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Graphical Abstract 

 

Abstract 

Floods caused by intense and unpredictable rainfall remain one of the most frequent and destructive 

natural disasters, particularly affecting the eastern regions of India. Accurate and real-time flood 

prediction is critical in minimizing the loss of life and property. While cloud computing offers a scalable 

and flexible infrastructure for environmental data processing, challenges such as service heterogeneity, 

latency issues, and Quality of Service (QoS) degradation often hinder its effectiveness. This research 

proposes a novel multi-agent-based hybrid optimization framework that leverages Ant Colony 



 

 

Optimization (ACO) and Particle Swarm Optimization (PSO) to address QoS limitations in cloud-based 

flood prediction systems. The innovation lies in integrating intelligent agents within a cloud platform, 

allowing dynamic interaction and coordination to handle user requests and data-driven flood prediction 

tasks optimally. An ablation study using real-world flood datasets validates the model's performance. 

The proposed hybrid ACO-PSO algorithm significantly improves prediction accuracy, reduces system 

latency, and reduces computational cost. It establishes its potential as an efficient solution for real-time, 

cloud-enabled flood monitoring and early warning systems. The proposed model gives an accuracy of 

94.7%, a latency of 1.1s, a precision of 94%, a recall of 95% and an F1-score of 94.5% respectively, 

compared to standard PSO and ACO. 

 

Keywords: Cloud computing; computational cost; flood prediction; Multi agent-based hybrid algorithm; 
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1. Introduction 

Cloud computing has become a powerful tool among researchers, offering cloud services for processing 

real-time technical applications. Within this context, ecological and environmental sciences receive 

considerable attention due to their dependence on highly accurate, real-time predictions. Among various 

natural disasters, floods are recognized as one of the most devastating events globally, primarily driven 

by rapid urbanization and intense rainfall. The consequences of flooding are often severe and irreversible, 

including loss of human life, destruction of public and private property, transportation disruptions, 

service interruptions, and contamination of water bodies. Therefore, it is imperative to develop reliable 

methods for early flood prediction. Integrating machine learning techniques with cloud computing 

platforms is increasingly addressing this challenge. In the past, most districts in Odisha have experienced 

recurrent flooding, resulting in significant loss of life and extensive property damage. The frequency and 

severity of such events are expected to escalate in the coming years due to the impacts of climatic 

variation. Numerous studies have evaluated Odisha's vulnerability to floods, consistently highlighting 

that many districts are frequently affected by floods of varying intensities. Given this alarming trend, 

there is an urgent need to minimize these losses through timely and accurate flood prediction. A hybrid 

approach has been proposed to address this challenge, offering improved precision and timeliness 

compared to earlier methods. The proposed technique approach leverages the combined strengths of 

feature selection and data classification techniques. The study presents a robust and automated 

methodology for early flood prediction, utilizing current environmental indicators and data-driven 

analysis. The proposed hybrid model significantly improves prediction performance by integrating 

various data mining classification algorithms with optimization-based feature selection techniques. 

Furthermore, the cloud computing platform ensures seamless handling of large and continually 



 

 

expanding datasets. Such advanced predictive models can be crucial in mitigating the devastating effects 

of floods, including loss of life and damage to public infrastructure and private property. 

 

Information technology, cloud computing, and software agents are separate but interdependent concepts. 

Agents play an essential role in cloud computing, contributing to automation, optimization, security, and 

overall efficiency by improving various aspects of the cloud environment. These agents respond to 

events (such as changes in consumer requirements) and have the ability to self-organize through means 

such as collaboration [10, 11], cooperation [12], coordination [13, 14], negotiation, and interaction. 

There may be insufficient knowledge regarding cloud service providers and inadequate capabilities (for 

instance, mapping consumers' needs to access cloud resources) [15]. This can be challenging during the 

service composition and delivery phases, affecting the QoS. Agent-based cloud computing techniques 

have been proposed to overcome these problems. Furthermore, agent-based techniques are efficient and 

effective in various usability domains. Still, they are not limited to assisting humans in supporting Grid 

and Cloud resource management [1, 2-6], processing natural language [15], and in day-to-day activities 

[7, 8, 9]. Agents are practical tools for automating Cloud service administration, coping with changing 

requests from users, and autonomous resource mapping, according to the claims made in [3-6]. Agent-

based cloud computing is the name given to this type of computing model. Cloud vendors typically work 

to improve the Quality of Service (QoS) for their various customers to encourage more people to 

embrace cloud computing. In cloud services, these aspects, including cost, security, throughput, 

accessibility, availability, and installation time, are frequently considered. Cloud computing, on the other 

hand, presents significant issues in terms of data security, balancing workloads, the allocation and 

scheduling of resources, and the consumption of electricity. In contrast, meta-heuristic techniques have 

proved more effective in solving many real-world optimization problems like scheduling [10, 11]. The 

integration of Spider Monkey Optimization (SMO) and Ant Colony Optimization (ACO) algorithms is 

used to improve the QoS parameters, but not all of them are considered [12]. The proposed research is 

formulating and presenting a hybrid optimization algorithm-based scheduling model using agents to 

minimize the QoS parameters such as prediction accuracy, system latency, and computational cost. This 

study presents an algorithm that optimizes the process of flood prediction. The core novelty of this study 

lies in the synergistic integration of Ant Colony Optimization (ACO) and Particle Swarm Optimization 

