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Abstract

Crop yield forecasting is an essential element for farm
management directly impacting food security, economic
planning and sustainability of resources. This study
integrated remote sensing data and machine learning
approaches to develop an advanced turmeric vyield
modelling framework for turmeric crops grown in the
study area. The input parameters included vegetation
indices, soil texture and meteorological and hydrological
variables. The findings showed that the Back Propagation
Neural Network (BPNN) model (R? = 0.96) outperformed
other models utilized in this study in predicting turmeric
yield. Sensitivity analysis further highlighted that the
turmeric yield was highly sensitive to the Normalized
Difference Vegetation Index) NDVI, Moisture Stress Index
(MSI) and precipitation. This modelling approach provided
a reliable tool for early yield estimation at the maturity
phase with a 0.86 % deviation from the actual turmeric
yield, aiding farmers and policymakers in optimising crop
management practices and enhancing decision-making

processes. This study presented a holistic approach for
scalable data-driven agricultural innovation contributing
to efficient and sustainable crop production systems.

Keywords: Crop vyield, Turmeric, Remote Sensing,

Vegetation Indices, Machine learning
1. Introduction

Crop yield reflects agricultural productivity and is directly
related to food security, the income and economic well-
being of farmers. Crop production forecasts based on
weather conditions will help farmers, policymakers and
administrators in coping with adversity (Das et al. 2018).
Crop yield models which provide timely and accurate yield
estimates using satellite data and advanced analytics, play
a key role in agricultural insurance by supporting risk
assessment, policy formulation and claim management
(Mateo-Sanchis et al. 2020; Mena et al. 2024; Rojas et al.
2011).

Crop yield was forecasted by using traditional models
based on soil characteristics and climatic factors utilising
simple and multiple linear regression models (Abrougui et
al. 2019). A model such as SPUDSIM was limited to predict
the potato yield at the state level (Resop et al. 2012). Crop
models demand extensive input parameters including soil
properties, weather parameters and yield variables for
validation and assessment, as they replicate crop growth
regularly (Ahmad et al. 2018). Remote sensing technology
offers crop information, environmental conditions and
land management. MODIS-derived vegetation indices such
as NDVI, Enhanced Vegetation Index (EVI), Land Surface
Temperature (LST), Leaf Area Index (LAl) and Vegetation
Condition Index (VCl) were employed for crop vyield
estimation (Ronchetti et al. 2023; Potopova et al. 2020;
Johnson. 2014; Setiyono et al. 2018). Sentinel 2-derived
indices like NDVI, Red Edge NDVI, Chlorophyll Index Red
Edge (CIRE) and Canopy Chlorophyll Content were
employed in the construction of crop yield models (Hunt
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et al. 2019; Schwalbert et al. 2018; Dimov et al. 2022;
Hara et al. 2021). Crop yield at maturity stages had the
greatest precision in comparison with other crop
developmental stages (Amankulova et al. 2023; Nevavuori
et al. 2019; Tedesco et al. 2021; Zhou et al. 2017). Most of
the studies considered either vegetation indices such as
NDVI and EVI or environmental factors (e.g., precipitation,
temperature) and rarely combined both data types for
holistic modelling (Muruganantham et al. 2022). The
literature review emphasized that multisource data fusion
can enhance prediction accuracy but is underutilized for
underrepresented crops such as turmeric (Joshi et al.
2023). This study offered a comprehensive modelling
strategy that addresses this gap directly by integrating
Sentinel-2 indices (NDVI, EVI, LAI, MSI, NDRE) with real-
time precipitation, temperature, relative humidity and
reservoir outflow. While Sentinel-2 data are universal in
applications to common crops, their utilization for
turmeric, particularly by employing several indices was
limited. This study employed such indices to forecast
turmeric yield and opened up new fronts in Sentinel data-
specific crop applications.

The Feed Forward Neural Network (FFNN) model was built
to forecast maize yield in Kenya based on precipitation,
temperature, evapotranspiration, soil moisture and Landsat
7 NDVI (Mwaura and Kenduiywo 2021). Generalized
Regression Neural Network (GRNN) models were employed
to simulate paddy yield with enhanced precision (Joshua et
al. 2021). BPNN models simulated winter wheat yield more
accurately at the field scale level (Tang et al. 2022).
Convolutional Neural Network (CNN) and Long Short Term
Memory (LSTM) models were employed in constructing
crop yield models (Sun et al. 2019). RNN models efficiently
captured temporal relationships and were best suited for
accurate time-series-based crop yield prediction (Bali and
Singla. 2021). Research showed that the MLP model
enhanced crop vyield prediction accuracy from crop
phenology (Yesilkoy and Demir. 2024). An Artificial Neural
Network (ANN) model was introduced for curcumin content
estimation based on soil, climate parameters, pH and
organic carbon with R? = 0.91 (Akbar et al. 2016). A model
of yield prediction of turmeric was established through the
application of ANN employing soil and climatic parameters
as the input variables and estimated the yield as R = 0.88
(Akbar et al. 2018). Machine learning models were applied
to analyze the yield trend of turmeric employing rainfall,
temperature, soil moisture, pH value and mean wind speed
to predict yields. The predictive models employed were
RNN, LSTM, BPNN and Gated Recurrent Unit (GRU). For
predicting turmeric yield, GRU performed better than the
other algorithms (Raju et al. 2023). A hybrid method
integrating deep learning and remote sensing data
assimilation (Temporal Fusion Transformer) was created to
make interactive wheat breeding yield prediction possible
(Yang et al. 2025). A hybrid CNN-LSTM with skip
connections and attention-based mechanisms was used to
make high-accuracy predictions of wheat and rice yields in
India (Dharwadkar et al., 2023). The Multi-Modal Spatial-
Temporal Vision Transformer (MMST-VIT) employed
remote sensing images and meteorological data to enhance

