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Abstract

Since 2012, China has implemented a series of carbon
trading pilot programs across different regions. However,
the impact of carbon trading policies on green innovation
has not yet been fully discussed. This study utilizes nine-
year panel data from 31 provinces and employs the
Difference-in-Differences (DID) method to examine the
differential effects of carbon trading policies on green
innovation by categorizing green patents into six
subsectors. The findings reveal substantial variations in
policy impacts across different green innovation
subsectors. Institutional factors emerge as crucial
determinants in the influence mechanism. Specifically,
carbon trading policies exhibit a significantly positive
impact on green innovation when institutional innovation
is incorporated; however, this positive effect is
substantially diminished when institutional innovation
factors are excluded and the focus shifts solely to pure
green technology innovation.

Keywords: carbon trading, green innovation, institutional
innovation, technology innovation

1. Introduction

Controlling anthropogenic climate change driven by fossil
fuel consumption while balancing emissions mitigation
with economic growth constitutes one of the most critical
global policy challenges (Acemoglu et al. 2012). Effective
climate policies must therefore simultaneously achieve
decarbonization objectives and maintain economic
vitality. To minimize growth disruptions, market-based

mechanisms like carbon trading have emerged as
prevalent policy instruments in climate governance.
Currently operational in the European Union, New
Zealand, China, South Korea, and other areas, carbon
markets now regulate approximately 17% of global
emissions!. These systems offer distinct advantages: By
establishing market-driven trading rules, they enable
enterprises to optimize emission reduction strategies
through cost-benefit analysis. When abatement costs
exceed carbon credit prices, firms may purchase
allowances, while entities with lower mitigation costs can
profit from selling excess reductions. This theoretically
facilitates optimal resource allocation and cost-effective
emissions control under capped pollution levels. However,
this  idealized market model faces practical
implementation challenges. Transaction costs in carbon
trading systems prove substantially higher than
anticipated, while the administrative expenses required to
establish and maintain market infrastructure often exceed
those of conventional regulatory approaches.

As one of the world’s largest carbon emittersz, China has
implemented comprehensive measures to regulate its CO,
emissions, with carbon emission trading serving as a
particularly significant policy instrument. Eight pilot
emissions trading systems (ETS) have been established
across major Chinese cities and provinces: Beijing, Tianjin,
Shanghai, Chongging, Hubei, Guangdong, Fujian and
Shenzhen. Given the substantial variations in industrial
structures among these pilot regions, each has developed
distinct carbon trading mechanisms tailored to local
conditions.

What impacts do carbon trading policies generate for
enterprises and society? The Porter Hypothesis posits that
properly designed environmental regulations can
stimulate innovation. Consequently, innovation effects

LICAP. Emissions Trading Worldwide Status Report 2023, 2023.
https://icapcarbonaction.com/system/files/document/ICAP%20E
missions%20Trading%20Worldwide%202023%20Status%20Rep
ort 0.pdf

2 World Bank. Word Bank Open Data,2023.
https://data.worldbank.org.cn/
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have emerged as a crucial metric for evaluating
environmental policy effectiveness (Liu and Wang, 2017).
Innovation can be categorized into green innovation and
conventional innovation, with green innovation
representing the essential pathway for addressing
environmental challenges and achieving sustainable
development. As a cornerstone environmental policy in
China, understanding carbon trading’s influence on green
innovation is therefore paramount. Investigating this
relationship enables us to: (1) assess whether carbon
trading aligns with sustainable development principles,
and (2) ensure its stimulative effects on clean
technologies are properly acknowledged, rather than
being overshadowed by potential crowding-out effects on
conventional innovations.

To better understand the relationship between carbon
trading and green innovation, this study sets out to
examine the impact of carbon trading on green
innovation. Based on provincial-level panel data from
China and employing the DID methodology, the research
focuses on addressing two core questions: (1) whether
China’s carbon trading pilot policies positively influence
green innovation, and the magnitude of such effects; (2)
how these impacts vary across different green innovation
sectors, identifying which subsectors demonstrate more
pronounced responses. The findings provide theoretical
foundations for enhancing carbon trading mechanisms.

