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The spatio-temporal variations of water quality in Fen River

Abstract

This study examined water quality trends in the Fen River
Basin from 2016 to 2023, utilizing data from seven
monitoring stations. Advanced statistical methods,
including the Daniel trend test, Seasonal and Trend
decomposition using Loess (STL), grey correlation analysis,
and Long Short-Term Memory (LSTM) neural networks,
were employed to identify trends and key influencing
factors. Over this period, the average Chemical Oxygen
Demand (COD) and Ammonia Nitrogen (NH4*-N)
concentrations across Fen River Basin were (25.3%17.3)
mg-L™" and (3.6%3.2) mg-L™", respectively. Water quality
improved significantly, transitioning from severe pollution
in 2016 to mild pollution in 2023. The upstream
consistently maintained higher quality, generally classified
as Class | or Il according to GB 3838-2002 standards, while
the middle and lower reaches exhibited poorer
conditions. The previously prevalent inferior Class V water
quality has largely been eradicated. Key indicators such as
COD and NH4*-N in the middle and lower reaches
demonstrated statistically significant improvements at a
95% confidence level. However, reductions in NH;*-N
concentrations were inconsistent in some upstream areas.

These improvements are consistent with enhanced water
source protection and stricter pollution control measures.
Nonetheless, excessive pollutant discharge, particularly
from domestic and industrial sources, continues to
challenge the river's self-purification capacity, resulting in
localized water quality fluctuations, which are most
evident in the middle and lower reaches. Notably, a
significant improvement in water quality was observed
during the COVID-19 lockdown, attributed to reduced
water usage across industrial, agricultural, and domestic
sectors. This highlights the efficacy of emission reduction
strategies and the potential for targeted management to
achieve further gains. LSTM-based predictions suggest
that COD concentrations in the middle and lower reaches
will meet Class Il surface water standards (15 mg/L) by the
end of the 14th Five-Year Plan. However, NHz*-N
concentrations are projected to exceed the Class Il limit
(0.5 mg/L) during dry seasons. Future efforts should
concentrate on mitigating seasonal NH4*-N variations to
sustain and enhance water quality improvements.
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1. Introduction

Rivers serve as vital water resource transportation
channels from land to lakes and oceans, fulfilling critical
societal needs such as drinking water, irrigation, and
hydropower generation (Grill et al. 2019). They support
domestic, agricultural, and energy needs, playing a pivotal
role in sustaining human society. However, rapid socio-
economic development over recent decades have led to
high-intensity human activities that have not only
depleted significant water resources but also severely
degraded water quality. This degradation has damaged
river ecosystems and poses a serious threat to human
water safety and the integrity of aquatic ecosystems
(Chen et al. 2019; Xia et al. 2020). Recent studies have
highlighted that the input of pollutants from rivers in
China is significant. Pollutant loads include 2.8x107 tons of
dissolved nitrogen, 3x10° tons of dissolved phosphorus
(Chen et al. 2019), and nearly 2.5x104 tons of antibiotics
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(Zhang et al. 2015). In 2022, data from 3,629 monitoring
stations across China showed that 87.9% of water quality
assessments fell within Classes | to Ill, while only 0.7%
were rated as Class V. Key pollution indicators included
chemical oxygen demand (COD), total phosphorus (TP),
and potassium permanganate index (CODMn) (Ministry of
Ecology and Environment 2023). This water pollution crisis
is further compounded by an annual shortage of 40 billion
tons of water in China (Tao and Xin 2014).

