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Graphical abstract 

 

Abstract: Resource-based cities are an important source area of carbon emissions in China. Urban carbon 

emissions are significantly affected by territorial space development and protection (TSDP). Based on the panel 

data of 110 resource-based cities in China from 2005 to 2020, an empirical model is constructed. The 

heterogeneous impacts of TSDP on carbon emissions are explored at multiple levels and angles, key influencing 

factors are identified, and carbon emission reduction strategies and differentiated low-carbon development paths 

are proposed. The results of the study: (1) On the global scale, the degree of explanation of TSDP on the carbon 

emissions of the overall cities reaches 76.2%, in which the GDP, energy consumption per unit of GDP and the 

proportion of tertiary industry make the greatest positive contribution. (2) At the local scale, the impact of TSDP 

is heterogeneous by type. GDP has no significant influence on economically backward cities, and the total 

population has the strongest positive contribution to less populated cities. (3) At the urban scale, the impact of 

TSDP has spatial heterogeneity. Economic development has the greatest influence on carbon emissions, while 

population aggregation has the opposite effect. GDP and energy consumption per unit of GDP are no longer the 
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dominant factors in all cities. (4) The impact of TSDP is time-differentiated. During the study period, GDP and 

energy consumption per unit of GDP significantly and positively affect carbon emissions, and their 

contributions show “W”-shaped and “U”-shaped fluctuation changes respectively. The proportion of 

construction land area significantly and positively affects carbon emissions in 10 years, and the effect increases 

with time. The research results can provide theoretical support and decision-making reference for 

resource-based cities to realize low-carbon sustainable development. 

Key words: Resource-based cities; territorial space development and protection; carbon emissions; impact of 

heterogeneity; multi-perspective empirical modeling 

1 Introduction 

China is the world's largest fossil energy consumer and carbon emitter, with carbon emissions reaching 

11.47 billion t in 2021, accounting for 31% of the world's total carbon emissions (Energy 2022). The Chinese 

government has actively undertaken the task of carbon emission reduction and formulated a series of related 

policies. In September 2021, strengthening the role of territorial space planning and use control in the 

ecosystem's carbon sequestration and sink enhancement was explicitly proposed. In October 2021, constructing 

a TSDP pattern conducive to carbon peaking and carbon neutrality, and promoting the green and low-carbon 

transformation of urban and rural construction was proposed. As the core content of territorial space planning, 

TSDP influences the urban carbon balance through the land use structure and intensity and its changes, as well 

as the way of human activities carried (Bao et al. 2022; Ding et al. 2022), which is an important factor affecting 

carbon emissions. Therefore, the study of the impact of TSDP on carbon emission has important academic value 

and urgent practical significance. 

Resource-based cities are cities with mining and processing of natural resources as their leading industries, 

accounting for 40% of the total number of cities in China (Yu et al. 2018), and they are an important region for 

the source of carbon emissions(Liao et al. 2022; Xu et al. 2023). In 2020, China's prefectural-level 
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resource-based cities carried about 30% of population and contributed 22% of the GDP, but they accounted for 

one-third of carbon emissions. Their per capita carbon emissions, and 10,000 yuan of GDP carbon emissions are 

7.56 t/person and 1.68 t/million yuan, which are 1.16 and 1.60 times higher than those of non-resource-based 

cities, respectively(Liao et al. 2022; Wu et al. 2023). In 2013, China promulgated the National Sustainable 

Development Plan for Resource-Based Cities (2013-2020) (hereinafter referred to as “the Plan”), which restricts 

the resource development activities of resource-based cities and guides them to explore low-carbon 

development models (State 2013). At the end of 2021, China called for categorization of policies, tailoring to 

local conditions, accelerating the low-carbon transformation of resource-based areas, and promoting 

high-quality development of resource-based cities. In the context of carbon peaking and carbon neutrality, it is 

necessary to reduce anthropogenic carbon emissions from the perspective of territorial space development. On 

the other hand, it is necessary to enhance the carbon sequestration capacity of different ecosystems from the 

perspective of territorial space protection (Huang et al. 2022). As resource-based cities are important 

contributors to China's “dual-carbon” goal, exploring the impacts of TSDP on carbon emissions is a prerequisite 

for proposing low-carbon transition paths. 

Scholars have paid great attention to the study of carbon emission influencing factors, and explored the 

influence of economic level, population size, technological progress, energy intensity and industrial structure on 

carbon emissions. Li et al. (2021) analyzed the impact of structural changes on carbon emissions from the four 

aspects of the economy, energy, society and trade, found that the economic growth and the economic structure 

are the most significant positive and negative factors respectively. Koilakou et al. (2023) analyzed the link 

between energy-related carbon emissions and economic growth, and found that economic growth and energy 

intensity were the main factors. Ren and Long (2022) found that economic growth, population size and 

industrial structure would positively promote carbon emissions, while technological progress, foreign trade 

volume, and energy structure are the opposite. Wang et al. (2021) concluded that the structural adjustment of 
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socio-economic development is an important way to reduce carbon emissions. Xu and Lin (2016) and Meirun et 

al. (2020) demonstrated that the green technological innovation can effectively reduce carbon emissions. Luo et 

al. (2022) found that in the context of rapid urbanization, upgrading the consumption structure can significantly 

increase carbon emissions. Qi et al. (2023) found that the proportion of secondary industry is significantly 

negatively correlated with carbon emissions. Wang et al. (2018) found that the scale effect (income and 

population) is the main influencing factor, whereas the technological effect (energy intensity and emission 

coefficients) is the slowing down of the emission key drivers. According to the study by Wu et al. (2025), 

digital trade can effectively reduce carbon emission intensity. Liu and Liu (2025) indicated that digital finance 

and green finance enhance carbon emission efficiency through technological innovation and the reduction of 

carbon emission intensity. Other studies have found that factors such as direct investment (Dong et al. 2023; 

Zhao and Zhu 2022), the digital economy (Qin et al. 2023; Wu et al. 2021), urbanization (Wang et al. 2021; Xu 

et al. 2018), population age structure (Zhao and Sun 2023), and institutions (Jiang and Lu 2022; Ma et al. 2023) 

also have an impact on carbon emissions. 

In addition, a few scholars have studied the relationship between TSDP and carbon emissions. Xiong et al. 

(2021) and Cui and Zhu (2022) explored the inherent logical relationship between the “dual-carbon” goal and 

territorial space planning. Xiao et al. (2015) elaborated the low-carbon oriented spatial planning theories and 

technologies. Glaeser and Kahn (2010) found that the more restrictive the constraints and limitations on land 

development and utilization are, the greater carbon emissions reduction from residents' lives. Zhang et al. 

(2025)indicated that the urban expansion of China's Yangtze River Delta Urban Agglomeration promoted an 

increase in carbon emissions, but decoupling also occurred. Wang et al. (2018) found that compact urban 

transportation system planning helped to reduce per capita carbon emissions. Zhang et al. (2016) found that the 

intensity of construction land development and its carbon emission efficiency were dynamically changing. Ren 

et al. (2022) established a carbon emission calculation model for the coal development process, and proposed to 
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promote the application of coal development energy saving and efficiency technology to reduce carbon 

emissions. Huang et al. (2021) pointed out that carbon emission reduction and carbon sink enhancement are the 

ways to realize low-carbon territorial space development. 

To summarize, the current research has the following shortcomings: first, the relationship between carbon 

emissions and their influencing factors is not fixed but has spatial and temporal heterogeneity. However, most of 

the existing studies are based on the overall analysis of time series, ignoring the spatial heterogeneity. Second, 

empirical studies on the impact of TSDP on carbon emissions are still insufficient, and most of the existing 

literature is centered on the theory of low-carbon territorial spatial planning. Thirdly, the main contradictions 

and problems faced by different types of cities are not the same, and thus the carbon emission levels, 

influencing factors and low-carbon development paths of different types of cities are also significantly different. 