2. Literature review

Research on carbon trading can be divided into three
general categories. The first category examines the
scheme itself, such as studies conducted by Jiang et al.
(2016) and Munnings et al. (2016). The most important
uncertain variable in a carbon trading scheme is the
carbon price, meaning that research on carbon prices is
relatively extensive, including studies by Chevallier (2011)
and Fan and Todorova (2017). The second category
investigates antecedent variables of the schemes and
carbon prices, i.e., what causes fluctuations in carbon
prices; for example, research by Alberola et al. (2008). The
third category explores consequence variables of the
scheme and carbon prices, namely, what social and
economic effects are brought about by carbon trading
schemes. The topic of this paper belongs to the third
category. Scholars have conducted substantial relevant
research in this category. For example, Cong and Wei
(2010) established an agent-based model to study the
potential impact of introducing CET (Carbon Emission
Trading) on China’s power sector and discussed the
impact of different allowance allocation options. Wu et al.
(2016) used a CGE model to assess the economic impact
of ETS policies in Shanghai. Cao et al. (2017) studied the
impact of carbon trading policies and low-carbon subsidy
policies on manufacturers’ production and carbon
emission reduction levels.

The research on technology innovation can also be
divided into these three categories: research on
technology innovation itself, such as Acemoglu (2002);
research on antecedent variables of technology
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innovation; and research on the consequence variables of
technology innovation. The topic of this paper belongs to
the second category. Scholars have done a lot of relevant
research on this category. For example, Shu et al. (2016)
studied whether green management in firms operating in
China fosters radical product innovation; Chakraborty and
Chatterjee (2017) studied the indirect impact of
environmental regulation on innovation activities of
upstream firms in India; and El-Kassar and Singh (2019)
developed and tested a holistic model that depicts and
examines the relationships between green innovation and
its drivers.

As for the relationship between carbon trading and
technology innovation, there are also many studies
focusing on this topic. Lin et al. (2017) estimated the
potential influence of China’s future nationwide carbon
market on clean technology innovation. Because the
national trading market had not been built yet, this paper
used energy prices as a shadow price of carbon prices. The
results indicate that the redirection effect overwhelms the
crowding-out effect. Zhu et al. (2019) employed firm-level
data and a quasi-experimental design to study how
carbon trading affects low-carbon innovation in China,
finding that China’s pilot programs increased low-carbon
innovation among ETS firms by 5-10% without crowding
out other technological innovations, and this increase
accounted for approximately 1% of the growth in regional
low-carbon patents. Wang and Hao (2024) used panel
data from 2007 to 2017 for 30 Chinese provinces and
found that the carbon-trading policy significantly
contributed to the coordinated advancement of green
technologies across provinces while exhibiting a local
siphoning effect. Zhao et al. (2024) based on panel data
from 284 Chinese cities, examine the impacts of ETS on
green innovation and find that ETS can significantly
promote green innovation. In addition to examining the
impact of carbon trading on regional green innovation,
some scholars have also explored its effects on corporate
green innovation. For example, Feng et al. (2017) used
carbon emissions trading pilot policy as a quasi-natural
experiment and found that the implementation of carbon
emissions trading policies significantly reduced enterprise
innovation in general, while promoting green
technological innovation and inhibiting non-green
technological innovation. Wang i (2024) explored the
mechanisms of carbon trading in green innovation
efficiency using a sample of A-share listed manufacturing
enterprises in China, finding that carbon trading can
significantly promote the green innovation efficiency of
manufacturing enterprises. Jia et al. (2024) used DID to
investigate the effect of carbon emission trading on green
technology innovation in energy enterprises, suggesting
that carbon emission trading has a positive impact on
green technology innovation in energy enterprises. Hou
(2024) using A-share listed firms in Shanghai and
Shenzhen, analyzes the impact of China’s carbon trading
policy on green innovation and finds that the policy
stimulates green innovation.The literature review shows
that empirical evidence on the impact of carbon trading
on green technology innovation is insufficient. There is no
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further subdivision of green innovation to explore the
impact of carbon trading on different subsectors of green
technology innovation. Green innovation involves
different subsectors. By studying the impact of carbon
trading on different subsectors, we can better understand
its heterogeneous effects on green innovation across
subsectors. This paper will make some attempts in this
aspect.