Many studies have increasingly focused on the evolution
of water quality in China’s major rivers and the factors
driving these changes, particularly in the seven key river
systems that are vital to the nation’s economy, ecology,
and society. (Meng and Zhang 2023; Qiao et al. 2021;
Huang et al. 2021). For instance, Zhang et al. (2020)
identified COD, biochemical oxygen demand (BOD), and
TP as the primary water pollution indicators in these river
systems. Their study also noted significant improvements
in China's Class V surface water between 2005 and 2017.
To analyze the spatio-temporal variations in river water
quality, researchers commonly employ statistical methods
such as Mann Kendall test, Daniel trend test, cluster
analysis, spatial interpolation, Spearman correlation
analysis, and grey correlation analysis (Zhai et al. 2014;
Huang et al. 2021). However, while these methods have
provided valuable insights, the mechanisms underlying
water quality evolution are complex and multifaceted
(Venkatraman et al. 2025). Key influencing factors include
both human activities and natural conditions (Cheng et al.
2019). Despite significant progress in understanding these
dynamics, a major limitation in current research is the lack
of long-term observational data, which hinders the ability
to fully grasp the long-term trends and causes of water
quality fluctuations (Suresh et al. 2025). Furthermore,
there is limited integration of manual and automatic
monitoring data, which restricts comprehensive
comparisons and analyses of river water quality evolution
using advanced multiple spatio-temporal methods.
Ongoing human activities have hindered further
exploration of the natural and human factors driving
water quality and their contributions. The COVID-19
pandemic, however, has provided an unprecedented
opportunity to study the rapid improvement in water
quality resulting from the reduction of human activities.
During the lockdowns, decreased industrial production,
transportation, and other human activities led to
noticeable improvements in water quality, as documented
in several studies (Kang et al. 2020; Deng and Peng 2020;
Le et al. 2020). This phenomenon has been observed
globally, with notable examples including the canals of
Venice (Saadat et al. 2020), the Yamuna River in India (Arif
et al. 2020), and sections of the Yangtze River in China (Liu
et al 2022). Similarly, in the Fen River Basin, located in
Shanxi Province, water quality has emerged as a critical
concern. As the birthplace of the Three Jin Civilization, the
Fen River Basin is densely populated and serves as the
economic hub of Shanxi. (Gu et al. 2020). Despite severe
surface water pollution and significant water shortages,
the demand for water in urban, industrial, and agricultural
sectors remains high. The quality of water in the Fen River
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directly impacts both resource utilization and sustainable
economic development (Shanxi Provincial Bureau of
Statistics 2023). Consequently, water quality analysis and
pollution control are central to the ecological and
environmental protection strategy outlined in Shanxi
Province's 14th Five-Year Plan.

To address these challenges, this study utilized manual
and automatic water quality monitoring data collected
from seven stations across the Fen River Basin, spanning
the period from 2016 to 2023. A range of analytical
methods—including Daniel trend analysis, STL trend
decomposition, grey correlation degree, and long short-
term memory (LSTM) neural network—was applied to
comprehensively analyze water quality variations and
identify key influencing factors. The goal is to provide
technical support for pollution control measures and
sustainable water management in the Fen River Basin.

2. Materials and methods
2.1. Study area and observations

The Fen River, often referred to as the "mother river" of
Shanxi, is the second-largest tributary of the Yellow River
and plays a crucial role in the ecological security of the
middle and lower reaches of the Yellow River. Originating
from Ningwu County, the Fen River flows through six cities
in Shanxi Province: Xinzhou, Taiyuan, Lvliang, Jinzhong,
Linfen, and Yuncheng. It traverses the Jinzhong and Linfen
basins, joined by more than ten tributaries along its 716
km length. With a drainage area of 39,721 km2, the Fen
River accounts for approximately 25.5% of Shanxi
Province's t total surface area (Figure 1). The river’s upper
reaches extend from its source to Shanglan Station in
Taiyuan City, primarily flowing through mountainous
areas. The middle section spans from Shanglan Station to
Shitan in Hongdong County, passing through the Jinzhong
Basin. The downstream section runs from Shitan to
Huangkou. The Fen River Basin experiences a semi-arid to
semi-humid continental monsoon climate, with an
average annual precipitation of 504.8 mm, predominantly
occurring between June and September. The basin’s total
water resources amount to 3.358 billion cubic meters,
representing approximately 27.2% of Shanxi Province's
total water resources (Shanxi Provincial Bureau of
Statistics 2023). Water quality monitoring data, including
chemical oxygen demand (COD) and ammonia nitrogen
(NH4*-N), were obtained from seven monitoring stations
in the Fen River Basin between 2016 and 2023. These data
were sourced from the Shanxi Provincial Ecological
Environment Bureau’s Surface Water Environmental
Quality Report (https://sthjt.shanxi.gov.cn/shjzl/dbsszyb/,
as shown in Figure 1). T The seven monitoring stations are
located at Leiming Temple (LMS), Hexi Village (HXC), Fen
Reservoir (FHSK), Shanglan (SL), Wangzhuang Bridge
South (WZQN), Shangpingwang (SPW), and Miaogian
Village (MQC). Water quality indicators were manually
monitored once per month, and the sampling, analysis,
and evaluation were carried out in accordance with the
"Surface Water Environmental Quality Standards"
(GB3838-2002). In certain months, no measurements
were available due to dehydration or icing. In addition to
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the manual monitoring data, automatic water quality
monitoring data from five stations in the Fen River Basin
were used for the period from 2020 to 2023. These data
were sourced from the national real-time data release
system for surface water quality monitoring
(http://106.37.208.243:8068/GJZ/Business/Publish/Main.
html). The five monitoring stations are located at Hexi
Village (HXC), Fen Reservoir (FHSK), Shanglan (SL),
Wangzhuang Bridge South (WZQN), and Shangpingwang
(SPW). The main water quality indicators monitored
include dissolved oxygen (DO), chemical oxygen demand
(CODMn), ammonia nitrogen (NH4+-N), total phosphorus
(TP), and water turbidity (TUR). Monitoring was
conducted every four hours, with readings taken at 4:00,
8:00, 12:00, 16:00, and 20:00.

