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Abstract 

This study examined water quality trends in the Fen River 
Basin from 2016 to 2023, utilizing data from seven 
monitoring stations. Advanced statistical methods, 
including the Daniel trend test, Seasonal and Trend 
decomposition using Loess (STL), grey correlation analysis, 
and Long Short-Term Memory (LSTM) neural networks, 
were employed to identify trends and key influencing 
factors. Over this period, the average Chemical Oxygen 
Demand (COD) and Ammonia Nitrogen (NH₄⁺-N) 
concentrations across Fen River Basin were (25.3±17.3) 
mg·L⁻¹ and (3.6±3.2) mg·L⁻¹, respectively. Water quality 
improved significantly, transitioning from severe pollution 
in 2016 to mild pollution in 2023. The upstream 
consistently maintained higher quality, generally classified 
as Class I or II according to GB 3838-2002 standards, while 
the middle and lower reaches exhibited poorer 
conditions. The previously prevalent inferior Class V water 
quality has largely been eradicated. Key indicators such as 
COD and NH₄⁺-N in the middle and lower reaches 
demonstrated statistically significant improvements at a 
95% confidence level. However, reductions in NH₄⁺-N 
concentrations were inconsistent in some upstream areas. 

These improvements are consistent with enhanced water 
source protection and stricter pollution control measures. 
Nonetheless, excessive pollutant discharge, particularly 
from domestic and industrial sources, continues to 
challenge the river's self-purification capacity, resulting in 
localized water quality fluctuations, which are most 
evident in the middle and lower reaches. Notably, a 
significant improvement in water quality was observed 
during the COVID-19 lockdown, attributed to reduced 
water usage across industrial, agricultural, and domestic 
sectors. This highlights the efficacy of emission reduction 
strategies and the potential for targeted management to 
achieve further gains. LSTM-based predictions suggest 
that COD concentrations in the middle and lower reaches 
will meet Class II surface water standards (15 mg/L) by the 
end of the 14th Five-Year Plan. However, NH₄⁺-N 
concentrations are projected to exceed the Class II limit 
(0.5 mg/L) during dry seasons. Future efforts should 
concentrate on mitigating seasonal NH₄⁺-N variations to 
sustain and enhance water quality improvements. 

Keywords: spatio-temporal variations; water quality; 
influencing factors; LSTM; Fen River 

1. Introduction 

Rivers serve as vital water resource transportation 
channels from land to lakes and oceans, fulfilling critical 
societal needs such as drinking water, irrigation, and 
hydropower generation (Grill et al. 2019). They support 
domestic, agricultural, and energy needs, playing a pivotal 
role in sustaining human society. However, rapid socio-
economic development over recent decades have led to 
high-intensity human activities that have not only 
depleted significant water resources but also severely 
degraded water quality. This degradation has damaged 
river ecosystems and poses a serious threat to human 
water safety and the integrity of aquatic ecosystems 
(Chen et al. 2019; Xia et al. 2020). Recent studies have 
highlighted that the input of pollutants from rivers in 
China is significant. Pollutant loads include 2.8×10⁷ tons of 
dissolved nitrogen, 3×10⁶ tons of dissolved phosphorus 
(Chen et al. 2019), and nearly 2.5×104 tons of antibiotics 
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(Zhang et al. 2015). In 2022, data from 3,629 monitoring 
stations across China showed that 87.9% of water quality 
assessments fell within Classes I to III, while only 0.7% 
were rated as Class V. Key pollution indicators included 
chemical oxygen demand (COD), total phosphorus (TP), 
and potassium permanganate index (CODMn) (Ministry of 
Ecology and Environment 2023). This water pollution crisis 
is further compounded by an annual shortage of 40 billion 
tons of water in China (Tao and Xin 2014).  