yield prediction (Lin et al, 2023). Deep Learning
architectures have been widely employed for predicting
yields. This research although concentrating on a traditional
method provides a baseline for future incorporation of
sophisticated deep learning methods designed for crop-
specific use like that of turmeric. Nonetheless, the
effectiveness of deep learning models frequently relies on
the availability of large, high-quality datasets and
substantial computational resources. This research
employed a suite of models chosen for their trade-off
between  model  complexity, performance  and
interpretability. They are particularly well-adapted to
structured, medium-sized datasets where overfitting is a
problem and interpretability is critical to agricultural
decision-making.

While machine learning methods had been used in other
crops, the application of turmeric had been minimal using
sophisticated neural networks like FFNN, BPNN, MLP,
GRNN and RNN. The effective use of sophisticated
machine learning techniques in overall agriculture has
been studied but it was noted that they can only be used
in crops such as turmeric (Aslan et al. 2024). Research
indicated that the joint application of remote sensing and
ANN was a useful instrument in crop yield estimation
(Bassine et al. 2023; Bharadiya et al. 2023; Huber et al.
2024; Kavipriya and Vadivu, 2024; Khaki and Wang, 2019;
Sajid et al. 2022). The models utilized in this research
were constructed with great consideration of
hyperparameter tuning in order to maximize
performance, with hyperparameters including the number
of hidden layers, neurons per layer, learning rate,
activation functions and batch size systematically
experimented and tested. The FFNN architecture
consisted of 10 hidden layers, chosen based on
preliminary experiments aimed at balancing model depth
with overfitting risk, consistent with similar applications in
crop vyield prediction (Singh et al. 2023). An L2
regularization parameter (A = 0.0001) was applied to
reduce overfitting by penalizing large weights (Goodfellow
et al. 2016). A dropout rate of 20% was introduced
between layers to further prevent overfitting by randomly
deactivating neurons during training, aligning with best
practices suggested in deep learning literature (Srivastava
et al. 2014). The hyperparameters were either empirically
chosen from repeated trials or tuned through trial-and-
error and performance measures to ensure model
stability at the cost of interpretability important for real-
world agricultural applications.

More recent studies have become more concerned with
assessing climate change impacts on agriculture based on
the Share Socioeconomic Pathway (SSP) scenario, which
prescribes various socio-economic development paths
and corresponding greenhouse gas emissions. Climate
impacts on rice yield under SSP1-2.6, SSP2-4.5, SSP3-7.0
and SSP5-8.5 were projected based on Coupled Model
Intercomparison Project (CMIP6) models. Findings
revealed that rice yield may increase in lower emissions
up to the middle of this century, with subsequent
stabilization (Xu et al. 2024). Climate change impacts on



crop yield anomalies were examined in the SSP scenario.
The research estimated elevated heat and drought stress
with higher frequency vyield losses, particularly for wheat
(Schmidt and Felsche 2024). Such research underscores
the need to include SSP scenarios in crop modelling in
order to comprehend potential future issues better and
guide policy decisions.

