 1.082%* 0.293%* 224 0.888 4.658*
mature type 0.148%* -0.208%** 0.915%* 960 0.796 4.040*

declining type 0.909** 0.232%%* 0.157%* 352 0.612 5.473*
regenerative type -0.446** 0.854** 224 0.949 10.511%*

Note: ** and * indicate that the variables are significant at the 1% and 5% levels, respectively. The values of the indicators in the table are

regression coefficients; a null regression coefficient indicates that the corresponding indicator did not enter the regression model.

4.2.2 Cities with five dominant resource types

Table 4 shows that land resource development has no significant effect on carbon emissions in
forestry-based cities and has a significant effect on other types of cities. X3 only enters the regression model of
coal-based cities. The effect of population aggregation on non-metallic-based cities is not significant. X4 only
has a positive effect on forestry-based cities with the smallest population size. X5 has a braking and driving
effect on coal-based and oil and gas-based cities, respectively, which may be since oil and gas-based cities have
a higher population density, and the average annual population density is nearly 227 people/km?, which is about
1.24 times higher than that of coal-based cities. Research has shown that, within a certain threshold, higher
population densities are more likely to produce agglomeration effects, which are conducive to improving the
efficiency of infrastructure and resource utilization, thereby reducing carbon emissions. However, when the
population density is high, cities face increased pressure on resources and the environment, which will promote
infrastructure development and construction, bringing the expansion of energy-intensive and labor-intensive
industries, resulting in inefficient energy use and further increasing carbon emissions (Yang and Zhao 2023).
X6 has a contributing effect on metal-based and coal-based cities. Economic development mainly plays a
facilitating role on urban carbon emissions. However, the effect of X7 on economically backward forestry-based
cities is not significant. Income and consumption only significantly and negatively affect non-metallic-based
cities. The industrial structure has the greatest influence on metal-based cities. Resource exploitation has no
significant effect on non-metallic-based cities, and has a significant promotion effect on coal-based, oil and

gas-based and metal-based cities, and a significant inhibition effect on forestry-based cities.



Ecosystem protection affects carbon emissions of different types of cities in different directions and

degrees. Increasing the area of ecological land do not necessarily lead to a reduction in carbon emissions.

Pollution control fails to significantly affect carbon emissions in coal-based cities, but it can inhibit carbon

emissions in oil and gas-based and forestry-based cities. Increasing the rate of harmless treatment of domestic

garbage can significantly promote the carbon emissions of metal-based cities. Increasing the comprehensive

utilization rate of industrial solid waste can promote the carbon emissions of non-metallic-based cities. The

reason may lie in the fact that the improved level of pollutant management reduces the demand for raw

materials and production costs of enterprises while protecting the environment, which leads to the expansion of

production and increase in energy consumption, which in turn generates more carbon emissions, i.e., the

rebound effect of environmental management (Ma and Dong 2020). Except for forestry-based cities, resource

conservation has a significant effect on the other four types of cities. Among them, X20 has a significant

promotion effect on urban carbon emissions, especially the strongest effect on coal-based cities.

Table 4 Results of multiple linear regression of resource-based cities with different dominant resource types

Types Constant term X1 X2 X3 X4 X5 X6 X7
coal-based -14.406 0.117** 0.203%* -0.050* -0.167** 0.229%* 1.023%**
oil and gas-based -4.506 0.189** -0.537** 0.279%* 0.595%%*
metal-based -14.700 0.191** 0.338%* 0.608%**
non-metallic-based -10.215 0.341%* -0.419** 1.009%*
forestry-based -4.726 1.710%*
Types X8 X10 X11 X12 X13 X14 X15 X16
coal-based 0.068** 0.045%* -0.053**
oil and gas-based 0.418%* 0.175%* 0.067** 0.159%* -0.511%**
metal-based 0.723%* 0.821%* 0.094** -0.044** -0.092%** 0.273%%*
non-metallic-based -0.432* 0.446* 0.161** -0.200*
forestry-based -0.519* -0.158%* -0.263** 0.453%*
Types X17 X18 X19 X20 X21 N R? F
coal-based 0.874* 848 0.729 5.624*
oil and gas-based -0.198* 0.715%* -0.401** 192 0.806 5.475%
metal-based 0.207** -0.163** -0.071* 0.714** 480 0.847 12.514%*
non-metallic-based -0.499%* 0.592%* 0.483%* -0.172* 144 0.890 4.720*
forestry-based -0.286** 96 0.893 5.274*