3. Theoretical model

“Institutions play a more fundamental role in society and
are the primary determinants of long-term economic
performance” (North, 1990). Drawing upon institutional
economics theory, we recognize institutions as critical
factors influencing economic development. Therefore, we
incorporate institutional factors into the economic growth
equation(Equation 1):

Y =F(K,L,I) (1)

Furthermore, Write the above formula as Cobb Douglas
production function(Equation 2):

Y = AK?IP 17 (2)

Take logarithm on both sides of the equation(Equation3):
LnY =Ln(A)+aLn(K)+ BLn(L)+ yLn(I) (3)

Put Ln(A) on the left side of the equation(Equation 4):
Ln(A4)=LnY —aLn(K)- BLn(L)—-yLn(I) (4)

In  economic development research, Ln(A) is
conventionally employed to measure technological
progress factors. Since technological progress stems from
innovation, the above formulation suggests that
institutional factors may exert significant influence on
innovation outcomes. Given that patent counts serve as a
key metric for innovation, this study adopts green patent
applications as a proxy for green innovation.
Consequently, we posit that institutional arrangements
targeting green development may significantly affect
green patent outputs. Currently, China’s primary
institutional mechanism for green development is its
carbon trading scheme. Therefore, this paper investigates
the scheme’s impact on green innovation. Building on the
preceding analysis, we formulate the following
hypotheses:

Hypothesis 1: The carbon trading scheme positively
promotes regional green innovation.

Hypothesis 2: The scheme’s promotional effects exhibit
significant variation across different green innovation
subsectors.

4. Model specification and variable declaration

4.1. model specification

This paper intends to employ the DID method to assess
the net effects of carbon trading on green innovation.
Treating the implementation of carbon trading as a quasi-
natural experiment, the study defines a dummy variable
for “whether a region is a carbon trading pilot” to divide

the sample into treatment and control groups, and
another dummy variable for “before and after the
operation of the carbon market” to categorize the sample
into before and after carbon market operation. By
constructing an interaction term between these two
dummy variables, the paper evaluates the net impact of
the carbon market’s operation. The baseline DID model is
specified in Equation (5).

Yy =Po+ BT+ b + BTE + iy (5)

Here, Ti is the grouping dummy variable. If individual i
belongs to a carbon emissions trading pilot, it is assigned
to the treatment group with Ti=1; otherwise, it is assigned
to the control group with T=0. P: is the policy
implementation dummy variable, taking the value 0
before the policy is enacted and 1 afterward. The
interaction term TiP: combines the grouping and policy
implementation dummy variables, and its coefficient fs
captures the net effect of the policy.

Among China’s provincial-level administrative units, seven
provinces and municipalities launched carbon markets
starting in 2013, providing a suitable quasi-natural
experiment for applying DID. Specifically, seven provinces
and cities had established carbon trading pilots, forming
the treatment group, while the remaining provinces
without carbon trading policies served as the control
group. The carbon markets in these pilot regions began
operating at different times: Beijing, Shanghai, Tianjin,
and Guangdong started in 2013, Chongging and Hubei in
2014, and Fujian in 2016. Accordingly, we construct a
dummy variable CT, which takes the value 1 for pilot
regions in the years when their carbon markets were
operational and 0 otherwise. Based on this, we establish a
two-way fixed effects econometric model (Eq. 6) to
implement the DID approach and examine the net effects
of carbon emissions trading on the outcome variables.