However, focusing on different development stages, dominant resource types and geographic locations of cities, 

there is still a lack of research on the impact of TSDP of resource-based cities on carbon emissions. 

To reveal the impact of TSDP on carbon emissions in resource-based cities and its heterogeneity patterns, 

thereby formulating more scientific and targeted low-carbon development strategies for such cities, this paper 

takes the panel data of 110 resource-based cities in China from 2005 to 2020 as research samples, analyzes the 

connotation and constructs the index system of TSDP in resource-based cities, and analyzes the mechanism of 

TSDP on carbon emission. The study explores the heterogeneous effects of TSDP on carbon emissions from the 

perspectives of time and space, as well as from the perspectives of the overall and different types of cities, and 

identifies the key factors. As a result, carbon emission reduction strategies and differentiated low-carbon 

development paths are proposed to provide scientific theoretical basis and policy suggestions for resource-based 

cities to realize low-carbon sustainable and high-quality development. 

2 Mechanism analysis of the impact of TSDP on carbon emissions in 

resource-based cities 
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2.1 Connotation of TSDP in resource-based cities 

“Territorial space development and protection” encompasses both territorial space development and 

territorial space protection, emphasizing that the two go hand in hand. Compared with other cities, the economic 

development of resource-based cities is dominated by the secondary industry. Large-scale resource development 

can easily lead to environmental damage (Liao et al. 2022; Zhao et al. 2022), and ecological governance and 

pollution prevention will become the focus and difficulty of spatial construction (Huang et al. 2021; Zhao et al. 

2012). The connotation of TSDP in resource-based cities is as follows: 

(1) Territorial space development involves not only land resource development, economic development 

and population aggregation, but also resource exploitation. The most typical manifestation of territorial space 

development is the expansion of construction land and the reduction of cultivated land, forest land, grassland 

and so on. Compared with construction land, cultivated land has ecological protection functions. However, the 

transformation of land use type from ecological land to productive land belongs to the territorial space 

development, such as the development of ecological land such as unutilized land, forest land, and grassland into 

cultivated land (Yang et al. 2021). Therefore, this study includes the expansion of construction land and 

cultivated land into territorial space development. 

(2) Territorial space protection includes ecosystem protection, pollution control and resource conservation. 

Ecosystem protection refers to the protection of various types of natural ecological land, with the aim of 

enhancing the carbon storage and absorption capacity of forests, grasslands and so on. Pollution control mainly 

refers to the management of pollutants in the atmosphere, water and soil environment. Resource conservation 

mainly including the conservation and utilization of water, land and energy. 

2.2 Index system for measuring TSDP in resource-based cities 

The index system covering seven elements, including land resource development (Chen and Wang 2023; 

Yang et al. 2021), population aggregation (Chen and Wang 2023; Liu et al. 2013), economic development 
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(Chen and Wang 2023; Li and Li 2023), resource exploitation, ecosystem protection (Cheng et al. 2013), 

pollution control (Xu 2023) and resource conservation(Cheng et al. 2013; Deng et al. 2019) is constructed, as 

shown in Table 1. 

Table 1 Measurement index system of TSDP in resource-based cities 

First-level 

indicators 

Second-level 

indicators 
Third-level indicators (unit) Interpretation of indicators Notation 

territorial space 

development 

land resource 

development 

Proportion of construction land 

area (%) 

Proportion of construction land area in 

total city area 
X1 

Proportion of cultivated land area 

(%) 

Proportion of cultivated land area in total 

city area 
X2 

Density of road network (km2/km2) 
Proportion of total road area in total city 

area at the end of the year 
X3 

population 

aggregation 

Total population (ten thousand) 
Total resident population of the city at 

the end of the year 
X4 

Population density (person /km2) 
Ratio of total resident population to total 

city area 
X5 

Urbanization rate (%) 
Proportion of urban population in total 

permanent resident population 
X6 

economic 

development 

GDP (100 million yuan) The gross national product of the city X7 

Annual income per capita (Yuan) 
Average annual salary of on-the-job 

workers in the city 
X8 

Annual consumption per capita 

(Yuan) 

Ratio of the total value of social 

consumer goods to the total resident 

population of the city 

X9 

Proportion of secondary industry 

(%) 

Proportion of the output value of the 

secondary industry in the city's gross 

national product 

X10 

Proportion of tertiary industry (%) 

Proportion of the output value of the 

tertiary industry in the city's gross 

national product 

X11 

resource 

exploitation 

Proportion of employment 

personnel in the mining industry 

(%) 

Proportion of employment in mining in 

total employment 
X12 

Proportion of investment in fixed 

assets in the mining industry (%) 

Proportion of fixed asset investment in 

mining in total fixed asset investment 
X13 

territorial space 

protection 

ecosystem 

protection 

Proportion of forest area (%) Proportion of forest area in total city area X14 

Proportion of water and wetland 

area (%) 

Proportion of water and wetland area in 

total city area 
X15 

Green coverage rate of built-up 

area (%) 

Proportion of the green coverage area in 

the built-up area to the total area of the 

built-up area 

X16 

pollution control 

Harmless treatment rate of 

household garbage (%) 

Proportion of harmless disposal volume 

of household garbage in total household 

garbage 

X17 

Sewage treatment rate (%) 
Proportion of sewage treatment volume 

in total sewage discharge 
X18 

Comprehensive utilization rate of 

industrial solid waste (%) 

Proportion of total amount of industrial 

solid waste utilized in total amount of 

industrial solid waste 

X19 

resource 

conservation 

Energy consumption per unit of 

GDP (ton of standard coal/ten 

thousand yuan) 

Ratio of total energy consumption to the 

city's gross national product 
X20 

Water consumption per unit of Ratio of total water use to the city's gross X21 
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GDP (m3/ ten thousand yuan) national product 

Output per unit of land (ten 

thousand yuan /km2) 

Ratio of gross national product to total 

city area 
X22 

 

2.3 Mechanism analysis of the impact of TSDP on carbon emissions 

Land resource development will lead to the expansion of construction land, which not only leads to the 

generation of new carbon sources, but also destroys the carbon sequestration and sink enhancement of the 

original carbon sink land (Zhang et al. 2012). Cultivated land is both a carbon source and sink, and the growth 

of crops will directly affect carbon emission and absorption (Chuai et al. 2015). The better the transportation 

location conditions, the higher the degree of land use and economic output level is usually higher, and it is also 

easier to meet the demand for the expansion of construction land (Gao et al. 2018). The direct motivation for 

TSDP is population growth and economic development (Kong et al. 2020). A larger population means more 

carbon emissions (Zhang and Wu 2020), and changes in the structure of population will bring about changes in 

the type of land use and production and living styles, which in turn will affect carbon emissions. Economic 

development will increase the demand for construction land and challenge the protection of cultivated land 

(Feng et al. 2023). The improvement of residents' living standards due to economic development will change 

the demand for energy consumption, and the economic restructuring makes changes in the way of territorial 

space utilization, thus affecting carbon emissions. Resource exploitation has the characteristics of high input, 

high energy consumption and high pollution, which contribute to carbon emissions. The idea that protecting 

ecosystems is an effective measure to reduce carbon emissions has been widely recognized (Dong et al. 2022). 