Many studies have increasingly focused on the evolution 
of water quality in China’s major rivers and the factors 
driving these changes, particularly in the seven key river 
systems that are vital to the nation’s economy, ecology, 
and society. (Meng and Zhang 2023; Qiao et al. 2021; 
Huang et al. 2021). For instance, Zhang et al. (2020) 
identified COD, biochemical oxygen demand (BOD), and 
TP as the primary water pollution indicators in these river 
systems. Their study also noted significant improvements 
in China's Class V surface water between 2005 and 2017. 
To analyze the spatio-temporal variations in river water 
quality, researchers commonly employ statistical methods 
such as Mann Kendall test, Daniel trend test, cluster 
analysis, spatial interpolation, Spearman correlation 
analysis, and grey correlation analysis (Zhai et al. 2014; 
Huang et al. 2021). However, while these methods have 
provided valuable insights, the mechanisms underlying 
water quality evolution are complex and multifaceted 
(Venkatraman et al. 2025). Key influencing factors include 
both human activities and natural conditions (Cheng et al. 
2019). Despite significant progress in understanding these 
dynamics, a major limitation in current research is the lack 
of long-term observational data, which hinders the ability 
to fully grasp the long-term trends and causes of water 
quality fluctuations (Suresh et al. 2025). Furthermore, 
there is limited integration of manual and automatic 
monitoring data, which restricts comprehensive 
comparisons and analyses of river water quality evolution 
using advanced multiple spatio-temporal methods. 
Ongoing human activities have hindered further 
exploration of the natural and human factors driving 
water quality and their contributions. The COVID-19 
pandemic, however, has provided an unprecedented 
opportunity to study the rapid improvement in water 
quality resulting from the reduction of human activities.  
During the lockdowns, decreased industrial production, 
transportation, and other human activities led to 
noticeable improvements in water quality, as documented 
in several studies (Kang et al. 2020; Deng and Peng 2020; 
Le et al. 2020). This phenomenon has been observed 
globally, with notable examples including the canals of 
Venice (Saadat et al. 2020), the Yamuna River in India (Arif 
et al. 2020), and sections of the Yangtze River in China (Liu 
et al 2022). Similarly, in the Fen River Basin, located in 
Shanxi Province, water quality has emerged as a critical 
concern. As the birthplace of the Three Jin Civilization, the 
Fen River Basin is densely populated and serves as the 
economic hub of Shanxi. (Gu et al. 2020). Despite severe 
surface water pollution and significant water shortages, 
the demand for water in urban, industrial, and agricultural 
sectors remains high. The quality of water in the Fen River 

directly impacts both resource utilization and sustainable 
economic development (Shanxi Provincial Bureau of 
Statistics 2023). Consequently, water quality analysis and 
pollution control are central to the ecological and 
environmental protection strategy outlined in Shanxi 
Province's 14th Five-Year Plan. 

To address these challenges, this study utilized manual 
and automatic water quality monitoring data collected 
from seven stations across the Fen River Basin, spanning 
the period from 2016 to 2023. A range of analytical 
methods—including Daniel trend analysis, STL trend 
decomposition, grey correlation degree, and long short-
term memory (LSTM) neural network—was applied to 
comprehensively analyze water quality variations and 
identify key influencing factors. The goal is to provide 
technical support for pollution control measures and 
sustainable water management in the Fen River Basin. 

2. Materials and methods 

2.1. Study area and observations 

The Fen River, often referred to as the "mother river" of 
Shanxi, is the second-largest tributary of the Yellow River 
and plays a crucial role in the ecological security of the 
middle and lower reaches of the Yellow River. Originating 
from Ningwu County, the Fen River flows through six cities 
in Shanxi Province: Xinzhou, Taiyuan, Lvliang, Jinzhong, 
Linfen, and Yuncheng. It traverses the Jinzhong and Linfen 
basins, joined by more than ten tributaries along its 716 
km length. With a drainage area of 39,721 km2, the Fen 
River accounts for approximately 25.5% of Shanxi 
Province's t total surface area (Figure 1). The river’s upper 
reaches extend from its source to Shanglan Station in 
Taiyuan City, primarily flowing through mountainous 
areas. The middle section spans from Shanglan Station to 
Shitan in Hongdong County, passing through the Jinzhong 
Basin. The downstream section runs from Shitan to 
Huangkou. The Fen River Basin experiences a semi-arid to 
semi-humid continental monsoon climate, with an 
average annual precipitation of 504.8 mm, predominantly 
occurring between June and September. The basin’s total 
water resources amount to 3.358 billion cubic meters, 
representing approximately 27.2% of Shanxi Province's 
total water resources (Shanxi Provincial Bureau of 
Statistics 2023). Water quality monitoring data, including 
chemical oxygen demand (COD) and ammonia nitrogen 
(NH₄⁺-N), were obtained from seven monitoring stations 
in the Fen River Basin between 2016 and 2023. These data 
were sourced from the Shanxi Provincial Ecological 
Environment Bureau’s Surface Water Environmental 
Quality Report (https://sthjt.shanxi.gov.cn/shjzl/dbsszyb/, 
as shown in Figure 1). T The seven monitoring stations are 
located at Leiming Temple (LMS), Hexi Village (HXC), Fen 
Reservoir (FHSK), Shanglan (SL), Wangzhuang Bridge 
South (WZQN), Shangpingwang (SPW), and Miaoqian 
Village (MQC). Water quality indicators were manually 
monitored once per month, and the sampling, analysis, 
and evaluation were carried out in accordance with the 
"Surface Water Environmental Quality Standards" 
(GB3838-2002). In certain months, no measurements 
were available due to dehydration or icing. In addition to 
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the manual monitoring data, automatic water quality 
monitoring data from five stations in the Fen River Basin 
were used for the period from 2020 to 2023. These data 
were sourced from the national real-time data release 
system for surface water quality monitoring 
(http://106.37.208.243:8068/GJZ/Business/Publish/Main.
html). The five monitoring stations are located at Hexi 
Village (HXC), Fen Reservoir (FHSK), Shanglan (SL), 
Wangzhuang Bridge South (WZQN), and Shangpingwang 
(SPW). The main water quality indicators monitored 
include dissolved oxygen (DO), chemical oxygen demand 
(CODMn), ammonia nitrogen (NH4+-N), total phosphorus 
(TP), and water turbidity (TUR). Monitoring was 
conducted every four hours, with readings taken at 4:00, 
8:00, 12:00, 16:00, and 20:00. 