Y, =0y +oqCTy + BX; + 9 + 1 + & (6)

Here, Yir denotes the dependent variable, for this study is
the number of green patents. The subscripts I and ¢
represent the i-th province/municipality and the t-th year,
respectively. 3t captures time-fixed effects, pirepresents
province-level individual fixed effects, and Xi: denotes
other control variables. In the model above, the estimated
coefficient au is the primary focus of this study, as it
measures the net impact of carbon emissions trading on
dependent variable.

4.2. variable declaration

This study utilizes panel data from 31 provincial-level
administrative regions (including municipalities and
autonomous regions) in mainland China for the period
2009-2017. The variable specifications are presented as
follows:

Dependent Variable: The dependent variable is green
patent output. We identify green patents using the
International Patent Classification (IPC) Green Inventory
developed by the World Intellectual Property Organization
(WIPO). The patent data were collected from the PatSnap



database (https://www.zhihuiya.com/) between October
and December 2019. Considering the typical 18-26
months publication lag for patent data (Zhu et al. 2019),
our dataset covers patents granted through 2017.

The WIPO IPC Green Inventory categorizes green
technologies into seven subsectors: Alternative energy
production (ae), Transportation (tr), Energy conservation
(ecs), Waste management (wm), Administrative
regulatory or design aspects (ar), Nuclear power
generation (npg). We aggregate patent counts for each
subsector and calculate total green patents (gp) to
examine both the overall and subsector-specific effects of
carbon trading on green innovation. As China’s carbon
trading pilots currently exclude the primary industry, our
dataset accordingly excludes patents classified under the
agriculture/forestry sector. For the remaining six
subsectors, we add a value of 1 to all patent counts before
logarithmic transformation to address zero values.
Regarding patent classifications spanning ranges (e.g.,
H01M4/86-4/98), we collect data at the subgroup level or
higher due to the impracticality of manual collection for
all individual IPC codes within these ranges.

Explanatory variable: The explanatory variable is a binary
indicator representing the implementation status of
carbon trading schemes. It takes the value of 1 for regions
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implemented, and 0 otherwise. The implementation data
were obtained from official policy documents issued by
the seven pilot regional governments in China.

Control variables: include gross domestic product (GDP),
R&D funds of industrial enterprises above designated size
(RD), energy industry investment (El), local fiscal
expenditure for environmental protection (GE), and coke
production (CP). GDP represents the level of economic
development of a region and is an important variable that
affects the level of science, technology, and innovation,
and thus the level of green innovation in a region;
generally, the higher the GDP, the higher the level of
green innovation. The GDP data used in this paper are real
values adjusted to 2005 constant prices. R&D expenditure
of industrial enterprises above designated size is used to
measure the innovation capital investment of key
enterprises in the province, and generally this variable is
proportional to the level of green innovation. Energy
industry investment measures the capital investment used
for fossil energy development and production, which has
a crowding-out effect on the green development of
energy and is inversely proportional to green innovation.
Local fiscal expenditure on environmental protection
measures a regional government’s support for
environmental protection and is directly proportional to
green innovation.

and vyears where the carbon trading policy was
Table 1. Result of the descriptive statistics of variables.
variables Mean Median Maximum Minimum Std. Dev.
GP 3793.54 1888.50 31864.00 25.00 5385.91
AE 430.83 261.00 3419.00 5.00 546.39
TR 179.03 142.50 799.00 1.00 183.34
ECS 1855.02 991.00 15639.00 7.00 2709.67
WM 245.57 133.00 1703.00 5.00 309.61
AR 1030.16 365.50 12528.00 1.00 1793.07
NPG 58.93 17.50 381.00 1.00 91.80
RD 3579610.00 1970481.00 16762749.00 77940.00 4444303.00
GDP 16 681.98 12 748.05 69 075.06 996.10 13 588.80
El 1110.56 976.11 2998.27 232.10 607.33
GE 128.87 111.75 458.44 32.24 73.00
CcP 1780.11 1278.19 6677.74 133.00 1634.17