Recent developments in underground crop remote
sensing have opened new possibilities for enhancing yield
prediction accuracy by incorporating subsurface
biophysical parameters. Techniques such as root zone
moisture estimation, soil nutrient mapping through
proximal spectroscopy and subsurface structure
assessment using microwave and Ground Penetrating
Radar (GPR) have demonstrated strong potential in early
stress detection and soil-plant interaction modelling
(Bulacio Fischer et al. 2025; Li et al. 2023). Although the
present study primarily employed above-ground spectral
indices and climatic inputs, future model extensions may
benefit from integrating these underground sensing
modalities to capture below-surface dynamics affecting
turmeric growth, especially under climate-induced stress
conditions. Turmeric vyield estimation is especially
challenging since it relies on underground biomass
(rhizomes), which is hard to estimate using conventional
remote sensing techniques. Crop yield research indicated
that combining spectral indices with environmental
factors can enhance predictions for underground crops
but recognizes that this continues to be an enormous
challenge (Ishaq et al. 2024). This study bridges the gap by
merging Sentinel-2 indices with climatic and hydrological
information, which could correlate surface conditions with
subterranean biomass growth. This study employed
remote sensing variables, machine learning models and
environmental traits to construct a valid model for
forecasting turmeric yield. Remote sensing facilitates the
extraction of phenological crop data (Ji et al. 2021). This
fusion poses notable challenges, including differences in
spatial and temporal resolution, variable data quality and
the need for normalization across disparate sources. Such
challenges are rarely addressed in prior studies, which
often focus on above-ground crops like wheat, rice, or
maize that show clearer spectral signals. Unlike models
tailored for crops with visible yield indicators, this
approach is structured to capture subtle variations in
biophysical and environmental parameters that indirectly
influence underground biomass. This positions the study
as a novel contribution to the field, both in terms of
methodology and its application to traditionally
underrepresented crop types. This research examined all
phases of plant growth and paved the way for prediction
at an early stage. Contributing to the debate on
relationships between climate parameters, soil condition
and vegetation indices, this research facilitates future
research in sustainable agriculture and the environmental
context. The research objectives are listed below.

i. To carry out a correlation analysis between the input
variables and turmeric yield.

ii. To develop machine learning-based turmeric yield
models (FFNN, BPNN, GRNN, MLP and RNN).

iii. To examine the sensitivity of the input variables in
influencing the turmeric yield.

iv.  To assess the model's predictive ability in forecasting
turmeric yield at each growth stage.

2. Materials and methods
2.1. Study area

The study area, Lower Bhavani Basin is the sub-basin of
the Cauvery Basin in Tamil Nadu, India. It comprises parts
of Erode, Coimbatore and Tiruppur districts. The area of
this basin is 2424 Km?2. Bhavani River, a tributary of the
Cauvery River, flows in this basin and acts as a source of
irrigation. The average rainfall in this basin is 130 mm. The
temperature ranges from 22 to 38°C. The average relative
humidity of this area ranges from 65 — 95 %. About 59 %
of the geographical area of the study area is subjected to
agricultural practice. The major crops grown in the basin
are turmeric, sugarcane, banana, groundnut and paddy.
The crop chosen for this study is turmeric. Turmeric crops
are grown in an area of 4694.82 ha. The study area map is
shown in Figure 1.
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Figure 1. Study area map.
2.2. Methodology

The non-spatial datasets such as precipitation,
temperature, relative humidity, soil texture, reservoir
outflow and turmeric yield data were obtained from the
local administration department of the study area.
Precipitation during the cropping period ranged from 0
mm to 470 mm per month (mean = 212 mm; Standard
Deviation (SD) = 96 mm), reflecting seasonal variability.
Monthly average temperature ranged from 18°C to 32°C
(mean = 26.4°C; SD = 3.1°C). Relative humidity varied
between 53% and 95% (mean = 78.6%; SD = 9.2%),
indicating a wide range of atmospheric moisture
conditions. Reservoir outflow ranged from 60,000 to
80,000 cusecs (mean = 71,400 cusecs; SD = 5,700 cusecs),
ensuring continuous irrigation availability. Soil texture
data were obtained from the regional Agricultural
Department, which classifies soil types based on the
United States Department of Agriculture (USDA) soil
texture classification system. Based on the proportions of
sand, silt and clay, samples were categorized into four
predominant texture classes Sandy, Loamy Sand, Sandy
Loam and Clay Loam. The spatial dataset such as
vegetation indices (NDVI, EVI, LAl, MSI and NDRE) were
extracted from the optical dataset of Sentinel 2 level 1C
imagery using band math in ArcGIS. Preprocessing of the



imagery was done employing the Sentinel Application
Platform (SNAP) software. Radiometric Correction
involved converting Level-1C Top Of Atmosphere
reflectance to surface reflectance using the Sen2Cor
processor within SNAP. Atmospheric Correction was
performed using the Scene Classification and aerosol
correction modules in Sen2Cor. Cloud mask was applied
using the Scene Classification Layer band to eliminate
invalid pixels. Including parameters such as vegetation
indices, soil and climate data ensures an extensive
modelling approach that reflects real-world
environmental interconnections. The use of field-derived
and remotely sensed parameters enhances the relevance
and applicability of the findings. The bands in the spatial
dataset had been resampled to 10 m spatial resolution.
The spatial and non-spatial data were collected for the
period 2016 to 2022. Land Use Land Cover (LULC) maps
were prepared from field survey and Sentinel 2 imagery
using a Maximum Likelihood Classifier (MLC). The turmeric
areas were spatially extracted from the LULC map. The
non-spatial precipitation dataset was interpolated as
spatial maps using the kriging interpolation technique.
The categorical values of soil texture data were pre-
processed using one hot encoding technique. These were
encoded into binary vectors [0, 1] for each class using the
get_dummies() function in Python, allowing the model to
interpret soil types as separate input features. A
correlation analysis was carried out between the input
variables and turmeric yield. The FFNN, BPNN, MLP, GRNN
and RNN models were developed to forecast turmeric
yield using MATLAB by training with the input variables. A
sensitivity analysis between the input variables and the
crop yield results was carried out. Future turmeric yield
prediction was done with the best model developed in
this study. To assess the long-term impact of climate
change on the turmeric yield model was trained using
historical yield and climate data. The model was used to
simulate yield projections up to the year 2100. Future
precipitation projections were sourced from the CMIP6
dataset under five Shared Socioeconomic Pathways (SSPs)
which include SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0 and
SSP5-8.5. Bias-corrected annual precipitation values from
each SSP were used as input into the trained model to
simulate the future turmeric yield. The precision of the
model in determining the yield at every crop growth stage
is analysed.