Data on annual precipitation and surface water resources 
across various cities in the Fen River Basin from 2016 to 
2023 were sourced from the Water Resources Bulletin of 
Shanxi Province (http://slt.shanxi.gov.cn/zncs/szyc/szygb/). 
Discharge data for sewage and wastewater from various 
cities in the Fen River Basin, covering the period from 
2016 to 2022, were obtained from the Statistical Yearbook 
of Urban and Rural Construction (http://www.mohurd. 
gov.cn/xytj/tjzljsxytjgb/jstjnj/). Additionally, GDP, 
population, and other statistical data from the cities 
within the Fen River Basin from 2016 to 2023 were 
sourced from the Shanxi Provincial Statistical Yearbook 
(http://www.shanxi.gov.cn/sj/tjnj/). 

 

Figure 1. Geographical location and distribution of monitoring 

station 

2.2. Daniel Trend Test 

To analyze the trends of the water quality indicators, the 
Daniel trend test is applied in this study. Also known as 
Spearman's rank correlation coefficient test (Spearman 
1904), this method is used to assess the correlation 
between two sets of variables (Daniel et al. 1990). 
Spearman's rank correlation coefficient is a non-
parametric statistical measure, meaning it does not rely 
on the distribution of data. The principle of the test 
involves assigning ranks to two variables, X and Y, where 
Xi and Yi represent the ranks of the variables, respectively. 
The correlation between these two variables is then 
calculated using the following equation 2.1. 

( )2 3

1

1 6 ( ) /
n

s i i

i

r x y n n
=

 
= − − − 

 
  

(2.1) 

In equation 2.1, rs presents the Spearman rank correlation 
coefficient; Xi and Yi are the ranks of the respective 
variables, and N is the number of observations. If |rs| ≥ 

WP and Rs is positive, the data represents a significant 
upward trend; when |rs| ≥ WP and rs is negative, the data 
indicates a significant downward trend. Daniel Trend Test 
is suitable for the correlation test of a single factor with a 
small sample size, and it is concise with high accuracy. 
However, it performs poorly in the trend test of long-term 
sequences. 

2.3. STL decomposition method 

The STL (A Seasonal and Trend decomposition using Loss) 
method, introduced by Cleveland et al. (1979), is used for 
time series decomposition. It is based on LOESS (Locally 
Weighted Scatterplot Smoothing), a non-parametric 
regression technique that assigns varying weights to data 
points based on their proximity, allowing for flexible 
smoothing of non-linear data (Cleveland and Devlin 1988). 
Each recursive process of the STL method requires three 
LOESS and one sliding average to be performed 
separately. In the STL method, the original data Yt is 
decomposed into three components: trend (Trendt), 
seasonal (Seasonalt), and residual (Residualt): 

tTrend Seasonal Residualt t tY = + +  
(2.2) 

The trend component represents the long-term, low-
frequency behavior of the data under specific climatic 
conditions, while the seasonal term captures periodic 
fluctuations. STL has been widely applied in various fields 
such as economics, environmental science, and water 
quality analysis (Silawan et al. 2008). And it can handle 
seasonal components of different lengths and periods, 
and is applicable to time series data of various seasonal 
patterns. 