Pollution control can effectively curb carbon emissions, but some scholars believe that pollution control reduces 

the unit production cost through technological advances, and enterprises expand the production scale to obtain 

greater profits, but exacerbates carbon emissions (Zeng et al. 2022). Resource conservation means directly 

reducing fossil energy use, which is the main way to reduce carbon emissions from the source. 

3 Overview of the study area, research methods and data sources 
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3.1 Study area 

According to "the Plan", there are 126 prefecture-level resource-based cities in China. Considering the 

removal and merger of administrative regions and the lack of statistical data in some cities, 110 cities are finally 

selected as the research objects, and the national prefecture-level administrative region division in 2020 is taken 

as the standard. According to the development stage of cities, "the Plan" divides resource-based cities into 

growth, mature, declining and regenerative types. According to the dominant resources of cities, resource-based 

cities can be divided into metal-based, non-metallic-based, forestry-based, coal-based and oil and gas-based 

(Liu 2006). According to the geographical location of cities, resource-based cities are distributed in the eastern, 

central, western and northeastern regions. The spatial distribution and type classification of 110 cities are shown 

on Fig.1. 

 

Fig.1 Distribution and types of 110 resource-based cities in China 

3.2 Multi-perspective empirical modeling of carbon emission impacts 

This study involves a total of 1,760 city-annual observations, with the dependent variable set as carbon 

emissions and the independent variables set as indicators of TSDP. The multiple linear regression model is used 

to explore the multiple heterogeneity of the impact of TSDP on carbon emissions. Linear regression analysis 
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can effectively establish quantitative relationships between variables and has been widely used in various 

studies (Xu et al. 2019). Stepwise regression can eliminate model multicollinearity, which is one of the 

important methods to establish the optimal linear regression model  (Whittingham et al. 2006; You and Yan 

2017). 

Given n independent variables, the model can be expressed as (Chen et al. 2022): 

0 1

n

i ii
y x  

=
= + +                                  (1) 

where y is the dependent variable, xi is the independent variable, 0  is the intercept, n is the 

number of potential independent variables, and   is the residual term. i  is the regression coefficient 

of the i-th independent variable, which indicates the contribution of xi to y. Standardized regression 

coefficients eliminates the effect of different independent variables' units and can be used to compare the 

relative magnitude of the effect of different independent variables on the dependent variables(Chen et al. 

2022). 

The model is developed using SPSS 26.0 software, and the modeling procedure is as follows: 

(1) Correlation analysis. Pearson correlation analysis is conducted between each indicator and carbon 

emissions to initially determine whether there is a correlation between each independent variable and the 

dependent variable. 

(2) A collinearity diagnostic was performed on the 22 indicators using the Variance Inflation Factor (VIF). 

The results indicated that all VIF values of the explanatory variables were below the empirical threshold of 10, 

demonstrating the absence of significant multicollinearity. This confirms the reliability of individual indicator 

contributions and supports the feasibility of constructing a regression model. 

(3) Multi-perspective carbon emission impact empirical model construction. 

1) In the global scale, based on the regression model and the indicator data of each city from 2005 to 2020, 

the overall impact of the indicators of TSDP on carbon emissions is explored. 
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2) In the local scale, the contribution of each indicator to carbon emissions in different types of 

resource-based cities are calculated. 

3) In the city scale, the contribution of each indicator to carbon emissions is calculated separately for 110 

cities to reveal the spatial variability of the impact of TSDP on carbon emissions. 

4) In the time series, the overall contribution of all cities each year are calculated to reveal the annual 

variability of the impact of TSDP on carbon emissions. 

3.3 Data sources 

The socio-economic data of each city mainly come from China City Statistical Yearbook (2006-2021), 

China Urban Construction Statistical Yearbook (2005-2020), Statistical Yearbooks of provinces (autonomous 

regions) and prefecture-level cities (2006-2021), and Statistical Bulletin of National Economic and Social 

Development (2005-2020), and linear interpolation method is used to supplement some missing data (Jasmine 

et al. 2025). The city's land use data from Annual China Land Cover Dataset (Yang and Huang 2021), which 

has good accuracy and continuity, has been widely used in academic research (Feng et al. 2023; Yan et al. 

2025). 110 resource-based cities carbon emissions data from the municipal carbon listing 

(https://www.ceads.net.cn/data/city/) provided by China Emission Accounts and Datasets (CEADs). This data is 

obtained from DMSP/OLS and NPP/VIIRS night light satellite images, and the goodness of fit R2 reaches 0.998 

(Shan et al. 2022; Shan et al. 2019), which is considered as the authoritative and scientific carbon emission 

accounting database in China, and widely used in academia (Feng et al. 2023; Li et al. 2022; Wang et al. 2021). 

4 Results and analysis 

4.1 Impacts of TSDP on carbon emissions at the global scale 

4.1.1 Overall regression results 

The results of Pearson correlation analysis show that there is a significant correlation between carbon 

emissions and the 22 indicators of TSDP (p-value is less than 0.01), and all 22 indicators can be used for 
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modeling. Table 2 shows the fitting results of the multivariate linear stepwise regression model, and the 

goodness-of-fit R2 is 0.762. It indicates that the degree of explanation of TSDP on carbon emissions is 76.2%. 

The F value of the model is 4.444, which is significant at 5% level, indicating that the constructed model is 

effective. According to the regression coefficients, a total of 16 variables enter the model and significantly affect 

the carbon emissions of overall cities. 

Table 2 Results of multiple linear regression based on overall resource-based cities 

Independent variable Regression coefficient Standardized regression coefficient 

Constant term -17.757  

Dependent variable   

X1 0.114** 0.169** 

X2 0.216** 0.148** 

X5 -0.189** -0.174** 

X6 0.253** 0.102** 

X7 0.905** 0.771** 

X9 -0.148** -0.111** 

X10 0.545** 0.151** 

X11 0.888** 0.225** 

X12 0.037** 0.051** 

X13 0.041** 0.060** 

X14 0.021** 0.055** 

X15 -0.060** -0.078** 

X16 0.347** 0.126** 

X18 0.098** 0.043** 

X19 -0.055* -0.028* 

X20 0.948** 0.509** 

N 1760 

R2 0.762 

Adjusted R2 0.760 

F 4.444* 

Note: ** and * indicate that the variables are significant at the 1% and 5% levels, respectively. 

4.1.2 Analysis of the impact of TSDP on carbon emissions 

The regression coefficients of the land resource development indicators X1 and X2 are 0.114 and 0.216, 

respectively, indicating that the expansion of construction land and cultivated land will contribute to carbon 

emissions. In the population aggregation, the regression coefficient of X5 is -0.189, indicating that the increase 

in population density suppresses carbon emissions. Relevant studies have shown that the increase of population 

density will bring about the innovation of production technology, thus indirectly reducing carbon emissions 

(Guo et al. 2023). The regression coefficient of X6 is 0.253, indicating that for every 1% increase in the 

urbanization rate, the carbon emissions will increase by 0.253%. The increase in urban population is often 

accompanied by the increasing demand for urban construction, transportation, housing, etc., which increases 

energy consumption and generates more carbon emissions (Wang and Qin 2015). Among the economic 
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development, X7, X9, X10, and X11, the other three indicators are positively correlated with carbon emissions, 

except for X9. X7 has the largest positive impact, which is the most important factor, which is in line with the 

conclusions of the studies by Li (2024) and Guo (2011). X9 has a negative effect on carbon emissions, contrary 

to the theoretical analysis. This may be since high consumption is often accompanied by a strong sense of 

environmental protection, and people's green and low-carbon consumption will reduce carbon emissions. In 

industrial structure, the proportion of secondary and tertiary industries all have a significant positive 

contribution to carbon emissions, which means that the expansion of the scale of almost all industries will 

promote carbon emissions. The regression coefficients of resource exploitation indicators X12 and X13 are 

0.037 and 0.041, respectively, which indicates that large-scale resource extraction will exacerbate urban carbon 

emissions, in line with theoretical expectations. 