(PSO)—two nature-inspired metaheuristic algorithms to optimize Quality of Service (QoS) in a cloud-

based flood prediction environment. Using the proposed hybrid algorithms, an ablation study is done 

with flood data to measure multi-agent functionality in the cloud. As a summary of this paper:  

 

1. An extensive literature review has been conducted to gain knowledge about the difficulties faced by 

alternative task scheduling algorithms and strategies, and how this influences cloud efficiency. 



 

 

2. Floods are becoming more frequent and more severe, leading to the need for refined prediction 

systems that can handle vast amounts of dynamic environmental data. Cloud computing makes Real-

time data processing possible, and intelligent agents enhance task coordination and optimization 

effectiveness. Using a hybrid PSO-ASO algorithm, this paper presents a Multi-Agent System (MAS) 

architecture in which agents cooperate to maximize system performance and model accuracy. This 

algorithm improves the task scheduling performance based on flood data by addressing the drawbacks 

and issues encountered by various algorithms. The implementation of this algorithm is based on the 

understanding gained from the different works. The functionality of the proposed hybrid model is tested 

with a real-time flood application to measure the multi-agent functionality over a cloud environment.  

The research is organized as follows: Section 2 comprehensively evaluates diverse existing approaches. 

The methodology is drafted in section 3. The experimental findings are discussed in section 4, with the 

conclusion in section 5. 

 

2. Related Works 

 

Numerous research efforts have been dedicated to predicting floods, utilizing diverse machine-learning 

algorithms that have achieved commendable classification accuracies. The following section presents a 

comprehensive review of existing literature related to flood prediction using data mining techniques. 

Ramli et al. [7] applied a Neural Network Autoregressive Model to predict floods in Kuala Lumpur, 

achieving a maximum accuracy of 73.54%. The study also noted that exploring alternative modeling 

techniques could enhance prediction efficiency. Chau et al. [8] adopted two hybrid models: ANN based 

on Genetic Algorithm (ANN-GA) and Adaptive Network-based Fuzzy Inference System (ANFIS) for 

flood prediction in China’s Yangtze River. However, the ANFIS model was limited by its reliance on 

numerous parameters, while the ANN-GA approach was computationally intensive. This highlights the 

necessity for a hybrid model that minimizes parameter requirements and reduces computational load. 

Mojaddadi et al. [9] integrated the frequency proportion method with an SVM to predict flooding in 

Malaysia’s Damansara River, achieving an accuracy of 78.9%. Similarly, the author in [10] employed 

ANNs for flood forecasting, while the author in [12] utilized SVM for their flood prediction studies. 

These investigations underscore the growing significance of ML techniques in enhancing flood 

forecasting accuracy and efficiency. There has been an increasing requirement for cloud computing, 

which has led to the development of several approaches that aim to improve computing performance in 

the cloud. The task scheduling algorithm continues to be one of the most significant challenges the cloud 

computing environment must face. Most task scheduler approaches used in the past use virtual machine 

(VM) instances, which require considerable time to start up and use all available resources to carry out 

their work. The process that has been introduced makes use of the ANFIS and the BWO (Black Widow 



 

 

Optimization) algorithm to assign the appropriate virtual machine (VM) to every responsibility. The 

scheduling of resources is an essential objective to achieve the most efficient consumption of services 

in the cloud environment. The BWO method is advantageous in achieving the greatest possible outcome 

from the ANFIS approach. The approach that has been introduced uses the VMs operating on the servers 

that are part of the cloud platform to finish the task that the client has requested. The optimal scheduling 

method also allocates a virtual machine to each user request. A novel technique developed to enhance 

task assignment was MOWOS (Multi-Objective Workflow Optimization Strategy). It reduces the time 

required to complete the task and the cost of carrying it out. The method that has been presented is 

constructed in such a manner that it uses the task-segmentation approach to break down complex jobs 

into smaller, manageable subtasks, which ultimately results in a reduction in the amount of time that is 

required for scheduling. The results of the simulation that were obtained indicate that the method that 

was introduced can be utilized effectively in the process of allocating virtual machines and their 

deployment. It can also manage streaming jobs that arrive at a random pace. All jobs could fulfill their 

deadlines thanks to the proposed algorithm, which cut the time it took to do things by ten percent, cut 

costs by eight percent, and increased resource utilization by fifty-three percent [26].  

