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Abstract

This paper presents the modelling and control of a hybrid
electric vehicle powertrain. The powertrain, which has a
series-parallel hybrid topology, was used as a case study.
Mathematical models were developed for the internal
combustion engine, electric motors, batteries and vehicle
dynamics. A computational model was implemented in
Matlab/Simulink and validated against experimental data,
showing good agreement for fuel consumption. A rules-
based control strategy was developed to approximate the
logic used in the real vehicle. Global powertrain
optimisation was then conducted using dynamic
programming to minimise fuel consumption. Two cases
were analysed, one optimising only the torque
distribution and another also optimising the operating
points of the internal combustion engine. The optimal
control resulted in 9.5% and 10% lower fuel consumption
than the non-optimal strategy, demonstrating the
potential for consumption reduction. The results illustrate
the importance of optimising multiple degrees of freedom
in the powertrain and not only confining the engine to its
optimal operating line. This study provides a methodology
for developing optimal control strategies for hybrid
vehicles using easily implementable tools. The findings
highlight the importance of synergizing technology with

informed driving habits to support global sustainability
goals.

Keywords: Hybrid electric vehicles, Powertrain modeling,
Dynamic  programming, Optimal  control, Fuel
consumption

1. Introduction

Hybrid electric vehicles (HEVs) have gained popularity in
recent years due to their potential for reducing fuel
consumption and emissions compared to conventional
vehicles. HEVs combine an internal combustion engine
and electric motor(s), allowing the powertrain to operate
more efficiently by optimising the power split between
the two energy sources. However, complex interaction
between components means realising this potential
requires sophisticated control strategies to manage the
torque distribution.

Dynamic programming is an optimisation technique that
can find the global optimal solution for a system over time
by discretising the state and control variables. It has been
applied for hybrid vehicle energy management with
promising results. However, most studies simplify the
system dynamics or do not validate the optimal results

against real driving data. Furthermore, the high
computational cost makes implementing dynamic
programming on an engine control unit difficult.
Therefore, methodologies need to wuse dynamic

programming with high-fidelity plant models that can be
simulated quickly to develop optimal control strategies.

Allouhi (2024): Proposed optimal hybrid PV/wind/battery
system to power supermarkets and electric vehicle
charging in Morocco. Allouhi & Rehman (2023): Optimised
PV/wind/battery system for supermarkets with EV
charging in Morocco; high wind site had lowest cost of
energy. Anselma et al. (2021): Validated optimal
predictive energy management strategy for hybrid
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vehicles considering battery ageing; showed potential to
downsize battery. Barman et al. (2023): Reviewed smart
charging approaches for integrating renewable energy
and electric vehicles. Dan & Zhou (2023): Reviewed
energy integration between flexible buildings and e-
mobility using demand-side management and model
predictive control. Donateo et al. (2021): Optimised
energy management strategy for hybrid electric
helicopters using dynamic programming; reduced fuel
consumption up to 22%. Er et al. (2024): Optimised rural
microgrid design with PV, wind, battery, hydrogen
storage, and vehicle-to-grid; hybrid storage lowered costs.
Gabbar & Siddique (2023): Evaluated hybrid nuclear-
renewable system for fast EV charging station; reduced
emissions and costs. Gobbi et al. (2024): Reviewed
traction motor design aspects to maximise electric vehicle
efficiency. Hernandez-Nochebuena et al. (2021): Analysed
household renewable hydrogen production for fuel cell
vehicles; energy storage dynamics affect feasibility.
HomChaudhuri et al. (2016): Developed a hierarchical
strategy for connected hybrid vehicles using traffic data;
improved fuel efficiency. Itani & De Bernardinis (2023):
Reviewed energy management strategies for dual-source
hybrid electric vehicles. Jayakumar et al. (2022): Assessed
the potential of hydrogen for sustainable mobility in India;
costs need to decrease. Khalafian et al. (2024): An
optimised renewable system for electricity, heat, and
smart EV charging using compressed air and thermal
storage. Kyriakou et al. (2024): Developed multi-agent
control for microgrid with building prosumers and electric
vehicles. Liu et al. (2021): Reviewed driving cycle-based
energy management strategies for hybrid electric vehicles.
Louback et al. (2024): Reviewed the design process for
energy management systems in dual-motor  electric
vehicles. Ma et al. (2021): Reviewed fuel cell-battery
hybrid systems for mobility and off-grid applications.
Machacek et al. (2024): Analysed potential to reduce
emissions in hydrogen hybrid ‘vehicles through energy
management. Manirathinam et al. (2024): Assessed
micro-mobility  sharing | service. quality and user
satisfaction in South Korea. Mousa (2023): Developed an
adaptive deep reinforcement learning agent for hybrid
vehicle energy management. Pramuanjaroenkij & Kakag
(2023): Provided an overview of fuel cell electric vehicle
technology and its importance. Quinteros-Condoretty et
al. (2021): Analysed lithium supply chain sustainability for
electric vehicles using system dynamics. Tariq et al.
(2024): Reviewed integration of fuel cells in hybrid
microgrid systems for clean energy. Xu et al. (2022):
Optimised multi-energy microgrid scheduling including
hydrogen technologies, vehicles and data centres.

