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Graphical abstract 

 

Abstract 

Crop yield forecasting is an essential element for farm 
management directly impacting food security, economic 
planning and sustainability of resources. This study 
integrated remote sensing data and machine learning 
approaches to develop an advanced turmeric yield 
modelling framework for turmeric crops grown in the 
study area. The input parameters included vegetation 
indices, soil texture and meteorological and hydrological 
variables. The findings showed that the Back Propagation 
Neural Network (BPNN) model (R2 = 0.96) outperformed 
other models utilized in this study in predicting turmeric 
yield. Sensitivity analysis further highlighted that the 
turmeric yield was highly sensitive to the Normalized 
Difference Vegetation Index) NDVI, Moisture Stress Index 
(MSI) and precipitation. This modelling approach provided 
a reliable tool for early yield estimation at the maturity 
phase with a 0.86 % deviation from the actual turmeric 
yield, aiding farmers and policymakers in optimising crop 
management practices and enhancing decision-making 

processes. This study presented a holistic approach for 
scalable data-driven agricultural innovation contributing 
to efficient and sustainable crop production systems. 

Keywords: Crop yield, Turmeric, Remote Sensing, 
Vegetation Indices, Machine learning 

1. Introduction 

Crop yield reflects agricultural productivity and is directly 
related to food security, the income and economic well-
being of farmers. Crop production forecasts based on 
weather conditions will help farmers, policymakers and 
administrators in coping with adversity (Das et al. 2018). 
Crop yield models which provide timely and accurate yield 
estimates using satellite data and advanced analytics, play 
a key role in agricultural insurance by supporting risk 
assessment, policy formulation and claim management 
(Mateo-Sanchis et al. 2020; Mena et al. 2024; Rojas et al. 
2011). 

Crop yield was forecasted by using traditional models 
based on soil characteristics and climatic factors utilising 
simple and multiple linear regression models (Abrougui et 
al. 2019). A model such as SPUDSIM was limited to predict 
the potato yield at the state level (Resop et al. 2012). Crop 
models demand extensive input parameters including soil 
properties, weather parameters and yield variables for 
validation and assessment, as they replicate crop growth 
regularly (Ahmad et al. 2018). Remote sensing technology 
offers crop information, environmental conditions and 
land management. MODIS-derived vegetation indices such 
as NDVI, Enhanced Vegetation Index (EVI), Land Surface 
Temperature (LST), Leaf Area Index (LAI) and Vegetation 
Condition Index (VCI) were employed for crop yield 
estimation (Ronchetti et al. 2023; Potopova et al. 2020; 
Johnson. 2014; Setiyono et al. 2018). Sentinel 2-derived 
indices like NDVI, Red Edge NDVI, Chlorophyll Index Red 
Edge (CIRE) and Canopy Chlorophyll Content were 
employed in the construction of crop yield models (Hunt 
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et al. 2019; Schwalbert et al. 2018; Dimov et al. 2022; 
Hara et al. 2021). Crop yield at maturity stages had the 
greatest precision in comparison with other crop 
developmental stages (Amankulova et al. 2023; Nevavuori 
et al. 2019; Tedesco et al. 2021; Zhou et al. 2017). Most of 
the studies considered either vegetation indices such as 
NDVI and EVI or environmental factors (e.g., precipitation, 
temperature) and rarely combined both data types for 
holistic modelling (Muruganantham et al. 2022). The 
literature review emphasized that multisource data fusion 
can enhance prediction accuracy but is underutilized for 
underrepresented crops such as turmeric (Joshi et al. 
2023). This study offered a comprehensive modelling 
strategy that addresses this gap directly by integrating 
Sentinel-2 indices (NDVI, EVI, LAI, MSI, NDRE) with real-
time precipitation, temperature, relative humidity and 
reservoir outflow. While Sentinel-2 data are universal in 
applications to common crops, their utilization for 
turmeric, particularly by employing several indices was 
limited.  This study employed such indices to forecast 
turmeric yield and opened up new fronts in Sentinel data-
specific crop applications. 

The Feed Forward Neural Network (FFNN) model was built 
to forecast maize yield in Kenya based on precipitation, 
temperature, evapotranspiration, soil moisture and Landsat 
7 NDVI (Mwaura and Kenduiywo 2021). Generalized 
Regression Neural Network (GRNN) models were employed 
to simulate paddy yield with enhanced precision (Joshua et 
al. 2021). BPNN models simulated winter wheat yield more 
accurately at the field scale level (Tang et al. 2022). 
Convolutional Neural Network (CNN) and Long Short Term 
Memory (LSTM) models were employed in constructing 
crop yield models (Sun et al. 2019). RNN models efficiently 
captured temporal relationships and were best suited for 
accurate time-series-based crop yield prediction (Bali and 
Singla. 2021). Research showed that the MLP model 
enhanced crop yield prediction accuracy from crop 
phenology (Yesilkoy and Demir. 2024). An Artificial Neural 
Network (ANN) model was introduced for curcumin content 
estimation based on soil, climate parameters, pH and 
organic carbon with R2 = 0.91 (Akbar et al. 2016). A model 
of yield prediction of turmeric was established through the 
application of ANN employing soil and climatic parameters 
as the input variables and estimated the yield as R = 0.88 
(Akbar et al. 2018). Machine learning models were applied 
to analyze the yield trend of turmeric employing rainfall, 
temperature, soil moisture, pH value and mean wind speed 
to predict yields. The predictive models employed were 
RNN, LSTM, BPNN and Gated Recurrent Unit (GRU). For 
predicting turmeric yield, GRU performed better than the 
other algorithms (Raju et al. 2023). A hybrid method 
integrating deep learning and remote sensing data 
assimilation (Temporal Fusion Transformer) was created to 
make interactive wheat breeding yield prediction possible 
(Yang et al. 2025). A hybrid CNN-LSTM with skip 
connections and attention-based mechanisms was used to 
make high-accuracy predictions of wheat and rice yields in 
India (Dharwadkar et al., 2023). The Multi-Modal Spatial-
Temporal Vision Transformer (MMST-ViT) employed 
remote sensing images and meteorological data to enhance 