 

3. Methodology 

 

The proposed model's methodology is illustrated in Fig. 1. The framework is structured into two 

primary modules. The initial module focuses on predicting flood occurrences by applying various 

learning and optimization algorithms on a stand-alone machine. The second module involves deploying 

these trained models within a cloud environment, significantly reducing execution time and CPU usage 

while enhancing overall prediction accuracy. 

 

3.1. Dataset 

 

Water depth estimation was performed on a dataset of 1,177 images depicting flooded roadways 

featuring vehicles or pedestrians. The image resolutions varied significantly, ranging from 4613 × 2595 

pixels to as low as 142 × 107 pixels 

(https://www.hydroshare.org/resource/24866122a6ee456c8f7c80aa87a9abcb/). These images were 

sourced using search queries such as "urban waterlogging" and "urban floods" on Google, with 

additional contributions from traffic surveillance cameras. The image selection process deliberately 

included challenging and complex scenarios, such as low-light conditions at night, murky water, and 

splashes caused by moving vehicles, to ensure the robustness of the analysis. There are three main parts 

to the dataset: 1. Water level (m), river discharge (m³/s), and rainfall intensity (mm/hr) are among the 



 

 

real-time features extracted from IoT sensors; 2. Historical records covering hourly and daily 

observations from 2010 to 2023 were acquired from NOAA and the Indian Meteorological Department 

(IMD) 3. Rainfall-runoff simulation models produce synthetic data to support scenarios that aren't well-

represented. A flood risk label (Low, Moderate, or High) is appended to each data instance to facilitate 

supervised learning. To make model development and evaluation easier, the dataset is normalized and 

segmented into three sub15% validation and 15% testing data. 

 

 

Fig 1a. Prediction pipeline 

 

Fig 1b. Overall architecture 
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The proposed architecture consists of three agent layers: 

Data Agents: This agent collects and processes real or historical data. 

Model Agents: These agents train the fuzzy model using the optimized hybrid algorithm. 

Quality of service Monitoring Agents: This evaluates accuracy, latency, and resource usage. The 

communication between the agents is done using a shared message queue on cloud platforms (e.g., AWS, 

Azure). 

 

3.2. Flood Prediction with Hierarchical Network Layer (HNet) with Fuzzy Rules 

 

The suggested approach uses the flood vulnerability analysis component based on HNet to 

evaluate environmental features and accurately calculate the flood susceptibility of any given geographic 

location. A neural network and a fuzzy inference system were combined to create HNet, which combines 

the exceptional knowledge interpretation and inference capabilities of fuzzy logic with the learning 

capabilities of neural networks (Sim et al. 2011). Figure 2 shows the 5-layer HNet design for the 

suggested method. Below is a discussion of each layer's significance.  

Layer 1: In the layer's adaptive nodes, the membership values are assessed using the Gaussian 

MF for flood-related input parameters (𝐹𝐶𝑃1;  𝐹𝐶𝑃2; . . . . . . 𝐹𝐶𝑃𝑛). 

𝐺𝑀𝐹 =  𝜇𝑃𝑖
(𝐹𝐶𝑃𝑛) = 𝑒

−(
𝐹𝐶𝑃𝑛−𝛽𝑖

2𝛼𝑖
)

2

;   𝑖 = 1,2, … , 𝑘 
(1) 

Where 𝑘  represents the total amount of inputs, 𝜇𝑃𝑖
 represents the fuzzy set 𝑃𝑖 's membership 

degree, and 𝛼𝑖  and 𝛽𝑖  represent the MF coefficients or parameters. Every input parameter linked to 

flooding, such as humidity, temperature, season, moisture, and water level, is called FCP. 𝐹𝐶𝑃1 : 

Temperature; 𝐹𝐶𝑃2: Relative Humidity; and 𝐹𝐶𝑃3: Rainfall. Five fuzzy sets labeled Very Low, Low, 

Moderate, High, and Extreme are created from the input variables such as temperature, relative humidity, 

and rainfall. 

𝜇𝑃𝑖
 (𝐹𝐶𝑃𝑇𝑒𝑚𝑝);   𝑓𝑜𝑟  𝑖 = 1,2,3,4,5 {𝑃1 = 𝑉𝐿; 𝑃2 = 𝐿; 𝑃3 = 𝑀, 𝑃4 = 𝐻; 𝑃5 = 𝐸} (2) 

𝜇𝑄𝑖
 (𝐹𝐶𝑃𝑅𝐻);   𝑓𝑜𝑟  𝑖 = 1,2,3,4,5 {𝑄1 = 𝑉𝐿; 𝑄2 = 𝐿; 𝑄3 = 𝑀, 𝑄4 = 𝐻; 𝑄5 = 𝐸} (3) 



 

 

𝜇𝑅𝑖
 (𝐹𝐶𝑃𝑅𝐻);   𝑓𝑜𝑟  𝑖 = 1,2,3,4,5 {𝑅1 = 𝑉𝐿; 𝑅2 = 𝐿; 𝑅3 = 𝑀, 𝑅4 = 𝐻; 𝑅5 = 𝐸} (4) 

 

𝐹𝐶𝑃4: Season: Five fuzzy values—winter, spring, autumn, summer, and monsoon—comprise 

the input variable season. 

