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Abstract

Electricity demand is increasing day by day and hence
power utilities are slowly shifting towards renewable
energy, mainly solar, as it is more reliable and
environment friendly. However, solar power generation
systems have very low efficiency and this is the major
challenge faced by the researchers. Some of the reasons
for the low efficiency is the presence of dust particles, bird
droppings, shadows, rain droplets, micro cracks etc. Micro
cracks are the major issue to reduce solar panel efficiency.
Microcracks are estimated to contribute to a power loss
of approximately 80—-90%, severely affecting the efficiency
and overall performance of solar panels.In this article, the
cracked panel and non-cracked panel can be identified by
using complex wavelet transform. The Gaussian filter is

used to eliminate the distortions in the cracked panel. And
this image can be decomposed by sub band images. The
corresponding statistical and texture features can be
calculated for sub band images and these features are
classified using ANFIS classifier. Finally the segmentation
algorithm is used to detect the cracked and non-cracked
panel images. By comparing with existing methods like
Electroluminescence imaging technique, ResNet152
model, Xception model, UAV based thermal imaging
technique. The Proposed ANFIS leverages the advantages
of both neural networks and fuzzy logic, enhancing the
accuracy and adaptability in distinguishing cracked from
non-cracked panels. This approach can be deployed in
automated inspection systems for large-scale solar farms,
enabling early crack detection. By identifying issues
sooner, it helps lower maintenance costs while improving
the efficiency and longevity of solar panels. Additionally,
the method can be integrated with drone-based
monitoring systems for remote inspections.

Keywords: ANFIS classifier, Machine Learning, complex
Wavelet Transform

1. Introduction

Micro cracks are mainly due to manufacturing defects as
well as improper handling during transportation and
installation. Manual testing of panels for the detection of
micro cracks is very difficult and time consuming
especially for panels of large dimensions and high-power
rating. For precise fractures being identified, image quality
is essential. If the image resolution is inadequate, surface
sounds could be mistaken for cracks. As a consequence, a
minimum pixel range needs to be defined to perform the
function correctly. Careful algorithm selection is crucial to
the process' accuracy since it produces a model that
performs better and has greater identifying potential. An
examination of research revealed that soft computing
methods fared better in terms of precision than other
methods. Some methods for the automated detection of
cracks are available in the literature. The performance
metrics of these methods along with the time taken for
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the detection of cracks is also available in the literature.
This work addresses the process of detection of micro
cracks using an improved technology which detects the
crack within very less time as compared to the existing
technologies. If the cracks in the solar panels are
detected using automated methods, it becomes easier to
change the defected panel with a new one so as to
improve the production rate. This paper deals with ANFIS
machine learning algorithm as a soft computing technique
to detect the defective panel images.