yield prediction (Lin et al., 2023). Deep Learning 
architectures have been widely employed for predicting 
yields. This research although concentrating on a traditional 
method provides a baseline for future incorporation of 
sophisticated deep learning methods designed for crop-
specific use like that of turmeric. Nonetheless, the 
effectiveness of deep learning models frequently relies on 
the availability of large, high-quality datasets and 
substantial computational resources. This research 
employed a suite of models chosen for their trade-off 
between model complexity, performance and 
interpretability. They are particularly well-adapted to 
structured, medium-sized datasets where overfitting is a 
problem and interpretability is critical to agricultural 
decision-making. 

While machine learning methods had been used in other 
crops, the application of turmeric had been minimal using 
sophisticated neural networks like FFNN, BPNN, MLP, 
GRNN and RNN. The effective use of sophisticated 
machine learning techniques in overall agriculture has 
been studied but it was noted that they can only be used 
in crops such as turmeric (Aslan et al. 2024). Research 
indicated that the joint application of remote sensing and 
ANN was a useful instrument in crop yield estimation  
(Bassine et al. 2023; Bharadiya et al. 2023; Huber et al. 
2024; Kavipriya and Vadivu, 2024; Khaki and Wang, 2019; 
Sajid et al. 2022). The models utilized in this research 
were constructed with great consideration of 
hyperparameter tuning in order to maximize 
performance, with hyperparameters including the number 
of hidden layers, neurons per layer, learning rate, 
activation functions and batch size systematically 
experimented and tested. The FFNN architecture 
consisted of 10 hidden layers, chosen based on 
preliminary experiments aimed at balancing model depth 
with overfitting risk, consistent with similar applications in 
crop yield prediction (Singh et al. 2023). An L2 
regularization parameter (λ = 0.0001) was applied to 
reduce overfitting by penalizing large weights (Goodfellow 
et al. 2016). A dropout rate of 20% was introduced 
between layers to further prevent overfitting by randomly 
deactivating neurons during training, aligning with best 
practices suggested in deep learning literature (Srivastava 
et al. 2014). The hyperparameters were either empirically 
chosen from repeated trials or tuned through trial-and-
error and performance measures to ensure model 
stability at the cost of interpretability important for real-
world agricultural applications. 

More recent studies have become more concerned with 
assessing climate change impacts on agriculture based on 
the Share Socioeconomic Pathway (SSP) scenario, which 
prescribes various socio-economic development paths 
and corresponding greenhouse gas emissions. Climate 
impacts on rice yield under SSP1-2.6, SSP2-4.5, SSP3-7.0 
and SSP5-8.5 were projected based on Coupled Model 
Intercomparison Project (CMIP6) models. Findings 
revealed that rice yield may increase in lower emissions 
up to the middle of this century, with subsequent 
stabilization (Xu et al. 2024). Climate change impacts on 



 

 

crop yield anomalies were examined in the SSP scenario. 
The research estimated elevated heat and drought stress 
with higher frequency yield losses, particularly for wheat 
(Schmidt and Felsche 2024). Such research underscores 
the need to include SSP scenarios in crop modelling in 
order to comprehend potential future issues better and 
guide policy decisions. 