Note: ** and * indicate that the variables are significant at the 1% and 5% levels, respectively. The values of the indicators in the table are

regression coefficients; a null regression coefficient indicates that the corresponding indicator did not enter the regression model.

4.2.3 Resource-based cities in the four distribution regions



Except for the cities in the eastern region, land resource development has a significant effect on the other

three types of cities. X2 is significantly and positively related to carbon emissions in central, western and

northeastern region cities, and has the strongest effect on central region cities. X1 and X3 only have positive

and negative effects on central and western region cities, respectively. Population aggregation has a significant

relationship with carbon emissions in all four types of cities, but the direction of correlation is different. For

example, X6 has a positive effect on central, western and northeastern regions, but a negative effect on eastern

region. As a developed coastal region in China, the eastern region has advanced technology, strong material

base and financial support, so its higher urbanization rate is more conducive to low-carbon development. X4 has

the greatest positive effect on the northeastern region, mainly because of its small and continuous population

loss, resulting in a significant reduction in carbon emissions. Economic development basically has a significant

positive contribution to all four types of cities. Specifically, X9 has a significant negative effect only on the

western region, probably since the per capita consumption level is the lowest in the western region, and the

negative environmental externality generated by consumption is relatively small, and the positive effect on

carbon emissions is weaker. Consumption can effectively contribute to the economic growth, development stage

leap and TSDP level in the western region, bring about a modernized production and life style, and promote

urban green development and carbon emission reduction. Except for the northeastern region, industrial structure

has a significant contribution to the other three types of cities, and the contribution is strongest in the western

region. Among the resource exploitation indicators, X12 has the largest positive contribution to the

economically developed eastern region and the largest negative contribution to the economically backward

northeastern region. X13 promotes carbon emissions in the eastern, central and northeastern region cities, but

has no significant effect on the western region.

Increasing the proportion of watershed and wetland areas can significantly reduce carbon emissions in the

eastern and northeastern region cities, but increasing the area of forested land and the greening coverage of



built-up areas can significantly increase carbon emissions in the central, western and northeastern region cities.
The possible reason is that the direction of the influence of urban greening on carbon emissions is related to the
level of urban development. When the city develops to a certain level, the city has the capacity to achieve
greening construction under a low-carbon program. Otherwise, urban greening construction and maintenance
will consume more human, material and financial resources, exacerbating carbon emissions. Pollution control
has a significant inhibitory effect on the eastern region, while the opposite is true for the northeastern region.
The reason is that the northeastern region is economically backward, and improving the level of pollutant
control will promote enterprises to expand production and improve economic efficiency, while exacerbating
carbon emissions. In terms of resource conservation, X20 is still an important factor in promoting urban carbon
emissions and has the greatest impact on the northeastern region, followed by the western region. X21 is only
significantly correlated with the central and western region. X22 significantly promotes urban carbon emissions
in the eastern and northeastern regions but significantly suppresses urban carbon emissions in the western
region. This indicates that the higher the land output efficiency, the higher the carbon emissions in the eastern
and northeastern region cities, while the opposite is true in the western region. This may be due to a certain

threshold effect of land output efficiency on carbon emissions.