2.4. LSTM method for prediction 

Long Short-Term Memory (LSTM) networks, an improved 
version of Recurrent Neural Networks (RNN), were 
introduced by Hochreiter and Schmidhuber (1997) to 
address the vanishing gradient problem. In this study, the 
LSTM network is utilized for water quality prediction, as it 
excels in modeling temporal dependencies in time series 
data.  

Unlike traditional RNNs, which rely on a single neuron 
with a tanh activation function, LSTM introduces a "gate" 
mechanism that regulates the flow of information through 
the network’s cell state. (Gers et al. 2003). Specifically, 
LSTM contains three gates: the input gate, the output 
gate, and the forget gate. These gates control the 
information added to or removed from the cell state, 
which allows the network to retain long-term 
dependencies. 

The LSTM model used in this study has 200 hidden layer 
nodes, a sliding window size of 3 months, and a total of 12 
iterations. For prediction, the fourth month’s water 
quality is forecasted based on data from the first three 

months, the fifth month based on data from months 2-4, 

and so on. 

The corresponding LSTM equations are as follows 

1f = ( [ , ] )t f t t fW h x b − +  (2.3) 
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1i = ( [ , ] )t i t t iW h x b − +  (2.4) 

1= tanh( [ , ] )t c t t cC W h x b− +  (2.5) 

1t t t t tC f C i C−= +  (2.6) 

t 1( [ , ] )t t oW h x b  −=  +  (2.7) 

tanh( )t t th o C=  (2.8) 

In these equations, xt is the input at time t; W is the 

weight matrix; b is the bias matrix; and tC  is the cell state 

at time t; Ct is the updated value at time t; ht and ht−1 

represent the outputs at times t and t−1, respectively. It is 
relatively insufficient in processing extremely long 
sequence data, and the training process has high 
computational complexity and takes a lot of time. 

3. Results and Discussions 

3.1. Temporal variations in water quality 

As shown in Figure 2, during the sampling period from 
2016 to 2023, the average concentrations of COD and 
NH4

+-N at four monitoring sites in the upper reaches of 
the Fen River Basin were (5.6 ± 3.3) mg·L-1 and (0.12±0.09) 
mg·L-1, respectively. In contrast, the average COD and 
NH4

+-N concentrations at three monitoring points in the 
middle and lower reaches were (25.3±17.3) mg·L-1 and 
(3.6 ± 3.2) mg·L-1, respectively. These results highlight the 
poor water quality in the middle and lower reaches 
compared to the upstream sections. At the WZQN, SPW 
and MQC sites in the middle and lower reaches, water 
quality was generally classified between Class III and Class 
V. The primary pollutants in these areas were COD, NH4

+-
N, and TP, but concentration of these pollutants have 
notably decreased in recent years. Taking the year 2023 as 
an example, only the concentration of at WZQN, SPW and 
MQC sites in the middle and lower reaches of the Fen 
River Basin exceeded the Class II limit of surface water 
ammonia nitrogen (0.5 mg·L-1), with 3, 2, and 2 instances 
of exceeding the limit, respectively.  

 

Figure 2. Temporal variations of main water quality parameters’ concentrations in Fen river basin during 2016-2023 

Table 1. The Daniel trend tests of the original COD and NH4
+-N concentrations in Fen river basin during 2016-2023. 

Station Period n Water quality index WP(α=0.05) WP(α=0.01) rS Trend test 

LMS 2016~2023 8 COD 0.707 0.834 -0.714 Significant decrease** 

 2016~2023 8 NH4
+-N 0.707 0.834 0.321 Not significant 

HXC 2016~2023 8 COD 0.707 0.834 -0.881 Significant decrease*** 

 2016~2023 8 NH4
+-N 0.707 0.834 0.024 Not significant 

FHSK 2016~2023 8 COD 0.707 0.834 -0.857 Significant decrease*** 

 2016~2023 8 NH4
+-N 0.707 0.834 -0.786 Significant decrease** 

SL 2016~2023 8 COD 0.707 0.834 -0.524 Not significant 

 2016~2023 8 NH4
+-N 0.707 0.834 -0.857 Significant decrease*** 

WZQN 2016~2023 8 COD 0.707 0.834 -0.976 Significant decrease*** 

 2016~2023 8 NH4
+-N 0.707 0.834 -0.905 Significant decrease*** 

SPW 2016~2023 8 COD 0.707 0.834 -0.976 Significant decrease*** 

 2016~2023 8 NH4
+-N 0.707 0.834 -0.976 Significant decrease*** 

MQC 2016~2023 8 COD 0.707 0.834 -0.952 Significant decrease*** 

 2016~2023 8 NH4
+-N 0.707 0.834 -0.714 Significant decrease*** 

Mean 2016~2023 8 COD 0.707 0.834 0.976 Significant decrease*** 

 2016~2023 8 NH4
+-N 0.707 0.834 0.905 Significant decrease*** 

Note:*, **, *** means passing the significance test of α=0.1, 0.05, 0.01 respectively. 