Recent developments in underground crop remote 
sensing have opened new possibilities for enhancing yield 
prediction accuracy by incorporating subsurface 
biophysical parameters. Techniques such as root zone 
moisture estimation, soil nutrient mapping through 
proximal spectroscopy and subsurface structure 
assessment using microwave and Ground Penetrating 
Radar (GPR) have demonstrated strong potential in early 
stress detection and soil-plant interaction modelling 
(Bulacio Fischer et al. 2025; Li et al. 2023). Although the 
present study primarily employed above-ground spectral 
indices and climatic inputs, future model extensions may 
benefit from integrating these underground sensing 
modalities to capture below-surface dynamics affecting 
turmeric growth, especially under climate-induced stress 
conditions. Turmeric yield estimation is especially 
challenging since it relies on underground biomass 
(rhizomes), which is hard to estimate using conventional 
remote sensing techniques. Crop yield research indicated 
that combining spectral indices with environmental 
factors can enhance predictions for underground crops 
but recognizes that this continues to be an enormous 
challenge (Ishaq et al. 2024). This study bridges the gap by 
merging Sentinel-2 indices with climatic and hydrological 
information, which could correlate surface conditions with 
subterranean biomass growth. This study employed 
remote sensing variables, machine learning models and 
environmental traits to construct a valid model for 
forecasting turmeric yield. Remote sensing facilitates the 
extraction of phenological crop data (Ji et al. 2021). This 
fusion poses notable challenges, including differences in 
spatial and temporal resolution, variable data quality and 
the need for normalization across disparate sources. Such 
challenges are rarely addressed in prior studies, which 
often focus on above-ground crops like wheat, rice, or 
maize that show clearer spectral signals. Unlike models 
tailored for crops with visible yield indicators, this 
approach is structured to capture subtle variations in 
biophysical and environmental parameters that indirectly 
influence underground biomass. This positions the study 
as a novel contribution to the field, both in terms of 
methodology and its application to traditionally 
underrepresented crop types. This research examined all 
phases of plant growth and paved the way for prediction 
at an early stage. Contributing to the debate on 
relationships between climate parameters, soil condition 
and vegetation indices, this research facilitates future 
research in sustainable agriculture and the environmental 
context. The research objectives are listed below. 

i. To carry out a correlation analysis between the input 
variables and turmeric yield. 

ii. To develop machine learning-based turmeric yield 
models (FFNN, BPNN, GRNN, MLP and RNN). 

iii. To examine the sensitivity of the input variables in 
influencing the turmeric yield. 

iv. To assess the model's predictive ability in forecasting 
turmeric yield at each growth stage. 

2. Materials and methods 

2.1. Study area 

The study area, Lower Bhavani Basin is the sub-basin of 
the Cauvery Basin in Tamil Nadu, India. It comprises parts 
of Erode, Coimbatore and Tiruppur districts. The area of 
this basin is 2424 Km2. Bhavani River, a tributary of the 
Cauvery River, flows in this basin and acts as a source of 
irrigation. The average rainfall in this basin is 130 mm. The 
temperature ranges from 22 to 38℃. The average relative 
humidity of this area ranges from 65 – 95 %. About 59 % 
of the geographical area of the study area is subjected to 
agricultural practice. The major crops grown in the basin 
are turmeric, sugarcane, banana, groundnut and paddy. 
The crop chosen for this study is turmeric. Turmeric crops 
are grown in an area of 4694.82 ha. The study area map is 
shown in Figure 1. 

 
Figure 1. Study area map. 

2.2. Methodology 

The non-spatial datasets such as precipitation, 
temperature, relative humidity, soil texture, reservoir 
outflow and turmeric yield data were obtained from the 
local administration department of the study area. 
Precipitation during the cropping period ranged from 0 
mm to 470 mm per month (mean = 212 mm; Standard 
Deviation (SD) = 96 mm), reflecting seasonal variability. 
Monthly average temperature ranged from 18°C to 32°C 
(mean = 26.4°C; SD = 3.1°C). Relative humidity varied 
between 53% and 95% (mean = 78.6%; SD = 9.2%), 
indicating a wide range of atmospheric moisture 
conditions. Reservoir outflow ranged from 60,000 to 
80,000 cusecs (mean = 71,400 cusecs; SD = 5,700 cusecs), 
ensuring continuous irrigation availability. Soil texture 
data were obtained from the regional Agricultural 
Department, which classifies soil types based on the 
United States Department of Agriculture (USDA) soil 
texture classification system. Based on the proportions of 
sand, silt and clay, samples were categorized into four 
predominant texture classes Sandy, Loamy Sand, Sandy 
Loam and Clay Loam. The spatial dataset such as 
vegetation indices (NDVI, EVI, LAI, MSI and NDRE) were 
extracted from the optical dataset of Sentinel 2 level 1C 
imagery using band math in ArcGIS. Preprocessing of the 



 

 

imagery was done employing the Sentinel Application 
Platform (SNAP) software. Radiometric Correction 
involved converting Level-1C Top Of Atmosphere 
reflectance to surface reflectance using the Sen2Cor 
processor within SNAP. Atmospheric Correction was 
performed using the Scene Classification and aerosol 
correction modules in Sen2Cor. Cloud mask was applied 
using the Scene Classification Layer band to eliminate 
invalid pixels.  Including parameters such as vegetation 
indices, soil and climate data ensures an extensive 
modelling approach that reflects real-world 
environmental interconnections. The use of field-derived 
and remotely sensed parameters enhances the relevance 
and applicability of the findings. The bands in the spatial 
dataset had been resampled to 10 m spatial resolution. 
The spatial and non-spatial data were collected for the 
period 2016 to 2022. Land Use Land Cover (LULC) maps 
were prepared from field survey and Sentinel 2 imagery 
using a Maximum Likelihood Classifier (MLC). The turmeric 
areas were spatially extracted from the LULC map. The 
non-spatial precipitation dataset was interpolated as 
spatial maps using the kriging interpolation technique. 
The categorical values of soil texture data were pre-
processed using one hot encoding technique. These were 
encoded into binary vectors [0, 1] for each class using the 
get_dummies() function in Python, allowing the model to 
interpret soil types as separate input features. A 
correlation analysis was carried out between the input 
variables and turmeric yield. The FFNN, BPNN, MLP, GRNN 
and RNN models were developed to forecast turmeric 
yield using MATLAB by training with the input variables. A 
sensitivity analysis between the input variables and the 
crop yield results was carried out. Future turmeric yield 
prediction was done with the best model developed in 
this study. To assess the long-term impact of climate 
change on the turmeric yield model was trained using 
historical yield and climate data. The model was used to 
simulate yield projections up to the year 2100. Future 
precipitation projections were sourced from the CMIP6 
dataset under five Shared Socioeconomic Pathways (SSPs) 
which include SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0 and 
SSP5-8.5. Bias-corrected annual precipitation values from 
each SSP were used as input into the trained model to 
simulate the future turmeric yield. The precision of the 
model in determining the yield at every crop growth stage 
is analysed. 