Based on the resource curse hypothesis, this paper adds
coke production as a control variable. It should be noted
that this curse may not be reflected in GDP, because
resource-rich regions can obtain higher GDP and per capita
income by selling resources, but the number of green
patents related to sustainable development and
technological innovation is likely to be affected, and the
future development of these regions may be constrained.
Energy production rather than reserves or extraction was
chosen to characterize the resource curse hypothesis
because changes in reserves are more random and sudden,
while extraction data are not easily available. Coke
production was chosen over petrol, diesel, natural gas, etc.,
for energy production because China’s coal resources can
be developed by each province, while oil and gas resources
are developed centrally. The data for the control variables
are all from the official website of the National Bureau of

Statistics of China (http://data.stats.gov.cn/). This section
uses panel data from 2011 to 2017 for 29 provincial
administrative units in mainland China (excluding Tibet and
Hainan), and Table 1 presents descriptive statistics for all
the data used in this section.

5. Result

The estimated results of the equations are reported in
Table 2. It can be seen that for the overall number of
green patents, the impact of carbon trading on it is
significantly positive at the 1% significance level, the
overall equation passes the F-test, with an adjusted R-
squared of 87.47%, indicating that the operation of the
carbon market has a significantly positive effect on
enhancing regional green innovation levels. This
conclusion is consistent with Calel and Dechezlepretre
(2016) and Feng et al. (2017).


https://www.zhihuiya.com/
http://data.stats.gov.cn/
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Table 2. The estimation results.

Ln(gp)(1) Ln(gp)(2) Ln(gp)(3)
ct 0.2052***(3.9301)
parallel -0.0349(-1.0085)
ct-advance 2 0.0695(1.1808)
Ln(gdp) 0.3767***(9.5117) 0.3244**%(8.3713) 0.3408***(8.9453)
Ln(rd) 0.5918***(13.6409) 0.6469%**(15.1169) 0.6193***(17.4954)
Ln(ei) -0.1456***(-4.8455) -0.1685***(-5.5082) -0.1572*%*(-4.4453)
Ln(ge) 0.5079***(7.3193) 0.5335%**(7.8792) 0.5405***(8.2206)
Ln(cp) -0.1560***(-25.0593) -0.1735%*%(-18.3224) -0.1622***(-20.7520)
const -4.8880***(-7.4865) -4.9973*%*(-7.4117) -4.9624***(-7.5520)
Time effect Control Control Control
Regional effect Control Control Control
N 203 203 203
Adjusted R2 0.8747 0.8728 0.8730
Prob(F-statistic) 0.0000 0.0000 0.0000

Note: *, ** *** represent significance levels of 10%, 5%, and 1%, respectively; the square brackets are t statistics

An essential assumption in employing the DID approach to
assess the impact of carbon trading on green innovation is
that, in the absence of carbon trading intervention, the
development trends of green innovation in both
treatment and control groups would remain consistent
without systematic divergence over time—that is, the
trends should exhibit parallel patterns between the two
groups. The parallel trend assumption test was performed
following the methodologies outlined in Zhou and Chen
(2005) and Liu and Zhao (2015). Specifically, we construct
a dummy variable parallel to indicate whether a
provincial-level administrative unit belongs to the
treatment group (assigned a value of 1, regardless of
whether carbon trading was implemented in a given year)
or the control group (assigned 0). By replacing CT with
parallel as the explanatory variable in the regression, we
examine whether the grouping itself (rather than the
policy) significantly affects green innovation.

If parallel proves statistically significant, it would suggest
that the classification into treatment and control groups
inherently influences green innovation, violating the
parallel trend assumption and undermining the credibility
of the original DID estimates. Conversely, if parallel is
statistically insignificant, it confirms no systematic pre-
existing differences between the groups, validating the
parallel trend assumption for the baseline model. The
results of this test are presented in Column 3 of Table 2.
The empirical findings show that parallel is statistically
insignificant, confirming that the original DID specification
satisfies the parallel trend hypothesis.