Table 2. The Daniel trend tests of the trend components of COD and NH4
+-N concentrations in Fen river basin during 2016-2023 
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Station Period n Water quality index WP(α=0.05) WP(α=0.01) rS Trend test 

LMS 
2016~2023 8 COD 0.707 0.834 -0.833 Significant decrease** 

2016~2023 8 NH4
+-N 0.707 0.834 0.310 Not significant 

HXC 
2016~2023 8 COD 0.707 0.834 -0.881 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.357 Not significant 

FHSK 
2016~2023 8 COD 0.707 0.834 -0.952 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.833 Significant decrease** 

SL 
2016~2023 8 COD 0.707 0.834 -0.548 Not significant 

2016~2023 8 NH4
+-N 0.707 0.834 -0.881 Significant decrease*** 

WZQN 
2016~2023 8 COD 0.707 0.834 -0.952 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -1.000 Significant decrease*** 

SPW 
2016~2023 8 COD 0.707 0.834 -0.976 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.905 Significant decrease*** 

MQC 
2016~2023 8 COD 0.707 0.834 -0.952 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.762 Significant decrease*** 

Mean 
2016~2023 8 COD 0.707 0.834 -0.976 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.976 Significant decrease*** 

Note:*, **, *** means passing the significance test of α=0.1, 0.05, 0.01 respectively. 

Table 3. Statistics of water quality indexes in Fen river basin during wet and dry seasons in 2023 mg·L-1 

Stations Periods COD NH4
+-N TP DO 

Upstream stations 

Wet season 2.1 0.05 0.045 6.4 

Dry season 1.5 0.14 0.016 9.8 

Difference -0.6 0.09 -0.029 3.4 

Three stations in the middle and downstream 

Wet season 7.8 0.31 0.139 6.9 

Dry season 5.2 0.84 0.107 11.1 

Difference -2.6 0.53 -0.033 4.2 

Mean of seven stations 

Wet season 4.3 0.15 0.082 6.6 

Dry season 3.5 0.51 0.065 10.5 

Difference -0.9 0.36 -0.017 3.9 

 

The original time series data (Table 1 and Table 2) 
indicate significant improvements in water quality 
indicators at all seven monitoring stations between 2016 
and 2023.Most of the time series passed the 95% 
confidence interval of Daniel significance trend test. 
Specifically, except for the SL station, COD concentrations 
at all other six stations showed significant downward 
trends with a 95% confidence level. Similarly, except for 
the LMS and HXC sites, NH4

+-N concentration at the other 
five stations also showed significant downward trends. 
These trends were consistent with the results from the 
Daniel significance trend applied to the trend component 
of the original data, confirming a significant reduction in 
pollutant concentrations (Table 3). 

Seasonal variations in water quality were also evident. The 
concentrations of NH4

+-N and DO were significantly higher 
during dry seasons compared to the wet seasons at all 
seven monitoring stations. In contrast, COD and TP 
concentrations were much higher during the wet seasons. 
The seasonal fluctuations in water quality are influenced 
by both natural and anthropogenic factors both natural 
and anthropogenic factors. Industrial, domestic, and 
agricultural non-point emissions have contributed to 
poorer water quality in certain areas. Additionally, the 
tributaries of the Fen River are mainly seasonal rivers, 
characterized by flood events in the summer and water 
shortages during the dry season. During the dry season, 
the river's runoff mainly comes from wastewater 
discharged from domestic and industrial production along 

the way, resulting in higher concentrations of water 
pollutants, especially NH₄⁺-N. Conversely, the strong 
erosion and high sediment content during the flood 
season contribute to COD concentrations. 