3. Results and discussion 

3.1. Spatial delineation of crop area 

To focus on agricultural crop yield prediction, the crop 
land was extracted by masking out non-agricultural areas. 
This ensures that only relevant regions were retained for 
further classification. Using training samples collected 
from ground truth data, spectral signatures were analysed 
to classify turmeric cultivation areas. The classification 
successfully differentiated turmeric fields based on their 
spectral reflectance patterns in satellite imagery. The final 
classified map displayed turmeric cultivation areas 
distinctly, providing a spatial representation of their 
distribution. This classification served as a crucial input for 

subsequent yield prediction modelling and analysis.  The 
map showing turmeric regions in the study area is shown 
in Figure 2. 

 

Figure 2. Map showing turmeric regions in the study area. 

3.2. Analysis of the accuracy assessment results 

The accuracy assessment of the classification further 
validated the effectiveness of the approach in mapping 
crop-specific land cover. The classified output was 
validated using the kappa coefficient, which quantifies 
classification agreement beyond chance.  Overall accuracy 
indicated that 91.67% of the classified pixels match the 
reference data, demonstrating a high accuracy in the 
classification. The Kappa Coefficient was approximately 
0.90, indicating almost perfect agreement in classification. 
The Turmeric classes were classified with 100% accuracy, 
confirming that their spectral signatures were distinct and 
that their areas did not overlap significantly. 

 

Figure 3. Correlation analysis between input parameters and 

turmeric yield 

3.3. Correlation Analysis  

The correlation analysis results of turmeric yield with 
input parameters are shown in Figure 3. Adequate 
precipitation ensured the plant received enough water, 



 

 

leading to healthy growth and higher yields and had a very 
strong correlation with turmeric yield with R2 = 0.92. A 
higher MSI in the study area, indicating lower water 
stress, correlated strongly with better turmeric yields (R2 = 
0.90) since the crop was sensitive to moisture availability. 
NDVI (R2 = 0.86), EVI (R2 = 0.87), LAI (R2 = 0.87) and NDRE 
(R2 = 0.83) had a strong correlation with turmeric yield as 
the plant benefits from a healthy and dense canopy, 
which supported better photosynthesis and ultimately 
higher yields.  

High relative humidity reduces water loss through 
evapotranspiration, maintains moisture levels and promotes 
better growth in the turmeric plants and had a strong 
correlation with turmeric yield with R2 = 0.74. Reservoir 
outflow influences irrigation water availability and was 
strongly correlated with turmeric yield with R2 = 0.71. 
Turmeric can tolerate a range of temperatures and there is 
an optimal range that promotes maximum growth and yield, 
leading to this moderate correlation (R2 = 0.61). The 
influence of soil texture on turmeric yield was less and had a 
moderate correlation with R2 = 0.49. These key trends 
demonstrated that water-related parameters, both direct 
(rainfall) and indirect (MSI, RH, reservoir outflow) were 
dominant drivers of turmeric yield in the study area. 
Vegetation indices were closely clustered suggesting that 
canopy health and density are consistently strong predictors 
of yield. Climatic and vegetation indices outperformed 
temperature and soil texture implying soil texture was less 
limiting in the region, or may not vary much. The 
combination of rainfall, vegetation vigour and irrigation 
(reservoir outflow) indicated a synergistic effect, where both 
natural and managed water sources support yield. 

3.4. Turmeric yield models 

This study developed FFNN, BPNN, MLP, GRNN and RNN 
to predict turmeric yield in the study area.  All the models 
were trained and validated using a systematic data split, 
with 70% of the dataset used for training, 15% for 
validation and 15% for testing to ensure robust evaluation 
and prevent overfitting. Hyperparameters for each model 
were selected based on both empirical tuning and 
literature support, ensuring a balance between model 
complexity and generalizability. To ensure consistency and 
comparability across the multisource input variables, all 
input features were normalized using Min-Max scaling to 
a range between 0 and 1. This normalization process is 
particularly important when integrating variables with 
differing units and magnitudes, such as vegetation indices 
(NDVI, EVI, NDRE, MSI, LAI), climatic variables (rainfall, 
temperature, relative humidity), reservoir outflow, and 
soil texture. This step mitigates the influence of varying 
scales, ensures equal contribution of all features during 
model training, and enhances model convergence and 
stability. Normalization was applied prior to data 
partitioning to prevent data leakage. After training and 
tuning with a 70:15:15 split (training: validation: test), 
each model's final performance was evaluated on the test 
data. The performance metrics listed in Table 1. represent 
the validation results used to compare model accuracy 
and generalization ability. 