Table 5 Results of multiple linear regression of resource-based cities in different regions

Types Constant term X1 X2 X3 X4 X6 X7 X8 X9
eastern region -9.631 -0.296 0.614

central region -15.590 0.158 0.515 0.588 0.553 0.277

western region -28.007 0.358 -0.063 0.688 1.166 -0.178
northeastern region -19.485 0.434 0.922 0.969 0.397

Types X10 X11 X12 X13 X14 X15 X16 X17 X18
eastern region 1.128 0.255 0.053 -0.068 -0.213
central region 1.059 0.867 0.116 0.100 0.354

western region 1.473 1.422 0.076 0.228

northeastern region -0.152 0.087 -0.216 0.926 0.309 0.239
Types X19 X20 X21 X22 N R? F

eastern region -0.434 0.773 0.366 304 0.885 6.015%

central region 0.723 -0.263 544 0.743 1.280%*

western region 0.956 -0.283 604 0.837 3.882%*

northeastern region 1.173 0.136 0.318 304 0.793 5.908%*

Note: ** and * indicate that the variables are significant at the 1% and 5% levels, respectively. The values of the indicators in the table are
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regression coefficients; a null regression coefficient indicates that the corresponding indicator did not enter the regression model.

4.3 Spatial differences of the impact on carbon emissions in individual prefecture level city

4.3.1 Regression results for prefecture level resource-based cities

The number of cities in a single indicator significantly affecting urban carbon emissions can measures the

degree of influence of each indicator on carbon emissions (Table 6). X16, X12, X1 and X10 have a significant

impact on carbon emissions in 19, 17, 16 and 16 cities, respectively. While X4 has a less significant impact and

only has a significant impact on 4 cities.

Table 6 Number of resource-based cities in which individual indicators significantly contributed to carbon emission

Total number of cities X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

Amount 110 16 15 11 4 11 10 9 7 8 16 12
X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22
Amount 17 13 14 13 19 7 15 15 14 12 11

Note: The values in the table are the number of cities for which the corresponding indicator entered the model.

4.3.2 Spatial differences in the impact of TSDP on carbon emissions

The contribution of each indicator to carbon emissions was interpolated in ArcGIS to characterize its

spatial variability (Fig.3). X1 contributes much more positively to carbon emissions than negatively, and X1

contributes more to carbon emissions in the north than in the south. X2 emerges as a significant contributor to

urban carbon emissions in central region, whereas its impact remains statistically insignificant in southern

China. X3 significantly affects the carbon emissions of eleven cities, with a more pronounced effect on the

western region cities. X4 did not significantly affect the carbon emissions of most cities. The Hu Huanyong line

connecting Heihe City in Heilongjiang Province and Tengchong City in Yunnan Province is the demarcation

line between dense and sparse population in China (Lu et al. 2016). X5 has no significant effect on the carbon

emissions of cities west of the Hu Huanyong line, and contributes significantly to the carbon emissions of

densely populated cities east of the line, albeit in a different direction. X6 has a significant effect on 10 cities,

but does not show any obvious distributional characteristics. X7 only has a positive contribution to 9 cities. X8

and X9 mainly positively affecting only 7 and 8 cities, respectively, implying that increasing income and
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consumption increases urban carbon emissions. In industrial structure, X10 has a significant effect on 16 cities,

but the spatial correlation is not obvious. X11 mainly contributes to carbon emissions in cities in Shaanxi,

Shanxi, and Hebei Provinces. X12 significantly affects 17 cities, which are mainly located in Shanxi and Henan

Province in the central region, and Shandong Province in the eastern region. X12 contributes most positively to

Yangquan City, followed by Datong City. X13 significantly affects 13 cities, 9 of which are positive, but the

spatial correlation is not obvious.

The contribution of X14 to urban carbon emissions is both positive and negative, and the spatial

distribution is not characterized clearly. X15 significantly affects 13 cities, which are mainly located in the

western and central regions. X16 significantly affects 19 cities, which is more than the other indicators,

implying that ecological environmental protection has a broader impact on carbon emissions. X16 has a

significant effect mainly on cities in the eastern and central regions. X17 influences 7 cities, scattered in the

northeastern, eastern and western regions. X18 and X19 both influence 15 cities, and X18 mainly positively

affects cities in northwest and south China, and negatively affects cities in the central region. The city most

affected positively by X19 is Wuwei, Gansu, followed by Sugqian, Jiangsu. X20 contributes significantly to the

carbon emissions of 14 cities, and these cities are mainly located in the eastern and western regions. X21

significantly affects 12 cities, and the spatial distribution has no obvious characteristics. X22 positively

contributes to the carbon emissions of 11 cities, and the cities are mainly located in the central region.
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Fig.3 Contribution from the measurement indicators of TSDP to carbon emission revealed in the city-based assessment