2. Literature survey

Deep learning (DL) models are used by some researchers
for solar cell fracture detection. Improved EL detection of
solar cell fractures is proposed by Su et al. (2021) by
implementation of a unique complementary attention
network. Out of 3629 photos tested by them almost 2129
have detective sections. 2 to 12% of the output power
may be lost because of these tractions and it depends on
the dimensions of the cracks. The research shows that
fractures also referred to as "cracks" in solar cells might
diminish the cell's output power by anywhere from 0.9%
to 42.8%, or even more. Li et al. (2014) have proposed an
entirely new method for finding cracks in faults with dark
colours and poor contrast. The original image is divided
into its component parts and then recreated using the
FDCT (Fast Discrete Curvelet Transform) technique. In
order to remove surface textures from the images,
constraints for the decomposition parameters are derived
using texture feature measurements. Contours from the
rebuilt images are obtained, which are free of motifs but
contain fracture fault contours, to produce the required
image. A method for spotting cracks in Scanning Electron
Microscopy(SEM) images is described by Vidal et al. in
(2016). They have merged the SEM pictures by setting an
acceptable threshold defined by the image histogram
after filtering out nodules and background noise. Image
binarization is achieved to successfully detect fractures
from the backdrop of the image. The spatial area of the
fractures are more accurately determined by combining
the second derivative of the histogram acquired using the
Laplacian of Gaussian (LoG) with the Prewitt vertical edge
detector. A method for locating near-surface faults in
specimens that are both magnetizable and conductible is
proposed by Heideklang et al. (2015). Their approach
integrates information from thermography, magnetic flux
leakage, and eddy current testing. For pixel-level fusion of
data, a variety of signal processing methods are provided
to normalise the information. The signal-level fusing of
disparate Non-Destructive Testing (NDT) image results are
achieved utilising pixel-wise, multi-scale, and signal
normalisation methods. Fundamental algebraic fusion
techniques are used to combine the findings of signal
normalisation. Zahra Anvari and Vassilis Athitsos et
al.(2021) The deep learning techniques used for
document picture enhancement tasks, such as
binarization, deblurring, denoising, defading, watermark
removal, and shadow removal, are thoroughly reviewed in
this work. The authors identify difficulties and constraints
and offer potential avenues for further research while
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discussing the different deep learning architectures,
datasets, and metrics employed in these tasks.
Muhammad Imran Razzak, Saeeda Naz, and Ahmad Zaib
(2017) This paper presents an overview of deep learning
architectures and their optimization techniques used in
medical image segmentation and classification. It
discusses the unique challenges faced in medical image
processing and outlines open research issues, emphasizing
the potential of deep learning to improve healthcare
services.

The novelties of this proposed solar panel crack detection
system are constructed from the literature survey section
and they are highlighted in the below points.

e The novel ANFIS Classifier is proposed in this work to
perform the solar panel image classification process.

e The novel crack segmentation algorithm is proposed
in this work model.

The generic procedure for the image processing technique

is shown in the Figure 1.
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Figure 1. Generic Procedures for Image Processing.

3. Proposed Methodologies

In this paper ANFIS classification method used in the panel
and divided like cracked and Non-cracked panels. The
Gaussian filter is applied and the noise removed. By using
image processing technique the panel can be separated
by cracked and Non-cracked panels.The proposed block
diagram is given below in Figure 2.
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Figure 2. ANFIS classifier based solar panel image

classification scheme

Table 1 shows that training and testing dataset values and Detection Rate values.

Panel Type Training Dataset Testing Dataset Detection Rate
Cracked Panel 285 665 99.8%
Non-cracked Panel 300 700 98.4%

Table 1 Training and Testing Dataset

In this work, MATLAB 2020 is used here as simulation
platform on computer with the following specifications.

Processor Intel i5
Hard disk 27TB
RAM 8 GB RAM.

3.1. Optical System Specifications

Here, FIMI X 8 drone is utilized to take pictures of the
solar arrays. The camera on the drone can rotate in three
axes and has a catching range of up to five thousand
meters. Drone camera units weigh 790 grams, and they
can transmit data at 64 km per hour. The optical system
employed in this study is characterized by its resolution
and optical transfer properties. The optical system of this
research makes use of various kinds of photo detectors.
The drone instrument's optical system takes pictures of
the solar panels. The qualities of the object being tested
may be determined without physically touching it due to
the optical measuring procedures. This method uses the
physics of absorption and reflection to record information
about surfaces as a whole. The drone instrument has a
variety of optical components and assemblies, all of which
must be meticulously constructed for optimal image
performance. When designing optical components, it is
common practice to strive for the smallest feasible
footprint in terms of size, weight, and energy
consumption. Drones and other autonomous systems may
have their lenses made from a wide variety of substrates,
including plastic, glass, metal, and plastic. UAV
applications that collect distant pictures need long focus
lengths. However, this viewpoint results in a deformed
picture; to fix this, the perspective image registration
approach is employed.

Figure 3 (a) depicts the original picture recorded, whereas
Figure 3 (b) shows the rectified image after preprocessing.
The resulting solar panel pictures are registered using the
feature image registration approach described by Wang et
al. (2022).
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Figure 3. (a) Image captured by using Drone (b) Registered image

The licensed solar panel picture has six rows of ten solar
cells, every single one of which measures 0.16 m X 0.16 m.

