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Abstract 

A significant problem occurs with natural resources, such as air pollution caused by 

various environmental factors and climate change. Air pollution poses a major threat to human 

health and sustainability. The varying levels of air pollutants mix dynamically, increasing air 

pollution and impacting human health proportionally to their basic health conditions. For 

example, a severity level of the air pollution immediately affects an old person or someone 

with breathing issues and can lead to sudden death. To save people, it is essential to develop 

an accurate and timely forecasting system to mitigate its adverse effects and take immediate 

action. Conventional forecasting systems use statistical and basic AI methods, often struggle 

to process complex and large amounts of continuous data generated from the air. Also, 

spatiotemporal dependencies from the air quality data were not extracted. Thus, this paper 

proposed a hybrid DL model, integrating a CNN with LSTM to analyse and accurately forecast 

the severity levels of air pollution. Basically, CNN model helps to extracts the spatial features 

from the air quality data while the LSTM model used to extract the temporal dependencies. 

The proposed CNN-LSTM can provide a robust prediction model for air pollution. The CNN-

LSTM model is evaluated by implementing it in Python and experimenting with real-world 

datasets from various surveillance monitoring stations. The overall performance of the 

proposed CNN-LSTM is compared with the standalone LSTM, CNN and traditional ML 

models such as RF and SVM. The final result indicate that proposed DL-based hybrid CNN-

LSTM model performs healthier than the others and obtains the highest forecasting accuracy. 

Keywords: Air Pollution, Deep Learning Model, CNN-LSTM, Pollutant Level 

Estimation, Air Pollution Vs. Human Health.      

Introduction  

Air pollution is the pollution of the air by harmful substances such as particulates, gases, 

and biological molecules. It may cause allergies, diseases, and human death [1]. It may also 

cause damage to other living organisms such as food crops, animals, and the natural 

environment. It can be both man-made and natural. Man-made air pollution contains emissions 

from power generation, motor vehicles, industrial processes, and agricultural activities.  Air 

pollution is an environmental issue affecting millions of people's health. It occurs only when 

harmful substances are introduced into the Earth's atmosphere. Some human activities that 

affect the quality of the air by making it pollutants like vehicle emission and burning fossil 

fuels like coal, oil, and natural gas which are the major reason for the air pollution, particularly 

in urban areas [2]. Industrial activities also play a vital role in air pollution. It emits extensive 

pollutants like heavy metals, volatile organic compounds, and other toxic substances. The 
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agricultural industry also contributes to it. Pesticides and fertilizers release VOCs, PM, and 

ammonia (NH3) into the air. Farming produces a potent greenhouse gas, NH3, and methane 

(CH4), combined with other pollutants in order to create fine particulate matter (PM2.5) [3]. 

PM2.5 can pass through the lungs and get into the blood, having an effect on such health-

related issues like heart attack, strokes, an asthma attack, chronic obstructive pulmonary 

disease (COPD) and lung cancer [4]. 

Air pollution detection is crucial for environmental monitoring and people health 

protection. Various methods are used for detecting, such as sensors, air quality monitoring 

systems, remote monitoring, analytical methods, and particulate air sampling techniques [5].  

Using sensors to detect some pollutants like nitrogen dioxide (NO2), sulphur dioxide (SO2), 

particulate matter (PM), carbon monoxide (CO) and ozone (O3) [6]. Remote monitoring 

techniques contain ground and satellite-based remote sensing, allowing large-scale air quality 

assessments across broad geographic areas. Satellite remote sensing uses some instruments like 

Ozone Monitoring Instrument (OMI) and the Moderate Resolution Imaging Spectroradiometer 

(MODIS) which helps to measure pollutants like ozone and aerosols [7]. Ground-based remote 

sensing uses Differential Optical Absorption Spectroscopy (DOAS), Light Detection and 

Ranging (LiDAR) to detect and track pollutants [8].  Mobile monitoring includes vehicles 

equipped with air quality sensors to measure pollution levels while traveling to various places. 

It is mainly useful for urban areas where high pollution levels vary over short distances. 

Advanced analytical methods like gas chromatography-mass spectrometry (GC-MS) and high-

performance liquid chromatography (HPLC) used to determine the pollution level. HPLC is 

mainly used to analyse air pollutants for organic and inorganic compounds. GC-MS is 

especially effective for analysing volatile organic compounds like VOCs [9].  

 The efficiency of DL models, especially, LSTM networks, in detecting and predicting 

air pollution. It is a type of recurrent neural network (RNN) especially designed to capture 

long-term dependencies and trends in sequential data, making it highly effective for air 

pollution prediction [10]. It is also valuable for real-time monitoring, assessing the effect of 

interventions, and anomaly detection. It also has some challenges, such as computational 

resources and data quality. LSTM and other deep learning models will be crucial in air pollution 

management and mitigation. The following sections discuss the literature survey, the proposed 

approach, the results of the model, and the conclusion. 

Contribution of the paper 

This research makes several important contributions to the context of air pollution analysis and 

detection, specifically within the Indian environmental region.  

1. This paper presents an advanced hybrid model that integrates the work of a 

Convolutional Neural Network (CNN) and a Long-Short-Term Memory (LSTM) model to 

analyse the temporal and spatial dependencies in the air quality data. This hybrid approach 

helps to enable more robust, accurate, and context-aware forecasting of air pollution levels. 

2. The CNN portion is applied to recognize intricate spatial connections of several air 

pollutant variables, and the LSTM layer is used to obtain long-term tendencies and fluctuations 

in time. Such a combined framework effectively overcomes the shortcomings of conventional 

models that do not take into consideration dynamic interactions inherent in the air quality data 

over time and across regions.  

3. This model not only helps to forecast the future air pollutant result but also classifies 

the levels and types of air pollution. This enables alerts for vulnerable pollution and timely 

interventions, which helps to enhance the public health response mechanisms.  



 

 

4. Further experiments were conducted using real-time air pollution data taken from 

multiple monitoring stations across various Indian regions. This ensures that the models' 

performance impacts the real-time challenges and conditions of the environment, including 

meteorological influences, different types of pollutants, and differences in various regions.  

5. To evaluate the overall performance of the proposed hybrid CNN-LSTM model, it was 

compared with some existing ML and DL models like CNN, SVM, Random Forest (RF), and 

LSTM. The experimental result stated that this proposed CNN-LSTM model provides more 

robustness and accuracy in analysing and forecasting the severity levels of air pollution.  

6. The execution of the CNN-LSTM model in Python and the model's ability to adapt to 

large-scale data support environmental surveillance systems and smart city infrastructures. 