𝜇𝑆𝑖
 (𝐹𝐶𝑃𝑆𝐸);   𝑓𝑜𝑟  𝑖 = 1,2,3,4,5 {𝑆1 = 𝑊; 𝑆2 = 𝑆; 𝑆3 = 𝐴, 𝑆4 = 𝑆𝑢𝑚; 𝑆5 = 𝑀𝑜𝑛} (5) 

𝐹𝐶𝑃5: Water Level: Five fuzzy sets are created from the water level input parameter: Very Low, 

Low, Medium, High, and extremely high. 

𝜇𝑇𝑖
 (𝐹𝐶𝑃𝑊𝐿);   𝑓𝑜𝑟  𝑖 = 1,2,3,4,5 {𝑇1 = 𝑉𝐿; 𝑇2 = 𝐿; 𝑇3 = 𝑀, 𝑇4 = 𝐻; 𝑇5 = 𝑉𝐻} (6) 

Layer 2: The firing power of every principle is determined by multiplying the scores calculated 

in the nodes of the previous layer. The circular nodes that make up this layer are stable. The result is 

shown as: 

𝑤𝑖 = 𝜇𝑝𝑖
(𝐹𝐶𝑃𝑡𝑒𝑚𝑝) ∗  𝜇𝑄𝑖

(𝐹𝐶𝑃𝑅𝐻) ∗  𝜇𝑅𝑖
(𝐹𝐶𝑃𝑅𝐹) ∗ 𝜇𝑆𝑖

(𝐹𝐶𝑃𝑆𝐸) ∗ 𝜇𝑇𝑖
(𝐹𝐶𝑃𝑊𝐿) (7) 

Layer 3: Circular nodes are also present, sometimes called stable nodes. By adding up the firing 

strength guidelines, this layer controls them. 

𝑤̅𝑖 =
𝑤𝑖

∑ 𝑤𝑖
; 𝑖 = 1,2, . . , 𝑘 (8) 

Where, 𝑤𝑖 is the firing strength of the 𝑖𝑡ℎ rule.  

Layer 4: The outcomes of the preceding layer are multiplied by the Sugeno function. The nodes 

in this layer are adaptive. 

𝑤̅𝑖𝑓𝑖 = 𝑤̅𝑖(𝑎𝑖𝑥 + 𝑏𝑖𝑦 + 𝑐𝑖); 𝑖 = 1,2, . . , 𝑘 (9) 

Where 𝑎𝑖 , 𝑏𝑖, 𝑎𝑛𝑑 𝑐𝑖 represent the Sugeno fuzzy inference system's variables, and 𝑤𝑖 represents 

the result of the preceding layer. 



 

 

Layer 5: A stable node in the current layer generates all values assessed from the preceding layer 

to calculate the throughput. 

∑ 𝑤̅𝑖𝑓𝑖 =
∑ 𝑤𝑖𝑓𝑖

∑ 𝑤𝑖
; 𝑖 = 1,2, . . , 𝑘 

(10) 

To classify a geographic area into one of the three critical zones, safe, alert, or dangerous, the 

HNet generates results as an FVI. Figure 2 shows the structure of the HNet operating procedure. 

 

Figure 2. Hierarchical network model 

Algorithm 1: 

Input: dataset sample, survival time, and status 

//stage_1 initialization 

1. Analyze a non-overlapping image region to extract image patches from the flooded region; 

2. For all flood region patches, do 

3. if HNet (𝑝 > 0.5) as flooded patch 

4. else non-flooded 



 

 

5. end for 

6. sampling flooded region patches from samples provided to HNet; 

//stage_2 initialization  

7. Train HNet; 

8. model = train HNet (𝛿, 𝑝𝑎𝑡𝑐ℎ𝑒𝑠) 

9. For all flood region patches, do 

10. PCA = component analysis (𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑝𝑎𝑡𝑐ℎ𝑒𝑠); 

11. region clustering = 𝑘 − 𝑚𝑒𝑎𝑛𝑠, (𝑛𝑜. 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠, 𝑎𝑛𝑑 𝑃𝐶𝐴) 

12. end for 

13. For all clusters, do 

14. model = train HNet (𝛿, 𝑝𝑎𝑡𝑐ℎ𝑒𝑠) 

15. end for 

//stage_3 initialization 

16. Final feature = 𝑓𝑙𝑜𝑜𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒  ⊕ non − flood 𝑓𝑒𝑎𝑡𝑢𝑟𝑒; 

17. Final_prediction = train cox (𝑓𝑖𝑛𝑎𝑙 𝑓𝑙𝑜𝑜𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒, 𝛿, 𝑡) 

Output: risk score 

 

 