Data on annual precipitation and surface water resources
across various cities in the Fen River Basin from 2016 to
2023 were sourced from the Water Resources Bulletin of
Shanxi Province (http://slt.shanxi.gov.cn/zncs/szyc/szygb/).
Discharge data for sewage and wastewater from various
cities in the Fen River Basin, covering the period from
2016 to 2022, were obtained from the Statistical Yearbook
of Urban and Rural Construction (http://www.mohurd.
gov.cn/xytj/tjzlisxytjgb/jstjnj/). Additionally, GDP,
population, and other statistical data from the cities
within the Fen River Basin from 2016 to 2023 were
sourced from the Shanxi Provincial Statistical Yearbook
(http://www.shanxi.gov.cn/sj/tjnj/).
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Figure 1. Geographical location and distribution of monitoring
station

2.2. Daniel Trend Test

To analyze the trends of the water quality indicators, the
Daniel trend test is applied in this study. Also known as
Spearman's rank correlation coefficient test (Spearman
1904), this method is used to assess the correlation
between two sets of variables (Daniel et al. 1990).
Spearman's rank correlation coefficient is a non-
parametric statistical measure, meaning it does not rely
on the distribution of data. The principle of the test
involves assigning ranks to two variables, X and Y, where
Xi and Yi represent the ranks of the variables, respectively.
The correlation between these two variables is then
calculated using the following equation 2.1.

7 :1—(62(36,. —yl.)zj/(n3 —n)

In equation 2.1, rs presents the Spearman rank correlation
coefficient; Xi and Vi are the ranks of the respective
variables, and N is the number of observations. If |rs| 2

(2.1)

WP and Rs is positive, the data represents a significant
upward trend; when |rs| 2 WP and rs is negative, the data
indicates a significant downward trend. Daniel Trend Test
is suitable for the correlation test of a single factor with a
small sample size, and it is concise with high accuracy.
However, it performs poorly in the trend test of long-term
sequences.

2.3. STL decomposition method

The STL (A Seasonal and Trend decomposition using Loss)
method, introduced by Cleveland et al. (1979), is used for
time series decomposition. It is based on LOESS (Locally
Weighted Scatterplot Smoothing), a non-parametric
regression technique that assigns varying weights to data
points based on their proximity, allowing for flexible
smoothing of non-linear data (Cleveland and Devlin 1988).
Each recursive process of the STL method requires three
LOESS and one sliding average to be performed
separately. In the STL method, the original data Y: is
decomposed into three components: trend (Trend:),
seasonal (Seasonalt), and residual (Residual):

Y, = Trend, +Seasonal, + Residual, (2.2)
The trend component represents the long-term, low-
frequency behavior of the data under specific climatic
conditions, while the seasonal term captures periodic
fluctuations. STL has been widely applied in various fields
such as economics, environmental science, and water
quality analysis (Silawan et al. 2008). And it can handle
seasonal components of different lengths and periods,
and is applicable to time series data of various seasonal
patterns.

2.4. LSTM method for prediction

Long Short-Term Memory (LSTM) networks, an improved
version of Recurrent Neural Networks (RNN), were
introduced by Hochreiter and Schmidhuber (1997) to
address the vanishing gradient problem. In this study, the
LSTM network is utilized for water quality prediction, as it
excels in modeling temporal dependencies in time series
data.