Literature survey  

Due to advancements in deep learning models, DL-based models have recently gained 

widespread use in air pollution detection. Among various air pollutants, NO2 and SO2 are the 

primary pollutants that cause several health issues. For accurate prediction of these pollutant 

particles in the air, A. Heydari et al. (2022) have proposed a hybrid DL model (LSTM-MVO), 

for pollution detection. The result of the LSTM-MVO model is compared with the other 

models. The comparison outcome depicts that the LSTM-MVO model predicts the presence of 

pollutant particles with high accuracy and low RMSE. Due to various environmental factors, 

the pollutant level increases in smart cities. This creates multiple types of health problems, 

especially respiratory diseases.  Thus, a hybrid CNN-LSTM-based approach is designed to 

analyse and forecast air pollution levels in Beijing, China (A. Bekkar et al. (2021). The model's 

performance is compared with other models like standalone CNN, LSTM, GRU, Bi-GRU, and 

Bi-LSTM. The overall comparison result proves that the CNN-LSTM model performs better 

in predicting air pollutant levels with lower RMSE and MAE rates of 23,921 and 6,742, 

respectively. L. Zhu et al. (2023) have proposed a deep learning-based model, CNN, to detect 

water quality and an LSTM for predicting air quality in urban areas. The model's performance 

is evaluated using F1-score, accuracy, etc, and compared to the existing models. Compared to 

other methods, the CNN-LSTM has achieved 92% and 91% accuracy on predicting water and 

air pollution levels in urban areas. Xing. J. et al. (2020) demonstrated a novel model that 

integrates chemical indicator data with a DL model to forecast pollutant levels. Using the 

chemical transport simulator, the AQI ratio is estimated. That can be classified using the deep 

learning model. The simulation output is compared with the earlier machine learning methods 

and found that the CTM-deep learning outperforms the others. However, its computational 

complexity is high and takes more time to simulate and forecast. 

Periyanan and Palanivel Rajan (2024) have proposed a modified Gated Recurrent Unit 

architecture for forecasting air pollution. It uses a Dual-Slope Leaky ReLU activation function 

to activate the internal layers and filter functions to process the data efficiently. The activation 

function fine-tunes the parameters with the help of the female SWO algorithm. By combining 

the robustness of SWO, GRU improves its predictive efficacy in air pollution forecasting. Yoo 

and Oh (2020) demonstrated that deep learning models have powerful data learning abilities 

and provide more efficiency in time-series data analysis for forecasting. The LSTM model 

outperforms time-series data prediction, and thus, it has been used for air quality analysis in 

Madrid, Navares, and Aznarte (2020). However, LSTM fails to process seasonal data 

effectively. Hence, a seasonal-LSTM (SLSTM) was proposed to solve the issues in processing 

seasonal air quality data (Skarlatos et al., 2023).  From the experiment, it is identified that 

LSTM performs better in analyzing and predicting time-series data.  Zhao et al. (2023) have 

used Gated Recurrent Units and stated that they are similar to LSTM, but their training time is 



 

 

high. Some parameters are adjusted and tuned to reduce the model’s training time (Chen et al., 

2019). Several research fields have widely used the GRU model (Qin et al., 2022). Following 

the seasonal data processing, the GRU model is extended to address the existing challenges 

and proposed seasonal-GRU(SGRU) (Groenen, 2018).  

In 2020, ShuWang et al. applied a GRNN for AQI prediction, comparing it to MLP and 

SVR. Because sensor drifts are less invariant, the gas recurrent neural network performs well, 

but it is also more susceptible to atmospheric variability and humidity. In 2020, Pasupuleti et 

al. compared decision trees, linear regression, and random forests. Significant air pollutants 

and meteorological conditions are obtained through the application of Arduino. Due to its 

overfitting ability, Random Forest provides accurate outcomes that minimize errors. The main 

limitation of Random Forest is that it requires more memory and incurs higher costs. In 2019, 

Desislava Ivanova and Angel Elenkov applied the Raspberry Pi platform along with MLP 

algorithms from ML for accurate air pollutant predictions. The multilayer perceptron surpasses 

the classification problem applied to discrete values and the regression used for continuous 

values. Due to the use of discrete values, multilayer perceptrons with backpropagation result 

in inputs that, when not passing the activation function, yield outputs of 0 or 1.The attainment 

of the coefficient of determination (R2) is better when the need for incremental feeding is 

enhanced.  Fan et al. (2018) presented a study that defines the impacts of air pollution and solar 

radiation. Using an SVM model, six air pollutants, PM2.5, PM10, SO2, NO2, CO, and O3, are 

analyzed and predicted. The result of the model shows that this model has achieved better 

results with a lower RMSE value. In polluted regions, enhancing the accuracy of Rs and Rd 

predictions depends on selecting suitable air pollution inputs.  

Bhuvaneshwari et al. (2022) have proposed a Gaussian SVM model for Air Pollution 

Prediction. Monitoring air pollution in dynamic real-time environments is not accurate; despite 

using advanced WSN technology, there are limitations, such as insufficient coverage of wide 

regions. To overcome this barrier, the paper primarily focuses on a region-based air pollution 

system for monitoring real environments in smart cities. The system consists of two phases for 

predicting heavy and light traffic areas, utilizing the Gaussian SVM model to forecast air 

pollutants like PM10, CO, NO2, PM2.5 and O3. Meta-heuristic algorithms are employed to 

select the predicted areas, where sensor nodes are subsequently placed. For the cross-validation 

process, the dataset is divided into training and testing sets. As a result, a Mean Error prediction 

value of 9.83 is achieved, which is lower than that of traditional model solutions, and this SVM-

based model attains 95% accuracy. Farooq et al. (2024) have presented a paper on an enhanced 

approach for predicting air pollution using quantum support vector machines. In machine 

learning-based models, SVM is commonly used for classification and proves to be more 

effective. The increased dataset complicates the selection of suitable features, which must 

outperform the classification process. This proposed model utilizes the SVM for feature map 

selection and employs a standard dataset for air quality prediction. In the experiment, by 

utilizing the quantum lab and IBM quantum computing cloud, the accuracy of the quantum 

SVM outperforms the classical SVM model in air quality prediction. As a result, using the 

same dataset for both classical SVM and quantum-based SVM, the accuracy attained by the 

classical SVM model ranges from 87% to 91%, while the quantum SVM model's accuracy 

ranges from 94% to 97%. This result indicates that optimal feature map selection is key for 

accurately predicting air pollution.  

Limitations of the Existing model  

The traditional approaches have several limitations for predicting air quality. The convolutional 

model primarily addresses temporal trends by utilizing time-series data or capturing spatial 

correlations, but it is not able to process both simultaneously. Meteorological variables like 



 

 

wind speed and temperature are not considered, yet these are important for pollutant 

accumulation and dispersion. These limitations affect prediction accuracy and generalizability. 

The existing models lack the capability to capture spatiotemporal dependencies and dynamic 

environmental factors, which leads to failures in handling high-resolution time series data and 

regional generalization. Current ML models and some single DL models, such as CNN or 

LSTM, demonstrate limited adaptability across different geographical areas, resulting in 

decreased accuracy for new geographic locations or extreme scenarios.    