 FFNN 

The FFNN model had an R² value of 0.78. The number of 
hidden layers for this FFNN model was 10. The FFNN 
model was trained using the Adam optimizer, a learning 
rate of 0.001 and a batch size of 32. The ReLU activation 
function was applied to each hidden layer The FFNN 
model was trained with a learning rate of 0.001 and batch 
size of 32. The ReLU activation function was applied to 
each hidden layer and the model was trained over 100 
epochs using Mean Squared Error (MSE) as the loss 
function.  Each hidden layer captured and refined features 
from the input data, resulting in an improved 
comprehension of the variables that affect turmeric yield. 

 BPNN 

The BPNN model produced an R² value of 0.96. The model 
had 10 hidden layers and was trained for 100 epochs. A 
batch size of 32 was chosen for effective training. L2 
regularization (λ = 0.0001) was used to avoid overfitting. 
The dropout rate was chosen as 20% to enhance 
generalization. The backpropagation algorithm updated 
model weights repeatedly, optimizing feature 
relationships for enhanced prediction accuracy. This 
stratification preserved class balance and avoided 
temporal leakage. The model's performance was assessed 
not only on the test set but also across 10 repeated runs 
with different random seeds to evaluate generalization. 

 MLP 

The MLP model had an R² value of 0.68. The training was 
done with 10 hidden layers and 100 epochs, employing 
the Stochastic Gradient Descent (SGD) optimizer with a 
momentum value of 0.9. The learning rate was 0.01 and 
the batch size was 64 for stable training. ReLU activation 
was used in hidden layers and dropout (15%) was added.  

 GRNN 

The GRNN model provided an R² value of 0.81. The model 
utilized a radial basis function (Gaussian kernel) with the 
smoothing factor fixed at 0.1 to regulate the bias-variance 
trade-off. The batch size was 64 and early stopping was 
performed using a 15% validation set. Hyperparameters 
tuned included learning rate (0.1), momentum (0.99), 
dropout (15%) and batch size (64). 

 RNN 

The RNN model generated an R² of 0.72. The model was 
trained on 10 hidden layers and 100 epochs with the 
Adam optimizer with a learning rate of 0.001. The batch 
size was set to 32 for computational efficiency. Gradient 
clipping (max norm = 5) was implemented to avoid 
exploding gradients. 25% dropout was used to enhance 
generalization. Temporal dependencies were explicitly 
captured by structuring the input data as time-series 
sequences across multiple crop growth stages from 2016 
to 2022. For the RNN model, time-dependent features 
such as vegetation indices and weather variables were 
organized into sequential input windows representing 
monthly intervals throughout the growing season. This 
allowed the model to learn temporal dynamics in crop 
development and environmental variability. Each input 



 

 

sequence was associated with a corresponding yield label, 
enabling supervised learning over temporal patterns. 
Padding and masking techniques were not required, as 
sequence lengths were consistent across samples. 
Hyperparameters for the RNN were selected based on 
grid search and manual tuning. The Adam optimizer was 
used due to its efficiency in handling sparse gradients. 
These tuning processes were validated using k-fold cross-
validation and a hold-out validation set, ensuring that 
parameter choices enhanced temporal pattern learning 
while minimizing overfitting. 

Of the models that were trained for predicting turmeric 
yield, BPNN showed the best accuracy with an R² value of 
0.96. The GRNN, FFNN, MLP and RNN had moderate 
prediction performance, with GRNN using a non-iterative 
technique and a radial basis function to produce a 
localized estimation of yield. The RNN model used 
recurrent connections to capture temporal dependencies. 
Overall, BPNN emerged as the most successful model and 
was considered for further analysis to improve its 
accuracy and robustness for predicting turmeric yield. 

Table 1. Validation metrics of the turmeric yield models 

Model R2 RMSE (t ha-1) MSE (t ha-1) MAE (t ha-1) 

FFNN 0.78 3.92 15.37 5.78 

BPNN 0.96 0.22 0.05 1.04 

MLP 0.68 4.78 22.85 7.32 

GRNN 0.81 5.23 27.37 8.45 

RNN 0.72 6.10 37.21 9.80 

Table 2. Summary of Model Performance with Statistical Significance 

Model Mean R2 Standard Deviation 95 % CI Lower 95 % CI Upper 

BPNN 0.9462 0.0071 0.9417 0.9506 

FFNN 0.7786 0.0064 0.7746 0.7826 

MLP 0.6775 0.0118 0.6702 0.6849 

GRNN 0.8085 0.0067 0.8043 0.8126 

RNN 0.7152 0.0081 0.7101 0.7202 

 