This paper presents the modelling and optimal control of
a powertrain using Matlab/Simulink and dynamic
programming. The combustion engine, electric motors,
battery and vehicle dynamics were modelled based on
data from literature. A computational model was created
and validated by comparison with experimental data from
chassis dynamometer testing. This validated non-optimal
model provided a basis for global optimisation using
dynamic programming. Two cases were analysed — one
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optimised only torque distribution and the other
optimised the engine operating points.

The validated plant model enables high-fidelity evaluation
of control strategies prior to real implementation.
Dynamic programming results demonstrate the potential
for reducing fuel consumption below the non-optimal
baseline. The methodology followed allows systematically
developing and assessing optimal control solutions. Future
work should focus on strategies optimised for real-world
driving cycles using local optimisation methods that can
be deployed on engine control units. The introduction of
electrification in vehicles is only projected to increase;
therefore, the importance of optimal energy management
will continue growing.

2. Materials and Methods
2.1. Vehicle Architecture

The vehicle architecture modelled in this study was the
Toyota Prius Generation 2, which has a series-parallel
hybrid topology. This combines aspects of series and
parallel configurations, allowing flexible operating modes.
The powertrain consists of a 1.5L Atkinson cycle gasoline
engine, two_electric motor-generators, a planetary gear
transmission, and a nickel-metal hydride battery pack.

Planetary

Figure 1. lllustration of the powertrain of the adopted vehicle.

The main components illustrated in Figure 1 are planetary
transmission, internal combustion engine (MCI), motor-
generator with main power generation function (MGI
motor-generator with main traction function (MG2)), and
high voltage battery. The transmission system also has a
speed reduction, a differential and the semi-axle
connected to the wheels. The frequency inverters of each
motor and the DC/DC converter are not illustrated in the
figure; however, the modelling includes the losses they
introduce into the system. The engine and motor-
generator 1 (MG1) connect to the planetary gearset. MG1
primarily controls engine speed. Motor-generator 2 (MG2)
is coupled to the gearset output and drives the wheels.
The battery pack provides power to MGl and MG2.
During electric driving, the engine is off and MG2 propels
the vehicle. In hybrid mode, the engine provides power to
MG1 and the wheels, while MG2 supplements traction.
MG?2 also recovers braking energy. The planetary gearing
enables a power split between engine and electric paths.

2.2. Modelling

Individual component models were developed for the
engine, MG1, MG2, battery and vehicle dynamics. Using a
brake-specific fuel consumption map, the engine model
calculates fuel consumption based on speed and torque.
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MG1 and MG2 use efficiency maps to determine electrical
power from mechanical power. The battery model
simulates open-circuit voltage and internal resistance.
Vehicle longitudinal dynamics were modelled accounting
for tractive force, drag, rolling resistance and inertia.

The component models were implemented in
Matlab/Simulink. The closed-loop system is simulated by
combining the models with a driver model that follows
the target speed profile. Restrictions on state and control
variables are included. The cost function for optimisation
is total fuel consumption.