Unlike traditional RNNs, which rely on a single neuron
with a tanh activation function, LSTM introduces a "gate"
mechanism that regulates the flow of information through
the network’s cell state. (Gers et al. 2003). Specifically,
LSTM contains three gates: the input gate, the output
gate, and the forget gate. These gates control the
information added to or removed from the cell state,
which allows the network to retain long-term
dependencies.

The LSTM model used in this study has 200 hidden layer
nodes, a sliding window size of 3 months, and a total of 12
iterations. For prediction, the fourth month’s water
quality is forecasted based on data from the first three
months, the fifth month based on data from months 24,
and so on.

The corresponding LSTM equations are as follows

f=oc(W,[h_,x]1+b,) (2.3)
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i=c(W[h_,x]+b) (2.4)
C=tanh(W,[h_,,x,]+b.) (2.5)
C =£C+iC (26)
o, =c(W, -[h_,x]+b,) (2.7)
h = o, tanh(C,) (2.8)

In these equations, xt is the input at time t; W is the
weight matrix; b is the bias matrix; and C, is the cell state
at time t; C; is the updated value at time t; ht and h¢1
represent the outputs at times t and t-1, respectively. It is
relatively insufficient in processing extremely long
sequence data, and the training process has high
computational complexity and takes a lot of time.

3. Results and Discussions

3.1. Temporal variations in water quality

FH -
e e

W.‘.:.';‘.:“!ﬂ:l"hi.‘.—.!?‘,:‘ﬂ'w"-‘*':l___

& -;._.a- . .'.‘- _

o
STPRETR -y [y
=22 2=.80

s
=28 2=288

=
=

LINLIN Ll et al.

As shown in Figure 2, during the sampling period from
2016 to 2023, the average concentrations of COD and
NHs*-N at four monitoring sites in the upper reaches of
the Fen River Basin were (5.6 + 3.3) mg-L™* and (0.12+0.09)
mg-L}, respectively. In contrast, the average COD and
NHs*-N concentrations at three monitoring points in the
middle and lower reaches were (25.3+17.3) mg-L! and
(3.6 + 3.2) mg-L?, respectively. These results highlight the
poor water quality in the middle and lower reaches
compared to the upstream sections. At the WZQN, SPW
and MQC sites in the middle and lower reaches, water
quality was generally classified between Class Ill and Class
V. The primary pollutants in these areas were COD, NH4*-
N, and TP, but concentration of these pollutants have
notably decreased in recent years. Taking the year 2023 as
an example, only the concentration of at WZQN, SPW and
MQC sites in the middle and lower reaches of the Fen
River Basin exceeded the Class Il limit of surface water
ammonia nitrogen (0.5 mg-L?), with 3, 2, and 2 instances
of exceeding the limit, respectively.
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Figure 2. Temporal variations of main water quality parameters’ concentrations in Fen river basin during 2016-2023

Table 1. The Daniel trend tests of the original COD and NH4*-N concentrations in Fen river basin during 2016-2023.

Station Period n  Water quality index Wp(a=0.05) Wp(a=0.01) rs Trend test
LMS 2016~2023 8 COD 0.707 0.834 -0.714 Significant decrease™
2016~2023 8 NH*-N 0.707 0.834 0.321 Not significant
HXC 2016~2023 8 COD 0.707 0.834 -0.881 Significant decrease™”
2016~2023 8 NH4*-N 0.707 0.834 0.024 Not significant
FHSK 2016~2023 8 CcoD 0.707 0.834 -0.857 Significant decrease™”
2016~2023 8 NH4*-N 0.707 0.834 -0.786 Significant decrease™
SL 2016~2023 8 COD 0.707 0.834 -0.524 Not significant
2016~2023 8 NH4*-N 0.707 0.834 -0.857 Significant decrease™”
WZQN 2016~2023 8 COD 0.707 0.834 -0.976 Significant decrease™™”
2016~2023 8 NHz*-N 0.707 0.834 -0.905 Significant decrease™”
SPW 2016~2023 8 COD 0.707 0.834 -0.976 Significant decrease™™”
2016~2023 8 NHz*-N 0.707 0.834 -0.976 Significant decrease™™”
MQC 2016~2023 8 COD 0.707 0.834 -0.952 Significant decrease™™”
2016~2023 8 NHz*-N 0.707 0.834 -0.714 Significant decrease™™”
Mean 2016~2023 8 CcoD 0.707 0.834 0.976 Significant decrease™”
2016~2023 8 NH4*-N 0.707 0.834 0.905 Significant decrease™”