3. Results and discussion

3.1. Spatial delineation of crop area

To focus on agricultural crop yield prediction, the crop
land was extracted by masking out non-agricultural areas.
This ensures that only relevant regions were retained for
further classification. Using training samples collected
from ground truth data, spectral signatures were analysed
to classify turmeric cultivation areas. The classification
successfully differentiated turmeric fields based on their
spectral reflectance patterns in satellite imagery. The final
classified map displayed turmeric cultivation areas
distinctly, providing a spatial representation of their
distribution. This classification served as a crucial input for

subsequent yield prediction modelling and analysis. The
map showing turmeric regions in the study area is shown

in Figure 2.
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Figure 2. Map showing turmeric regions in the study area.

3.2. Analysis of the accuracy assessment results

The accuracy assessment of the classification further
validated the effectiveness of the approach in mapping
crop-specific land cover. The classified output was
validated using the kappa coefficient, which quantifies
classification agreement beyond chance. Overall accuracy
indicated that 91.67% of the classified pixels match the
reference data, demonstrating a high accuracy in the
classification. The Kappa Coefficient was approximately
0.90, indicating almost perfect agreement in classification.
The Turmeric classes were classified with 100% accuracy,
confirming that their spectral signatures were distinct and
that their areas did not overlap significantly.
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Figure 3. Correlation analysis between input parameters and
turmeric yield

3.3. Correlation Analysis

The correlation analysis results of turmeric yield with
input parameters are shown in Figure 3. Adequate
precipitation ensured the plant received enough water,



leading to healthy growth and higher yields and had a very
strong correlation with turmeric yield with R? = 0.92. A
higher MSI in the study area, indicating lower water
stress, correlated strongly with better turmeric yields (R? =
0.90) since the crop was sensitive to moisture availability.
NDVI (R? = 0.86), EVI (R? = 0.87), LAl (R? = 0.87) and NDRE
(R? = 0.83) had a strong correlation with turmeric yield as
the plant benefits from a healthy and dense canopy,
which supported better photosynthesis and ultimately
higher yields.

High relative humidity reduces water loss through
evapotranspiration, maintains moisture levels and promotes
better growth in the turmeric plants and had a strong
correlation with turmeric yield with R? = 0.74. Reservoir
outflow influences irrigation water availability and was
strongly correlated with turmeric yield with R? = 0.71.
Turmeric can tolerate a range of temperatures and there is
an optimal range that promotes maximum growth and yield,
leading to this moderate correlation (R? = 0.61). The
influence of soil texture on turmeric yield was less and had a
moderate correlation with R? = 0.49. These key trends
demonstrated that water-related parameters, both direct
(rainfall) and indirect (MSI, RH, reservoir outflow) were
dominant drivers of turmeric yield in the study area.
Vegetation indices were closely clustered suggesting that
canopy health and density are consistently strong predictors
of yield. Climatic and vegetation indices outperformed
temperature and soil texture implying soil texture was less
limiting in the region, or may not vary much. The
combination of rainfall, vegetation vigour and irrigation
(reservoir outflow) indicated a synergistic effect, where both
natural and managed water sources support yield.

3.4. Turmeric yield models

This study developed FFNN, BPNN, MLP, GRNN and RNN
to predict turmeric yield in the study area. All the models
were trained and validated using a systematic data split,
with 70% of the dataset used for training, 15% for
validation and 15% for testing to ensure robust evaluation
and prevent overfitting. Hyperparameters for each model
were selected based on both empirical tuning and
literature support, ensuring a balance between model
complexity and generalizability. To ensure consistency and
comparability across the multisource input variables, all
input features were normalized using Min-Max scaling to
a range between 0 and 1. This normalization process is
particularly important when integrating variables with
differing units and magnitudes, such as vegetation indices
(NDVI, EVI, NDRE, MSI, LAI), climatic variables (rainfall,
temperature, relative humidity), reservoir outflow, and
soil texture. This step mitigates the influence of varying
scales, ensures equal contribution of all features during
model training, and enhances model convergence and
stability. Normalization was applied prior to data
partitioning to prevent data leakage. After training and
tuning with a 70:15:15 split (training: validation: test),
each model's final performance was evaluated on the test
data. The performance metrics listed in Table 1. represent
the validation results used to compare model accuracy
and generalization ability.