2.3. Control Strategy

A rules-based control strategy approximating the logic in
the Prius was developed. The engine on/off threshold and
operating line were set based on analysis of experimental
data. The torque distribution between the engine and
MG2 was controlled based on power demand and battery
state of charge.

2.4. Optimisation

Dynamic programming discretises the state and control
variables to find the global optimal trajectory over a drive
cycle. It was implemented using the Snopt optimal control
software. Two cases were run — one optimising just
torque distribution and another also optimising engine
operation. Restrictions on battery charge and component
limits were included. The cost function was total fuel
consumption.

3. Experimental Setup and Procedure

Experimental data for validating the model and analysing
the stock Prius control strategy was obtained from testing
conducted by Argonne National Laboratory using a chassis
dynamometer. The key elements of the experimental
setup and test procedure were as follows:

3.1. Test Vehicle

A second-generation Toyota Prius with-a 1.5L Atkinson
engine, 43 kW permanent magnet MG1, 50 kW
permanent magnet MG2, and 6.5 Ah nickel-metal hydride
battery pack was tested. The vehicle had approximately
257,000 km total mileage at the time of testing.

3.2. Testing Equipment

The vehicle was mounted on a 48-inch single-roll electric
chassis dynamometer capable of simulating inertial loads.
The test cell temperature was maintained at 25°C.
Emissions measurement instrumentation included Horiba
THC, CO, CO,, and NOy analysers. Fuel consumption was
measured using a fuel flow meter and balance scale.
Additional sensors recorded battery current, engine
speed, vehicle speed, and accelerator pedal position. Data
was collected via the vehicle CAN bus and a dedicated
data acquisition system.

3.3. Test Cycle

The urban Brazilian NBR6601 drive cycle was used for
validation tests. It is an ECE-15-derived cycle with a total
duration of 589 seconds and a distance of 2.09 km.
Maximum speed is 58 km/h with an average 18.7 km/h.

Accelerations reach 1.04 m/s2. This cycle represents city
driving conditions.

3.4. Test Procedure

Prior to testing, the vehicle battery state of charge was
adjusted to 60% to represent a partially depleted
condition. The dynamometer load setting was configured
to reproduce road load forces for the vehicle weight. The
vehicle was then driven over consecutive NBR6601 cycles
with data logged for each cycle. Emissions sampling
occurred during the fourth «cycle with vehicle
preconditioning occurring over the first three cycles.
Between cycles, the vehicle was allowed to regen the
battery through coast down to maintain repeatable initial
conditions. In total, the vehicle completed four full cycles.

This section presents the validation of the closed-loop
simulation of the vehicle control and blueprint. The
primary objective of validation was to achieve a
computational model in which the estimated fuel
consumption presented a deviation of no more than 5%
compared to test data.

The data used for validation were obtained from Argonne
National Laboratory (2013), which conducted tests with
the Toyota Prius vehicle on a chassis dynamometer. The
experiment was conducted under the urban area cycle
specified in the Brazilian standard NBR 6601, which
regulates the measurement of emissions in light motor
vehicles. Details of this cycle are provided in APPENDIX C.
The measured data included signals from the vehicle's
CAN network and the dynamometer control system.

3.5. Data Analysis

The primary data analysed were fuel consumption,
battery current, battery state of charge, and engine
speed. Total fuel consumption was determined by the
difference in fuel tank mass before and after the test. The
integrated fuel flow over the fourth cycle provided cycle-
specific consumption. Battery current and engine speed
profiles were used to validate the model. Comparing the
initial and final battery states of charge assessed the
charge balance. Additional data provided insights into the
stock control strategy.

This chassis dynamometer test provided experimental
data from a real-world drive cycle under controlled,
repeatable conditions. The resulting vehicle operating
parameters and fuel consumption comprise a
comprehensive data set for validating the Prius plant
model developed in this research. The test methods
follow industry standard practices.