X15 significantly negatively influencing carbon emissions and X14 and X16 the opposite. The higher area 

proportion of watersheds and wetlands means that more other land is converted into ecological land, which in 

turn reduces carbon emissions. The regression coefficients of X14 and X16 are 0.055 and 0.126, respectively, 

which may be attributed to the following reasons: the proportion of forested land area and the greening 

coverage rate of the built-up area reflect the greening level of the city, and the higher the level in general, the 

higher the level of urban development is also relatively high, which usually brings more carbon emissions. 

Pollution control has a relatively small impact on carbon emissions, especially the comprehensive utilization 

rate of industrial solid waste has the smallest effect on carbon emissions. The regression coefficient of X20, a 

indicator of resource conservation, is 0.948. For every 1% increase in energy intensity, carbon emissions will 

increase by 0.948%. In the 11th Five-Year Plan, the Chinese government takes reducing energy intensity and 

improving energy efficiency as an important way to reduce carbon emissions, and energy intensity is an 

important factor in carbon emissions (Wang and Fan 2022). 

4.1.3 Identification of core influencing factors 
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Among the 16 indicators of TSDP in the model, X5, X9, X15 and X19 have a significant negative impact 

on carbon emissions, while the remaining 12 indicators are on the contrary. The standardized regression 

coefficients show that different indicators have different degrees of influence on carbon emissions (Fig.2), from 

strong to weak: X7, X20, X11, X5, X1, X10, X2, X16, X9, X6, X15, X13, X14, X12, X18, and X19. GDP, 

energy consumption per unit of GDP, and proportion of tertiary industry are the top three indicators, while the 

related indicators characterizing pollution control have a smaller degree of influence on carbon emission. 

 

Fig.2 Radar chart showing standardized regression coefficients of indicators in overall resource-based cities 

4.2 Differences in the impact of different types of cities on carbon emissions at the local scale 

4.2.1 Resource-based cities at four development stages 

Table 3 shows that land resource development does not have a significant effect on regenerative type cities, 

and X1 has a gradually decreasing role in promoting carbon emissions in mature, declining and growth type 

cities. Cultivated land expansion has the strongest inhibitory effect in growth type cities, which may be since 

this type of city is in the rising stage of resource exploitation, with a high potential for resource security, and the 

phenomenon of cultivated land non-agriculturalization is less manifested as a carbon sequestration effect. 

Population aggregation has a significant effect on all four types of cities, but the direction and size of the effect 

varies. Especially X6, which has the largest positive effect on growth type cities, with a regression coefficient of 

1.249. However, it has a negative effect on regenerative type cities with higher urbanization rates, reflecting that 

moderate population agglomeration can promote low-carbon development of cities. The total population has a 
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significant positive effect on the least populated declining type cities and the most populated regenerative type 

cities, and the effect on the former is larger than that on the latter. X5 only has a significant negative effect on 

mature type cities. Economic development has a smaller effect on declining type cities, and only one indicator, 

X8, enters its regression model. This may be since the declining type cities tend to deplete their resources and 

lag in economic development. X7 has the greatest impact on mature type cities, while X10 has the greatest 

impact on regenerative type cities. Resource exploitation has a significant contributing effect on regenerative 

type cities, which may be since the impact of resource exploitation on carbon emissions has a certain lagging 

effect, and even if the resource extraction activities are stopped, the carbon emissions will continue for a period. 

Ecosystem protection has a significant effect on the carbon emissions of mature and declining type cities. 

X14 and X16 are significantly positive, which means that greening construction cannot directly reduce the 

carbon emissions. X15 can significantly inhibit the carbon emissions of mature and declining type cities. 

Pollution control has a significant effect on mature and regenerative type cities, of which X17 only has a 

significant role in promoting carbon emissions of mature type cities, X18 has no significant effect on the four 

types of cities, X19 is significantly negatively correlated with carbon emissions of mature and regenerative type 

cities, and has the strongest inhibiting effect on regenerative type cities. Resource conservation can significantly 

contribute to carbon emissions in declining type cities. X20 has a significant positive effect on carbon emissions 

in all four types of cities, and has the greatest effect on growth type cities. X21 only positively affects carbon 

emissions in declining type cities, and X22 only significantly positively affects carbon emissions in growth and 

declining type cities. 

Table 3 Results of multiple linear regression of resource-based cities at different development stages 

Types Constant term X1 X2 X4 X5 X6 X7 X8 

growth type -13.194 0.100* -0.435**   1.249** 0.636**  

mature type -14.840 0.184** 0.114**  -0.064* 0.307** 0.883**  

declining type -12.992 0.139** 0.145** 0.404**    0.772** 

regenerative type -16.800   0.321**  -0.279** 0.628**  

Types X9 X10 X11 X12 X13 X14 X15 X16 

growth type  0.324*       

mature type -0.189** 0.463** 0.649**  0.041** 0.057** -0.024*  
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declining type     0.068* 0.041** -0.105** 0.822** 

regenerative type 0.405** 0.738** 1.134** 0.184** 0.046**    

Types X17 X19 X20 X21 X22 N R2 F 

growth type   1.082**  0.293** 224 0.888 4.658* 

mature type 0.148** -0.208** 0.915**   960 0.796 4.040* 

declining type   0.909** 0.232** 0.157** 352 0.612 5.473* 

regenerative type  -0.446** 0.854**   224 0.949 10.511** 

Note: ** and * indicate that the variables are significant at the 1% and 5% levels, respectively. The values of the indicator s in the table are 

regression coefficients; a null regression coefficient indicates that the corresponding indicator did not enter the regressio n model. 

4.2.2 Cities with five dominant resource types 

Table 4 shows that land resource development has no significant effect on carbon emissions in 

forestry-based cities and has a significant effect on other types of cities. X3 only enters the regression model of 

coal-based cities. The effect of population aggregation on non-metallic-based cities is not significant. X4 only 

has a positive effect on forestry-based cities with the smallest population size. X5 has a braking and driving 

effect on coal-based and oil and gas-based cities, respectively, which may be since oil and gas-based cities have 

a higher population density, and the average annual population density is nearly 227 people/km2, which is about 

1.24 times higher than that of coal-based cities. Research has shown that, within a certain threshold, higher 

population densities are more likely to produce agglomeration effects, which are conducive to improving the 

efficiency of infrastructure and resource utilization, thereby reducing carbon emissions. However, when the 

population density is high, cities face increased pressure on resources and the environment, which will promote 

infrastructure development and construction, bringing the expansion of energy-intensive and labor-intensive 

industries, resulting in inefficient energy use and further increasing carbon emissions (Yang and Zhao 2023). 

X6 has a contributing effect on metal-based and coal-based cities. Economic development mainly plays a 

facilitating role on urban carbon emissions. However, the effect of X7 on economically backward forestry-based 

cities is not significant. Income and consumption only significantly and negatively affect non-metallic-based 

cities. The industrial structure has the greatest influence on metal-based cities. Resource exploitation has no 

significant effect on non-metallic-based cities, and has a significant promotion effect on coal-based, oil and 

gas-based and metal-based cities, and a significant inhibition effect on forestry-based cities. 
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Ecosystem protection affects carbon emissions of different types of cities in different directions and 

degrees. Increasing the area of ecological land do not necessarily lead to a reduction in carbon emissions. 