Note:*, ** *** means passing the significance test of a=0.1, 0.05, 0.01 respectively.
Table 2. The Daniel trend tests of the trend components of COD and NH4*-N concentrations in Fen river basin during 2016-2023
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Station Period n Water quality index Wp(a=0.05) Wp(a=0.01) rs Trend test
LMS 2016~2023 8 CcOoD 0.707 0.834 -0.833 Significant decrease**
2016~2023 8 NH4*-N 0.707 0.834 0.310 Not significant
HXC 2016~2023 8 CcoD 0.707 0.834 -0.881 Significant decrease***
2016~2023 8 NH4*-N 0.707 0.834 -0.357 Not significant
FHSK 2016~2023 8 CcoD 0.707 0.834 -0.952 Significant decrease***
2016~2023 8 NH4*-N 0.707 0.834 -0.833 Significant decrease**
sL 2016~2023 8 COD 0.707 0.834 -0.548 Not significant
2016~2023 8 NH4*-N 0.707 0.834 -0.881 Significant decrease***
WZQN 2016~2023 8 CcoD 0.707 0.834 -0.952 Significant decrease***
2016~2023 8 NHz*-N 0.707 0.834 -1.000 Significant decrease***
SPW 2016~2023 8 CcoD 0.707 0.834 -0.976 Significant decrease***
2016~2023 8 NHz*-N 0.707 0.834 -0.905 Significant decrease***
MQC 2016~2023 8 CcoD 0.707 0.834 -0.952 Significant decrease***
2016~2023 8 NHz*-N 0.707 0.834 -0.762 Significant decrease***
Mean 2016~2023 8 CcoD 0.707 0.834 -0.976 Significant decrease***
2016~2023 8 NH4*-N 0.707 0.834 -0.976 Significant decrease***

Note:*, ** *** means passing the significance test of a=0.1, 0.05, 0.01 respectively.
Table 3. Statistics of water quality indexes in Fen river basin during wet and dry seasons in 2023 mg-L?

Stations Periods COD NH4*-N TP DO

Wet season 2.1 0.05 0.045 6.4

Upstream stations Dry season 1.5 0.14 0.016 9.8

Difference -0.6 0.09 -0.029 3.4

Wet season 7.8 0.31 0.139 6.9

Three stations in the middle and downstream Dry season 5.2 0.84 0.107 11.1
Difference -2.6 0.53 -0.033 4.2

Wet season 4.3 0.15 0.082 6.6

Mean of seven stations Dry season 3.5 0.51 0.065 10.5

Difference -0.9 0.36 -0.017 3.9

The original time series data (Table 1 and Table 2)
indicate significant improvements in water quality
indicators at all seven monitoring stations between 2016
and 2023.Most of the time series passed the 95%
confidence interval of Daniel significance trend test.
Specifically, except for the SL station, COD concentrations
at all other six stations showed significant downward
trends with a 95% confidence level. Similarly, except for
the LMS and HXC sites, NH4*-N concentration at the other
five stations also showed significant downward trends.
These trends were consistent with the results from the
Daniel significance trend applied to the trend component
of the original data, confirming a significant reduction in
pollutant concentrations (Table 3).

Seasonal variations in water quality were also evident. The
concentrations of NH4*-N and DO were significantly higher
during dry seasons compared to the wet seasons at all
seven monitoring stations. In contrast, COD and TP
concentrations were much higher during the wet seasons.
The seasonal fluctuations in water quality are influenced
by both natural and anthropogenic factors both natural
and anthropogenic factors. Industrial, domestic, and
agricultural non-point emissions have contributed to
poorer water quality in certain areas. Additionally, the
tributaries of the Fen River are mainly seasonal rivers,
characterized by flood events in the summer and water
shortages during the dry season. During the dry season,
the river's runoff mainly comes from wastewater
discharged from domestic and industrial production along

the way, resulting in higher concentrations of water
pollutants, especially NH4*-N. Conversely, the strong
erosion and high sediment content during the flood
season contribute to COD concentrations.