In comparison with previous literature, the present 
study's BPNN model, which had an R² of 0.96, performed 
much better than the R² of 0.80 in earlier research, 
indicating the improved capability of the proposed model 
to identify intricate nonlinear interactions for precise 
turmeric yield prediction (Tang et al. 2022). The R² of 0.81 
achieved by the GRNN model in this research is slightly 
lower than the R² of 0.90 discussed in previous studies but 
still within a similar range and may differ due to variations 
in crop type, spatial scale, or input diversity of the model 
(Joshua et al. 2021). The FFNN model yielded an R² of 
0.78, which was in close agreement with the R² of 0.64 
reported in similar studies, indicating consistent 
performance on different datasets and environmental 
settings (Mwaura and Kenduiywo 2021). Likewise, the 
MLP model had an R² of 0.68, significantly greater than 
the 0.37 reported elsewhere, reflecting improved 
generalization and stability of the current model despite 
differences in architecture and data properties (El-Kenawy 
et al. 2025). The RNN model had an R² value of 0.72, very 
similar to the R² value of 0.75 from existing research, 
confirming recurrent architectures' success in modelling 
temporal relationships for crop yield prediction (Bali and 
Singla. 2021). In general, the results of this study show not 
only consistency with prior research but also enhanced 
prediction performance, especially for the BPNN model, 
thus justifying the methodological decisions and reliability 
of the implemented framework. 

The Table 2 presents the mean R², standard deviation and 
95% confidence intervals (CI) for each model across 10 

trials to assess if the performance differences are 
statistically significant. 

The very low p-value = 3.2 × 10⁻¹⁶ (< 0.05) calculated from the 
ANOVA test indicated a statistically significant difference in 
mean R² values among the five models. BPNN outperformed 
all other models significantly, with a narrow confidence 
interval, suggesting high stability and low sensitivity to 
random initialization. MLP showed the lowest predictive 
power and the widest interval, indicating comparatively poor 
and less stable performance. The differences between 
intermediate-performing models (FFNN, GRNN, RNN) are 
also significant due to the overall low variance and tight 
intervals. 

3.5. Sensitivity analysis 

Sensitivity analysis determined the elements that most 
significantly affect crop yield. The One AT a Time (OAT) 
sensitivity analysis has been performed and the results are 
shown in Figure 4. The results showed that MSI, NDVI and 
precipitation significantly impacted turmeric yield since 
these factors have a direct impact on plant health, water 
availability and soil fertility. MSI was the most important 
parameter having maximum sensitivity. Maximum 
sensitivity could be attributed to the biological nature of 
turmeric. Turmeric is a water-requiring crop and the 
growth of rhizomes is most sensitive to moisture stress. 
MSI is an index of plant water stress. High MSI indicates 
water-deficient conditions, which affect photosynthesis 
and rhizome growth and consequently reduce yield. The 
rhizome, as the economic yield fraction of turmeric, is 
particularly sensitive during water-sensitive growth 



 

 

phases like sprouting and bulking. Therefore, even limited 
water stress during these growth phases can significantly 
influence the final yield. Hence, such an intimate 
relationship between plant water status and turmeric 
productivity is suitably depicted by the dominant role of 
MSI in the model. This high reliance supports the 
agronomic observation that ensuring proper irrigation and 
reducing drought stress is vital to maximize turmeric yield 
and implies that MSI can be used as a surrogate for crop 
health monitoring and irrigation scheduling in turmeric 
production systems. NDRE and reservoir outflow had a 
moderate impact on turmeric yield. LAI, temperature, 
relative humidity and EVI had a lower impact on yield 
because turmeric was less sensitive to minor variations in 
these parameters. The significance of input variables in 
decreasing order were MSI, NDVI, precipitation, NDRE, 
reservoir outflow, LAI, temperature, soil texture, relative 
humidity and EVI. The significance levels of MSI, NDVI, 
precipitation, NDRE, reservoir outflow, LAI, temperature, 
soil texture, relative humidity and EVI in influencing 
turmeric yield were 26.33%, 24.84%, 17.97%, 8.79%, 
8.76%, 4.53%, 3.28%, 2.52%, 1.54% and 1.44%, 
respectively. The results revealed that MSI (26.33%), NDVI 
(24.84%) and precipitation (17.97%) had the highest 
influence, highlighting their direct relationship with water 
stress, vegetative vigor and moisture availability. NDRE 
(8.79%) and reservoir outflow (8.76%) had a moderate 
influence, supporting the role of canopy health and 
irrigation in yield formation. Other variables like LAI 
(4.53%), temperature (3.28%), soil texture (2.52%), 
relative humidity (1.54%) and EVI (1.44%) showed 
relatively lower sensitivity, suggesting that minor 
fluctuations in these inputs had limited impact on yield 
outcomes. These results underscore the importance of 
water-related and vegetation indices in accurately 
modelling turmeric yield and validate the model’s 
responsiveness to biophysically relevant inputs. 

 

Figure 4. OAT Sensitivity analysis results for turmeric yield 

In addition to the OAT sensitivity analysis, the Global 
Sensitivity Analysis (GSA) was conducted utilizing Sobol 
indices through the SALib Python package and the results 
are shown in Figure 5. The technique measures both 
individual (first-order) and interaction (total-order) 
impacts of input parameters on turmeric yield prediction. 
Identifying MSI (0.24), NDVI (0.23) and precipitation (0.22) 
as the dominant parameters, which had the maximum 

total-order indices were established, reflecting their 
leading contributions both through direct impact and 
through interaction. NDRE (0.20) and reservoir outflow 
(0.18) also yielded high total-order contributions, with LAI 
(0.16) and temperature (0.07) yielding moderate 
sensitivity. Parameters like relative humidity, soil texture 
and EVI had a lower overall impact. However, the greater 
difference between their total- and first-order indices 
indicated that their influence derives mostly from 
interactions. These results generally corresponded to the 
OAT results, with the added point of highlighting the value 
of global sensitivity methods in uncovering interactive 
effects among input variables that would otherwise be 
overlooked. 