 Motivation for the proposed model  

To address these limitations, a new hybrid CNN-LSTM architecture is proposed for both spatial 

patterns and temporal sequences. The proposed CNN-LSTM model integrates convolutional 

layers and LSTM units for spatial feature extraction and captures long-term dependencies while 

combining meteorological variables. This study makes a novel contribution to air pollution 

forecasting by initially combining CEEMDAN-based feature extraction with a PSO-optimized 

CNN-LSTM. The proposed approach incorporates hyperparameter tuning, deep learning in a 

separate framework, and single decomposition, whereas the traditional approach applies CNN-

LSTM or optimization individually. As evidenced by experimental results with a real-time air 

pollution dataset, the proposed model enhances both trustworthiness and prediction accuracy. 

Problem statement 

One of India's emerging and most pressing environmental challenges is air pollution. It 

increases the death rate among elderly individuals and severely impacts those with respiratory 

illnesses. Accurately assessing and predicting air quality is complex because the concentration 

of pollutants in the air is highly dynamic. Earlier methods utilized machine learning and other 

conventional AI algorithms that performed adequately. However, they exhibited several 

limitations in accurately analyzing and extracting spatiotemporal feature patterns from air 

quality and pollution data. Moreover, earlier systems often failed to promptly provide precise 

prediction outputs, which are essential for warning the public to take preventive actions.  

To overcome these challenges, it is essential to develop an advanced data analytics and 

forecasting framework capable of managing high-dimensional air quality data while 

maintaining spatial and temporal features. This paper seeks to bridge the gap by establishing a 

hybrid deep learning framework that combines a convolutional neural network and a long 

short-term memory network to effectively handle high-dimensional data, analyze, predict, and 

accurately forecast the severity level of air pollution. The CNN model addresses spatial 

dependencies, while the LSTM model addresses temporal dependencies, allowing the hybrid 

CNN-LSTM to manage spatiotemporal dependencies for precise predictions of air pollution 

severity levels. The aim of designing the hybrid deep learning framework model is to enhance 

the predictive accuracy and perform better than conventional methods, supporting proactive 

decision-making regarding public health management. 

Existing Method 

Traditionally, various research works have been performed to forecast air quality. For 

example, the authors C.H. Cordova et al. (2021) have proposed an MLP and LSTM recurrent 

ANN model to predict the air pollutant level in metropolitan Lima, Peru. The air pollutant level 

is observed based on the values observed from five stations. The final result of the model 

indicates that the LSTM combined with recurrent ANN model performed better and had a high 

precision value. Though this model performed better, it required additional features and a self-

identification technique for future development and model identification. To overcome these 



 

 

issues, this paper proposes an LSTM-based Knowledge discovery extraction system to predict 

and identify the air pollutant level accurately.  

Proposed methodology  

The proposed methodology introduces a DL-based hybrid (CNN-LSTM) for accurate 

and robust prediction of air pollution by leveraging spatial and temporal air quality data 

features. The framework consists of several key components, as indicates in Figure-1.  

 

(a) Overall Workflow 

 

(b) Core Data Processing 

 

Figure-1: Overall Workflow Of The Proposed Model 

Data Pre-Processing  

The air quality data accumulated from openly accessible platforms like Kaggle, IoT-

based sensor networks, and Indian Pollution Control Boards is followed by the data collection 

and preprocessing stage. This dataset contains various features consisting of pollutant 

concentrations like NO2, SO2, PM2.5, CO, and O3, as well as atmospheric conditions like 

humidity, temperature, atmospheric pressure, weather, and equivalent temporal codes. 

Applying the combined mean imputation, interpolation, and forward filling approaches 



 

 

addresses the missing value to maintain data completeness. The performance and the overlap 

are improved in the neural network models, particularly in the DL technique, where the feature 

generalisation outperforms the Min-Max Scalling. By this approach, it converts the given input 

features into a certain range of 0 and 1, and it is mathematically formulated as, 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

Here, the original feature value is shown as 𝑥, the minimum value of the feature is represented 

as 𝑥𝑚𝑖𝑛 and maximum values of the features are presented as 𝑥𝑚𝑎𝑥. LSTM network was used 

to prepare sequence modelling, this dataset was modified to time series windows, allowing the 

proposed model to learn time links and complex patterns throughout continuous past 

monitoring. 

Feature extraction and pollutant concentration prediction  

The main goal is to enhance the precision of predicting air pollution concentration by 

applying an advanced model called Complete Ensemble Empirical Mode Decomposition with 

Adaptive Noise (CEEMDAN). This method is used for feature extraction, allowing the model 

to effectively analyze and break down complex environmental signals into simpler 

components. Doing so can identify and utilize the most relevant features contributing to 

pollution levels, leading to more accurate and reliable predictions.  

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) 

It is the process that used to optimise the feature extraction process by altering the complex 

non-stationary and nonlinear time series 𝑥(𝑡) into a perfect set of simpler oscillatory 

components is known as Intrinsic Mode Functions (IMFs). Mathematically, CEEMDAN was 

evaluated using the following equation: 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑖

𝑛

𝑖=1

(𝑡) + 𝑟𝑛(𝑡) 

In the above equation, 𝑟𝑛(𝑡) Denoted the final residual components once all the IMFs are 

extracted and 𝐼𝑀𝐹𝑖(𝑡) denoted the 𝑖 − 𝑡ℎ intrinsic mode functions. Unlike the traditional 

EEMD or EMD approach, the CEEMDAN approach performs ensemble averaging, which 

helps to improve reconstruction stability, reduce mode fixing, and introduce adaptive white 

noise in the decomposition process. This multiscale analysis helps capture important temporal 

frequency patterns and filter the frequency noise, making this model more suitable for 

analysing environmental data such as air pollutant levels. The IMFs obtained by 

decomposition, each representing a specific band, serve as an input to DL models like CNN-

LSTM, which helps to improve the learning process by providing more relevant and cleaner 

feature sets. The parameter settings are commonly the number of realisations (e.g., 100). For 

instance, (0 2) is the noise standard deviation and the stopping criterion of IMF extraction. This 

CEEMDAN-based decomposition, as illustrated in the document, enhances the overall 

performance of the CNN-LSTM network by identifying complex trends, which are modeled 

temporally using the LSTM model, and spatial features are analyzed using the CNN model, 

which leads to reducing the errors while forecasting and also enhances the prediction accuracy 

in predicting pollutant concentration. The important parameters that are used for the 

implementation of CEEMDAN are provided in table-1 

Table 1. Parameters of CEEMDAN 



 

 

 

 

CEEDAN-based feature Extraction  

The original pollutant time series x(t) is converted into Intrinsic Model Functions 

(IMF), which are represented by 𝐼𝑀𝐹1, 𝐼𝑀𝐹2, 𝐼𝑀𝐹3, … , 𝐼𝑀𝐹𝑛. This can be mathematically 

represented by: 

𝑥(𝑡) =  ∑ 𝐼𝑀𝐹𝑖(𝑡) + 𝑟𝑛(𝑡)

𝑛

𝑖=1

 