In recent years, significant improvements in the 
environmental quality of Fen River have been 
continuously observed, largely due to the implementation 
of water source protection and pollution control 
measures. In 2018, Shanxi Province issued the "Overall 
Plan for Ecological Protection and Restoration of the 
'Seven Rivers' Basin" with a Focus on the Fen River. This 
was followed by the "Decision on Resolutely Winning the 
Battle of Fen River Basin Governance" in 2019, which has 
contributed to substantial reductions in industrial 
pollutants and improvements in water treatment rates. 
The goal of "a flood of clean water entering the Yellow 
River" has been largely achieved In January 2022, the Fen 
River Protection Regulations were enacted, providing 
clear provisions for water resource management, 
pollution prevention, and ecological restoration. Further, 
the "Ecological Protection and High-Quality Development 
Plan for the Yellow River Basin in Shanxi Province," was 
issued in April 2022 emphasized pollution control in the 
Fen River Basin and promoted targeted, scientific, and 
regulatory governance. According to the Statistical 
Yearbook of Urban and Rural Construction in 2022, as the 
end of 2022, the processing capacity of sewage treatment 
plants in China had reached 216 million cubic meters per 
day, with an urban sewage treatment rate of 98.11% and 
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a centralized collection rate of 70.1% for urban domestic 
sewage. In Shanxi Province, sewage treatment capacity 
was 3.67 million cubic meters per day, with a treatment 
rate of 98.48% and a collection rate of 71.1%, both 
surpassing the national averages (Shanxi Provincial 

Department of Water Resources 2023). Above all, these 
measures have greatly reduced the discharge of 
wastewater pollutants and contributed to the improved 
water quality in the Fen River basin. 

 

Figure 3. Cluster distribution of water quality in seven monitoring sections of the Fen River Basin from 2016 to 2023 

Table 4. Grey correlation degree between water indexes and social driving factors, hydrometeorological factors in Fen river basin 

City Station WQI GDP Population Rainfall SWR COD emissions NH4
+-N emissions 

Xinzhou 
LMS COD 0.7676 0.8341* 0.8148 0.8290 0.5094 0.7786 

 NH4
+-N 0.8260* 0.7291 0.6883 0.7186 0.5802 0.7045 

Xinzhou 
HXC COD 0.7800 0.8317* 0.8114 0.7668 0.5051 0.7767 

 NH4
+-N 0.7090 0.7511 0.7388 0.8009* 0.4761 0.6973 

Taiyuan 
FHSK COD 0.7627 0.8183* 0.8177 0.6856 0.5020 0.7649 

 NH4
+-N 0.6554 0.7048* 0.6978 0.6004 0.4665 0.6817 

Taiyuan 
SL COD 0.7801 0.8335* 0.7821 0.7437 0.5344 0.8214 

 NH4
+-N 0.7034 0.7576 0.7453 0.6883 0.4965 0.8092* 

Jinzhong 
WZQN COD 0.7274 0.7821* 0.7224 0.7069 0.4851 0.7211 

 NH4
+-N 0.5785 0.6198 0.6501 0.6162 0.5054 0.6531* 

Linfen 
SPW COD 0.7349 0.8037* 0.7183 0.6959 0.4944 0.7359 

 NH4
+-N 0.6720 0.6994 0.6689 0.6403 0.4933 0.7263* 

Yuncheng 
MQC COD 0.7339 0.7996* 0.7608 0.7366 0.5856 0.7689 

 NH4
+-N 0.6532 0.7100 0.6784 0.6364 0.5217 0.7059* 

Note:* means the largest GRD. 

 

3.2. Spatial variation of water quality 

The spatial distribution of water quality in the Fen River 
Basin from 2016 to 2023 (presented in Figure 3) 
demonstrated notable variations between the upstream 
and downstream regions. Water quality in the middle and 
lower reaches fluctuated between III and V levels, while 
the upstream areas consistently maintained higher water 
quality levels, classified as Class I and II. During this 
period, the proportion of Class I-III water sections in the 
Basin ranged from 24.0% to 68.8%, whereas the 
proportion of worse-than-Class V sections varied between 
0% and 72.7%. A significant upward trend was observed in 
proportion of water quality sections in Class I-III (rs=0.415, 
α=0.05), with a monthly increase of 0.2 percentage points. 

Conversely, the proportion of Class V water sections 
showed a significant downward trend, (rs=-0.803, α=0.05), 
decreasing by 0.9 percentage points per month. Although 
substantial progress has been made in eliminating many 
poor water quality sections with Class V, the water quality 
in certain middle and lower reaches, such as the WZQN 
station, remains poor, particularly during dry seasons in 
recent years. Spatial clustering analysis of COD 
concentration divided the seven monitoring sites into two 
categories: LMS, HXC, FHSK and SL formed the first 
category, while WZQN, SPW and MQC constituted the 
second. For the NH4

+-N concentration, the sites were 
classified into three categories: LMS, HXC, FHSK and SL 
comprised the first category, WZQN formed the second 
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category, and SPW and MQC constituted the third. The 
spatial clustering results aligned with the geographical 
location zoning of the seven sites. Given its location and 

severe pollution levels, WZQN station was selected as a 
representative site for focused analysis in the middle and 
lower reaches. 