 

Figure 5. Global Sensitivity Analysis results for turmeric yield. 

This approach enhanced the robustness of the sensitivity 
interpretation by capturing both main and interaction 
effects across the parameter space. The consistency in the 
top variable rankings between the OAT and Sobol-based 
GSA supported the reliability of the originally adopted 
OAT approach, especially for identifying the primary 
drivers of model performance. 

3.6. Spatial validation 

The spatial validation of the BPNN model further 
underscores its reliability and adaptability across different 
regions. The model trained on data from Erode, 
Coimbatore and Tiruppur was tested on Salem and 
Dharmapuri, two agriculturally significant turmeric 
producing districts with distinct microclimatic and soil 
conditions. The model’s predictive accuracy remained 
high, with R² values of 0.91 in Salem and 0.89 in 
Dharmapuri, indicating a strong correlation between 
predicted and observed yields. The relatively low Root 
Mean Squared Error (RMSE) values (0.31 t/ha and 0.36 
t/ha, respectively) further highlighted the model's 
robustness in capturing yield variability in unseen regions. 
These findings validated the model's transferability across 
agro-climatic zones making it a promising tool for large-
scale yield forecasting. 

3.7. Future prediction 

The BPNN model projections revealed distinct trends in 
turmeric yield under varying climate futures and are 
shown in Figure 6. SSP1-2.6 and SSP2-4.5 which assume 
lower greenhouse gas emissions and more sustainable 
trajectories, indicated relatively stable yield patterns with 
a slight increase toward the end of the century. The 
average predicted yield under these scenarios remained 



 

 

between 4.8 and 5.2 t/ha throughout the century, with 
modest fluctuations and narrower confidence intervals 
indicating more reliable and consistent rainfall patterns. 
SSP3-7.0 and SSP4-6.0 yield projections showed increased 
variability, particularly around mid-century, reflecting the 
effects of more erratic or regionally imbalanced rainfall 
distributions. Predicted yields under these scenarios 
occasionally dip below 4.8 t/ha, indicating the potential 
stress turmeric crops may face due to irregular 
precipitation. SSP5-8.5, the high-emission scenario 
resulted in the highest average projected yields (around 
5.6 to 6.2 t/ha). However, the wide confidence bands 
suggested substantial uncertainty, potentially due to 
extreme rainfall events or anomalies under this fossil-
fuelled development pathway. 

Overall, the results highlighted that even when other 
biophysical and environmental conditions remain 
constant, variations in precipitation alone as shaped by 
different climate scenarios can significantly influence 
turmeric yield. This emphasized the need for rainfall-
focused adaptation strategies, such as improved water 
management and irrigation infrastructure, to ensure yield 
stability under future climate conditions. 

 

Figure 6. Future projection of turmeric yield under SSP scenario 

Climate scenarios (SSPs) are alternative socio-economic 
and emission paths each influencing climatic factors like 
rainfall and temperature that are essential for growing 
turmeric. The application of multiple SSPs brings 
uncertainty into the projection of the future because they 
differ in assumed emissions and connected climate 
response. For instance, SSP1-2.6 and SSP2-4.5 under the 
assumption of sustainable development and moderate 
emissions respectively, have relatively narrow confidence 
intervals in projected yields, reflecting more stable and 
predictable rainfall and temperature patterns. On the 
other hand, SSP3-7.0 and SSP5-8.5 are marked by 
increased emissions and climatic volatility, leading to 
wider confidence intervals and higher uncertainty in 
projected yields. This heterogeneity emphasizes the need 
for incorporating uncertainty bands when analyzing model 
outputs.  

3.8. Robustness Analysis under Severe Climatic Conditions 

To assess the robustness of the model in years of extreme 
weather, a historical robustness analysis was conducted 
by distinguishing anomalous climatic years. Specifically, 
the years 2017 and 2019, which experienced record-

breaking monthly rainfall (>450 mm) and 2016 with 
record-breaking average temperature (>31°C) were 
employed for this analysis. The performance of the model 
was assessed once again using data from these extreme 
years. The results showed that the performance metrics 
(R² = 0.88, RMSE = 0.26 t/ha, Mean Absolute Error (MAE) 
= 0.07 t/ha) were at less than desirable levels justifying 
that the model was stable to atypical environmental 
conditions. The results confirmed that the model has 
robustness in the way that it can survive non-typical 
environmental inputs while still being able to function 
when predicting turmeric yield under actual climatic 
variation. In addition, the model also performed 
consistently well under these outlier years which warrants 
its validity and applicability to situations in the future. 