To further verify the robustness of the estimation results,
we conduct a counterfactual test by altering the policy
implementation timeline, following methodologies
employed by Zhou and Chen (2005) and Liu and Zhao
(2015). Changes in green innovation might stem from
other policy interventions or random factors beyond
carbon trading policies. To rule out such possibilities, we
uniformly advance the carbon trading launch year by two

years for all pilot regions, creating a counterfactual
dummy variable labeled ct-advance2. This modified
variable replaces the original ct in our baseline regression.
If ct-advance2 shows a statistically significant positive
effect on green innovation, it would suggest that the
observed changes likely originated from factors other than
carbon trading implementation. Conversely, if ct-
advance2 proves insignificant, it confirms that the
changes in green innovation are indeed attributable to the
carbon trading policy rather than other random factors.
The results of this counterfactual test are presented in
Column 4 of Table 2. Empirical findings demonstrate that
ct-advance? is statistically insignificant, indicating that our
estimation results successfully pass the counterfactual
test and maintain robust validity.

From the empirical results above, it is evident that the
implementation of carbon trading has a significant
positive driving effect on green innovation development.
However, does carbon trading exert a substantial positive
impact on every category of green innovation? How do its
effects differ across subcategories of green innovation?
This section will further discuss these issues.

Using the six subcategories of the IPC Green Inventory —
alternative energy production (ae), transportation (tr),
energy conservation (ecs), waste management (wm),
administrative regulation or design (ar), and nuclear
power generation (npg)—as dependent variables, we
estimate Equation (6). Additionally, considering that
administrative regulation or design falls under the
category of institutional innovation, while the remaining
five subcategories belong to technological innovation,
we also estimate an equation with the aggregate of the
five subcategories (excluding administrative regulation
or design) as the dependent variable. This allows us to
examine the differential effects of carbon trading on
green institutional innovation versus green technological
innovation. The estimation results are presented in
Table 3.
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Table 3. Regression Results with Green Patent Subcategories as Dependent Variables
Ln(ae) Ln(tr) Ln(ecs) Ln(wm) Ln(ar) Ln(npg) Ln(nar)
ct 0.0427 -0.2782%** 0.1563** -0.0924 0.5466*** 0.3948*** 0.0812*
1.2871 -3.1104 2.5123 -1.0413 5.7103 2.6416 1.6547
Ln(gdp) 0.2838** 0.1806** 0.5348*** 0.1262** 0.4316*** 0.4704*** 0.3730***
2.1279 2.1093 9.4996 2.5238 3.3069 3.2444 9.4502
Ln(rd) 0.5459*** 0.7097*** 0.5861*** 0.6725*** 0.6357*** 0.4856*** 0.5887***
9.7803 16.2046 13.0213 15.4124 5.7815 3.5668 17.2575
Ln(ei) -0.0730%* -0.3205%** -0.1752%** -0.0771 -0.1128* -0.1533*** -0.1319%**
-2.5298 -3.7992 -6.2574 -0.9051 -1.7884 -3.0416 -4.2713
Ln(ge) 0.4205*** 0.9351*** 0.3038*** 0.3707*** 0.6875*** 0.6282*** 0.4164%***
6.3113 7.6137 4.9905 3.9305 3.6837 5.1397 8.6552
Ln(cp) -0.1071%** 0.0427 -0.1475%** -0.1722%** -0.2017*** -0.1808*** -0.1437%**
-8.8919 1.1982 -12.5742 -10.6582 -7.7321 -3.6798 -32.9304
const -5.7406*** -9.9561 *** -5.9826%** -5.9222%** -8.3869%** -9.2013*** -4.8098%***
-13.6074 -20.5201 -10.0004 -10.2415 -6.6857 -15.2378 -8.9128
Time effect Control Control Control Control Control Control Control
Regional Control Control Control Control Control Control Control
effect
N 203 203 203 203 203 203 203
A-R2 0.8163 0.7361 0.8746 0.7383 0.7737 0.6395 0.8897
F-prob 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: *, ** *** represent significance levels of 10%, 5%, and 1%, respectively; the square brackets are t statistics