3.2. Preprocessing

The extracted picture of the solar panel suffers from
blurring in the broken areas, which in turn affects the
clarity of the individual pixels. These unnecessary blurs
should be eliminated so that fractured spots in solar
panels may be detected and segmented. Even though
many conventional blur detection methods as stated in
Awais Khan et al. (2021) and Renting Liu et al. (2008)
available to detect and remove the blur from the solar
images, these methods exhibits pixel losses during deblur
process. The Data Augmentation Methods (DAM) is used
in the solar panel images of the training data set to
increase the number of solar panel images during the
training of the ANFIS classifier. This work uses left shift
and right shift DAM methods in the training dataset solar
panel images.

The 'Gaussian' filter, whose response to impulses is a
Gaussian function, is used to identify and get rid of the
blurry pixels in the solar cell picture. The formula below
represents the kernel of the Gaussian filter given in the
Equation (1)

—r?+s? (1)
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The filter has a mean of zero and a window size of 5 x 5,
hence the standard deviation is zero. To identify and
eliminate the haze around the cracks in the solar cell, a
Gaussian filter is used in the picture. The original picture
of the solar panels is shown in Figure 4 (a), while the
filtered version is shown in Figure 4 (b).

Figure 4. (a) Source solar panel image (b) Gaussian filtered image
(Pre-processed image)

The picture may be decomposed into smaller scales using
CWT. This study uses a 4-stage CWT to separate the solar
panel picture into 12 individual sun band images. The
suggested CWT is made up of two filters with four phases
each: a Low Pass Filter (G) and a High Pass Filter (H). At
each step of the disintegration, the input picture is
concurrently processed by these filter banks to generate
the sub spectrum images. The output of each step is
down filtered by a factor of 2, as shown in Figure 5.
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Figure 5. Four stage Complex Wavelet Transform
In a CWT structure, real and scaling properties are given in
the Equations (2) and (3) respectively.

()
(1) =2 Y G2t —n)

(3)
9(1)=+2 ZGIQ(Zt —n)

The CWT structure's high pass filter banks' real valued
function and scaling function are given in the Equations
(4) and (5) respectively.

(4)
?(1)=2 ZHO@(Zt —n)

(5)
9(1)=\2 ) 1Bt -n)

Figure 6 shows the pre-processed solar panel picture
broken down into 12 sub band images. The statistical and
texture features can be computed for all the sub band
images.

Figure 6. DTCWT sub band images

3.3. Computation of Features

Pixels in a picture may be distinguished from one another
based on their features, which are their unique
characteristics. CWT is used to split pictures into sub
bands before computing texture and statistical
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information from those The next sections

elaborate on these aspects.

images.

3.3.1. Statistical features

These characteristics use the coefficient fluctuations and
their mean value in each decomposed sub band picture to
differentiate between images of cracked and uncracked
solar panels.

3.3.2. Mean

The following formula is used to get the average value of
each sub band picture.

2.6 g

Mean(g) ==

In this equation, N represents the total number of
coefficients in the decomposed sub band picture, and Ci
represents the coefficients of image

3.3.3. Variance

Decomposed sub band images have somewhat
distinct coefficients from one another. The variance
functions allow for the estimation of these differences.
Each sub band image's variance is calculated separately
using the following formula.

N
" G-op 7
N

Variance =

3.3.4. Skewness

Skewness characteristics, which are calculated using a
third-order functional factor, characterize the form and
size of the deconstructed sub band picture. Each sub band
image's Skewness level may be calculated using the
following formula.

N 3 (8)
1 Z C-C
Sk — 1 —_
ewness —N ‘l|: :l

3.3.5. Kurtosis

Kurtosis characteristics, which are calculated using a
fourth-order functional factor, characterise the non-linear
behaviour of each coefficient in a sub-band picture. Using
the following formula, the kurtosis of each individual sub
band picture is obtained.