3.9.  Assessment of Model Performance in Predicting Crop 
Yield at Growth Stages 

The turmeric crop yield was predicted with the data 
observed in each crop growth phase and the results are 
shown in Table 3. The growth phases of turmeric include 
the emerging, vegetative, maturity and harvest phases. 

a. Emerging Phase 
The predicted yield differed from the actual turmeric yield 
by 30.38 % in the emerging phase. This implied a relatively 
high uncertainty in all these predictions, especially during 
this early growth phase because of the extremely high 
sensitivity to environmental conditions. Young turmeric 
plants are notably sensitive to environmental conditions, 
thus rendering it difficult to make accurate predictions. 

b. Vegetative Stage 
The predicted yield differed from the actual turmeric yield 
by 26.35 % in the vegetative stage. This signalled a great 
prediction error, although lower than the emerging phase 
of the most recent research on turmeric. More data will 
be available as the plant grows, but environmental and 
management-induced growth variability will always play a 
big role in prediction accuracy. This stage was 
characterized by vigorous development of the leaves, 
stems and biomass. During the vegetative stage, the plant 
directs its energies toward foliage improvement for better 
photosynthesis, which will facilitate rhizome 
development. The vegetative growth is highly dependent 
on light, water and nutrients. The disturbance in these 
factors brings a great deal of variability to the growth of 
each plant and yield, thereby discriminating against 
prediction. 

c. Maturity Phase 
In this phase, the predicted yield was much closer to the 
actual yield, with only a 1.23 % difference in turmeric 
yield. The prediction became more precise at the maturity 
stage, owing to a more stable pattern in plant growth and 
adequate data. During the maturity stage, the turmeric 
plant slows down vegetative growth while it starts the 
process of rhizome development and maturation. Canopy 
development is complete and energy is directed towards 
the swelling of rhizomes and starch accumulation. This is 
the stage when the growth rate of a plant becomes steady 
with some predictable growth in rhizomes and biomass. 



 

 

There was more consistency and accuracy in maturity-
stage data such as leaf area, plant height and rhizome 
growth, which allowed for more precise predictions of 
yield. Mature plants are more resilient to environmental 
stress. Hence, the impact of adverse conditions on growth 
is less disturbing than in earlier stages. This resilience was 
responsible for reducing variations in growth and thus 
increasing the accuracy of prediction.  

d. Harvest Phase 
The smallest difference was observed during the harvest 
phase, with a 1.23 % change from the actual turmeric 
yield. Although harvest phase estimates remained 

accurate, there was a modest increase in deviation 
compared to the maturity phase. This small difference 
was due to factors affecting the crop during the late 
season, such as weather fluctuations. 

The results indicated the model's ability to forecast what 
the yield at maturity will finally be with minimum variance 
relative to the actual outcome right at the maturity stage, 
as opposed to the harvest stage. This gives early insights 
that help allocate resources, schedules for harvesting and 
market planning, culminating in practical benefits of 
earlier decision-making. 

Table 3. Turmeric crop yield prediction at different phases of growth. 

Growth Phase Change in predicted yield from actual yield (%) 

Emerging Phase 30.38 

Vegetative Phase 26.35 

Maturity Phase 0.86 

Harvest Phase 1.22 

4. Conclusions 

Correlation analysis indicated that MSI, NDRE and rainfall 
were highly correlated with turmeric yield, highlighting 
the importance of water availability and plant health. The 
BPNN model had the highest accuracy (R² = 0.96), which 
was higher than other models because of its ability to 
learn intricate patterns. This led to superior model 
performance, achieving the highest coefficient of 
determination (R²) and the lowest error metrics among all 
crop yield prediction models evaluated in this study. 
Sensitivity analysis validated MSI, NDVI and rainfall as the 
most significant variables. Phase-wise yield predictions 
showed that the BPNN model was able to accurately 
predict yield at the maturity phase with only a 0.86% 
difference, providing early information for harvest 
planning and resource allocation. This predictive model 
connects environmental factors to turmeric production 
and encourages climate-resilient farming. It aligns with 
Sustainable Development Goals (SDGs) 2 (Zero Hunger), 6 
(Clean Water), 12 (Responsible Consumption) and 13 
(Climate Action) by facilitating decision-making, 
optimizing resources and environmental protection. The 
use of remote sensing and machine learning in this 
research establishes its viability for scaling up sustainable 
agriculture solutions. Though the model was customized 
to turmeric, subsequent research must investigate 
adaptation to other crops and implement deep learning 
techniques for higher accuracy and resilience. Expanded 
usability necessitates reformulating inputs and 
parameters to accommodate various types of crops. 
Economic viability, user acceptability and policy 
embedding are critical to field-level implementation. 
Although this research did not incorporate cost-benefit 
and farmer feedback studies, spatial validation has 
confirmed the model’s transferability, thereby 
establishing a foundation for future studies focusing on 
economic feasibility, user acceptance and policy 
integration. Future studies may involve a comparative 
assessment of sophisticated classification techniques like 
Random Forest (RF), Support Vector Machines (SVM) and 
deep learning-based methods, which are reported to 

provide better performance in sophisticated land cover 
classification applications. Optimization of MLC by using 
better training sample selection, incorporation of ancillary 
data sets, or hybrid methods can also enhance 
classification accuracy to some degree. 
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