In recent vyears, significant improvements in the
environmental quality of Fen River have been
continuously observed, largely due to the implementation
of water source protection and pollution control
measures. In 2018, Shanxi Province issued the "Overall
Plan for Ecological Protection and Restoration of the
'Seven Rivers' Basin" with a Focus on the Fen River. This
was followed by the "Decision on Resolutely Winning the
Battle of Fen River Basin Governance" in 2019, which has
contributed to substantial reductions in industrial
pollutants and improvements in water treatment rates.
The goal of "a flood of clean water entering the Yellow
River" has been largely achieved In January 2022, the Fen
River Protection Regulations were enacted, providing
clear provisions for water resource management,
pollution prevention, and ecological restoration. Further,
the "Ecological Protection and High-Quality Development
Plan for the Yellow River Basin in Shanxi Province," was
issued in April 2022 emphasized pollution control in the
Fen River Basin and promoted targeted, scientific, and
regulatory governance. According to the Statistical
Yearbook of Urban and Rural Construction in 2022, as the
end of 2022, the processing capacity of sewage treatment
plants in China had reached 216 million cubic meters per
day, with an urban sewage treatment rate of 98.11% and



a centralized collection rate of 70.1% for urban domestic
sewage. In Shanxi Province, sewage treatment capacity
was 3.67 million cubic meters per day, with a treatment
rate of 98.48% and a collection rate of 71.1%, both
(Shanxi

surpassing the national averages Provincial
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Department of Water Resources 2023). Above all, these
measures have greatly reduced the discharge of
wastewater pollutants and contributed to the improved
water quality in the Fen River basin.
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Figure 3. Cluster distribution of water quality in seven monitoring sections of the Fen River Basin from 2016 to 2023

Table 4. Grey correlation degree between water indexes and social driving factors, hydrometeorological factors in Fen river basin

City Station waQl GDP Population Rainfall SWR COD emissions NH;*-N emissions
Xinzhou LMS COD 0.7676 0.8341* 0.8148 0.8290 0.5094 0.7786
NHz*-N  0.8260* 0.7291 0.6883 0.7186 0.5802 0.7045
Xinzhou HXC COD 0.7800 0.8317* 0.8114 0.7668 0.5051 0.7767
NH4s*-N  0.7090 0.7511 0.7388  0.8009* 0.4761 0.6973
Taiyuan FHSK COD 0.7627 0.8183* 0.8177 0.6856 0.5020 0.7649
NH4s*-N  0.6554 0.7048* 0.6978 0.6004 0.4665 0.6817
Taiyuan SL COD 0.7801 0.8335* 0.7821 0.7437 0.5344 0.8214
NH4.*-N  0.7034 0.7576 0.7453 0.6883 0.4965 0.8092*
Jinzhong WZQN COD 0.7274 0.7821* 0.7224 0.7069 0.4851 0.7211
NHa*-N 0.5785 0.6198 0.6501 0.6162 0.5054 0.6531*
Linfen SPW COD 0.7349 0.8037* 0.7183 0.6959 0.4944 0.7359
NHa*-N 0.6720 0.6994 0.6689 0.6403 0.4933 0.7263*
Yuncheng MQC COD 0.7339 0.7996* 0.7608 0.7366 0.5856 0.7689
NHa*-N 0.6532 0.7100 0.6784 0.6364 0.5217 0.7059*

Note:* means the largest GRD.

3.2. Spatial variation of water quality

The spatial distribution of water quality in the Fen River
Basin from 2016 to 2023 (presented in Figure 3)
demonstrated notable variations between the upstream
and downstream regions. Water quality in the middle and
lower reaches fluctuated between Ill and V levels, while
the upstream areas consistently maintained higher water

quality levels, classified as Class | and Il. During this
period, the proportion of Class I-lll water sections in the
Basin ranged from 24.0% to 68.8%, whereas the

proportion of worse-than-Class V sections varied between
0% and 72.7%. A significant upward trend was observed in
proportion of water quality sections in Class I-Ill (rs=0.415,
0=0.05), with a monthly increase of 0.2 percentage points.