N 4
1 C.-C
kurtosis = — L =

3.3.6. Pearson’s Index

(9)

For each picture sub-band, Pearson's index is calculated
based on its skewness and kurtosis. The formula that
follows is used to get the Pearson's index applying the
Skewness feature.

' c
Pearson s Skewnesslndex( PSI ) = Sk—V ©)
ewness —Variance

Pearson's Skewnesslndax(PS] ) =# (10)
Skewness —Variance
The formula that follows is used to get the Pearson's index

utilizing the Kurtosis characteristic.
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' C
Pearson s Kurtosislndex( PKI ) = KZ—V (11)
urtosis — Variance

3.3.7. Texture features

One alternative name for textures is patterns. Images of
fractured solar panels have a distinct texture that is not
present in images of undamaged solar panels. Therefore,
it is crucial for the classification procedure to compute the
textures of each deconstructed sub band picture. The
following texture characteristics are calculated from each
sub band image's decomposition.

Energy = E f(i,j)2
i’j

Each deconstructed picture may be reconstructed by
computing the texture matrix (rows and columns are
denoted as i and j ) using the formula:

Correlation = ZZ ~ ) ] Hj )f @) (13)

o %0,
where,
ti= Y0y fG))
[
u;= ZiZf(z‘,j)
75
0= (i=m) Y f(i.))
i J
o= Y G=m’ Y fGi))
J i

(12)

(14)

Inertia = Z(i—j)2 ),
i,j
. (15)
ClusterShade = Z[(l - ,u,~) + (j —H; )J AUY))
i,j
(16)
ClusterProminence = Z[(l - ,u,)+( J—uj )]4 fG,))
i,j
Z (17)
Homogeneity = —f (@)
1+ (i- )
! 5 (18)
Contrast = e ;(1 —j) VAY))
where,

N is the element counts in f(l,])

4. ANFIS Classification Technique

It is the classification of calculated characteristics for
broken solar panel detection. Researchers have employed
a variety of machine learning methods, including the
Support Vector Machine (SVM) and the binary
classification algorithm, to identify solar panels with

cracks. Using these Machine Learning (ML) techniques to
identify damaged panels is insufficient. In this study, the
ANFIS classification architecture is developed for
differentiating between images of damaged and non-
cracked solar panels. The designed ANFIS structure has
two modes of operation: training and testing. The ANFIS
classifier learns using a feature matrix that contains
information on each picture in the training dataset,
organized by the bands in which they were taken. The
ANFIS architecture's binary index is generated at the
testing level. The ANFIS classification framework returns a
value of '1' if it is defect one and a value of '0' otherwise.
In Figure 6, the ANFIS architecture developed for this
study is shown. Layer 1 nodes A and B are associated with
the classification nodes and the Layer 2 performs inbuilt
multiplication work and its nodes are identified by the
label. This layer conducts the process of multiplication of
the previous layer output. The weights calculated in
preceding layers are used as input to Layer 3, where they
are normalized by calculating their mean. N stands for the
nodes in this layer. In Layer 4, fuzzy rules are incorporated
with the nodes laid here and defuzzification process is
performed here. The output is the result of layer 5's
summing function, which sums the answers from the
preceding layers. The ANFIS classification structure is
shown in Figure 7 (a) and Figure 7 (b) depicts pictures of
defected and non-defected solar panel PVs, respectively
(Figure 8).

Layer 2 Layer 3 Layer 4 Layer §

Layer 1

Figure 7. Architecture of ANFIS model

l‘l\\ , ﬂﬂ
G A

Figure 8. (a) Non-defected PV images (b) Defected PV images
5. Segmentation Algorithm

Crack segmentation algorithm is the method used to
separate apart the shattered areas of the picture of the
broken solar panel. The broken pixels may be found using
the following approach.