 Where the ith intrinsic mode function is represented by 𝐼𝑀𝐹𝑖(𝑡), and the final residual 

is represented by 𝑟𝑛(𝑡)The information features offer decomposed IMFs that separate the 

specific frequency components from the pollutant data. The extracted features are stored in the 

hybrid CNN–LSTM framework. CNN is used to extract features from the input of the pollutant 

matrix, and the LSTM model captures the temporal dependencies across time series data. The 

performance predictions are improved by applying PSO (Particle swarm optimization) which 

helps to optimize hyperparameters from the LSTM model. The PSO simulated the swarm of 

particles used to explore an ideal solution by upgrading the position and velocity based on 

personal and global best performances. These velocity and position-enhanced metrics from 

PSO are formulated by, 

 

𝑣𝑖
(𝑡+1)

= 𝑤𝑣𝑖
(𝑡)

+ 𝑐1𝑟1(𝑝𝑖
𝑏𝑒𝑠𝑡 − 𝑥𝑖

(𝑡)
) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖

(𝑡)
) 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

 

Where, 𝑥𝑖 represents the position and 𝑣𝑖 represents the velocity of the 𝑖𝑡ℎ particle, 𝑝𝑖
𝑏𝑒𝑠𝑡 is the 

personal best position of a particle 𝑖, 𝑔𝑏𝑒𝑠𝑡 represents the best position in the global among all 

particles, 𝑤 represents the inertia weight, 𝑐1 and 𝑐2 represents the acceleration constants, and 

𝑟1 and 𝑟2 represents the random numbers from the range between [0,1].  The intersection of 

CEEMDAN-CNN-LSTM-PSO techniques majorly improves the model's capability to leverage 

meaningful patterns, noise minimization, and enhanced pollutant concentration assumption 

through conventional methods. 

CNN-LSTM Architecture for Air Quality Examination 



 

 

The CNN and LSTM network model is a powerful hybrid deep learning technique for 

studying earthly and space-related dependencies in air quality data. This technique is 

particularly effective for environmental datasets, which are typically multivariate, non-linear, 

and time-dependent.  

Convolutional Neural Network (CNN) 

 A CNN is one of the DL-based models which is mainly developed to learn spatial 

patterns automatically and adaptively from the input data, particularly CNNs used in tasks like 

images and spatial data. CNNs are specifically effective in tasks like image classification, time-

series prediction, and object detection because they can capture the spatial dependencies and 

local patterns within the data. This model initiates with a Convolutional layer, where small 

filters, like kernels, extract local features like textures, patterns, or edges. These features 

develop a feature map, which is passed through non-linear activation functions such as ReLU 

activation function to present a non-linearity to the model.   Then pooling layers helps to 

minimize the dimensionality and computational cost, maintaining the more vital data from 

every region. The resultant feature maps are in the format of a 1D vector and passed into fully 

connected layers, then it is used to extract the features with high-level reasoning. Finally, the 

output layer generates the final predictions.  

 

Figure-2: Structure of CNN 

The core operation in a Convolutional Neural Network (CNN) can be mathematically 

represented as: 

𝑍𝑖,𝑗
(𝑙)

= 𝑓 ( ∑ ∑ ∑ 𝑊𝑝,𝑞
(𝑚,𝑙)

𝑞

𝑞=1

. 𝑋𝑖+𝑝−1,𝑗+𝑞−1
(𝑚)

+  𝑏(𝑙)

𝑃

𝑝=1

𝑀

𝑚=1

) 

 Where the final output feature of the model is represented as 𝑍𝑖,𝑗
(𝑙)

 , the activation 

function is represented as 𝑓, the weight of the kernel filter at position (p, q) is represented as 

𝑊𝑝,𝑞
(𝑚,𝑙)

, Input feature map value from the mth channel at position (i+p−1, j+q−1) is represented 

by 𝑋𝑖+𝑝−1,𝑗+𝑞−1
(𝑚)

The bias time added to the output term is denoted as 𝑏(𝑙)The total number of 

input channels is represented by 𝑀 and the dimension of the filter is represented by 𝑃 × 𝑄. 

Long Short-Term Memory (LSTM) 

LSTM model was also used in the integration with other networks such as CNN, mainly 

to analyze data like images and videos. The LSTM architecture includes three main gates that 

manage its memory cell which inlcudes input gate, the forget gate, and the output gate. They 

control which pieces of information get into and leave the memory cell at any time. 



 

 

Specifically, the input gate plays a key role in determining how much new data should be stored 

within the memory, helping the model manage and retain important information over time. It 

also considers the present input and last hidden state input and output values, which range from 

0 to 1 for each data point present in the memory cell. The data should be rejected when the 

value is 0, and the data should be stored when the value is 1. The garbage gate decides which 

data needs to be eliminated from the memory cell. The hidden data of the memory cell is 

analyzed through data controlled by the output gate. The system selectively stores, updates, 

and retrieves the information over the long-term data by using these gates. Using the following 

equations, the output of each gate is evaluated and detected. 

𝑓𝑜𝑟𝑔𝑜𝑡 𝑔𝑎𝑡𝑒 (𝑓𝑡) =  𝜎 (𝑊𝑓 ∗  [ℎ𝑡 − 1] +  𝑏𝑓)   (1) 

 Where 𝑤𝑓 , 𝑏𝑓 , ℎ𝑡 − 1, 𝑓𝑡 and 𝜎, represents the weight value, bias value, hidden state 

value, input data point, forget gate, and sigmoid function. 

𝑖𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 (𝐼𝑡) =  𝜎 (𝑊𝑖 ∗  [ℎ𝑡 − 1, 𝑥𝑡] +  𝑏𝐼)   (2) 

Where, 𝑊𝑖 , 𝑎𝑛𝑑 𝑊𝐶 , represent the weighted value and  𝑏𝐼 𝑎𝑛𝑑 𝑏𝐶  represent the bias value. 

Now, by multiplying the forget gate𝑓𝑡 with old cell state and  𝐼𝑡 ∗  𝐶𝑡The updated element 

chosen by the input gate is updated to the cell state. 

𝐶𝑡̃ = tanh ((𝑊𝐶  ∗ [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝐶)                (3) 

𝐶𝑡 =  𝑓𝑡 ⊙  𝐶𝑡−1 +  𝐼𝑡 ⊙  𝐶𝑡̃                    (4) 

 

Figure-3: Structure of LSTM 

And the ⊙ denotes the element-wise multiplication and 𝐶𝑡 denotes the updated element in the 

cell state. 

ℎ𝑖𝑑𝑑𝑒𝑛 𝑎𝑔𝑒𝑡 (ℎ𝑔) =  𝑓𝑔  ∗ tanh (𝐶𝑔)                      (5) 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐺𝑎𝑡𝑒 (𝑂𝑔) =  𝜎(𝑊𝑂  ∗ [ℎ𝑔 − 1, 𝑥𝑔] + 𝑏𝑂   (6) 

Convolutional Neural Network (CNN) Component 

Basically, CNN model helps to extracts features from images and predicts the air 

quality index. Structured tabular data, such as air pollution, is noted to predict the future. 

Pollutants across locations and time windows are an example of CNN. CNN can automatically 

detect and learn features within the data through convolution. 

For example: 



 

 

• Patterns between PM2.5 and NO2 levels in a specific region 

• Spatial variations across multiple monitoring stations or locations 

CNN helps detect beyond images, like natural language processing, essential for understanding 

how air components mix or influence one another. 