3.4.1. FFNN

The FFNN model had an R?value of 0.78. The number of
hidden layers for this FFNN model was 10. The FFNN
model was trained using the Adam optimizer, a learning
rate of 0.001 and a batch size of 32. The RelLU activation
function was applied to each hidden layer The FFNN
model was trained with a learning rate of 0.001 and batch
size of 32. The RelLU activation function was applied to
each hidden layer and the model was trained over 100
epochs using Mean Squared Error (MSE) as the loss
function. Each hidden layer captured and refined features
from the input data, resulting in an improved
comprehension of the variables that affect turmeric yield.

3.4.2. BPNN

The BPNN model produced an R? value of 0.96. The model
had 10 hidden layers and was trained for 100 epochs. A
batch size of 32 was chosen for effective training. L2
regularization (A = 0.0001) was used to avoid overfitting.
The dropout rate was chosen as 20% to enhance
generalization. The backpropagation algorithm updated
model  weights  repeatedly, optimizing feature
relationships for enhanced prediction accuracy. This
stratification preserved class balance and avoided
temporal leakage. The model's performance was assessed
not only on the test set but also across 10 repeated runs
with different random seeds to evaluate generalization.

3.4.3. MLP

The MLP model had an R? value of 0.68. The training was
done with 10 hidden layers and 100 epochs, employing
the Stochastic Gradient Descent (SGD) optimizer with a
momentum value of 0.9. The learning rate was 0.01 and
the batch size was 64 for stable training. ReLU activation
was used in hidden layers and dropout (15%) was added.

3.4.4. GRNN

The GRNN model provided an R? value of 0.81. The model
utilized a radial basis function (Gaussian kernel) with the
smoothing factor fixed at 0.1 to regulate the bias-variance
trade-off. The batch size was 64 and early stopping was
performed using a 15% validation set. Hyperparameters
tuned included learning rate (0.1), momentum (0.99),
dropout (15%) and batch size (64).

3.4.5. RNN

The RNN model generated an R? of 0.72. The model was
trained on 10 hidden layers and 100 epochs with the
Adam optimizer with a learning rate of 0.001. The batch
size was set to 32 for computational efficiency. Gradient
clipping (max norm = 5) was implemented to avoid
exploding gradients. 25% dropout was used to enhance
generalization. Temporal dependencies were explicitly
captured by structuring the input data as time-series
sequences across multiple crop growth stages from 2016
to 2022. For the RNN model, time-dependent features
such as vegetation indices and weather variables were
organized into sequential input windows representing
monthly intervals throughout the growing season. This
allowed the model to learn temporal dynamics in crop
development and environmental variability. Each input



sequence was associated with a corresponding yield label,
enabling supervised learning over temporal patterns.
Padding and masking techniques were not required, as
sequence lengths were consistent across samples.
Hyperparameters for the RNN were selected based on
grid search and manual tuning. The Adam optimizer was
used due to its efficiency in handling sparse gradients.
These tuning processes were validated using k-fold cross-
validation and a hold-out validation set, ensuring that
parameter choices enhanced temporal pattern learning
while minimizing overfitting.

Table 1. Validation metrics of the turmeric yield models

Of the models that were trained for predicting turmeric
yield, BPNN showed the best accuracy with an R? value of
0.96. The GRNN, FFNN, MLP and RNN had moderate
prediction performance, with GRNN using a non-iterative
technique and a radial basis function to produce a
localized estimation of yield. The RNN model used
recurrent connections to capture temporal dependencies.
Overall, BPNN emerged as the most successful model and
was considered for further analysis to improve its
accuracy and robustness for predicting turmeric yield.

Model R? RMSE (t hat) MSE (t ha'?) MAE (t ha?)
FFNN 0.78 3.92 15.37 5.78
BPNN 0.96 0.22 0.05 1.04
MLP 0.68 4.78 22.85 7.32
GRNN 0.81 5.23 27.37 8.45
RNN 0.72 6.10 37.21 9.80

Table 2. Summary of Model Performance with Statistical Significa

nce

Model Mean R? Standard Deviation 95 % Cl Lower 95 % Cl Upper
BPNN 0.9462 0.0071 0.9417 0.9506
FFNN 0.7786 0.0064 0.7746 0.7826
MLP 0.6775 0.0118 0.6702 0.6849
GRNN 0.8085 0.0067 0.8043 0.8126
RNN 0.7152 0.0081 0.7101 0.7202