Pollution control fails to significantly affect carbon emissions in coal-based cities, but it can inhibit carbon 

emissions in oil and gas-based and forestry-based cities. Increasing the rate of harmless treatment of domestic 

garbage can significantly promote the carbon emissions of metal-based cities. Increasing the comprehensive 

utilization rate of industrial solid waste can promote the carbon emissions of non-metallic-based cities. The 

reason may lie in the fact that the improved level of pollutant management reduces the demand for raw 

materials and production costs of enterprises while protecting the environment, which leads to the expansion of 

production and increase in energy consumption, which in turn generates more carbon emissions, i.e., the 

rebound effect of environmental management (Ma and Dong 2020). Except for forestry-based cities, resource 

conservation has a significant effect on the other four types of cities. Among them, X20 has a significant 

promotion effect on urban carbon emissions, especially the strongest effect on coal-based cities. 

Table 4 Results of multiple linear regression of resource-based cities with different dominant resource types 

Types Constant term X1 X2 X3 X4 X5 X6 X7 

coal-based -14.406 0.117** 0.203** -0.050*  -0.167** 0.229** 1.023** 

oil and gas-based -4.506 0.189** -0.537**   0.279**  0.595** 

metal-based -14.700 0.191**     0.338** 0.608** 

non-metallic-based -10.215 0.341** -0.419**     1.009** 

forestry-based -4.726    1.710**    

Types X8 X10 X11 X12 X13 X14 X15 X16 

coal-based    0.068** 0.045*  -0.053**  

oil and gas-based   0.418** 0.175**  0.067** 0.159** -0.511** 

metal-based  0.723** 0.821**  0.094** -0.044** -0.092** 0.273** 

non-metallic-based -0.432* 0.446*    0.161** -0.200*  

forestry-based   -0.519* -0.158** -0.263**   0.453** 

Types X17 X18 X19 X20 X21 N R2 F 

coal-based    0.874*  848 0.729 5.624* 

oil and gas-based  -0.198*  0.715** -0.401** 192 0.806 5.475* 

metal-based 0.207** -0.163** -0.071* 0.714**  480 0.847 12.514** 

non-metallic-based -0.499**  0.592** 0.483** -0.172* 144 0.890 4.720* 

forestry-based   -0.286**   96 0.893 5.274* 

Note: ** and * indicate that the variables are significant at the 1% and 5% levels, respectively. The values of the indicator s in the table are 

regression coefficients; a null regression coefficient indicates that the corresponding indicator did not enter the regressio n model. 

4.2.3 Resource-based cities in the four distribution regions 
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Except for the cities in the eastern region, land resource development has a significant effect on the other 

three types of cities. X2 is significantly and positively related to carbon emissions in central, western and 

northeastern region cities, and has the strongest effect on central region cities. X1 and X3 only have positive 

and negative effects on central and western region cities, respectively. Population aggregation has a significant 

relationship with carbon emissions in all four types of cities, but the direction of correlation is different. For 

example, X6 has a positive effect on central, western and northeastern regions, but a negative effect on eastern 

region. As a developed coastal region in China, the eastern region has advanced technology, strong material 

base and financial support, so its higher urbanization rate is more conducive to low-carbon development. X4 has 

the greatest positive effect on the northeastern region, mainly because of its small and continuous population 

loss, resulting in a significant reduction in carbon emissions. Economic development basically has a significant 

positive contribution to all four types of cities. Specifically, X9 has a significant negative effect only on the 

western region, probably since the per capita consumption level is the lowest in the western region, and the 

negative environmental externality generated by consumption is relatively small, and the positive effect on 

carbon emissions is weaker. Consumption can effectively contribute to the economic growth, development stage 

leap and TSDP level in the western region, bring about a modernized production and life style, and promote 

urban green development and carbon emission reduction. Except for the northeastern region, industrial structure 

has a significant contribution to the other three types of cities, and the contribution is strongest in the western 

region. Among the resource exploitation indicators, X12 has the largest positive contribution to the 

economically developed eastern region and the largest negative contribution to the economically backward 

northeastern region. X13 promotes carbon emissions in the eastern, central and northeastern region cities, but 

has no significant effect on the western region. 

Increasing the proportion of watershed and wetland areas can significantly reduce carbon emissions in the 

eastern and northeastern region cities, but increasing the area of forested land and the greening coverage of 
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built-up areas can significantly increase carbon emissions in the central, western and northeastern region cities. 

The possible reason is that the direction of the influence of urban greening on carbon emissions is related to the 

level of urban development. When the city develops to a certain level, the city has the capacity to achieve 

greening construction under a low-carbon program. Otherwise, urban greening construction and maintenance 

will consume more human, material and financial resources, exacerbating carbon emissions. Pollution control 

has a significant inhibitory effect on the eastern region, while the opposite is true for the northeastern region. 

The reason is that the northeastern region is economically backward, and improving the level of pollutant 

control will promote enterprises to expand production and improve economic efficiency, while exacerbating 

carbon emissions. In terms of resource conservation, X20 is still an important factor in promoting urban carbon 

emissions and has the greatest impact on the northeastern region, followed by the western region. X21 is only 

significantly correlated with the central and western region. X22 significantly promotes urban carbon emissions 

in the eastern and northeastern regions but significantly suppresses urban carbon emissions in the western 

region. This indicates that the higher the land output efficiency, the higher the carbon emissions in the eastern 

and northeastern region cities, while the opposite is true in the western region. This may be due to a certain 

threshold effect of land output efficiency on carbon emissions. 

Table 5 Results of multiple linear regression of resource-based cities in different regions 

Types Constant term X1 X2 X3 X4 X6 X7 X8 X9 

eastern region -9.631     -0.296 0.614   

central region -15.590 0.158 0.515  0.588 0.553  0.277  

western region -28.007  0.358 -0.063  0.688 1.166  -0.178 

northeastern region -19.485  0.434  0.922 0.969  0.397  

Types X10 X11 X12 X13 X14 X15 X16 X17 X18 

eastern region  1.128 0.255 0.053  -0.068   -0.213 

central region 1.059 0.867  0.116 0.100  0.354   

western region 1.473 1.422 0.076    0.228   

northeastern region   -0.152 0.087  -0.216 0.926 0.309 0.239 

Types X19 X20 X21 X22 N R2 F   

eastern region -0.434 0.773  0.366 304 0.885 6.015*   

central region  0.723 -0.263  544 0.743 1.280*   

western region  0.956  -0.283 604 0.837 3.882*   

northeastern region  1.173 0.136 0.318 304 0.793 5.908*   

Note: ** and * indicate that the variables are significant at the 1% and 5% levels, respectively. The values of the indicator s in the table are 
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regression coefficients; a null regression coefficient indicates that the corresponding indicator did not enter the regressio n model. 

4.3 Spatial differences of the impact on carbon emissions in individual prefecture level city 

4.3.1 Regression results for prefecture level resource-based cities 

The number of cities in a single indicator significantly affecting urban carbon emissions can measures the 

degree of influence of each indicator on carbon emissions (Table 6). X16, X12, X1 and X10 have a significant 

impact on carbon emissions in 19, 17, 16 and 16 cities, respectively. While X4 has a less significant impact and 

only has a significant impact on 4 cities. 

Table 6 Number of resource-based cities in which individual indicators significantly contributed to carbon emission 

 Total number of cities X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 

Amount 110 16 15 11 4 11 10 9 7 8 16 12 

 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22  

Amount 17 13 14 13 19 7 15 15 14 12 11  

Note: The values in the table are the number of cities for which the corresponding indicator entered the model. 