4.3.3 Summary of the characteristics of factors influencing carbon emissions in the whole region, local

area, and individual prefecture-level cities
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Whether or not the same indicator has an impact on carbon emissions varies according to the scale of the

study. For example, total population has no significant impact on carbon emissions in a global study, while the

opposite is true in localized and urban studies. The nature of the impact of the same indicator on carbon

emissions also changes depending on the scale of the study. For example, the energy consumption per unit of

GDP always has a positive contribution in the global and local studies, but both positive and negative

contributions exist in the individual prefecture-level city studies. The degree of influence of the same indicator

also varies with the rise and fall of the study scale. For example, population density is the most important factor

in the global study, while population density does not have the greatest impact on carbon emissions in all cities

in the local and urban studies. The extent to which the same indicator affects carbon emissions also varies by

city type. The total economic volume, the proportion of construction land area, and the energy consumption per

unit of GDP significantly affect the carbon emissions of coal-based, oil and gas-based, metal-based, and

non-metallic-based cities, but none of them significantly affects forestry-based cities.

4.4 Annual contribution analysis of carbon emission impact factors from 2005 to 2020

4.4.1 Time series regression results

A stepwise regression model was used to regress the impact of different years of TSDP on urban carbon

emissions in order to obtain the contribution coefficients of each indicator in different years (Table 7). X7, X20,

X1, X13, and X11 had the most years of significant contribution to urban carbon emissions. X2, X5, X9, X135,

and X18 all had significant impacts on urban carbon emissions in only 1 year. X3, X4, X8, X17, X19, X21, and

X22 failed to enter the regression model, implying that these indicators did not contribute significantly to urban

carbon emissions on an annual basis.

Table 7 Results of multiple linear regression based on time series

Years Constant term X1 X2 X5 X6 X7 X9 X10 X11 X12
2005 -13.188 0.129 0.983 0.110
2006 -14.904 0.956 0.136
2007 -20.052 0.808 0.948 1.122 0.096
2008 -18.403 0.876 0.677 0.786 0.091
2009 -12.992 0.127 0.969
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2010 -20.326 0.254 0.287 0.948 0.572 1.089
2011 -15.440 1.026 0.541 0.135
2012 -14.743 0.115 0.250 0.877 0.716
2013 -14.049 0.125 0.890 0.730
2014 -13.950 0.128 0.863 0.813
2015 -13.419 0.150 0.862 0.667
2016 -9.254 0.146 0.760
2017 -11.509 0.132 0.775
2018 -10.477 0.154 0.842
2019 -9.962 0.235 -0.242 0.892
2020 -13.690 0.791 1.115 -0.428
Years X13 X14 X15 X16 X18 X20 N R? F
2005 0.060 1.122 110 0.721 5.094*
2006 0.051 0.626 1.219 110 0.781 7.825%*
2007 0.407 0.215 0.985 110 0.807 5.122%
2008 0.509 0.991 110 0.808 5.984%*
2009 0.119 0.048 1.095 110 0.799 7.765%*
2010 0.107 -0.093 0.888 110 0.801 5.650*
2011 1.092 110 0.738 6.663*
2012 0.172 0.882 110 0.741 8.169**
2013 0.178 0.866 110 0.724 8.810**
2014 0.184 0.873 110 0.704 7.810%*
2015 0.178 0.942 110 0.720 4.523%
2016 0.171 0.970 110 0.689 12.277**
2017 0.143 0.578 1.034 110 0.738 10.786**
2018 0.116 1.164 110 0.705 8.811%*
2019 1.194 110 0.678 7.349%*
2020 1.156 110 0.660 6.255%
Note: ** and * indicate that the variables are significant at the 1% and 5% levels, respectively. The values of the indicators in the table are

regression coefficients; a null regression coefficient indicates that the corresponding indicator did not enter the regression model.