4, Results and Discussion

4.1. Model Validation

The simulated speed profile accurately tracked the target
cycle with minimal control error. Engine speed matched
well with test data, capturing the on/off pattern and
transients. Some deviation occurred during the initial
warm-up where emissions strategies differ. Battery
current showed similar charging and discharging
behaviour. However, the modelled state of charge range



was narrower than testing. This indicates differences
between the modelled and actual control logic.

The simulation was conducted using the Matlab/Simulink
program. A time step of 0.01s was used, and the method
for solving ordinary differential equations was Dormand-
Prince (RK5).
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The torque demand from the driving cycle is the input
parameter of the simulation. It must be accurate before
validating the model. Therefore, the first module to be
validated was the driver model. Figure 2 shows the graphs
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of the vehicle's actual and desired speeds and the PID
controller's performance. The NBR 6601 standard
stipulates that the speed error should be no more than 1
km/h. The maximum error of the PID controller in the
resulting driver model is within the range (-0.4, 0.4).

In Figure 2, the simulation results and tests for the
rotation of the MCI (Motor Control Interface) are
presented. While the simulation indicates that the MCI
employs a turn-off strategy at the start of the cycle (0 to
150 s), the test data reveal that it remains operational
during this period. The MCI in the actual vehicle
implements a strategy to heat the exhaust system at the
beginning of the test as part of the emissions reduction
strategy, a phenomenon not accounted for in the MCI
model. The second graph in Figure 3 focuses on-a specific
section of the driving cycle. Despite instances where there
is a deviation between the measured and simulated MCI
rotation of 500 rpm, it is observed that, overall, the
simulation closely replicates the MCl dynamics.

The fuel consumption for the simulated cycle was 0.377 L
versus 0.373 L measured, an error of only 1.2%. This
demonstrates the model accurately represents the real
system efficiency and captures the interactions between
components. The small state of charge error contributes
to fuel

minimally consumption. Additional minor
discrepancies are likely attributable to unmodeled
behaviors.
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Figure 4. Comparison of the battery's electrical current for
simulating the non-optimal model with the electric current

Figure 4 compares the electric current in the battery
within the same visualization space as the figure above.
Once again, a good overall adherence of the simulation to
the test data is observed. The electric current in the
battery is directly proportional to the battery power, and,
therefore, the graph serves as a reliable representation of
the torque distribution ratio adherence of the simulation
to the actual vehicle. This comparison underscores the
simulation's ability to accurately replicate the electrical
behavior of the battery as observed in real-world tests
conducted by Argonne National Laboratory in 2013.

Figure 5 presents the battery's State of Charge (SOC)
graph over time. The initial SOC in the test was 59.2%,
while it was set at 60% in the simulation. It's crucial that
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the SOC at the end of the cycle does not significantly differ
from the SOC at the beginning to ensure that fuel
consumption is not unduly influenced by electrical energy
consumption. The variation in SOC observed in the
experimental data and the simulation were and,
respectively. This minor difference was deemed negligible,
and no subsequent adjustment was made to the value of
energy consumption. The figure provides a side-by-side
comparison of the battery's State of Charge (SOC) and fuel
consumption, showcasing the simulation's accuracy
against real-world test results obtained from Argonne
National Laboratory in 2013.
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Figure 6. Result of case 1 for the battery SOC. The contour plot
shows all 6optimal control solutions resulting from global
optimization.

Figure 6 likely illustrates the results of a simulation or
optimization process concerning the State of Charge (SOC)
of a vehicle's battery (possibly an electric or hybrid
vehicle) under certain operational conditions (case 1). The
figure might show a trajectory or path that represents
how the SOC changes over time or through different
stages of vehicle operation. Accompanying this trajectory
could be a contour map that visualizes the values of a
control variable (denoted as \(r\) in this context) at
various SOC levels. These control variable values are
critical for understanding how the vehicle's control system
adjusts or should adjust under different SOC conditions to
optimize performance, efficiency, or other objectives. The
colors and operational modes indicated in the legend,
referenced as detailed in Equation (33), categorize the
control strategies or states the vehicle's system adopts at

different SOC levels. The interception points between the
SOC trajectory and the contours of the control variable
\(r\) signify the optimal control solutions determined
through dynamic programming, a method often used in
optimization problems to find the most efficient way to
achieve a certain objective.
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demand (above) and