Long Short-Term Memory (LSTM) Component 

LSTMs are used to learn complex pattern in the time-series data to predict the air 

quality. This helps understand how air pollution levels change over time and captures long-

term dependencies, enabling more accurate pollution levels. After the CNN extracts features, 

the LSTM layer processes this data to learn the temporal evolution of pollutant concentrations 

and how they change over time. LSTM is a RNN type that can predict air pollution levels, 

helping the model make more accurate long-term pollution forecasts. 

Combined CNN-LSTM Workflow for Air Quality 

A suitable format model is created, and the Raw air quality data and other relevant data 

(e.g., PM2.5, NO2, O3) are transformed into it. CNN identifies patterns within data and 

pollutant interaction features and extracts spatial relationships. The process involves extracting 

features from the CNN across time to capture and analyze sequential trends. The LSTM 

network predicts the air quality metric (e.g., PM2.5 to SO2 ratio) based on the learned patterns 

and temporal relationships. 

Table 2. Advantages of CNN-LSTM in Air Quality Applications 

Feature Benefit 

Spatial Feature Learning (CNN) Understands inter-pollutant and inter-

location relationships 

Temporal Modeling (LSTM) Captures time-based pollution trends 

and patterns 

Multivariate Capability Handles multiple pollutants 

simultaneously 

Scalability  Suitable for integration with real-time 

IoT sensor data 

Accuracy Outperforms many traditional ML 

models in RMSE, MAE, etc.. 

In India, where pollution levels vary by region and time (due to the traffic, climate, 

festivals, crop burning, etc.), the CNN-LSTM model is particularly effective because it adapts 

to regional spatial differences, urban vs rural. It captures seasonal and event-based spikes like 

Diwali and winter fog. It can estimate ratios and interactions.  

Performance Evaluation  

 To evaluate the air pollution forecasting model (CNN-LSTM) by using some 

performance metrices like RMSE (Root Mean Square Error), MEA (Mean Absolute Error) and 

accuracy. The evaluation techniques and specific relevance are not explained in detail. The 

brief explanation with mathematical models is provided below: 

1. Root Mean Square Error (RMSE) 

  MSE calculates the average magnitude of prediction error. In air pollution forecasting, lower 

RSME values suggest that the predicted pollution levels, such as PM2.5 and NO2, closely 

match the actual values. The obtained RMSE value reflects the accuracy and trustworthiness 



 

 

of the model. The RMSE heavily punishes the greater errors and makes it capable when the 

large deviations are particularly undesirable, for instance, the pollution spikes fail to predict.  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

 Where the true pollutant concentration at a time 𝑡 is denoted as 𝑦𝑖, the model predates 

the concentration at time 𝑡 is denoted as 𝑦̂𝑖 and the total number of data points are denoted as 

𝑛. 

2. Mean Absolute Error (MAE) 

The MAE provides an average absolute difference between the actual and predicted values. 

The MAE is easier to explain than RMSE, and it is less sensitive to outliers. The MAE value 

is used to determine how much, on average, the model deviates from the true pollutant 

concentration. 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

 Where the true pollutant concentration at a time 𝑡 is denoted as 𝑦𝑖, the model predates 

the concentration at time 𝑡 is denoted as 𝑦̂𝑖 and the total number of data points are denoted as 

𝑛. 

3. Accuracy 

The severity of air pollution is categorized as safe versus unsafe air; accuracy metrics are used 

to evaluate how frequently the model correctly predicts pollution categories. These accuracy 

metrics are vital for innovating a new emergency rule or warning.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 × 100 

 Where accuracy is utilized for regression, modified metrics are frequently used, such 

as R2 or threshold-based classification accuracy. However, the author aims to correct the 

predictions of severity levels in forecasting air pollution.   

Experimental Setup 

The performance of the proposed hybrid CNN-LSTM model for forecasting air 

pollution is evaluated using the publicly available Indian air quality monitoring dataset. The 

input sample data is analyzed with simulation software installed on a system equipped with an 

Intel i7 10th Gen processor, NVIDIA GPU, 1 TB HDD, 32GB RAM, and Windows 11 OS. 

Using Python version 3.10, the input samples are trained in a Jupyter notebook. These input 

data samples are collected from India's Central Pollution Control Board (CPCB) and cover 15 

coastal and non-coastal regions in India [33]. They include daily concentrations of PM2.5, SO2, 

NO2, PM10, CO2, and O3 gathered annually. The overall characteristics of the proposed model 

are shown in Table-3. To demonstrate the proposed model's efficiency, data from 2017 to 2020 

were analyzed, and the results are graphically represented in the results and discussion sections. 

The Adam optimizer trains the hybrid model with a learning rate of 0.001 and a batch size of 

64. Over 100 epochs, the model's performance, including both training and validation, is 

evaluated. Eighty percent of the data is used for training, while 20% is reserved for validation. 



 

 

Finally, the model's overall performance is assessed using various metrics such as recall, 

accuracy, MAE, F1-score, and RMSE. 

Table-3: Summary table of dataset Characteristics 

 

Result and discussion   

This research develops an efficient DL-based model to predict the severity level of air 

pollution in India. The aim is to create a pollution-free India; therefore, this paper proposes and 

implements a hybrid CNN-LSTM model with input time-series data. The proposed model 

utilizes 100 estimators with a maximum depth of 10 and entropy for splitting the standard for 

the Random Forest model. The SVM model with an RBF kernel has a penalty parameter C = 

10 and gamma set to scale. The CNN architecture includes two convolutional layers with 64 

and 32 filters, a kernel size of 3, followed by ReLU activations, a max pooling size of 2, and a 

dropout rate of 0.3 to avoid overfitting. The LSTM model consists of two LSTM layers, each 

with 64 units and a dropout rate of 0.2, followed by a dense output layer. The proposed CNN-

LSTM hybrid model integrates spatial feature extraction and temporal pattern learning by 

utilizing a CNN block of four parameters and an LSTM layer with 128 units and a 0.3 dropout 

rate. The Adam optimizer is used to train all models with a learning rate of 0.001, and the batch 

size is 64 for the 100 epochs. The Particle Swarm Optimization (PSO) enhances the CNN-

LSTM model. The comparison of the entire configuration and tuning process assures the 

trustworthiness and accuracy of the proposed model. This section elaborates on the simulation 

results of the proposed approach to forecasting air pollution levels. Table 4 illustrates the layer-

wise structure, number of neurons, and other parameters used in the proposed approach.  

Table-4 CNN-LSTM model Parameter 

CNN-LSTM 

Layer Parameter 

Conv_1 64 Filters; Kernel size=3; ReLU Activation  

Conv_2 32 Filters; Kernel size=3; ReLU Activation  

Pooling  Max_pooling size=2 



 

 

Dropout  0.3  

LSTM_1 64 units, Dropout=0.2 

LSTM_2 64 units, Dropout=0.2 

Output 

Layer  

Dense (fully connected) 

Optimizer  Adam, learning rate=0.001 

Training 

Parameter  

Epochs=100; Batch Size=64.  