4.4.2 Temporal differences in the impact of TSDP on carbon emissions

The trend of the contribution of each indicator to carbon emissions from 2005 to 2020 is plotted, as shown

in Fig.4. The annual contribution of X2 and X3 in land resource development to carbon emissions is

insignificant. X1 in most years significantly and positively affects carbon emissions and shows a clear upward

trend. Among the population aggregation indicators, X4 and X5 do not have significant annual contributions,

and X6 positively contributes to carbon emissions in 2010, 2012 and 2020 respectively. Among the economic

development indicators, the contribution coefficient of X7 is always positive, indicating that economic growth

is an important driver of carbon emissions growth. Among the industrial structure indicators, X10 has no

significant effect on carbon emissions in the late stage of the study, and only enters the model in the early stage
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of the study in three years with a positive contribution. Compared with X10, X11 contributes to carbon

emissions in more years, 8 years, and its positive contribution shows a decreasing trend overall. Among the

resource exploitation indicators, X12 and X13 have significant positive contributions in 5 and 9 years,

respectively. X12 had a significant positive impact on urban carbon emissions mainly at the beginning of the

study, while X13 had a significant impact on carbon emissions for the first time in 2009, and its contribution

coefficient showed an “inverted U-shape” change over time, and reached its maximum in 2014.

There are fewer years in which territorial space protection contributes to carbon emissions. Among the

ecosystem protection indicators, X15 fails to enter the model, and the years in which X14 and X16 significantly

and positively affect carbon emissions are only three and four years, respectively. The three indicators of

pollution control have no significant annual contribution to carbon emissions. X20 is one of the resource

conservation indicators with the highest number of entries into the time model. The impact of the X20 on

carbon emissions fluctuates a lot before 2013, and the positive contribution of the X20 gradually increases after

2013. This is closely related to the fact that since the 18th CPC National Congress, China has paid more

attention to technological innovation and energy utilization efficiency improvement, as well as the introduction

of “the Plan”.
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Fig.4 Annual contributions from individual indicators to carbon emission of resource-based cities from 2000 to 2020

4.5 Differentiated low-carbon development paths for different types of resource-based cities

4.5.1 Key influences on carbon emissions in different types of resource-based cities

According to the standardized regression coefficients, the relative influence sizes of different variables on

carbon emissions are compared to get the top three core influencing factors in different types of resource-based

cities, as shown in Table

8.

Table 8 The first three core factors affecting carbon emissions in different types of resource-based cities

Types

Top three core influences on carbon emissions

Different stages of
development

growth type
mature type
declining type

regenerative type

Energy consumption per unit of GDP, GDP, Urbanization rate
GDP, Energy consumption per unit of GDP, Proportion of construction land area
Energy consumption per unit of GDP, Annual income per capita, Green coverage rate of built-up area

GDP, Energy consumption per unit of GDP, Annual consumption per capita

Different dominant resource
types

coal-based
oil and gas-based
metal-based
non-metallic-based

forestry-based

GDP, Energy consumption per unit of GDP, Population density
GDP, Proportion of cultivated land area, Energy consumption per unit of GDP
GDP, Energy consumption per unit of GDP, Proportion of construction land area
GDP, Proportion of forest area, Proportion of construction land area

Total population, Proportion of investment in fixed assets in the mining industry, Green coverage rate
of built-up area
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eastern region GDP, Output per unit of land, Energy consumption per unit of GDP

central region Energy consumption per unit of GDP, Total population, Proportion of forest area
Different distribution regions western region GDP, Energy consumption per unit of GDP, Proportion of secondary industry
northeastern Energy consumption per unit of GDP, Total population, Output per unit of land

region

4.5.2 Resource-based cities at different stages of development

Carbon emissions from growth type cities are most prominently affected by energy use efficiency,

economic volume and population urbanization. Growth type cities should develop in an orderly manner,

implement green development strategies, develop resources rationally, pay attention to emission reduction in the

growth rate stage of resource development, and emphasize the green and efficient mode of resource

conservation and intensive use. Improve the level of deep processing and green processing of resources, control

the intensity of resource development, and form a development model that synchronizes development and

governance. Vigorously develop clean energy, guide the transformation and upgrading of traditional industries,

and promote the optimization of energy structure. In addition, in the process of transferring a large number of

people to cities and towns, it has promoted the use of clean energy and vigorously publicized the concept of

low-carbon living.