 

 



 

 

3.3.Hybrid optimization for analyzing flood features 

 

Scheduling can be thought of as either mapping a set of tasks onto the available VMs or assigning 

VMs to execute the available features to satisfy the needs of the consumers. Both of these approaches 

are intended to fulfill the needs of the consumers. Utilizing scheduling strategies in cloud environments 

can accomplish several goals, the most important of which are to save energy, improve load balance and 

system throughput, maximize resource utilization, save expenses, and shorten the time needed for the 

whole execution. As a result, the scheduler needs to consider the virtualized resources and the required 

limitations of the consumers to encourage efficient matching between jobs and resources. One or more 

scheduling methods should be used to support each scheduling technique. Time, money, quality of 

service, amount of energy utilized, and error tolerance are the five most critical techniques. The proposed 

research optimizes the scheduling agent using PSO and ACO. The functionality of the hybrid 

optimization model is tested using the multi-agent process to measure the scheduling of tasks. The core 

novelty of this study lies in the synergistic integration of Ant Colony Optimization (ACO) and Particle 

Swarm Optimization (PSO), which are two nature-inspired meta-heuristic algorithms to optimize 

Quality of Service (QoS) in a cloud-based flood prediction environment. While both algorithms are 

powerful individually, combining their strengths helps overcome each other's weaknesses: 1) ACO 

excels at finding global optima through pheromone-based learning, but it may converge slowly; 2) PSO 

provides fast convergence using swarm intelligence, but it can get trapped in local optima. By 

hybridizing these algorithms, the model gains: 1) Exploration capability (from ACO) to search broader 

solution spaces; 2) Exploitation ability (from PSO) for faster fine-tuning of optimal solutions. This 

enables better optimization of QoS parameters such as: Latency, Prediction accuracy, Resource 

utilization, and Response time. Another key innovation is deploying the hybrid algorithm within a cloud-

based multi-agent system. In this design, 1) Intelligent agents autonomously manage flood-related data 

and computational tasks. Agents dynamically interact with cloud resources and user requests, ensuring 

adaptive load balancing and efficient service provisioning. The hybrid ACO-PSO module guides the 

agents’ decision-making in task scheduling, resource allocation, and model training. This architecture 

ensures: 1) Real-time responsiveness; 2) Scalable and distributed processing; and 3) Enhanced reliability 

and fault tolerance during peak environmental events. 

 

3.3.1. Real-Time Flood Data Handling with Cloud Scalability 

 

Traditional flood prediction models often fail in real-time due to limited computing resources or 

static infrastructure. This research addresses that gap by: 1) Using cloud computing for elastic and on-

demand scalability; 2) allowing massive flood sensor data ingestion (rainfall, water levels, satellite input); 



 

 

3) optimizing data handling and analysis pipelines for low-latency flood forecasting; 4) The novelty lies 

in making the cloud “intelligent” using the hybrid optimization engine, which: Predicts floods faster and 

more accurately and Adapts resource provisioning based on the urgency of the prediction request. 

 

3.3.2. Ablation Study for Validating Optimization  

 

Most flood prediction models lack explainability regarding why an optimization method works. 

This study introduces a comprehensive ablation study, systematically: 1) Testing performance of ACO 

alone, PSO alone, and hybrid ACO-PSO; 2) Validating improvements in prediction accuracy, latency, 

and computational cost; 3) Demonstrating the hybrid method’s quantitative superiority across all QoS 

metrics and this scientific validation of hybridization impact is a novel contribution that sets your work 

apart from conventional optimization models. 

 

3.3.3. Domain-Specific Application in Disaster Management 

 

While hybrid optimization is not new in general AI, applying it to QoS-driven flood forecasting 

in a cloud-based multi-agent system is a novel domain-specific contribution. It addresses: 1) Real-world 

constraints in disaster-prone areas (e.g., bandwidth, computation bottlenecks) and 2) A use case with 

life-saving potential, bridging the gap between AI research and real-world environmental resilience. The 

process algorithm used in the proposed research and the pictorial representation are given in the 

flowchart (Figure 3), and the real-time adaptability is analyzed in this work.  

 

1. Creating a cloud environment using CloudSim. CloudSim offers a simulation framework that is both 

generic and extensible. This framework enables the modeling and simulation of app performance 

effortlessly. Developers are freed from the burden of worrying about the specifics of cloud-related 

frameworks and services when they make use of CloudSim.  

2. With the help of a cloud analyst, configure cloud data centers and their regions for CloudSim. The 

Cloud Analyst aims to assist developers in simulating large-scale Cloud applications to understand such 

systems' performance better. It can configure cloud data centers and their regions for CloudSim. 

3. Assign a user base for cloud data centers. Cloud service providers construct their data centers and 

offer users various services. 