4.3.2 Spatial differences in the impact of TSDP on carbon emissions 

The contribution of each indicator to carbon emissions was interpolated in ArcGIS to characterize its 

spatial variability (Fig.3). X1 contributes much more positively to carbon emissions than negatively, and X1 

contributes more to carbon emissions in the north than in the south. X2 emerges as a significant contributor to 

urban carbon emissions in central region, whereas its impact remains statistically insignificant in southern 

China. X3 significantly affects the carbon emissions of eleven cities, with a more pronounced effect on the 

western region cities. X4 did not significantly affect the carbon emissions of most cities. The Hu Huanyong line 

connecting Heihe City in Heilongjiang Province and Tengchong City in Yunnan Province is the demarcation 

line between dense and sparse population in China (Lu et al. 2016). X5 has no significant effect on the carbon 

emissions of cities west of the Hu Huanyong line, and contributes significantly to the carbon emissions of 

densely populated cities east of the line, albeit in a different direction. X6 has a significant effect on 10 cities, 

but does not show any obvious distributional characteristics. X7 only has a positive contribution to 9 cities. X8 

and X9 mainly positively affecting only 7 and 8 cities, respectively, implying that increasing income and 
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consumption increases urban carbon emissions. In industrial structure, X10 has a significant effect on 16 cities, 

but the spatial correlation is not obvious. X11 mainly contributes to carbon emissions in cities in Shaanxi, 

Shanxi, and Hebei Provinces. X12 significantly affects 17 cities, which are mainly located in Shanxi and Henan 

Province in the central region, and Shandong Province in the eastern region. X12 contributes most positively to 

Yangquan City, followed by Datong City. X13 significantly affects 13 cities, 9 of which are positive, but the 

spatial correlation is not obvious. 

The contribution of X14 to urban carbon emissions is both positive and negative, and the spatial 

distribution is not characterized clearly. X15 significantly affects 13 cities, which are mainly located in the 

western and central regions. X16 significantly affects 19 cities, which is more than the other indicators, 

implying that ecological environmental protection has a broader impact on carbon emissions. X16 has a 

significant effect mainly on cities in the eastern and central regions. X17 influences 7 cities, scattered in the 

northeastern, eastern and western regions. X18 and X19 both influence 15 cities, and X18 mainly positively 

affects cities in northwest and south China, and negatively affects cities in the central region. The city most 

affected positively by X19 is Wuwei, Gansu, followed by Suqian, Jiangsu. X20 contributes significantly to the 

carbon emissions of 14 cities, and these cities are mainly located in the eastern and western regions. X21 

significantly affects 12 cities, and the spatial distribution has no obvious characteristics. X22 positively 

contributes to the carbon emissions of 11 cities, and the cities are mainly located in the central region. 
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Fig.3 Contribution from the measurement indicators of TSDP to carbon emission revealed in the city-based assessment 

4.3.3 Summary of the characteristics of factors influencing carbon emissions in the whole region, local 

area, and individual prefecture-level cities 
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Whether or not the same indicator has an impact on carbon emissions varies according to the scale of the 

study. For example, total population has no significant impact on carbon emissions in a global study, while the 

opposite is true in localized and urban studies. The nature of the impact of the same indicator on carbon 

emissions also changes depending on the scale of the study. For example, the energy consumption per unit of 

GDP always has a positive contribution in the global and local studies, but both positive and negative 

contributions exist in the individual prefecture-level city studies. The degree of influence of the same indicator 

also varies with the rise and fall of the study scale. For example, population density is the most important factor 

in the global study, while population density does not have the greatest impact on carbon emissions in all cities 

in the local and urban studies. The extent to which the same indicator affects carbon emissions also varies by 

city type. The total economic volume, the proportion of construction land area, and the energy consumption per 

unit of GDP significantly affect the carbon emissions of coal-based, oil and gas-based, metal-based, and 

non-metallic-based cities, but none of them significantly affects forestry-based cities. 

4.4 Annual contribution analysis of carbon emission impact factors from 2005 to 2020 

4.4.1 Time series regression results 

A stepwise regression model was used to regress the impact of different years of TSDP on urban carbon 

emissions in order to obtain the contribution coefficients of each indicator in different years (Table 7). X7, X20, 

X1, X13, and X11 had the most years of significant contribution to urban carbon emissions. X2, X5, X9, X15, 

and X18 all had significant impacts on urban carbon emissions in only 1 year. X3, X4, X8, X17, X19, X21, and 

X22 failed to enter the regression model, implying that these indicators did not contribute significantly to urban 

carbon emissions on an annual basis. 

Table 7 Results of multiple linear regression based on time series 

Years Constant term X1 X2 X5 X6 X7 X9 X10 X11 X12 

2005 -13.188 0.129    0.983    0.110 

2006 -14.904     0.956    0.136 

2007 -20.052     0.808  0.948 1.122 0.096 

2008 -18.403     0.876  0.677 0.786 0.091 

2009 -12.992 0.127    0.969     
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2010 -20.326  0.254  0.287 0.948  0.572 1.089  

2011 -15.440     1.026   0.541 0.135 

2012 -14.743 0.115   0.250 0.877   0.716  

2013 -14.049 0.125    0.890   0.730  

2014 -13.950 0.128    0.863   0.813  

2015 -13.419 0.150    0.862   0.667  

2016 -9.254 0.146    0.760     

2017 -11.509 0.132    0.775     

2018 -10.477 0.154    0.842     

2019 -9.962 0.235  -0.242  0.892     

2020 -13.690    0.791 1.115 -0.428    

Years X13 X14 X15 X16 X18 X20 N R2 F  

2005  0.060    1.122 110 0.721 5.094*  

2006  0.051  0.626  1.219 110 0.781 7.825**  

2007    0.407 0.215 0.985 110 0.807 5.122*  

2008    0.509  0.991 110 0.808 5.984**  

2009 0.119 0.048    1.095 110 0.799 7.765**  

2010 0.107  -0.093   0.888 110 0.801 5.650*  

2011      1.092 110 0.738 6.663*  

2012 0.172     0.882 110 0.741 8.169**  

2013 0.178     0.866 110 0.724 8.810**  

2014 0.184     0.873 110 0.704 7.810**  

2015 0.178     0.942 110 0.720 4.523*  

2016 0.171     0.970 110 0.689 12.277**  

2017 0.143   0.578  1.034 110 0.738 10.786**  

2018 0.116     1.164 110 0.705 8.811**  

2019      1.194 110 0.678 7.349**  

2020      1.156 110 0.660 6.255*  

Note: ** and * indicate that the variables are significant at the 1% and 5% levels, respectively. The values of the indicator s in the table are 

regression coefficients; a null regression coefficient indicates that the corresponding indicator did not enter the regressio n model. 

4.4.2 Temporal differences in the impact of TSDP on carbon emissions 

The trend of the contribution of each indicator to carbon emissions from 2005 to 2020 is plotted, as shown 

in Fig.4. The annual contribution of X2 and X3 in land resource development to carbon emissions is 

insignificant. X1 in most years significantly and positively affects carbon emissions and shows a clear upward 

trend. Among the population aggregation indicators, X4 and X5 do not have significant annual contributions, 

and X6 positively contributes to carbon emissions in 2010, 2012 and 2020 respectively. Among the economic 

development indicators, the contribution coefficient of X7 is always positive, indicating that economic growth 

is an important driver of carbon emissions growth. Among the industrial structure indicators, X10 has no 

significant effect on carbon emissions in the late stage of the study, and only enters the model in the early stage 
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of the study in three years with a positive contribution. Compared with X10, X11 contributes to carbon 

emissions in more years, 8 years, and its positive contribution shows a decreasing trend overall. Among the 

resource exploitation indicators, X12 and X13 have significant positive contributions in 5 and 9 years, 

respectively. X12 had a significant positive impact on urban carbon emissions mainly at the beginning of the 

study, while X13 had a significant impact on carbon emissions for the first time in 2009, and its contribution 

coefficient showed an “inverted U-shape” change over time, and reached its maximum in 2014. 