Total economic output, energy use efficiency and the proportion of construction land area are the top three

core factors in mature type cities. Mature type cities should focus on the intensification and efficiency of space

utilization and avoid blind expansion of construction land. They should vigorously improve the level of science

and technology, accelerate the development of leading enterprises and industrial clusters focusing on deep

processing of resources, promote the upgrading and adjustment of industrial structure, and establish diversified

pillar-type successor industries as soon as possible. Attention should be paid to the problem of over-exploitation

of resources, to the intensive and efficient utilization of resources, to innovative production technologies for

better carbon unlocking, and to driving the development of low-carbon clean energy and green industries.

Energy efficiency, income level and green coverage of built-up areas are the top three important factors in

declining type cities. Declining type cities should actively carry out transformation and development, learn from
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regenerative type cities and make efforts to transform and upgrade traditional industries and promote industrial

transformation and upgrading. Fully explore emerging industries, cultivate new economic growth poles, break

the dependence on the original development path, and promote the development of low-carbon economy. Focus

on solving the remaining problems of past development and supervise the implementation of comprehensive

management of abandoned land, subsidence areas and environmental pollution.

Economic aggregate, energy utilization efficiency and consumption level are the top three key factors in

regenerative type cities. This type of city should focus on innovative development, improve the level of

scientific and technological innovation, accelerate the upgrading of low-carbon technologies, convert the

original mode of production and promote clean energy. While developing the economy, they should pay

attention to urban greening, improve urban greening coverage and enhance urban carbon absorption capacity.

Focus on alleviating the contradiction between economic development and environmental protection, and

enhance the carrying capacity of urban resources and environment. Enhance residents' awareness of

environmental protection, publicize green and low-carbon consumption, and advocate low-carbon living.

4.5.3 Resource-based cities with different dominant resource types

The top three core factors in coal-based cities are total economic volume, energy utilization efficiency and

population density, respectively. This type of cities should actively adjust the coal industry structure, guarantee

the supply of funds for the development of low-carbon economy by coal enterprises, and accelerate the

low-carbon development. Extend the coal-based industrial chain, increase the production of coal accessories,

improve the utilization value of coal, and form a value multiplier effect. Strengthen the transformation of coal

resources, such as coal-to-oil, coal-to-hydrogen, coal-to-dimethyl ether and other clean energy with lower

carbon content. Vigorously urging green mining of coal resources, actively upgrading technology and reforming

equipment to improve the resource recovery rate, raw coal processing rate and coal combustion efficiency. The

mining of coal resources is accompanied by corresponding ecological restoration work, such as the treatment of
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coal mining subsidence land and the treatment of heavy metals in soil.

The total economic volume, the proportion of cultivated land area and energy utilization efficiency are the

top three key factors in oil and gas-based cities. Oil and gas-based cities should pay attention to the optimization

of industrial structure and promote the development of “one main and multiple” modern industries. Optimize

the well deployment plan, rationally plan the land for oilfield construction, timely dispose of mud ponds and

sand pits at the operation sites, and protect the cultivated land from pollution and encroachment. Increase the oil

and gas adoption rate, support the growth of oil and gas supply with the development of new energy sources,

and extend the life of oilfields. Develop wind power and photovoltaic power generation in oil and gas mining

areas and surrounding areas, implement clean power and heat substitution for energy used in oil and gas

exploration and development, and build a low-carbon oil and gas production system. Organized foreign

technology and labor export, strengthen international strategic cooperation, and jointly seek new opportunities

for oil and gas cooperation.