Phase 1:



Suppressing the border-connected outlier pixel structure
in the categorized fractured solar panel picture.

e Purpose: Removes noise from the edges of the
image to prevent false detections.
e Impact on Accuracy: Reduces the chances of
misclassifying background elements as cracks.
e Intermediary Result: Show an image before and
after outlier removal.
Phase 2:

If the pixel's value is below 50, set it to Zero in the picture.

e  Purpose: Eliminates low-intensity pixels
(background noise), keeping only significant crack
regions.

e Impact on Accuracy: Enhances contrast between the
crack and background, making segmentation more
reliable.

e Intermediary Result: Show an image where faint
background noise is eliminated.

Phase 3:

In order to create the enlarged picture, use the dilation
operator with the 'disc' structural element and a 13 mm
radius.

e  Purpose:
segments.
e Impact on Accuracy: Helps in detecting complete
cracks rather than fragmented parts.
e Intermediary Result: Compare an image before and
after dilation to show how small gaps are filled.
Phase 4:

Expands and connects broken crack

The enhanced picture should undergo the same steps as
before.

e Purpose: Reinforces the dilation effect to ensure no
crack is missed.
e Impact on Accuracy: Prevents under-segmentation,
making sure all cracks are considered.
e Intermediary Result: Show how
progressively becoming more distinct.
Phase 5:

cracks are

Figure 7 (a) shows the eroded result of using an erosion
operator with a 'disc' structural element and a 5 mm
radius for generating erode image.

e Purpose: Reduces over-segmentation caused by
dilation, retaining only meaningful crack structures.
e Impact on Accuracy: Eliminates falsely expanded
regions, improving precision.
e Intermediary Result: Show a comparison where
unwanted noise is removed.
Phase 6:

As shown in Figure 7 (b), the final crack area segmented
picture is created by employing the 'thin' operator to
convert the numerically degraded image into a logical
image by removing pixels without holes.

e Purpose: Converts the processed image into a
logical binary form while preserving essential crack
features.

PERARASI et al.

e Impact on Accuracy: Ensures that only relevant
crack pixels remain, making detection more precise.

e Intermediary Result: Final segmented crack image
with clear boundaries.

(b)

Figure 9. (a) Eroded image (b) Crack segmented image

6. Results and Discussion

The algorithm stated in this article is tested on the real
time constructed dataset solar panel images. This
constructed dataset consists of 950 fractured solar panel
images and 1000 non-fractured solar panel images. The
solar panel image size is about 512 x 512 pixels as width
and height. The proposed system splits the constructed
dataset into 30:70 ratio for training and testing. Hence,
the training solar panel image dataset consists of 285
fractured solar panel images and 300 non-fractured solar
panel images. Similarly, the testing solar panel image
dataset consists of 665 cracked solar panel images and
700 non-cracked solar panel images. The detection rate
for cracked solar panel is 99.8% by correctly detecting 664
cracked solar panel images over 665 images. The
detection rate for non-cracked solar panel is 98.4% by
correctly detecting 689 cracked solar panel images over
700 images. Therefore, the mean detection rate is about
99.1%.

The performance of the ANFIS based solar panel defect
system is evaluated using the following equations.

Sensitivity(Se) = % x100% (19)
+

Speciﬁcily(Sp) =N P x100% (20)

Accuracy(Ac) =7p ]sz)-’_g o x100% (21)
+TN+FP+

Precision (Pr) = _r x100% (22)

TP+ FP
e TP*TN — FP* FN (23)

J(TP+ FP)(TP+FN)(TN + FP)(TN + FN)

The correctly detected defected and non-defected images
are TP and TN and the incrrectly detected defected and
non-defected images are FP and FN respectively. The
average values of 97.6% for Se, 97.6% for Sp, 98

Table 2 shows the comparisons of Data Augmentation
Methods (DAM) results for both case of images.
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Table 2 Comparisons of Data Augmentation Methods (DAM) results

Cases

Procedure analysis

DT Results in %

. Proposed solar panel image classification incorporating DAM 97.33

For cracked solar panel images - — - - -
Proposed solar panel image classification without incorporating DAM 95.12
. Proposed solar panel image classification incorporating DAM 98.6