In comparison with previous literature, the present
study's BPNN model, which had an R? of 0.96, performed
much better than the R? of 0.80 in earlier research,
indicating the improved capability of the proposed model
to identify intricate nonlinear interactions for precise
turmeric yield prediction (Tang et al. 2022). The R? of 0.81
achieved by the GRNN model in this research is slightly
lower than the R? of 0.90 discussed in previous studies but
still within a similar range and may differ due to variations
in crop type, spatial scale, or input diversity of the model
(Joshua et al. 2021). The FFNN model yielded an R? of
0.78, which was in close agreement with the R? of 0.64
reported in similar studies, indicating consistent
performance on different datasets and environmental
settings (Mwaura and Kenduiywo 2021). Likewise, the
MLP model had an R? of 0.68, significantly greater than
the 0.37 reported elsewhere, reflecting improved
generalization and stability of the current model despite
differences in architecture and data properties (El-Kenawy
et al. 2025). The RNN model had an R? value of 0.72, very
similar to the R? value of 0.75 from existing research,
confirming recurrent architectures' success in modelling
temporal relationships for crop yield prediction (Bali and
Singla. 2021). In general, the results of this study show not
only consistency with prior research but also enhanced
prediction performance, especially for the BPNN model,
thus justifying the methodological decisions and reliability
of the implemented framework.

The Table 2 presents the mean R?, standard deviation and
95% confidence intervals (Cl) for each model across 10

trials to assess if the performance differences are
statistically significant.

The very low p-value = 3.2 x 107¢ (< 0.05) calculated from the
ANOVA test indicated a statistically significant difference in
mean R? values among the five models. BPNN outperformed
all other models significantly, with a narrow confidence
interval, suggesting high stability and low sensitivity to
random initialization. MLP showed the lowest predictive
power and the widest interval, indicating comparatively poor
and less stable performance. The differences between
intermediate-performing models (FFNN, GRNN, RNN) are
also significant due to the overall low variance and tight
intervals.

3.5. Sensitivity analysis

Sensitivity analysis determined the elements that most
significantly affect crop yield. The One AT a Time (OAT)
sensitivity analysis has been performed and the results are
shown in Figure 4. The results showed that MSI, NDVI and
precipitation significantly impacted turmeric yield since
these factors have a direct impact on plant health, water
availability and soil fertility. MSI was the most important
parameter having maximum sensitivity. Maximum
sensitivity could be attributed to the biological nature of
turmeric. Turmeric is a water-requiring crop and the
growth of rhizomes is most sensitive to moisture stress.
MSI is an index of plant water stress. High MSI indicates
water-deficient conditions, which affect photosynthesis
and rhizome growth and consequently reduce yield. The
rhizome, as the economic yield fraction of turmeric, is
particularly sensitive during water-sensitive growth



phases like sprouting and bulking. Therefore, even limited
water stress during these growth phases can significantly
influence the final vyield. Hence, such an intimate
relationship between plant water status and turmeric
productivity is suitably depicted by the dominant role of
MSI in the model. This high reliance supports the
agronomic observation that ensuring proper irrigation and
reducing drought stress is vital to maximize turmeric yield
and implies that MSI can be used as a surrogate for crop
health monitoring and irrigation scheduling in turmeric
production systems. NDRE and reservoir outflow had a
moderate impact on turmeric yield. LAl, temperature,
relative humidity and EVI had a lower impact on yield
because turmeric was less sensitive to minor variations in
these parameters. The significance of input variables in
decreasing order were MSI, NDVI, precipitation, NDRE,
reservoir outflow, LAI, temperature, soil texture, relative
humidity and EVI. The significance levels of MSI, NDVI,
precipitation, NDRE, reservoir outflow, LAIl, temperature,
soil texture, relative humidity and EVI in influencing
turmeric yield were 26.33%, 24.84%, 17.97%, 8.79%,
8.76%, 4.53%, 3.28%, 2.52%, 1.54% and 1.44%,
respectively. The results revealed that MSI (26.33%), NDVI
(24.84%) and precipitation (17.97%) had the highest
influence, highlighting their direct relationship with water
stress, vegetative vigor and moisture availability. NDRE
(8.79%) and reservoir outflow (8.76%) had a moderate
influence, supporting the role of canopy health and
irrigation in vyield formation. Other variables like LAl

(4.53%), temperature (3.28%), soil texture (2.52%),
relative humidity (1.54%) and EVI (1.44%) showed
relatively lower sensitivity, suggesting that minor

fluctuations in these inputs had limited impact on yield
outcomes. These results underscore the importance of
water-related and vegetation indices in accurately
modelling turmeric yield and validate the model’s
responsiveness to biophysically relevant inputs.
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Figure 4. OAT Sensitivity analysis results for turmeric yield

In addition to the OAT sensitivity analysis, the Global
Sensitivity Analysis (GSA) was conducted utilizing Sobol
indices through the SALib Python package and the results
are shown in Figure 5. The technique measures both
individual (first-order) and interaction (total-order)
impacts of input parameters on turmeric yield prediction.
Identifying MSI (0.24), NDVI (0.23) and precipitation (0.22)
as the dominant parameters, which had the maximum

total-order indices were established, reflecting their
leading contributions both through direct impact and
through interaction. NDRE (0.20) and reservoir outflow
(0.18) also yielded high total-order contributions, with LAI
(0.16) and temperature (0.07) vyielding moderate
sensitivity. Parameters like relative humidity, soil texture
and EVI had a lower overall impact. However, the greater
difference between their total- and first-order indices
indicated that their influence derives mostly from
interactions. These results generally corresponded to the
OAT results, with the added point of highlighting the value
of global sensitivity methods in uncovering interactive
effects among input variables that would otherwise be
overlooked.
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Figure 5. Global Sensitivity Analysis results for turmeric yield.