The top three core factors in metal-based cities are total economic volume, energy utilization efficiency

and the proportion of construction land area. Metal-based cities should actively promote industrial

transformation and upgrading, enhance the added value of their products and create a metal industry chain.

They should strengthen the environmental management of mines, promote green mining techniques and

technologies, reduce the damage to land resources and the ecological environment, and strictly prohibit the

disorderly expansion of industrial and mining land. Increase investment in research, development and

application of green technologies, develop low-carbon metallurgical technologies, electric furnace smelting

technologies, etc., and reduce resource consumption and carbon emissions. It is necessary to introduce high-end

intelligent equipment, promote intelligent metal smelting, and strive to build a harmless-productized-high-value

whole industry chain.

The top three core factors in non-metallic-based cities are the total economy, the proportion of forest land
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area and the proportion of construction land area. Non-metallic-based cities should strictly control emissions

from industrial enterprises, promote soil remediation and water pollution prevention, and protect green

vegetation from being poisoned. Formulate scientific and reasonable urban planning, focus on the protection of

forest land and cultivated land, strictly control the total amount of new construction land, and strictly prohibit

the occupation of forest land and cultivated land by the disorderly expansion of construction land. Focus on the

recycling of resources and the minimization of waste, and promote the development of a circular economy.

The total population, the proportion of fixed-asset investment in the mining industry and the green

coverage rate of built-up areas are the top three core influences in forestry-based cities. The government should

increase its assistance to forestry-based cities, provide long-term financial support for urban economic

development, and support and encourage forestry-based cities to establish successive alternative industries to

prevent forest exhaustion and city decline. Attracting talents and enterprises by introducing foreign investment,

supporting entrepreneurship and innovation, and improving the social security and welfare system. Encourage

the development and utilization of forest tourism resources, develop new industries such as ecotourism and

green leisure, and provide tourism activities and services related to forest ecology. Strengthen the application of

new energy sources, energy conservation and emission reduction, intelligentization and other technologies to

reduce energy consumption and pollution in the forest industry.

4.5.4 Resource-based cities in different distribution regions

The top three core factors in resource-based cities in the eastern region are economic aggregate, land use

efficiency and energy use efficiency. Cities in the eastern region should continue to maintain and play the role of

transformation model, focusing on the development of high-tech industries and innovative industries. Utilizing

their economic advantages, they should vigorously promote the research and development of key technologies

in the fields of energy conservation, emission reduction and new energy, and improve the efficiency of resource

utilization. Reasonable use of location advantages and knowledge innovation to play a radiation-driven role in
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cities in central and western regions, and strengthen cooperation and exchanges with central and western

regions to help them reduce carbon emissions.

Energy utilization efficiency, total population and the proportion of forest land area are the dominant

factors in central region. Cities in central region should actively undertake the transfer of industries from the

eastern region. Actively adjust the industrial structure, vigorously develop low-carbon industries and optimize

the energy consumption structure. Increase investment in scientific research, improve energy utilization,

innovate clean technologies, and reduce carbon emissions while developing the economy. Guide the intensive

development of cities, effectively control the uncontrolled expansion of construction land, and strictly prohibit

the blind conversion of cultivated land and forest land into construction land.

The top three factors in western region are economic aggregate, energy utilization efficiency and the

proportion of secondary industry. Cities in the western region should vigorously develop their economies in the

context of national policy favoritism. Increase investment in science and technology at the same time as

economic development, improve the welfare of scientific research personnel, attract and cultivate scientific

research talents, strengthen the strength of low-carbon technological innovation, and improve the efficiency of

resource utilization. Continuously strengthen environmental control and pollution management, and gradually

increase the intensity of environmental regulations. Gradually improve the industrial structure, reduce the

proportion of secondary industry, and focus on the development of low-carbon industries.