The average number of patents in the alternative energy
production (ae) subcategory ranks third among the six
subcategories. As a pivotal technology in green energy
utilization, alternative energy production holds significant
importance for achieving sustainable development. The
estimation results for this subcategory as the dependent
variable are presented in the “In(ae)” column of Table 3.
Empirical results show that the coefficient of the carbon
trading implementation dummy variable fails to pass the
significance test when using this subcategory as the
dependent variable, indicating that carbon trading has no
statistically significant impact on patent activity in
alternative energy production. This may be because most
enterprises participating in carbon trading belong to
traditional energy industries with limited engagement in
renewable energy sectors, leading to fewer innovation
efforts directed toward alternative energy technologies.
The equation overall passes the F-test, with an adjusted
goodness-of-fit reaching 81.63%. All control variables
exhibit statistically significant coefficients, and their signs
align with prior theoretical expectations.

The average number of patents in the transportation (tr)
subcategory ranks fifth among the six subcategories. The
estimation results using this subcategory as the
dependent variable are presented in the “In(tr)” column
of Table 3. Empirical findings reveal that the coefficient of
the carbon trading implementation dummy variable is
negative and passes the significance test at the 1% level,
indicating that carbon trading exerts a negative impact on
green innovation in the transportation sector. This may be
attributed to the fact that, except for Shanghai, Shenzhen,
and Beijing, China’s carbon trading pilot programs do not
cover the transportation sector, potentially creating a
crowding-out effect on transportation-related green

innovation. The equation overall passes the F-test, with an
adjusted goodness-of-fit of 73.61%. All control variables
except coke production show statistically significant
coefficients, and their signs align with theoretical
expectations.

Under the context of limited breakthroughs in alternative
energy technologies, it is crucial to optimize existing
energy utilization. The energy conservation (ecs)
subcategory encapsulates such green innovation efforts,
with its average number of green patents ranking first
among the six subcategories. The estimation results using
this subcategory as the dependent variable are presented
in the “In(ecs)” column of Table 3. Empirical findings
demonstrate that the coefficient of the carbon trading
implementation dummy variable is positive and
statistically significant at the 5% level, indicating that
carbon trading significantly stimulates innovation
activities in energy conservation. However, the magnitude
of this effect is smaller than carbon trading’s overall
promoting impact on green innovation. The equation
passes the F-test with an adjusted goodness-of-fit of
87.46%. All control variables exhibit statistically significant
coefficients, and their signs align with theoretical
expectations.

The waste management (wm) subcategory focuses on the
recycling and utilization of waste materials. Given current
technological capabilities and energy reserves, waste
management remains a critical component of green
innovation, with its average number of patents ranking
fourth among the six subcategories. The estimation
results using this subcategory as the dependent variable
are presented in the “In(wm)” column of Table 3.
Empirical results indicate that the coefficient of the
carbon trading implementation dummy variable fails to
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pass the significance test when using this subcategory as
the dependent variable, suggesting that carbon trading
has no statistically significant effect on innovation
activities in waste management. The equation passes the
F-test with an adjusted goodness-of-fit of 73.83%. All
control variables except energy industry investment
exhibit statistically significant coefficients, and their signs
align with prior expectations.

The nuclear power generation (npg) subcategory
represents a critical opportunity for global energy
systems, particularly amid severe pollution from fossil
fuels, depleted hydropower resources, and the instability
of wind and solar energy. The advancement of nuclear
fusion technology may hold the key to a permanent
solution to energy challenges. Paradoxically, the average
number of patents in this subcategory ranks last among
the six, likely due to the high technological entry barriers
associated with nuclear research. The estimation results
using this subcategory as the dependent variable are
presented in the “In(npg)” column of Table 3. Empirical
findings reveal that the coefficient of the carbon trading
dummy variable is positive and statistically significant at
the 1% level, demonstrating that carbon trading
significantly promotes patent activity in nuclear power
generation. Notably, the magnitude of this positive effect
ranks second among all six subcategories and exceeds the
coefficient of carbon trading’s overall impact on total
green patents. The equation passes the F-test with an
adjusted goodness-of-fit of 63.95%. All control variables
exhibit statistically significant coefficients, and their signs
align with prior theoretical expectations.