Conversely, the proportion of Class V water sections
showed a significant downward trend, (rs=-0.803, a=0.05),
decreasing by 0.9 percentage points per month. Although
substantial progress has been made in eliminating many
poor water quality sections with Class V, the water quality
in certain middle and lower reaches, such as the WZQN
station, remains poor, particularly during dry seasons in
recent vyears. Spatial clustering analysis of COD
concentration divided the seven monitoring sites into two
categories: LMS, HXC, FHSK and SL formed the first
category, while WZQN, SPW and MQC constituted the
second. For the NH4*-N concentration, the sites were
classified into three categories: LMS, HXC, FHSK and SL
comprised the first category, WZQN formed the second
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category, and SPW and MQC constituted the third. The
spatial clustering results aligned with the geographical
location zoning of the seven sites. Given its location and
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Figure 4. Variations in water quality indicators at WZQN station in the
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severe pollution levels, WZQN station was selected as a
representative site for focused analysis in the middle and
lower reaches.
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Figure 5. Variations in water quality indicators at WZQN station in the Fen River Basin before and after the epidemic period in 2023.

The spatial influencing factors of water quality can be
summarized into two categories: natural factors and
human activities. This study initially selected precipitation
and surface water resources as the natural factors, while
the human activities factors selected population, GDP,
and pollutant emissions in wastewater. Grey correlation
analysis (as shown in Table 4) revealed that population
density was the predominant factor in the middle and
lower reaches, with wastewater emission having the most
significant impact on water quality. Gu et al. (2020)
pointed out that large-scale domestic sewage discharges
and emissions from heavy chemical industry as the
primary contributors to severe pollution at WZQN station.
According to the Water Resources Bulletin of Shanxi
Province, total wastewater discharge in 2017 amounted to
788 million tons, with 25.2% originating from industrial
sources. The Fen River received 336 million tons of
wastewater, accounting for 42.6% of the province's total
wastewater discharge (Shanxi Provincial Department of
Water Resources 2018). By 2022, total wastewater
discharge in Shanxi Province had risen to 1.097 billion
tons, with industrial contributions increasing to 41.3%
(Shanxi Provincial Department of Water Resources 2023).
Furthermore, data from the Shanxi Provincial Statistical
Yearbook data revealed that in 2019, total COD and NHa*-
N emissions were 109,200 tons and 11,200 tons,
respectively, with domestic sources accounting for 62.5%

and 87.8% of these pollutants (Shanxi Provincial Bureau of
Statistics 2023). These findings indicate a marked increase
in the impact of domestic sewage on the Fen River Basin,
while industrial emissions have proportionally decreased.
The large volume of pollutants discharged—exceeding the
river's self-purification capacity—remains the
fundamental cause of the persistent and severe water
pollution observed in the middle and lower reaches of the
Fen River.

3.3. Impact of the COVID-19 Lockdown on Water Quality

On December 31 2019, the Chinese government reported
the first case of COVID-19 in Wuhan, Hubei Province (Kang
et al. 2020). In response to the pandemic, Wuhan
implemented strict measures in January 2020 to curb the
virus's spread, including self-isolation, social distancing
measures, traffic restrictions, and community controls
(Deng and Peng 2020), followed closely by other major
cities in China (Le et al. 2020). Wuhan was the last city to
reopened in April 2020, and after that only a few
provinces and cities experienced sporadic outbreaks. In
March 2022, China faced another sustained epidemic that
lasted for about three months, until May 2022 (Meng and
Zhang 2023). During the first lockdown, industries came to
a halt, commercial institutions were largely closed, and
transportation systems were nearly at a standstill. The
second wave of the epidemic, which affected only certain



provinces and cities, did not lead to a nationwide large-
scale lockdown, and is referred to as the "semi-lockdown
period." If the water quality was improved during the semi
lockdown period, let alone during the full lockdown
period. This study selected second epidemic period and
defined the research period as follows:

e Pre-lockdown period: December 2021 to January
2022 (3 months);
e Lockdown period (second epidemic): March to May
2022 (3 months);
e Post-lockdown period: June to August 2022
months).
Year-on-year comparison data (shown in Figure 4) reveals
that during the lockdown period in 2022, concentrations
of key water pollutants were significantly lower compared
to the same period in 2021 and 2023. Specifically: COD
concentration during the lockdown was 8.0 mg/L, 24.5%
lower than in 2021 and 4.6% lower than in 2023. NH4*-N
concentration was 0.42 mg/L, a 32.9% decrease from
2021 and 60.0% from 2023. TP concentration was 0.153
mg/L, 32.0% lower than in 2021 and 25.9% lower than in
2023. Turbidity during the lockdown period was 93.8 NTU,
showing a 29.1% decrease from 2021 and 61.1% from
2023. These results indicate that the epidemic control
measures from March to May 2022 significantly reduced
pollutants concentrations, improving water transparency.