For cracked solar panel images - — - - -
Proposed solar panel image classification without incorporating DAM 96.65

Table3 shows the index parameter analysis on solar panel
image dataset. The proposed solar panel image
classification system obtains 99.3% precision, 98.8% recall
and 99.3% MCC. (Mathew Correlation Coefficient)

Table 3 Index parameter analysis

Index Parameters Results in %

The comparisons of SDT in automatic signal classification
system are important because it gives ratio between the
correctly detected case and the total case. Table 5 is the
SDT(signal Detection Time) comparisons on BB dataset.
The proposed solar panel classification system consumes
0.87 ms for classifying the single solar panel image.

Table 5. SDT comparisons on BB dataset

Precision 99.3
Recall 98.8
MCC 99.3

Methods SDT in ms (per signal)

Figure 10 shows the graphical perspective of Index
parameter analysis.

120
100
8O

60

Experimenta] resultsin %

Precision Recall Moo

Parameters

= Results in %6
Figure 10. Graphical perspective of Index parameter analysis

Table 4 gives the comparative analysis of image
classification system and the ANFIS classifier is used. It is
observed that the results obtained from the proposed
work are significantly improved in comparison with similar
models proposed by Fan et al. (2022), Xue et al. (2021)
and Greulich et al. (2020). The proposed solar panel
classification system obtains 99.3% precision, 98.8% recall
and 99.3% MCC using ANFIS classification approach.

Proposed ANFIS 0.87
Fan et al. (2022) 1.76
Xue et al. (2021) 1.59
Greulich et al. (2020) 1.97

Table 4. Comparative analysis for the solar panel image
classification system
In %

Methods Precision Recall MCC
Proposed ANFIS model 99.3 98.8 99.3
Fan et al. (2022) 96.3 96.9 96.4
Xue et al. (2021) 95.1 95.3 95.9
Greulich et al. (2020) 94.3 94.8 95.1

Figure 11 shows the graphical comparative analysis for
the solar panel image classification system.

100
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91

Fan et al. (2022) Xue et al. (2021)

Resultsin %

Proposed work Greulichet al.

(2020)
Methods

= Precision ™ Recall MCC

Figure 11. Graphical comparative analysis for the solar panel
image classification system

Figure 12 shows the graphical analysis of SDT comparisons
on BB dataset.

2.5

2

1.5
1

N l
o

Fan et al. (2022) Xue et al. (2021)

Resultsinms

Proposed work Greulichet al.

(2020)
Methods

= SDT
Figure 12. Graphical analysis of SDT comparisons on BB dataset

Validation of this results can be used by k-fold cross
validation method with K=6 where 120 testing images are
grouped with 20 images per fold. 75% of the 20 images
are trained and 25 % are tested. The average accuracy is
98.2%

7. Conclusion

The ANFIS classifier based solar panel image detection and
classification methods using CWT transform is presented.
The proposed classification model detects and classifies
the defected images using ANFIS architecture. The
classification model was evaluated on a controlled
dataset, and its resilience in real-world situations, such
fluctuating lighting, dust deposition, or panel degradation,
requires additional assessment. The existing methodology
predominantly emphasizes fracture identification,
whereas other defect types, including delamination,
discolouration, and hotspots, might be integrated into the
categorization process for a more thorough evaluation.
Integrating this model into automated inspection systems
utilizing drone-mounted cameras or industrial monitoring
configurations could substantially improve solar panel
maintenance. Future research may investigate hybrid
models based on deep learning to enhance classification
performance, alongside real-time deployment strategies
for the effective management of large-scale solar farms.
Then, the crack detection algorithm is used to classify



fractured solar panel images and Non-fractured panel
images. The proposed solar panel classification system
obtains 99.3% precision, 98.8% recall and 99.3% MCC
using ANFIS classification approach. It consumes 0.87 ms
for classifying a single solar panel image.
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