There are fewer years in which territorial space protection contributes to carbon emissions. Among the 

ecosystem protection indicators, X15 fails to enter the model, and the years in which X14 and X16 significantly 

and positively affect carbon emissions are only three and four years, respectively. The three indicators of 

pollution control have no significant annual contribution to carbon emissions. X20 is one of the resource 

conservation indicators with the highest number of entries into the time model. The impact of the X20 on 

carbon emissions fluctuates a lot before 2013, and the positive contribution of the X20 gradually increases after 

2013. This is closely related to the fact that since the 18th CPC National Congress, China has paid more 

attention to technological innovation and energy utilization efficiency improvement, as well as the introduction 

of “the Plan”. 



 

 28 

 

Fig.4 Annual contributions from individual indicators to carbon emission of resource-based cities from 2000 to 2020 

4.5 Differentiated low-carbon development paths for different types of resource-based cities 

4.5.1 Key influences on carbon emissions in different types of resource-based cities 

According to the standardized regression coefficients, the relative influence sizes of different variables on 

carbon emissions are compared to get the top three core influencing factors in different types of resource-based 

cities, as shown in Table 8. 

Table 8 The first three core factors affecting carbon emissions in different types of resource-based cities 

Types Top three core influences on carbon emissions 

Different stages of 

development 

growth type Energy consumption per unit of GDP, GDP, Urbanization rate 

mature type GDP, Energy consumption per unit of GDP, Proportion of construction land area 

declining type Energy consumption per unit of GDP, Annual income per capita, Green coverage rate of built-up area 

regenerative type GDP, Energy consumption per unit of GDP, Annual consumption per capita 

Different dominant resource 
types 

coal-based GDP, Energy consumption per unit of GDP, Population density 

oil and gas-based GDP, Proportion of cultivated land area, Energy consumption per unit of GDP 

metal-based GDP, Energy consumption per unit of GDP, Proportion of construction land area 

non-metallic-based GDP, Proportion of forest area, Proportion of construction land area 

forestry-based Total population, Proportion of investment in fixed assets in the mining industry, Green coverage rate 

of built-up area 
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Different distribution regions 

eastern region GDP, Output per unit of land, Energy consumption per unit of GDP 

central region Energy consumption per unit of GDP, Total population, Proportion of forest area 

western region GDP, Energy consumption per unit of GDP, Proportion of secondary industry 

northeastern 

region 

Energy consumption per unit of GDP, Total population, Output per unit of land 

4.5.2 Resource-based cities at different stages of development 

Carbon emissions from growth type cities are most prominently affected by energy use efficiency, 

economic volume and population urbanization. Growth type cities should develop in an orderly manner, 

implement green development strategies, develop resources rationally, pay attention to emission reduction in the 

growth rate stage of resource development, and emphasize the green and efficient mode of resource 

conservation and intensive use. Improve the level of deep processing and green processing of resources, control 

the intensity of resource development, and form a development model that synchronizes development and 

governance. Vigorously develop clean energy, guide the transformation and upgrading of traditional industries, 

and promote the optimization of energy structure. In addition, in the process of transferring a large number of 

people to cities and towns, it has promoted the use of clean energy and vigorously publicized the concept of 

low-carbon living. 

Total economic output, energy use efficiency and the proportion of construction land area are the top three 

core factors in mature type cities. Mature type cities should focus on the intensification and efficiency of space 

utilization and avoid blind expansion of construction land. They should vigorously improve the level of science 

and technology, accelerate the development of leading enterprises and industrial clusters focusing on deep 

processing of resources, promote the upgrading and adjustment of industrial structure, and establish diversified 

pillar-type successor industries as soon as possible. Attention should be paid to the problem of over-exploitation 

of resources, to the intensive and efficient utilization of resources, to innovative production technologies for 

better carbon unlocking, and to driving the development of low-carbon clean energy and green industries. 

Energy efficiency, income level and green coverage of built-up areas are the top three important factors in 

declining type cities. Declining type cities should actively carry out transformation and development, learn from 
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regenerative type cities and make efforts to transform and upgrade traditional industries and promote industrial 

transformation and upgrading. Fully explore emerging industries, cultivate new economic growth poles, break 

the dependence on the original development path, and promote the development of low-carbon economy. Focus 

on solving the remaining problems of past development and supervise the implementation of comprehensive 

management of abandoned land, subsidence areas and environmental pollution. 

Economic aggregate, energy utilization efficiency and consumption level are the top three key factors in 

regenerative type cities. This type of city should focus on innovative development, improve the level of 

scientific and technological innovation, accelerate the upgrading of low-carbon technologies, convert the 

original mode of production and promote clean energy. While developing the economy, they should pay 

attention to urban greening, improve urban greening coverage and enhance urban carbon absorption capacity. 

Focus on alleviating the contradiction between economic development and environmental protection, and 

enhance the carrying capacity of urban resources and environment. Enhance residents' awareness of 

environmental protection, publicize green and low-carbon consumption, and advocate low-carbon living. 

4.5.3 Resource-based cities with different dominant resource types 

The top three core factors in coal-based cities are total economic volume, energy utilization efficiency and 

population density, respectively. This type of cities should actively adjust the coal industry structure, guarantee 

the supply of funds for the development of low-carbon economy by coal enterprises, and accelerate the 

low-carbon development. Extend the coal-based industrial chain, increase the production of coal accessories, 

improve the utilization value of coal, and form a value multiplier effect. Strengthen the transformation of coal 

resources, such as coal-to-oil, coal-to-hydrogen, coal-to-dimethyl ether and other clean energy with lower 

carbon content. Vigorously urging green mining of coal resources, actively upgrading technology and reforming 

equipment to improve the resource recovery rate, raw coal processing rate and coal combustion efficiency. The 

mining of coal resources is accompanied by corresponding ecological restoration work, such as the treatment of 
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coal mining subsidence land and the treatment of heavy metals in soil. 

The total economic volume, the proportion of cultivated land area and energy utilization efficiency are the 

top three key factors in oil and gas-based cities. Oil and gas-based cities should pay attention to the optimization 

of industrial structure and promote the development of “one main and multiple” modern industries. Optimize 

the well deployment plan, rationally plan the land for oilfield construction, timely dispose of mud ponds and 

sand pits at the operation sites, and protect the cultivated land from pollution and encroachment. Increase the oil 

and gas adoption rate, support the growth of oil and gas supply with the development of new energy sources, 

and extend the life of oilfields. Develop wind power and photovoltaic power generation in oil and gas mining 

areas and surrounding areas, implement clean power and heat substitution for energy used in oil and gas 

exploration and development, and build a low-carbon oil and gas production system. Organized foreign 

technology and labor export, strengthen international strategic cooperation, and jointly seek new opportunities 

for oil and gas cooperation. 

The top three core factors in metal-based cities are total economic volume, energy utilization efficiency 

and the proportion of construction land area. Metal-based cities should actively promote industrial 

transformation and upgrading, enhance the added value of their products and create a metal industry chain. 

They should strengthen the environmental management of mines, promote green mining techniques and 

technologies, reduce the damage to land resources and the ecological environment, and strictly prohibit the 

disorderly expansion of industrial and mining land. Increase investment in research, development and 

application of green technologies, develop low-carbon metallurgical technologies, electric furnace smelting 

technologies, etc., and reduce resource consumption and carbon emissions. It is necessary to introduce high-end 

intelligent equipment, promote intelligent metal smelting, and strive to build a harmless-productized-high-value 

whole industry chain. 