4. Configure the scheduling protocol and system gateway using the cloud analyst. 

5. Run cloud simulation by assigning the Virtual Machines and completing the execution. 



 

 

6. Start the RMA agent manager using the JADE framework, which is a framework for developing 

multi-agent systems. An RMA is a Java object that can be initiated on the command line as an ordinary 

or remote management agent. 

7. Create agents for particular tasks. 

8. Create a container with address details for each agent. 

9. Establish connection/communication between agents and VMs. The host hardware is the component 

responsible for facilitating virtual machine (VM) connectivity to other network agents. 

10. Control transmission way and calculate communication gap using the JADE sniffer agent tool. The 

Sniffer is fully integrated into the Jade environment and is very helpful when debugging agents' actions.  

11. Print the gateway/agent/communication log. 

12. Calculate IaaS and SaaS parameters using the cloud analyzer of this simulation (QoS). The 

comprehensive quality of service model integrates all of CloudSim's quality of service-related metrics. 

13. The scheduling agent is optimized using PSO and ACO for flood prediction. 

 

 



 

 

 

Fig3. Multi-agent-based scheduling algorithm 

 

 



 

 

 

 

5. Results and discussion 

5.1. Multi-Agent System using JADE in the cloud 

 

A multi-agent-based technique for scheduling was executed using the JADE framework, and 

these findings were simulated using CLOUDSIM. Configuring hardware and software specifications of 

a cloud environment to ensure that those components can interoperate and communicate is called cloud 

configuration. Configuring the Cloud Environment is given in Fig. 4. The Cloud Environment, which is 

ready for simulation, is provided. The detailed results for the user base and data centers are represented. 

The experiment was conducted on a computer with the following specifications: Intel Core 2 Duo CPU, 

2.10 GHz, 8 GB RAM, and a Windows 10 (64-bit) OS. 

 

Fig 4. Configuring Cloud Environment 

 



 

 

 

Fig 5. Detailed Results for User Base and Datacenters 

 

5.2. Configuring for the data center network 

 

The Cloud Virtual Machine Configurations for Datacenters, Network, and Individual Bases are 

given in Figs. 6. This shows how many VMs are created and how the cloudlets/requests are assigned to 

the VMs. 

 

Fig. 6. Allocation of Cloudlets/tasks to VMs 

 

Once the connection is established between the agents and VMs, the transmission process is 

initiated. Configuring the cloudlets and the VMs required for the users is done after establishing the 

connection. The calculated parameters are the cloudlet parameters, such as the size, file length, and 

output dimension. The VM parameters calculated are the MIPS, Size, RAM, and Bandwidth. The 

experiment uses 50 virtual machines distributed across 5 data centers. The cloudlets refer to the user's 



 

 

jobs/tasks. Here, we considered different bandwidths of user requests. The RAM size and other 

specifications are also given. Then, the tasks are assigned to the agents where it is being processed. Next, 

the transmission way is controlled, and the communication gap between the agents and VMs is calculated 

using the JADE sniffer agent tool. Logs are created once the communication gap is calculated and 

transmission occurs. Gateway Communication Logs are given. 

 

Fig 7: Transmission 

 

 

Fig 8. Configuration Parameters 

 



 

 

5.3. Scheduling Agent using Particle Swarm Optimization and Ant Colony Optimization  

 

The following process optimizes the scheduling agent using PSO and ACO. 

 

 

Fig 9. Scheduling of Tasks using PSO and ACO optimizer by agents 

 

The time taken for the proposed algorithm to complete the scheduling process is shown in Fig. 

9. Fig. 10 shows the linear increase in the execution time as the number of tasks/user requests increases. 

When the number of cloudlets/tasks is 6, the execution time is 15ms. When the number of tasks/cloudlets 

is 1000, the execution time is 804ms. Using a hybrid algorithm and agents, the time to process the user's 

request has been considerably reduced. 

 

 

Fig 10. Execution time variation with varying the number of user tasks 
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Table 1 shows the makespan value and the optimum fitness point by varying the number of user 

requests and VMs. When the number of user requests and VMs is 5, the optimum fitness point obtained 

is 0.2093. Several optimum points have been obtained by changing the input parameters many times. 

The agents pick the best optimum point on behalf of the user and display it to the user. The makespan 

value is the same for almost all the input parameters. This is because of the parallel execution of multiple 

agents that perform the scheduling task successfully. 

 

Table 1. Makespan and fitness point value for varying input parameters 

No. of user requests No. of VMs Makespan value Fitness Point 

5 5 0.032 0.2093 

10 5 0.032 0.3774 

10 10 0.032 0.1189 

15 10 0.032 0.2791 

15 15 0.032 0.5013 

20 15 0.032 1.1455 

 

The execution time for processing the user request has been compared with two other scheduling 

techniques in the cloud that use GA and ACO algorithms. The time taken to process user requests using 

GA and ACO is very high compared to our proposed hybrid algorithm, as shown in Table 2. During the 

scheduling process, the mapping of user requests to the VMs is optimized using the hybrid algorithm 

and the agents. Thus, the success rate of service scheduling in the cloud is higher using our proposed 

approach due to the parallel execution of the user request. This hybrid algorithm combines agent-based 

coordination and optimization methodologies to adjust to changing cloud resource needs. Because of 

this, it can dynamically scale resources, manage peak traffic, and maintain system stability in extremely 

dynamic cloud settings. Figure 11 gives the performance analysis of our proposed work. The graph has 

been plotted; the results are shown below in Figs. 11 to 17. 