The administrative regulation or design (ar) subcategory
falls under green institutional innovation, whereas the
aforementioned five subcategories belong to green
technological innovation. With the implementation of
carbon trading, patent applications in the administrative
regulation or design subcategory are inevitably amplified,
as carbon trading itself constitutes an institutional
framework for green development. Regions implementing
carbon trading inevitably witness extensive policy and
regulatory design efforts, leading to a substantial surge in
patents within this subcategory. The average number of
patents in the administrative regulation or design
subcategory ranks second among the six subcategories.
This remarkably high ranking for an institutional
innovation subcategory—distinct from technological
innovation—reflects, to some extent, the complexity of
China’s administrative system.

The estimation results using this subcategory as the
dependent variable are presented in the “In(ar)” column
of Table 3. Empirical results show that the coefficient of
the carbon trading dummy variable is positive and
statistically significant at the 1% level, with its magnitude
exceeding the coefficients of carbon trading’s effects on
the other five subcategories and overall green innovation.
This raises a critical question: If the primary positive
impact of carbon trading on green innovation stems from
its direct influence on institutional innovation closely tied
to its implementation, what is its true effect on

technological innovation when institutional innovation is
excluded?

To address this, we construct a new dependent variable
nar (representing green technological innovation) by
subtracting administrative regulation or design patents
from total green patents. Re-estimating the original
equation with nar yields results presented in the “In(nar)”
column of Table 3. The findings indicate that carbon
trading exerts a statistically significant positive effect on
green technological innovation at the 10% level. However,
this effect is far weaker compared to its impact on green
institutional innovation and overall green innovation.

Therefore, this paper answers the two hypotheses put
forward above. Carbon trading can indeed promote
regional green innovation, and its impacts vary across
different sectors of green innovation.

6. Conclusion

In this paper, carbon trading is added as a dummy variable
into the equation to explore the influencing factors of
green innovation. It is found that carbon trading has a
significant positive impact on green patent applications,
and this impact is different for each subsector that makes
up the green patent inventory. We also find that the
exclusion of green institutional innovations substantially
weakens carbon trading’s role in promoting green
innovation. This is a very important conclusion. In the
previous assessment of the impact of carbon trading, this
point was often been ignored: the green innovation
inventory contains the institutional innovation itself. After
removing institutional innovation, carbon trading
obviously can not effectively promote the development of
green technology innovation. Every new institutional
arrangement we have made for carbon trading is actually
strengthening the bubble that carbon trading can affect
green innovation. Furthermore, this study reveals that
carbon trading effectively promotes green innovation
within the covered industries, yet this stimulative effect
shows limited spillover to non-covered sectors.
Consequently, this study recommends expanding the
sectoral coverage of carbon trading, with priority given to
incorporating waste management and transportation
industries into the trading system at appropriate stages.

In the future, more attention should be paid to the impact
of carbon trading policies on sustainable development. In
the research process of this paper, there are still the
following points that can be improved or further explored:
1. The control variables in this paper include two variables
to verify the resource curse hypothesis - coal production
and coke reserves - which are examined in the overall
regression equation. This remains a meaningful and
valuable topic for follow-up research; 2. The carbon

trading scheme represents an elegant institutional
arrangement, but its role in promoting sustainable
development requires further examination. Could

alternative policies achieve better emission reduction
effects? Is the selection of this aesthetically appealing yet
potentially ineffective policy driven by political and
economic constraints? 3. Carbon trading policies



originated from the sulfur dioxide emission trading market
in the United States, which similarly assigned value to
previously worthless pollutant emission rights. Why has
the sulfur dioxide market been more successful? Is this
due to the availability of substitutes for sulfur dioxide,
lower treatment costs, or because the carbon market
involves too many industries?
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