 

During preprocessing, approximately 7.3 percent of the data has been identified as missing. 

Various methods have been applied to address this issue, including forward fill and a 

combination of mean imputation and linear interpolation, ensuring that the data is completed 

while maintaining temporal continuity. For example, in cases where some pollutants were 

missing (i.e., PM2.5, SO2), forward filling was used for gaps of less than 3 time steps, while 

gaps longer than this were treated using the linear interpolation method. Additionally, noise 

and outlier values greater than 3 standard deviations were smoothed using a rolling window 

average. These measures significantly improved the quality of the input data, enhancing 

stability and forecasting accuracy.   

 

Figure-4: Total Number Of Input Samples  

Figure-4 summarizes the total number of input samples for various area types (residential, rural, 

industrial, sensitive, etc.) as well as for combined types (residential, industrial, rural, urban, 

and others (RIRUO)). The X-axis depicts the area categories, while the Y-axis displays the 

number of data samples (count only - no units). The figure indicates that 'residential, rural, and 

other areas' has the most samples at 179,014, suggesting that these area types were either 

monitored more frequently or had more data available. In contrast, the industrial area had the 

fewest samples, with only 158. This shows that there was less monitoring or data available in 

this area. Distinguishing the number of samples from the different area types helps in 

understanding the coverage and identifying potential data imbalance, which is beneficial for 

testing the validity of predictive models using this dataset. 
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Figure-5 SO2 measure on a different type 

Figure-5 illustrates levels of sulfur dioxide (SO₂) in fields, measured in micrograms per cubic 

meter (µg/m³) across India. SO₂ is among the top air pollutants known to impact human health. 

Levels of SO₂ below 100 µg/m³ are generally not considered harmful to humans. The figure 

displays a category-based x-axis (e.g., industrial, residential, and sensitive) representing 

different area types, providing a side-by-side view. The y-axis measures SO₂ concentrations in 

µg/m³. The trends indicated in the figure show that industrial areas had the highest SO₂ levels 

compared to other area types, with levels exceeding 25 µg/m³. Residential areas ranked second, 

with values around 15 µg/m³, while sensitive areas exhibited the lowest levels, with SO₂ 

concentrations below 10 µg/m³. The varying levels of SO₂ suggest that working in industrial 

areas is the main reason for increased emissions. The averages for all area categories also align 

with these trends. However, future and detailed statistical tests, such as ANOVA, could be 

incorporated into the study design to determine whether these differences among areas are 

statistically significant. 

 

Figure-6 NO2 measure on a different type 

Figure-6 shows how different areas in India exhibit similar levels of nitrogen dioxide (NO₂) pollution. 

Specifically, the areas represented include industrial, residential, rural, sensitive, and mixed (RIRUO). 

The vertical axis indicates NO₂ levels in micrograms per cubic meter (µg/m³), the standard measure for 

air pollutants, while the horizontal axis represents the types of areas. According to the Central Pollution 

Control Board (CPCB), levels below 80 µg/m³ are nominally safe. In fact, all area types remain below 

this nominally safe level, with levels around 100 µg/m³. Overall, industrial areas display the highest 

levels of NO₂ pollution, approximately evenly distributed around 70 µg/m³ compared to residential, 

mixed, and rural areas, while sensitive areas show the lowest average values under 20 µg/m³, indicating 

improved air quality measures. The figure effectively illustrates the anthropogenic variability in NO₂ 

pollution levels across different areas in India. 
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Figure-7 SO2 measure on different states 

The amount of sulfur dioxide (SO₂) present in various states of India is shown in Figure 7, along with 

the scale, units, and stated trends. The Y-axis represents the average SO₂ in µg/m³, while the X-axis 

displays the Indian states included in the study. The air quality data was collected from 2017 to 2023. 

Generally, states such as Uttarakhand and Uttaranchal exhibited an average SO₂ level of over 25 µg/m³, 

while other states reported no or minimal volcanic or SO₂ emissions, including the Andaman and 

Nicobar Islands, Tirupur, and Lakshadweep. This variation indicates the localization of industry 

concerning air pollution levels. The information, gathered using simple statistics (average 

concentration), provides a valuable understanding of the pollution degree for planning purposes and 

supports targeted policy development. 

 

Figure-8 SO2 measure on a different year 

Figure-8 illustrates the level of sulfur dioxide (SO₂) gases in the atmosphere of India each year from 

1995 to 2020. The x-axis represents the years, while the y-axis indicates the mean levels of SO₂ gases 

(in micrograms per cubic meter (µg/m³)). It can be observed that SO₂ levels were extremely high (well 

above 20 µg/m³) during the years 1995 to 2000. Beginning around 2003, SO₂ levels started to trend 

downward and fell below 6 µg/m³ in 2020. It is possible that air quality pollution control policies and 

regulations achieved their goals or that industries adopted new technologies that resulted in fewer 

emissions, thereby lowering SO₂ levels over time.A straight-line trend drawn through the data in figure-

8 shows a negative slope, clearly suggesting that SO₂ levels declined from 1995 to 2020. The control 

of SO₂ over time is also evident in the comparative range, which is greater than that of the 1995-2000 

period, believed to have resulted in continued stability in atmospheric SO₂ levels over time. 
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Figure-9 NO2 measure on different states 

Figure 9 shows nitrogen dioxide (NO₂) levels by state across India. The Y-axis represents NO₂ levels 

in micrograms per cubic meter (µg/m³), while the X-axis displays the states. These NO₂ levels were 

compared against the air quality limit of 100 µg/m³; any pollution above this level is considered harmful. 

Several states, including West Bengal (~52 µg/m³), Delhi (~47 µg/m³), and Jharkhand (~42 µg/m³), 

exhibit elevated NO₂ levels, which may be linked to higher urbanization and traffic. Conversely, areas 

such as Andaman and Nicobar, Tirupur, and Lakshadweep show very low NO₂ levels or near zero, 

likely due to their lower population or industrial footprint.  

 

Figure-10 NO2 measure for different years 

Figure 10 illustrates the yearly fluctuations in nitrogen dioxide (NO₂) levels in India during the study 

period from 1990 to 2020. The x-axis displays the years from 1990 to 2020, while the y-axis indicates 

the measured concentrations of nitrogen dioxide in micrograms per cubic meter (µg/m³). The data show 

that NO₂ levels were relatively low (under 20 µg/m³) in the early 1990s and in subsequent years after 

2015. However, significant increases were recorded in certain years in various Indian cities, likely due 

to urban development and/or heightened industrial activity as proposed by government agencies.  
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Figure-11 SPM measure on different states 

Figure 11 presents the levels of Suspended Particulate Matter (SPM) across Indian states. The x-axis 

designates the individual states, while the y-axis measures the quantities of SPM in µg/m³. The findings 

indicate that Uttar Pradesh, Delhi, and Uttarakhand have very high levels of SPM (i.e., 300 µg/m³), 

while states like Lakshadweep and the Andaman & Nicobar Islands have extremely low levels (i.e., < 

5 µg/m³). This reveals the existing disparity in pollution levels regionally. Both graphs use the same 

units of measurement, indicated in µg/m³. The general trend for both analyses was examined by 

identifying the high and low points to understand the differences in temporal shifts and regional 

distinctions. 