 

Figure 4. Variations in water quality indicators at WZQN station in the Fen River Basin from March to May, 2021-2023 

 

Figure 5. Variations in water quality indicators at WZQN station in the Fen River Basin before and after the epidemic period in 2023. 

 

The spatial influencing factors of water quality can be 
summarized into two categories: natural factors and 
human activities. This study initially selected precipitation 
and surface water resources as the natural factors, while 
the human activities factors selected population, GDP, 
and pollutant emissions in wastewater. Grey correlation 
analysis (as shown in Table 4) revealed that population 
density was the predominant factor in the middle and 
lower reaches, with wastewater emission having the most 
significant impact on water quality. Gu et al. (2020) 
pointed out that large-scale domestic sewage discharges 
and emissions from heavy chemical industry as the 
primary contributors to severe pollution at WZQN station. 
According to the Water Resources Bulletin of Shanxi 
Province, total wastewater discharge in 2017 amounted to 
788 million tons, with 25.2% originating from industrial 
sources. The Fen River received 336 million tons of 
wastewater, accounting for 42.6% of the province's total 
wastewater discharge (Shanxi Provincial Department of 
Water Resources 2018). By 2022, total wastewater 
discharge in Shanxi Province had risen to 1.097 billion 
tons, with industrial contributions increasing to 41.3% 
(Shanxi Provincial Department of Water Resources 2023). 
Furthermore, data from the Shanxi Provincial Statistical 
Yearbook data revealed that in 2019, total COD and NH4

+-
N emissions were 109,200 tons and 11,200 tons, 
respectively, with domestic sources accounting for 62.5% 

and 87.8% of these pollutants (Shanxi Provincial Bureau of 
Statistics 2023). These findings indicate a marked increase 
in the impact of domestic sewage on the Fen River Basin, 
while industrial emissions have proportionally decreased. 
The large volume of pollutants discharged—exceeding the 
river's self-purification capacity—remains the 
fundamental cause of the persistent and severe water 
pollution observed in the middle and lower reaches of the 
Fen River. 

3.3. Impact of the COVID‑19 Lockdown on Water Quality 

On December 31 2019, the Chinese government reported 
the first case of COVID-19 in Wuhan, Hubei Province (Kang 
et al. 2020). In response to the pandemic, Wuhan 
implemented strict measures in January 2020 to curb the 
virus's spread, including self-isolation, social distancing 
measures, traffic restrictions, and community controls 
(Deng and Peng 2020), followed closely by other major 
cities in China (Le et al. 2020). Wuhan was the last city to 
reopened in April 2020, and after that only a few 
provinces and cities experienced sporadic outbreaks. In 
March 2022, China faced another sustained epidemic that 
lasted for about three months, until May 2022 (Meng and 
Zhang 2023). During the first lockdown, industries came to 
a halt, commercial institutions were largely closed, and 
transportation systems were nearly at a standstill. The 
second wave of the epidemic, which affected only certain 
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provinces and cities, did not lead to a nationwide large-
scale lockdown, and is referred to as the "semi-lockdown 
period." If the water quality was improved during the semi 
lockdown period, let alone during the full lockdown 
period. This study selected second epidemic period and 
defined the research period as follows: 

• Pre-lockdown period: December 2021 to January 
2022 (3 months); 

• Lockdown period (second epidemic): March to May 
2022 (3 months); 

• Post-lockdown period: June to August 2022 (3 
months). 

Year-on-year comparison data (shown in Figure 4) reveals 
that during the lockdown period in 2022, concentrations 
of key water pollutants were significantly lower compared 
to the same period in 2021 and 2023. Specifically: COD 
concentration during the lockdown was 8.0 mg/L, 24.5% 
lower than in 2021 and 4.6% lower than in 2023. NH4

+-N 
concentration was 0.42 mg/L, a 32.9% decrease from 
2021 and 60.0% from 2023. TP concentration was 0.153 
mg/L, 32.0% lower than in 2021 and 25.9% lower than in 
2023. Turbidity during the lockdown period was 93.8 NTU, 
showing a 29.1% decrease from 2021 and 61.1% from 
2023. These results indicate that the epidemic control 
measures from March to May 2022 significantly reduced 
pollutants concentrations, improving water transparency. 