Table 2. Performance Analysis 

No. of 

Tasks/Request 

Execution time using 

GA (ms) 

Execution time 

using ACO (ms) 

Proposed Hybrid Algorithm 

(ACO+PSO using agents) (ms) 

4 12 12 6 

6 30 30 15 

100 210 210 132 

1000 1500 1506 804 



 

 

 

 

Fig 11. Performance analysis of the processing time 

 

5.4. Prediction outcomes 

Monitoring the changes in mean average precision (mAP) and loss during training using different 

learning strategies enabled a comparative analysis of frozen learning versus regular learning for flood 

depth recognition. Table 3 presents the mAP and loss values recorded at 50 training epochs. Results 

indicate that regular learning achieved a higher mAP at 200 epochs than frozen learning, exhibiting 

lower loss values. This demonstrates that regular learning outperformed frozen learning regarding 

accuracy and convergence. Moreover, adopting a mixed-learning strategy further improved the model's 

overall performance. This approach initially employed frozen learning for the first 90 epochs, then 

transitioned to regular learning for the remaining epochs, resulting in more effective training and 

enhanced predictive accuracy. 

Table 3. Flood depth recognition based on cloud storage 

Data attributes Precision (%) Recall (%) AP (%) 

1 96 95 98.1 

2 87 97 98.2 

3 92 96 99.4 

4 95 97.5 97.4 
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5 95.7 96.5 98.6 

6 95 98 99.2 

7 92 81 93 

Map   98.2 

 

 

Fig 12. Flood depth recognition 

5.5. Performance metrics 

Hydrological characteristics (such as rainfall, water level, and discharge) are mapped to three 

flood risk categories by the fuzzy inference system: low, moderate, and high. A multi-agent system 

coordinates the optimization. In particular, 1) Data agents are in charge of gathering and standardizing 

both historical and real-time data; 2) Optimization agents implement the hybrid PSO-ACO logic. While 

ACO agents locally refine fuzzy rules, PSO agents search the global parameter space; 3) Fuzzy rule 

repositories are maintained, inference agents carry out classification; and 4) QoS Monitoring Agents 

continuously monitor accuracy, latency, and resource usage. In the cloud environment, agents 

communicate via a shared message bus in real-time. In this investigation, mean average precision (MAP) 

was used to measure the reliability of flood image identification. This type of measurement is frequently 

employed in classifying and identifying objects. The MAP was computed using the modeling results' 

precision and recall metrics. The proportion of accurately predicted positive findings to all true positive 

observations is known as recall. Where FP (false positive) is the number of samples that are incorrectly 



 

 

recognized, FN (false negative) is the number of unacknowledged results, and TP (true positive) is the 

number of samples that are correctly identified or classified, precision is the fraction of exactly computed 

positive findings to all positive ones. The average precision, or AP, is the area under the precision-recall 

curve of each category's prediction results. Using the observations above, the MAP can be evaluated as 

follows. There are n overall categories. The 𝑝(𝑟)  represents the curve of Precision-Recall, where r 

indicates the recall score from Eq. (7). The 𝑝(𝑟)  represents the most significant amount of the 

corresponding accuracy at a given interval, say 0.1, when the recall score increases from zero to one. 

Latency: Mean inference time measured by inference agents across prediction tasks. Cost: Summation 

of cloud resource usage per hour, logged by QoS agents. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 

(6) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

(7) 

𝑚𝐴𝑃 =  
∑ 𝐴𝑃𝑛

1

𝑛
 

(8) 

𝐴𝑃 =  ∫ 𝑝(𝑟)𝑑𝑟
1

0

 
(9) 

Table 4. MAP and loss analysis based on cloud data 

 

Epochs 

Deep Regular Frozen 

Map Loss Map Loss Map Loss 

50 95 33 90 31 88 33 

100 95 33 83 28 89 23 

150 97 33 85 26 93 18 

200 93 32 85 25 93 17 

 



 

 

 

Fig 13. Map of proposed vs. existing 

 

Fig 14. Loss Recognition 

Table 5. mAP training-based average precision 

Scenario Map (%) 

1 88 

2 85 



 

 

3 91 

4 91 

5 92 

6 98 

7 97 

 

Fig 15. mAP-based training samples 



 

 

 

Fig 16. mAP-based learning model 

 

Fig 17. Predicted outcomes 

 

Key QoS metrics collected while reviewing the multi-agent hybrid model and its distinct 

equivalents are compiled in the table below. Consistent real-time ingestion was guaranteed by data 

agents, optimization agents continuously adjusted fuzzy rules, and QoS agents reported system log 

metrics. All tests were conducted in a cloud simulation environment with identical setups to ensure 

fairness. Table 6 compares baseline PSO, ASO, and the proposed hybrid model regarding latency, 

accuracy, precision, recall, F1-score, and cost. Based on this comparison, the hybrid model gives 

promising results compared to baseline models. 