 

 

Figure-12 SPM Measure On Different Years 

Figure 12 illustrates changes in Suspended Particulate Matter (SPM) from 1990 to 2020. The 

SPM data is plotted on the y-axis (micrograms of SPM per cubic meter, µg/m³) and the year is 

shown on the x-axis. Overall changes to SPM data were minimal and typically exceeded 120 

µg/m³. SPM was moderately acceptable at the beginning (1990) at around 225 µg/m³, declining 

to around 150 µg/m³, with the late 1990s being the high point. While there were subtle changes 

at seasonal and monthly intervals, this exemplifies that pollution sources remained fairly stable, 

indicating a potential lack of effort or ineffectiveness in reducing or eliminating pollution 

sources. 

 

Figure-13: Date-Wise Analysis Of SO2 

Fig. 13 illustrates SO₂ levels over time using consistent measurement units. SO₂ levels from 

1989 to 2003 ranged between 35 and 15 µg/m³, indicating a moderate pollution level. After 
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2004, SO₂ levels drifted below 15 µg/m³ and remained relatively unchanged. This standard 

deviation may result from government restrictions and changes in industries. The decline in 

SO₂ is certainly significant (non-causal) and is supported by evidence indicating less year-to-

year variation after 2003. Both figures highlight a long-term perspective on pollution 

behaviors, demonstrating that the forecasting model appropriately fits stable patterns over time. 

 

Figure-14 Year End Analysis Of SO2 Ratio In Air 

 

Figure-15: SO2  Actual Vs Forecast Result  
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Figure-16: Prediction Result Of Proposed Model  

Figure 14 illustrates how SO₂ levels changed at the end of the year from 1995 to 2020. In 1995, SO₂ 

levels started above 25 µg/m³ and steadily declined to about 10 µg/m³ by the end of 2020, indicating 

improved air quality. Figure 15 displays the actual SO₂ values plotted alongside the CNN-LSTM 

predicted values. The red line represents the predicted values alongside the actual values, while the blue 

line shows the actual values. Overall, the predicted SO₂ values (red line) closely match the actual values 

(blue line) and, for the most part, fluctuated between 8 and 12 µg/m³ from 2009 to 2020. Figure 16 

presents the yearly predicted SO₂ values, clearly indicating that the predicted SO₂ levels have been 

declining since 2014, remaining below 10 µg/m³. This demonstrates that the model effectively predicted 

long-term trend changes and consistently produced very low error rates that correlated well with other 

accuracy measures, such as low RMSE. 

 

Figure-17: Training and Validation Accuracy  

Figure 17 represents the CNN-LSTM model training versus validation accuracy over 100 epochs. The 

green line shows the training accuracy, which slowly increased and stabilized around 98%, indicating 

that the model learns the training data well. The purple line represents the validation accuracy, which 

also consistently improves and reaches 93%, indicating that the new data are generalized well. The 

similar trend between the two curves indicates that the model maintains consistent performance and 

does not overfit during the training and validation phases. 
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Figure-18: Training and Validation Loss  

Figure 18 illustrates how the training and validation loss evolved over the 100 epochs for the CNN-

LSTM model. Initially, both losses decreased during the first 50 epochs, indicating successful learning. 

After about 50 epochs, the validation loss began to show some separation from the training loss, hinting 

at overfitting. This also demonstrates a good application of strategies suggested by common validation 

loss versus epoch plots, such as dropout and early stopping, since overfitting would lead to a loss of 

performance on unseen data. Overall, the trends observed in the figure illustrate that the model was 

learning effectively and remained stable during training. 

Table 5: Performance Metrics 

 

Table-5 provides details such as the mean, minimum, maximum, and standard deviation values 

for the main input features of the air quality dataset prior to normalization. These values 

illustrate how much the original data deviates from the mean. For instance, PM2.5 levels range 

from 12.0 to 345.0 µg/m³, with an average of 67.5. The possible PM2.5 levels reflect a variety 

of pollution types. Additionally, values for gases such as NO₂, SO₂, and O₃ are included in the 

summary, as their ranges vary in both directions, consistent with areas populated by cities and 

heavy industry. Climate-related features influencing the transportation of pollutants, like 
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temperature, humidity, and wind speed, are also mentioned. Understanding the characteristics 

of the input dataset is justified through this summary, as the model must normalize the input 

data before using it in deep learning models.  

Table-6. Proposed model comparison 

 

All the tests are conducted under identical conditions and with random seeds over all the 

models. From Table-6, it is noticed that the proposed CNN-LSTM model performed better than 

others. And the model obtained all performance metrics with a slight difference, such as 

p<0.05, indicating that the proposed model provides a superior performance. The obtained t-

test values from the experiment for the proposed CNN-LSTM model are compared with similar 

models like CNN, LSTM, and BiLSTM in terms of various evaluation metrics, such as 

accuracy, precision, recall, F-1 score, and specificity. The mean value calculated for the 10 

experimental executions with appropriate p-values, like 𝛼 = 0.05. Table-6 shows the 

statistically significant enhancements ( 𝑝 < 0.05 ) are represented with an asterisk (*) symbol. 

 

  

Figure 19. RMSE Score  

0

5

10

15

20

CNN-LSTM LSTM [27] CNN [28] RF [29] SVM [30]

R
M

SE
 

Models 

RMSE Comparison Result 



 

 

Figure 19 shows that the RMSE value obtained from the experiment validates the predictive 

models for forecasting air pollutant concentration. With a low RMSE, the CNN-LSTM model 

achieves the best performance, followed by LSTM at about 10.2 and CNN at about 12.0. The 

performance of the conventional ML models is poor, with Random Forest (RF) displaying an 

RMSE of approximately 15.4, while SVM shows the maximum error at about 18.7. These 

results demonstrate that the proposed DL-based hybrid CNN-LSTM model attained maximum 

accuracy in forecasting pollutant levels. 

 

Figure 20. MAE Score 

Figure 20 illustrates the accurate prediction (in percentage) of the five models used for 

forecasting air pollutant concentrations. The CNN-LSTM model achieves the highest accuracy 

at approximately 93%, followed by LSTM at about 90% and CNN at around 6%. The 

traditional ML model shows the lowest performance, with Random Forest (RF) at 7% and 

SVM having a minimum accuracy of 72%. The experimental results indicate the superior 

performance of the DL model and the hybrid CNN-LSTM in accurately capturing complex 

patterns to predict air pollutants. 

 

Figure 21. Accuracy Comparison 

Figure 21 shows the accuracy comparison of the five models used for forecasting air pollutant 

concentrations. This figure depicts five different models and their prediction accuracies, which 

are evaluated as a percentage. It demonstrates that the proposed hybrid CNN-LSTM model 

achieves a higher accuracy rate of 93%. The second-highest accuracy is achieved by the LSTM 

model, with an accuracy of 90%. Meanwhile, the CNN model attains an accuracy rate of 86%. 