Energy use efficiency, total population and land use efficiency are the top three core factors in the

northeastern region. The most important thing for resource-based cities in the northeastern region now is to

actively reform and innovate, fully implement the Northeast Revitalization Strategy, improve their own

development capacity, retain and attract human resources, and fill the talent gap. The government should

establish a long-term and effective assistance mechanism to provide long-term financial support for the

high-quality development of the northeastern region and promote regional economic development. Based on the
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rich land resources in the northeastern region, vigorously develop specialty agriculture, enhance the added value

and technological content of agricultural products, improve the utilization efficiency of land resources, and

make specialty agriculture a new economic growth pole for cities. Increase investment in the development of

new industries and vigorously develop tourism and modern service industries so that they can become successor

industries.

5 Conclusion

The study adopts the panel data of 110 Chinese prefecture-level resource-based cities from 2005 to 2020 to

construct an empirical model from multiple perspectives, to explore the impact of TSDP on carbon emissions

from the whole city, different types of cities and individual city, to identify the key indicators of the impact of

TSDP on carbon emissions in different types of resource-based cities, and to clarify the time change trends of

the contribution of different indicators to carbon emissions. The main conclusions are as follows:

(1) TSDP is an important factor affecting carbon emissions in resource-based cities. The degree of

explanation of it on carbon emissions reaches 76.2%, in which the total GDP has the largest positive

contribution, followed by energy consumption per unit of GDP and the proportion of tertiary industry, while the

comprehensive utilization rate of industrial solid waste has the largest negative impact.

(2) The influence of TSDP on carbon emissions is obviously heterogeneous. The total GDP has no

significant influence on the carbon emissions of cities with backward economic development, and the total

population has the strongest positive contribution to the carbon emissions of cities with small population sizes.

Energy consumption per unit of GDP and total economic volume are always the top two key indicators

contributing to carbon emissions in growth, mature and regenerative type cities. Economic aggregate is the

indicator that contributes the most to carbon emissions in coal-based, oil and gas-based, metal-based and

non-metallic-based cities. Energy consumption per unit of GDP is the core factor contributing to carbon

emissions of cities in different distribution regions.
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(3) The influence of TSDP on carbon emissions is characterized by spatial differentiation. Economic
development has the greatest impact on carbon emissions, and the affected cities are mainly concentrated in
Gansu and Shaanxi provinces in the western region and Hebei province in the eastern region. Population
concentration has the smallest impact on carbon emissions, and the spatial distribution is more in northern
China than in southern China.

(4) The influence of TSDP on carbon emissions is characterized by temporal differentiation. The total
economic volume and energy consumption per unit of GDP significantly and positively affect urban carbon
emissions in the whole study period. With the evolution of time, the positive contribution of the proportion of
construction land area to carbon emissions shows an upward trend, and the positive contribution of the total
economic volume to carbon emissions shows a “W-shape” fluctuation change. The proportion of fixed asset
investment in the mining industry did not have a significant contribution to urban carbon emissions at the
beginning of the study, and showed an “inverted U-shaped” change after 2009. Energy consumption per unit of
GDP positively affects urban carbon emissions in all years, and shows a “U-shaped” trend with 2013 as the
“inflection point”.

The innovations of this study lie in: constructing an indicator system for TSDP in resource-based cities;
elucidating the mechanism through which TSDP impacts carbon emissions in such cities; and revealing
multi-type, multi-level, and multi-perspective heterogeneity characteristics of this impact. This study explores
the impacts of TSDP on carbon emissions in resource-based cities from multiple perspectives of type
differentiation and spatial and temporal differences, which is an important basis for the rational use of territorial
space and the formulation of differentiated carbon emission reduction policies, and will help resource-based
cities achieve precise carbon reduction.

Limitations of this study: (D Owing to constraints in data accessibility, continuity, and completeness, the

research timeframe selected in this paper spans from 2005 to 2020. Future studies could consider employing
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datasets with broader temporal coverage and higher continuity to enhance the accuracy and timeliness of
research findings. @ This study focuses on prefecture-level resource-based cities as the research subject.
Future work may extend the research scope to include county-level cities, municipal districts, and counties. 3
The integration of multi-scale data and the improvement of socioeconomic data rasterization precision require

further investigation.
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