The top three core factors in non-metallic-based cities are the total economy, the proportion of forest land 
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area and the proportion of construction land area. Non-metallic-based cities should strictly control emissions 

from industrial enterprises, promote soil remediation and water pollution prevention, and protect green 

vegetation from being poisoned. Formulate scientific and reasonable urban planning, focus on the protection of 

forest land and cultivated land, strictly control the total amount of new construction land, and strictly prohibit 

the occupation of forest land and cultivated land by the disorderly expansion of construction land. Focus on the 

recycling of resources and the minimization of waste, and promote the development of a circular economy. 

The total population, the proportion of fixed-asset investment in the mining industry and the green 

coverage rate of built-up areas are the top three core influences in forestry-based cities. The government should 

increase its assistance to forestry-based cities, provide long-term financial support for urban economic 

development, and support and encourage forestry-based cities to establish successive alternative industries to 

prevent forest exhaustion and city decline. Attracting talents and enterprises by introducing foreign investment, 

supporting entrepreneurship and innovation, and improving the social security and welfare system. Encourage 

the development and utilization of forest tourism resources, develop new industries such as ecotourism and 

green leisure, and provide tourism activities and services related to forest ecology. Strengthen the application of 

new energy sources, energy conservation and emission reduction, intelligentization and other technologies to 

reduce energy consumption and pollution in the forest industry. 

4.5.4 Resource-based cities in different distribution regions 

The top three core factors in resource-based cities in the eastern region are economic aggregate, land use 

efficiency and energy use efficiency. Cities in the eastern region should continue to maintain and play the role of 

transformation model, focusing on the development of high-tech industries and innovative industries. Utilizing 

their economic advantages, they should vigorously promote the research and development of key technologies 

in the fields of energy conservation, emission reduction and new energy, and improve the efficiency of resource 

utilization. Reasonable use of location advantages and knowledge innovation to play a radiation-driven role in 



 

 33 

cities in central and western regions, and strengthen cooperation and exchanges with central and western 

regions to help them reduce carbon emissions. 

Energy utilization efficiency, total population and the proportion of forest land area are the dominant 

factors in central region. Cities in central region should actively undertake the transfer of industries from the 

eastern region. Actively adjust the industrial structure, vigorously develop low-carbon industries and optimize 

the energy consumption structure. Increase investment in scientific research, improve energy utilization, 

innovate clean technologies, and reduce carbon emissions while developing the economy. Guide the intensive 

development of cities, effectively control the uncontrolled expansion of construction land, and strictly prohibit 

the blind conversion of cultivated land and forest land into construction land. 

The top three factors in western region are economic aggregate, energy utilization efficiency and the 

proportion of secondary industry. Cities in the western region should vigorously develop their economies in the 

context of national policy favoritism. Increase investment in science and technology at the same time as 

economic development, improve the welfare of scientific research personnel, attract and cultivate scientific 

research talents, strengthen the strength of low-carbon technological innovation, and improve the efficiency of 

resource utilization. Continuously strengthen environmental control and pollution management, and gradually 

increase the intensity of environmental regulations. Gradually improve the industrial structure, reduce the 

proportion of secondary industry, and focus on the development of low-carbon industries. 

Energy use efficiency, total population and land use efficiency are the top three core factors in the 

northeastern region. The most important thing for resource-based cities in the northeastern region now is to 

actively reform and innovate, fully implement the Northeast Revitalization Strategy, improve their own 

development capacity, retain and attract human resources, and fill the talent gap. The government should 

establish a long-term and effective assistance mechanism to provide long-term financial support for the 

high-quality development of the northeastern region and promote regional economic development. Based on the 
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rich land resources in the northeastern region, vigorously develop specialty agriculture, enhance the added value 

and technological content of agricultural products, improve the utilization efficiency of land resources, and 

make specialty agriculture a new economic growth pole for cities. Increase investment in the development of 

new industries and vigorously develop tourism and modern service industries so that they can become successor 

industries. 

5 Conclusion 

The study adopts the panel data of 110 Chinese prefecture-level resource-based cities from 2005 to 2020 to 

construct an empirical model from multiple perspectives, to explore the impact of TSDP on carbon emissions 

from the whole city, different types of cities and individual city, to identify the key indicators of the impact of 

TSDP on carbon emissions in different types of resource-based cities, and to clarify the time change trends of 

the contribution of different indicators to carbon emissions. The main conclusions are as follows: 

(1) TSDP is an important factor affecting carbon emissions in resource-based cities. The degree of 

explanation of it on carbon emissions reaches 76.2%, in which the total GDP has the largest positive 

contribution, followed by energy consumption per unit of GDP and the proportion of tertiary industry, while the 

comprehensive utilization rate of industrial solid waste has the largest negative impact. 

(2) The influence of TSDP on carbon emissions is obviously heterogeneous. The total GDP has no 

significant influence on the carbon emissions of cities with backward economic development, and the total 

population has the strongest positive contribution to the carbon emissions of cities with small population sizes. 

Energy consumption per unit of GDP and total economic volume are always the top two key indicators 

contributing to carbon emissions in growth, mature and regenerative type cities. Economic aggregate is the 

indicator that contributes the most to carbon emissions in coal-based, oil and gas-based, metal-based and 

non-metallic-based cities. Energy consumption per unit of GDP is the core factor contributing to carbon 

emissions of cities in different distribution regions. 
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(3) The influence of TSDP on carbon emissions is characterized by spatial differentiation. Economic 

development has the greatest impact on carbon emissions, and the affected cities are mainly concentrated in 

Gansu and Shaanxi provinces in the western region and Hebei province in the eastern region. Population 

concentration has the smallest impact on carbon emissions, and the spatial distribution is more in northern 

China than in southern China. 

(4) The influence of TSDP on carbon emissions is characterized by temporal differentiation. The total 

economic volume and energy consumption per unit of GDP significantly and positively affect urban carbon 

emissions in the whole study period. With the evolution of time, the positive contribution of the proportion of 

construction land area to carbon emissions shows an upward trend, and the positive contribution of the total 

economic volume to carbon emissions shows a “W-shape” fluctuation change. The proportion of fixed asset 

investment in the mining industry did not have a significant contribution to urban carbon emissions at the 

beginning of the study, and showed an “inverted U-shaped” change after 2009. Energy consumption per unit of 

GDP positively affects urban carbon emissions in all years, and shows a “U-shaped” trend with 2013 as the 

“inflection point”. 

The innovations of this study lie in: constructing an indicator system for TSDP in resource-based cities; 

elucidating the mechanism through which TSDP impacts carbon emissions in such cities; and revealing 

multi-type, multi-level, and multi-perspective heterogeneity characteristics of this impact. This study explores 

the impacts of TSDP on carbon emissions in resource-based cities from multiple perspectives of type 

differentiation and spatial and temporal differences, which is an important basis for the rational use of territorial 

space and the formulation of differentiated carbon emission reduction policies, and will help resource-based 

cities achieve precise carbon reduction. 

Limitations of this study: ① Owing to constraints in data accessibility, continuity, and completeness, the 

research timeframe selected in this paper spans from 2005 to 2020. Future studies could consider employing 
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datasets with broader temporal coverage and higher continuity to enhance the accuracy and timeliness of 

research findings. ② This study focuses on prefecture-level resource-based cities as the research subject. 

Future work may extend the research scope to include county-level cities, municipal districts, and counties. ③ 

The integration of multi-scale data and the improvement of socioeconomic data rasterization precision require 

further investigation. 
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