 



 

 

Table 6. Performance evaluation 

Method Accuracy 

(%) 

Latency (s) Precision Recall F1-Score Cost 

(USD/hr) 

PSO Only 90.2 2.4 0.89 0.90 0.895 0.42 

ASO Only 88.9 3.0 0.86 0.87 0.865 0.47 

Hybrid 

model 

94.7 1.1 0.94 0.95 0.945 0.32 

 

The model's performance is shown in the cost, latency, and accuracy metrics figures, as in Figs. 18 to 

21. The hybrid multi-agent model performs better in every category than stand-alone optimization 

techniques. 

 

Fig 18. Accuracy of baseline and proposed model 

 

 

Fig 19. Latency comparison of baseline and proposed model 

 



 

 

 

Fig 20. Cost comparison of the baseline and proposed model 

 

 

Fig 21. Accuracy of baseline and proposed model over multiple iterations 

 

Because of intelligent agent orchestration and parallelized optimization, the multi-agent hybrid 

optimization approach achieves lower latency and higher prediction accuracy. Scalability and fault 

tolerance are ensured by cloud integration, while the fuzzy model guarantees interpretability. The 

system's practical use in real-time disaster prediction is validated by its exceptional responsiveness under 

various workloads. 

 

 



 

 

6. Conclusion 

 

Various classification techniques have been executed on flood data sets in this research. Initially, 

the outcomes are estimated using a stand-alone machine, which shows that ACO and PSO yield the 

highest accuracy of 96.5% and enhance efficiency on different assessment criteria. Next, these 

approaches are also verified in a cloud platform, which is more precise than a stand-alone machine. In a 

cloud platform, ACO and PSO yield an accuracy of 96.5% with an AUC value of 0.9. At last, the 

processing time in the cloud platform shows a better outcome, which is 0.10ms compared to 6.3ms using 

the stand-alone machine. As a result, it can be confirmed that the suggested hybrid approach functions 

better in a cloud context regarding reliability and execution time. By providing advance notice of flood 

events, the proposed strategy is anticipated to lower the amount of flood-related fatalities and other 

damages. 

A hybrid Multi-Agent Algorithm combining PSO and ACO optimized the scheduling process. 

ACO has positive feedback and parallelism and can be easily combined with other algorithms. PSO is 

used because ACO needs to be optimized through repeated experiments. Here, the parameters in ACO 

have been optimized through PSO, which increased the optimal performance of the PSO. In this 

proposed research, multi-agents and the above-mentioned hybrid scheduling algorithm are used, and the 

optimum execution time is calculated and tested using flood samples. This is mainly due to aging, which, 

in turn, increases utilization. The optimum fitness points were obtained using this algorithm, which 

proved highly efficient. In terms of upcoming works, tests can be carried out on a broader scale to 

evaluate the scalability of the agent-based scheduling technique in real-world scenarios by putting the 

test bed into operation. This work presented an entirely novel cloud-based multi-agent hybrid 

optimization framework for flood prediction. Its benefit in raising QoS metrics like accuracy, latency, 

and cost is confirmed by experimental results. In the future, deep learning models and satellite imaging 

will be integrated with real-world deployment. In the future, different algorithms, such as ABC, PSO, 

FP Growth, etc., can also be incorporated to make better decisions and avoid flood-prone circumstances. 

Some more attributes can be added to the current flood data set to enhance the effectiveness of the 

proposed hybrid approach. Also, deep learning models and satellite imaging will be integrated with real-

world deployment. 
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APPENDIX 

 

ACO Ant Colony Optimization 

ANFIS Adaptive Network-based Fuzzy Inference System 

ANN Artificial Neural Networks 

AUC Area Under Curve 

BWO Black Widow Optimization 

CPU Central Processing Unit 

TP True Positive 

TN True Negative 

PSO Particle Swarm Optimization 

CC Cloud Computing 

FN False Negative 

FP False Positive 

GA Genetic Algorithm 

HNet Hierarchical Network Layer  

IMD Indian Meteorological Department  

SVM Support Vector Machine 



 

 

mAP Mean Average Precision 

MAS Multi-Agent System  

MIPS Million Instruction Per Second 

MOWOS Multi-Objective Workflow Optimization Strategy 

ML Machine Learning 

ms Milli second 

OS Operating System 

PCA Principle Component Analysis 

RAM Random Access Memory 

SMO Spider Monkey Optimization 

QOS Quality of Service 

VM virtual machine  
 

 