However, the RF model only achieves 78%, and the SVM model has the lowest accuracy rate 

at 72%. The prediction results indicate that deep learning models, particularly the hybrid CNN-

LSTM model, perform significantly better than the other learning models in predicting 

pollutants. 
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Figure 22. Training Time Comparison 

Figure 22 compares the time required to train all the models for air pollutant concentration 

prediction, measured in seconds (s). Among the models assessed, the CNN-LSTM model takes 

the longest to train, requiring approximately 120 seconds. In contrast, the LSTM model takes 

only 100 seconds, and the CNN model requires just 80 seconds to complete training. 

Meanwhile, the traditional ML models demonstrate better interpretability with shorter training 

times; the RF model takes just 45 seconds, followed by the SVM, which requires nearly 30 

seconds for training.   

The overall findings indicate that the SVM trains faster than the other models. However, earlier 

sections of this text advocate for implementing a more complex model (CNN-LSTM), where 

the trade-offs in speed are outweighed mainly by accuracy. The SVM was trained for about 30 

seconds but had a lower accuracy of around 72%, as shown in Figure 19. In contrast, the CNN-

LSTM was trained for approximately 120 seconds but achieved the highest accuracy of 93% 

among the models, along with the lowest RMSE and MAE. This demonstrates a greater ability 

to identify complex features in air quality data over time and space as it processes the 

underlying information. The SVM encounters the inherent limitations of a simple learning 

method, as it does not adequately handle time-series data with numerous variables and fails to 

capture significant variation over time and space, both of which are essential characteristics in 

predicting environmental outcomes. Therefore, although the training time is longer, the CNN-

LSTM is better suited for predicting actual air pollution values. 
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                          Figure 23. global and government air quality monitoring 

The global and local governments implicitly imply the necessity of air quality monitoring to 

save people by predicting the severity level. Though various air monitoring and prediction 

systems have been traditionally developed, the severity level of air pollution remains 

uncontrolled. The government has introduced various schemes and advanced real-time 

monitoring and control techniques to address this issue. In this context, the global real-time 

AQI ratio is analyzed and graphically displayed on the https://www.aqi.in/in/dashboard 

website. For example, India's AQI level in the past seven days is examined. The result is shown 

in Figure-23, which illustrates India's Air Quality Index (AQI) ratio from May 8 to 14, 2025. 

During these seven days, the AQI level fluctuated between a low of 86 on May 9 and a peak 

of 115 on May 10. On the other days, the general AQI ratio was recorded between 90 and 110, 

indicating moderate air quality during this period. Through this monitoring result, the 

government and public can make the proper decisions on controlling air pollution. 

 

Figure-24 Heatmap  



 

 

The correlation map of the predicted errors among air pollutants was obtained using an error 

correlation heatmap. Figure 24 shows that PM10 and CO₂ have the highest observed correlation 

of 0.27, which is the strongest correlation and suggests that these two pollutants have similar 

trends in prediction error, likely because they share common sources like combustion. There is 

also a moderate correlation between PM2.5 and CO₂ (0.18) and between PM10 and CO₂ with 

a correlation of 0.077, indicating partial co-dependence regarding errors in forecasting. In 

contrast, there is a negative correlation (-0.15) between NO₂ and PM10, suggesting that they 

do not behave similarly to the previous correlations. The remaining correlations, including O₃ 

with NO₂ (0.014) and SO₂ (0.037), showed very low correlation rates, indicating that the 

predictions are independent. This discussion highlights the model's deficiencies across all 

pollutants and where it performs well.      

Deploying the proposed model with a real-time IoT system 

The use of the proposed CNN-LSTM deep learning model in real-time IoT systems presents 

challenging computing tasks due to its complexity. While the CNN component requires 

substantial GPU support for effective convolutional implementations and for extracting spatial 

features from rich air quality data, the LSTM part must handle sequential data with memory 

representation constraints to learn long-term trends over time. Since IoT operates under strict 

limitations regarding latency and power in real-time applications, employing techniques such 

as edge computing and model tuning proves to be invaluable strategies. For instance, creating 

lighter versions of CNN-LSTM through model pruning, quantization, and knowledge 

distillation are effective methods for alleviating model computing constraints when applied to 

air quality prediction tasks without significant accuracy loss. Additionally, deploying the 

model on edge devices with smaller GPUs/TPUs facilitates rapid processing near the data 

collection point, ensuring lower latencies. Federated learning also enables multiple edge 

devices to train the model without the need to aggregate the entire dataset in one location, 

which aids in scaling and enhances data protection. Overall, these techniques provide viable 

pathways for implementing deep learning models to predict air quality in smart cities, 

facilitating 

Conclusion 

 A DL-based air quality prediction was proposed in this paper to analyze and predict the 

air pollution level in India. The integrated hybrid CNN-LSTM model effectively processes 

real-time air pollution data gathered from several sources, such as IoT-enabled networks, 

satellite data, and sensor-based monitoring systems. The proposed model is demonstrated, and 

results show that this proposed model approach offers high accuracy and good predictive 

performance compared with existing ML models. Based on this paper, some essential features 

are found: this hybrid integrated CNN-LSTM model enhances the pollution level prediction 

accuracy, specifically for pollutants like PM2.5, NO₂, and SO₂. This proposed model surpasses 

the existing model by optimizing data preprocessing and effectively managing the missing 

values. In 2003, SO₂ levels decreased, while NO₂ and particulate matter (SPM) have changed 

over the years, and are still emphasized by the air pollutant data. This result represents that 

real-time monitoring and predictive analytics are essential in pollution control strategies, early 

warning systems, and policy-making decisions. The effectiveness of DL-based models is 

emphasized by this paper, which authorities utilize to minimize health risks, combined with 

poor air quality, through the installation of proactive pollution control measures.  

In general, the estimated results of the proposed CNN-LSTM model are pretty good. 

However, it can be improved further. Thus, the model integration with live IoT sensors and 

edge computing would facilitate real-time air quality monitoring and response. It also enhances 



 

 

the data granularity by deploying low-cost sensors within the urban and rural environments. It 

needs additional pollutants and meteorological factors. The CO, O₃, and NH₃ should be viewed 

as other pollutants besides several meteorological factors which includes temperature, 

humidity, and wind speed, which play an essential role in improving the model's efficiency. 

Additionally, using XAI techniques for the model will enhance the interpretability of the 

prediction made by the model to find out the causes of pollution, so that policymakers and 

environmental specialists can deal with the causes. This can also increase reliability by cross-

validating predictions with other satellite-based data such as MODIS, OMI, and Sentinel 5P. 

To improve the data privacy and support training, it uses the FL model at multiple locations 

using the distributed learning technique. Last, one can discuss the model's applicability to smart 

cities, developing a targeted policy for different regions, and using immediate pollution 

warnings and dynamic traffic management to reduce emission levels. By identifying these 

challenges, future research can help develop a solid and sustainable, intelligent air quality 

monitoring system, which in turn would help enhance environmental sustainability and 

population health. 
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