3

In the month-to-month analysis (shown in Figure 5), the
following trends were observed: COD concentration was
115.8% higher during the lockdown period compared to
the Pre-lockdown period, but 24.1% lower than in the
post-lockdown period. NH4*-N concentration was 39.8%
lower than the pre-lockdown period and 40.5% lower than
the post-lockdown period. TP concentration was 73.8%
higher than in the pre-lockdown period but 19.9% lower
than in the post-lockdown periods. Turbidity was 26.2%
lower than in the pre-lockdown period and 45.1% lower
than in the post-lockdown periods. These month-to-
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month variations highlight that the water quality changes
during the lockdown period were not consistent, which
may be attributed to the seasonal variation in water
quality caused by factors such as flood and dry seasons.

3.4. Water Quality Simulation and Prediction

This research further selected the WZQN Station, located
in the heavily polluted middle and lower reaches of the
Fen River Basin, for water quality prediction and analysis
(as shown in Figure 6). This study set the sequence from
2016 to 2022 as the model training dataset and the
sequence in 2023 as the model validation dataset. The
correlation coefficients between the predicted and
observed values for COD and NH4*-N were 0.73 and 0.81,
respectively, indicating a strong model fit. Additionally,
the standardized mean deviations for COD and NH4*-N
were 0.26 and 0.07, respectively, further confirming the
good predictive performance of the LSTM model. The
simulated results of the LSTM are better and meet the
requirements of simulation accuracy. It showed that the
LSTM showed high potential in future water environment
monitoring and supervision, while the higher R? scores of
0.82 were achieved for TN prediction (Gao et al. 2024).
The model predicted that the averaged COD and NH4*-N
concentrations at WZQN station from 2024 to 2025 would
be 5.0 * 2.7mg/L and 0.42 + 0.33 mg/L, respectively. By
2025, the COD concentration is expected to stabilize
below the threshold set by the Surface Water
Environmental Quality Standard (GB 3838—2002) for Class
Il (COD < 15 mg/L) water quality. However, while the
NH4*-N concentration is predicted to meet the water
quality standard (NH4*-N < 0.5 mg/L), it is expected to
exceed this limit during the dry season of 2025. Therefore,
further attention should be given to the seasonal
variations in NH;*-N concentrations to ensure long-term
compliance with water quality standards.
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Figure 6. Prediction of COD and NH4*-N concentrations at WZQN station based on the LSTM method
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4. Conclusions

The research systematically analyzed the water quality
evolution trends and influencing factors in Fen River Basin
by comprehensively applying statistical analysis methods
such as Daniel trend test, Seasonal and Trend
decomposition using Loess, grey correlation and Long
Short-Term Memory neural network. From 2016 to 2023,
the Fen River's water quality improved significantly,
shifting from severe pollution to mild pollution. Upstream
areas generally exhibited Class I-1l water quality under GB
3838—2002 standards, while middle and lower reaches,
although still relatively poor, showed notable elimination
of inferior Class V water sections. COD and NH4*-N were
identified as primary pollutants.

Although middle and lower reaches demonstrated
significant improvement trends in key water quality
indicators, NH;*-N concentrations at some upstream
stations showed limited reduction. The improvements in
the Fen River’s environmental quality can largely be
attributed to the implementation of water source
protection and pollution control measures in recent years.
It is noteworthy that the significant reduction in water
usage for industrial, agricultural, and domestic purposes
during the COVID-19 lockdown markedly improved water
quality. This underscores the potential of targeted
reductions in human activity to improve water quality.
However, we projections for the end of the 14th Five-Year
Plan indicate that NH;*-N concentrations may still exceed
the Class Il surface water quality standard (GB 3838—
2002) limit (0.5 mg/L) during dry seasons, necessitating
continued focus on controlling domestic pollution.
Otherwise, the COD and TP concentrations were much
higher during the wet seasons. Therefore, we should pay
close attention to the changes in water quality during this
period and carry out scientific treatment of non-point
source pollution in the future. Moreover, it is suggested
that on the basis of doing a good job in water quality
monitoring during this period, efforts should be focused
on promoting the comprehensive treatment of non-point
source pollution to promote the stable improvement of
the river water environment.
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