This approach enhanced the robustness of the sensitivity
interpretation by capturing both main and interaction
effects across the parameter space. The consistency in the
top variable rankings between the OAT and Sobol-based
GSA supported the reliability of the originally adopted
OAT approach, especially for identifying the primary
drivers of model performance.

3.6. Spatial validation

The spatial validation of the BPNN model further
underscores its reliability and adaptability across different
regions. The model trained on data from Erode,
Coimbatore and Tiruppur was tested on Salem and
Dharmapuri, two agriculturally significant turmeric
producing districts with distinct microclimatic and soil
conditions. The model’s predictive accuracy remained
high, with R? values of 0.91 in Salem and 0.89 in
Dharmapuri, indicating a strong correlation between
predicted and observed vyields. The relatively low Root
Mean Squared Error (RMSE) values (0.31 t/ha and 0.36
t/ha, respectively) further highlighted the model's
robustness in capturing yield variability in unseen regions.
These findings validated the model's transferability across
agro-climatic zones making it a promising tool for large-
scale yield forecasting.

3.7. Future prediction

The BPNN model projections revealed distinct trends in
turmeric yield under varying climate futures and are
shown in Figure 6. SSP1-2.6 and SSP2-4.5 which assume
lower greenhouse gas emissions and more sustainable
trajectories, indicated relatively stable yield patterns with
a slight increase toward the end of the century. The
average predicted yield under these scenarios remained



between 4.8 and 5.2 t/ha throughout the century, with
modest fluctuations and narrower confidence intervals
indicating more reliable and consistent rainfall patterns.
SSP3-7.0 and SSP4-6.0 yield projections showed increased
variability, particularly around mid-century, reflecting the
effects of more erratic or regionally imbalanced rainfall
distributions. Predicted yields under these scenarios
occasionally dip below 4.8 t/ha, indicating the potential
stress turmeric crops may face due to irregular
precipitation. SSP5-8.5, the high-emission scenario
resulted in the highest average projected yields (around
5.6 to 6.2 t/ha). However, the wide confidence bands
suggested substantial uncertainty, potentially due to
extreme rainfall events or anomalies under this fossil-
fuelled development pathway.

Overall, the results highlighted that even when other
biophysical and environmental conditions remain
constant, variations in precipitation alone as shaped by
different climate scenarios can significantly influence
turmeric yield. This emphasized the need for rainfall-
focused adaptation strategies, such as improved water
management and irrigation infrastructure, to ensure yield
stability under future climate conditions.
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Figure 6. Future projection of turmeric yield under SSP scenario

Climate scenarios (SSPs) are alternative socio-economic
and emission paths each influencing climatic factors like
rainfall and temperature that are essential for growing
turmeric. The application of multiple SSPs brings
uncertainty into the projection of the future because they
differ in assumed emissions and connected climate
response. For instance, SSP1-2.6 and SSP2-4.5 under the
assumption of sustainable development and moderate
emissions respectively, have relatively narrow confidence
intervals in projected vyields, reflecting more stable and
predictable rainfall and temperature patterns. On the
other hand, SSP3-7.0 and SSP5-8.5 are marked by
increased emissions and climatic volatility, leading to
wider confidence intervals and higher uncertainty in
projected yields. This heterogeneity emphasizes the need
for incorporating uncertainty bands when analyzing model
outputs.

3.8. Robustness Analysis under Severe Climatic Conditions

To assess the robustness of the model in years of extreme
weather, a historical robustness analysis was conducted
by distinguishing anomalous climatic years. Specifically,
the years 2017 and 2019, which experienced record-

breaking monthly rainfall (>450 mm) and 2016 with
record-breaking average temperature (>31°C) were
employed for this analysis. The performance of the model
was assessed once again using data from these extreme
years. The results showed that the performance metrics
(R? = 0.88, RMSE = 0.26 t/ha, Mean Absolute Error (MAE)
= 0.07 t/ha) were at less than desirable levels justifying
that the model was stable to atypical environmental
conditions. The results confirmed that the model has
robustness in the way that it can survive non-typical
environmental inputs while still being able to function
when predicting turmeric yield under actual climatic
variation. In addition, the model also performed
consistently well under these outlier years which warrants
its validity and applicability to situations in the future.