In the month-to-month analysis (shown in Figure 5), the 
following trends were observed: COD concentration was 
115.8% higher during the lockdown period compared to 
the Pre-lockdown period, but 24.1% lower than in the 
post-lockdown period. NH4

+-N concentration was 39.8% 
lower than the pre-lockdown period and 40.5% lower than 
the post-lockdown period. TP concentration was 73.8% 
higher than in the pre-lockdown period but 19.9% lower 
than in the post-lockdown periods. Turbidity was 26.2% 
lower than in the pre-lockdown period and 45.1% lower 
than in the post-lockdown periods. These month-to-

month variations highlight that the water quality changes 
during the lockdown period were not consistent, which 
may be attributed to the seasonal variation in water 
quality caused by factors such as flood and dry seasons. 

3.4. Water Quality Simulation and Prediction 

This research further selected the WZQN Station, located 
in the heavily polluted middle and lower reaches of the 
Fen River Basin, for water quality prediction and analysis 
(as shown in Figure 6). This study set the sequence from 
2016 to 2022 as the model training dataset and the 
sequence in 2023 as the model validation dataset. The 
correlation coefficients between the predicted and 
observed values for COD and NH4

+-N were 0.73 and 0.81, 
respectively, indicating a strong model fit. Additionally, 
the standardized mean deviations for COD and NH₄⁺-N 
were 0.26 and 0.07, respectively, further confirming the 
good predictive performance of the LSTM model. The 
simulated results of the LSTM are better and meet the 
requirements of simulation accuracy. It showed that the 
LSTM showed high potential in future water environment 
monitoring and supervision, while the higher R2 scores of 
0.82 were achieved for TN prediction (Gao et al. 2024). 
The model predicted that the averaged COD and NH4

+-N 
concentrations at WZQN station from 2024 to 2025 would 
be 5.0 ± 2.7mg/L and 0.42 ± 0.33 mg/L, respectively. By 
2025, the COD concentration is expected to stabilize 
below the threshold set by the Surface Water 

Environmental Quality Standard (GB 3838—2002) for Class 

II (COD ≤ 15 mg/L) water quality. However, while the 

NH₄⁺-N concentration is predicted to meet the water 
quality standard (NH₄⁺-N ≤ 0.5 mg/L), it is expected to 
exceed this limit during the dry season of 2025. Therefore, 
further attention should be given to the seasonal 
variations in NH₄⁺-N concentrations to ensure long-term 
compliance with water quality standards.  

 

 

Figure 6. Prediction of COD and NH4
+-N concentrations at WZQN station based on the LSTM method 
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4. Conclusions 

The research systematically analyzed the water quality 
evolution trends and influencing factors in Fen River Basin 
by comprehensively applying statistical analysis methods 
such as Daniel trend test, Seasonal and Trend 
decomposition using Loess, grey correlation and Long 
Short-Term Memory neural network. From 2016 to 2023, 
the Fen River’s water quality improved significantly, 
shifting from severe pollution to mild pollution. Upstream 
areas generally exhibited Class I–II water quality under GB 
3838—2002 standards, while middle and lower reaches, 
although still relatively poor, showed notable elimination 
of inferior Class V water sections. COD and NH₄⁺-N were 
identified as primary pollutants.  

Although middle and lower reaches demonstrated 
significant improvement trends in key water quality 
indicators, NH₄⁺-N concentrations at some upstream 
stations showed limited reduction. The improvements in 
the Fen River’s environmental quality can largely be 
attributed to the implementation of water source 
protection and pollution control measures in recent years. 
It is noteworthy that the significant reduction in water 
usage for industrial, agricultural, and domestic purposes 
during the COVID-19 lockdown markedly improved water 
quality. This underscores the potential of targeted 
reductions in human activity to improve water quality. 
However, we projections for the end of the 14th Five-Year 
Plan indicate that NH₄⁺-N concentrations may still exceed 
the Class II surface water quality standard (GB 3838—
2002) limit (0.5 mg/L) during dry seasons, necessitating 
continued focus on controlling domestic pollution. 
Otherwise, the COD and TP concentrations were much 
higher during the wet seasons. Therefore, we should pay 
close attention to the changes in water quality during this 
period and carry out scientific treatment of non-point 
source pollution in the future. Moreover, it is suggested 
that on the basis of doing a good job in water quality 
monitoring during this period, efforts should be focused 
on promoting the comprehensive treatment of non-point 
source pollution to promote the stable improvement of 
the river water environment.  
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