Figure 7 on the other hand, explores the dynamics of the
control variable concerning the vehicle's speed and the
total power demand at the wheels. This figure likely
presents graphical analyses or plots that elucidate how
the vehicle's system's control strategies (or operating
modes) vary with changes in speed and power
requirements. The mention of "3 operating modes"
suggests that the analysis categorizes the vehicle's
performance or control responses into distinct modes
based on these two parameters (speed and power
demand). These modes could represent different energy-
use strategies, such as electric-only operation, hybrid
operation (combining electric and internal combustion
engine power), and perhaps an efficiency-optimized mode
that seeks to minimize fuel consumption or emissions
while meeting the power demands.

Figures 6 and 7 provide visual and analytical insights into
how a vehicle's control system manages its energy
resources (particularly the battery's SOC) in response to
various operational demands and conditions. These
insights are crucial for developing and validating advanced
vehicle control strategies, aiming for optimal
performance, efficiency, and sustainability.

The model validation confirms that the component and
vehicle system models are suitable representations of the
Toyota Prius. The model has high fidelity in terms of fuel
consumption, the most relevant metric for optimization.
Minor control logic differences have negligible impact on



total energy use over a full drive cycle. This validated
model provides a robust platform for evaluating optimal
control strategies.

4.2. Optimal Control

Both dynamic programming cases demonstrated
substantial reductions in fuel consumption compared to
the non-optimal rules-based controller. Case 1 lowered
fuel use 9.5% by optimizing just torque distribution.
Allowing engine operation to deviate from the optimal
line in Case 2 realized an additional 1% reduction.

The results highlight that confining the engine to its
optimal line does not necessarily yield the true global
minimum. Other simultaneous efficiency trade-offs
between components can shift the system-wide optimum.
The modeling and optimization approach captured these
complex interactions and revealed additional potential
consumption reductions.

However, the predicted savings concern the model
baseline control, not the actual Prius strategy, which likely
approaches optimal already. The potential improvement
on the real vehicle is likely smaller than suggested by
these percentages. Additional real-world drive cycle
testing could quantify possible savings.

In summary, the optimization results prove the concept of
using dynamic programming to minimize fuel
consumption. Even without perfectly accurate system
models, the technique clearly identifies improved
solutions over heuristic control strategies. Expanding the
methodology to multipoint local optimal solutions could
enable online implementation of near-globally optimal
controllers.

5. Conclusions

This research presented a methodology for developing
and evaluating optimal energy management strategies for
hybrid vehicles. Models of the Toyota Prius were
implemented in Matlab/Simulink and validated against
chassis dynamometer test data. The validated non-
optimal model matched measured fuel consumption to
within 1.2% over a real-world drive cycle. Dynamic
programming was then applied to optimize the
powertrain control globally.

The optimal control resulted in 9.5-10% lower fuel
consumption than the non-optimal rules-based strategy.
This demonstrates the potential for improvement over
heuristic . controllers. The importance of optimizing
multiple degrees of freedom, not just the engine
operating line, was shown. The modeling and simulation
approach enabled systematic analyzing the complex
system interactions and trade-offs in hybrid vehicle
optimization.

However, the actual fuel consumption benefits may be
less than predicted since the production Prius control is
likely near-optimal already. Further validation under real-
world driving conditions could provide more accurate
quantification of potential savings. Additionally, the
computational expense of dynamic programming
currently precludes online implementation. Transitioning
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to multipoint local optimization methods is needed to
develop controllers that could be deployed on vehicle
engine control units.

This research presented a novel methodology for
developing optimal hybrid vehicle energy management
strategies using simulation tools. The system modeling
and optimization framework can provide valuable
guidance for designing control algorithms. However,
experimental validation and practical implementation
considerations must also be addressed in translating
simulation results to real systems. The modeling and
analysis approach followed lays the groundwork for
achieving globally optimal energy management in hybrid
vehicles.
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