3.9. Assessment of Model Performance in Predicting Crop
Yield at Growth Stages

The turmeric crop yield was predicted with the data
observed in each crop growth phase and the results are
shown in Table 3. The growth phases of turmeric include
the emerging, vegetative, maturity and harvest phases.

a. Emerging Phase

The predicted yield differed from the actual turmeric yield
by 30.38 % in the emerging phase. This implied a relatively
high uncertainty in all these predictions, especially during
this early growth phase because of the extremely high
sensitivity to environmental conditions. Young turmeric
plants are notably sensitive to environmental conditions,
thus rendering it difficult to make accurate predictions.

b. Vegetative Stage

The predicted yield differed from the actual turmeric yield
by 26.35 % in the vegetative stage. This signalled a great
prediction error, although lower than the emerging phase
of the most recent research on turmeric. More data will
be available as the plant grows, but environmental and
management-induced growth variability will always play a
big role in prediction accuracy. This stage was
characterized by vigorous development of the leaves,
stems and biomass. During the vegetative stage, the plant
directs its energies toward foliage improvement for better
photosynthesis, which will facilitate rhizome
development. The vegetative growth is highly dependent
on light, water and nutrients. The disturbance in these
factors brings a great deal of variability to the growth of
each plant and vyield, thereby discriminating against
prediction.

c. Maturity Phase

In this phase, the predicted yield was much closer to the
actual yield, with only a 1.23 % difference in turmeric
yield. The prediction became more precise at the maturity
stage, owing to a more stable pattern in plant growth and
adequate data. During the maturity stage, the turmeric
plant slows down vegetative growth while it starts the
process of rhizome development and maturation. Canopy
development is complete and energy is directed towards
the swelling of rhizomes and starch accumulation. This is
the stage when the growth rate of a plant becomes steady
with some predictable growth in rhizomes and biomass.



There was more consistency and accuracy in maturity-
stage data such as leaf area, plant height and rhizome
growth, which allowed for more precise predictions of
yield. Mature plants are more resilient to environmental
stress. Hence, the impact of adverse conditions on growth
is less disturbing than in earlier stages. This resilience was
responsible for reducing variations in growth and thus
increasing the accuracy of prediction.

d. Harvest Phase

The smallest difference was observed during the harvest
phase, with a 1.23 % change from the actual turmeric
yield. Although harvest phase estimates remained

Table 3. Turmeric crop yield prediction at different phases of growth.

accurate, there was a modest increase in deviation
compared to the maturity phase. This small difference
was due to factors affecting the crop during the late
season, such as weather fluctuations.

The results indicated the model's ability to forecast what
the yield at maturity will finally be with minimum variance
relative to the actual outcome right at the maturity stage,
as opposed to the harvest stage. This gives early insights
that help allocate resources, schedules for harvesting and
market planning, culminating in practical benefits of
earlier decision-making.

Growth Phase
Emerging Phase
Vegetative Phase
Maturity Phase

Harvest Phase

Change in predicted yield from actual yield (%)
30.38
26.35
0.86
1.22

4. Conclusions

Correlation analysis indicated that MSI, NDRE and rainfall
were highly correlated with turmeric yield, highlighting
the importance of water availability and plant health. The
BPNN model had the highest accuracy (R? = 0.96), which
was higher than other models because of its ability to
learn intricate patterns. This led to superior model
performance, achieving the highest coefficient of
determination (R?) and the lowest error metrics among all
crop yield prediction models evaluated in this study.
Sensitivity analysis validated MSI, NDVI and rainfall as the
most significant variables. Phase-wise yield predictions
showed that the BPNN model was able to accurately
predict yield at the maturity phase with only a 0.86%
difference, providing early information for harvest
planning and resource allocation. This predictive model
connects environmental factors to turmeric production
and encourages climate-resilient farming. It aligns with
Sustainable Development Goals (SDGs) 2 (Zero Hunger), 6
(Clean Water), 12 (Responsible Consumption) and 13
(Climate  Action) by facilitating decision-making,
optimizing resources and environmental protection. The
use of remote sensing and machine learning in this
research establishes its viability for scaling up sustainable
agriculture solutions. Though the model was customized
to turmeric, subsequent research must investigate
adaptation to other crops and implement deep learning
techniques for higher accuracy and resilience. Expanded
usability  necessitates  reformulating inputs and
parameters to accommodate various types of crops.
Economic viability, user acceptability and policy
embedding are critical to field-level implementation.
Although this research did not incorporate cost-benefit
and farmer feedback studies, spatial validation has
confirmed the model’s transferability, thereby
establishing a foundation for future studies focusing on
economic feasibility, user acceptance and policy
integration. Future studies may involve a comparative
assessment of sophisticated classification techniques like
Random Forest (RF), Support Vector Machines (SVM) and
deep learning-based methods, which are reported to

provide better performance in sophisticated land cover
classification applications. Optimization of MLC by using
better training sample selection, incorporation of ancillary
data sets, or hybrid methods can also enhance
classification accuracy to some degree.
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