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Abstract

Water Quality Prediction (WQP) plays an essential role in
supplying high-quality water to diverse sectors which is
dominant for every living organism in the environment.
WQP is an important issue that affects both the
sustainability of ecosystems and the health of aquatic
species. Traditional techniques for determining the quality
of water are expensive, time-consuming, and prone to
errors. To overcome these issues, a novel REmote WAteR
Sensing for quality assessment (REWAR-Sense)
methodology is proposed to develop an automated
system for the prediction and classification of water
quality in Gulshan Lake. Initially, the raw Water Quality
(WQ) parameters were gathered from the Gulshan Lake
using Hepta sensors and stored them into the ThinkSpeak
Cloud for centralized data collection. These gathered data

are fed to the preprocessing module to standardize the
data. A Deep Learning (DL) Network is employed for
feature extraction that identifies the critical patterns of
WQ and reduces the data complexity. After feature
extraction, a Water Quality Index (WQl) is predicted using
an adaptive metaheuristic optimization algorithm that
provides a numerical score to indicate the water's
condition of the Gulshan Lake. Finally, an attention-based
neural network categorizes the WQ into four such
categories to enhance the Water Resource Management
(WRM) for efficient environmental monitoring. The
REWAR-Sense methodology was simulated by using
MATLAB and it is validated by Gulshan Lake Dataset. The
REWAR-Sense methodology is evaluated based on a
number of variables such as accuracy, precision, recall,
and Fl-score. In comparison, the proposed REWAR-Sense
method achieves an accuracy of 93.45%, precision of
92.80%, recall of 93.20%, and Fl-score of 93.00%
outperforming the existing AutoDL, SOD-VGG-LSTM, and
LSTM-CN methods respectively.

Keywords: Gulshan lake, water quality prediction, ghost
network, attention based bidirectional recurrent neural
network, adaptive fish swarm optimization

1. Introduction

Water quality monitoring data may play a major role in
the efficient management and preservation of water
resources (Wu and Wang, 2022; Azrour et al. 2022).
Access to safe and clean water is crucial for agriculture,
human health, and environmental sustainability which
provides long-term benefits that can be achieved by
combining Internet of Things (IoT) enabled WQ solutions
with modern methods (Deng et al. 2021). In recent years,
there has been an increase in interest in using Machine
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Learning (ML), DL, and the IoT to address environmental
challenges (Khan et al. 2022; Iniyan Arasu et al. 2024).

Sensor networks may be installed in water bodies via loT
that gather a number of information on a range of WQ
parameters including pH, salinity, temperature, nutrients,
and pollutant concentrations (Chen et al. 2021; Zhang and
You, 2024). This real-time data collection provides a
thorough grasp of the dynamic dynamics of aquatic
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Recently used WQP methods mainly include regression
analysis, grey system theory, time series forecasting, and
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ecosystems and enables ongoing WQ monitoring (Li et al.
2024; Shams et al. 2024). Decision-makers, managers of
water resources, and legislators can use this information
to provide the preservation and restoration of a variety of
water resources (Venkata et al. 2024; Pang et al. 2024).
The Geographical location of the Gulshan Lake is depicted
in Figure 1.
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Figure 1. Geographical Location of Gulshan Lake

Artificial Neural Network (ANN) methods (Nithya et al.
2020; Satish et al. 2024). WQ data exhibit characteristics
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such as nonlinearity and variability with a strong ability to
process nonlinear information are widely used in the field
of WQP (Kushwaha et al. 2024; Khullar and Singh 2022).
This indicates that fusion models based on DL networks
have greater advantages in WQP. However, the
aforementioned prediction models do not adequately
consider the varying importance of features in long-time
series where highly important features often have a
greater impact on the model’s prediction performance
(Rajeswari et al. 2020, Krishna Bikram Shah et al.2023,
Santhiya Govindapillai and Radhakrishnan Ayyapazham.
2024).

WQ forecasting research is one such important topic of
concern. But a growing global issue is the deteriorating
WQ caused by pollution, population growth, and climate
change (Diaz-Gonzélez et al. 2025). The expense, time
commitment, and inability to gather data in real-time are
the main drawbacks of conventional methods for WQ
monitoring. River WQ variations indicate both gradual
shifts and unpredictable non-linear processes. As a result,
the process of appropriate WQP becomes more difficult
(Rajanbabu et al. 2025). WQ forecasting is also essential
for planning and managing water resources and their
surroundings. Based on the expected outcomes the issue
of water contamination can be foreseen and enable an
early effort to avert its effects (Geethamani et al. 2023).
To overcome these issues, a novel REWAR-Sense method
is proposed to forecast the WQ of Gulshan Lake using
advanced sensors and DL techniques. The major
contributions of the proposed REWAR-Sense methodology
are given as follows.

e The goal of the REWAR-Sense methodology is to
develop a robust WQ prediction in Gulshan Lake
for real-time environmental monitoring in WRM.

e The raw environmental data related to WQ
parameters are gathered from Gulshan Lake
using Hepta sensors which are stored in the
ThinkSpeak Cloud and preprocesses the data by
handling the missing values and removing the
irrelevant errors to standardize the data.

e The ghost network extracts significant WQ
features from the data and the Adaptive Fish
Swarm Optimization (AFSO) algorithm produces a
precise WQ index by quantifying the conditions
through numerical scores.

e The Attention based Bidirectional Recurrent
Neural Network (ABIRNN) categorizes the WQ
into potable  water, palatable  water,
contaminated water, and infected water for
efficient WRM.

e The performance of the REWAR-Sense
methodology is validated through metrics such as
accuracy, precision, recall, and F1-score.

Motivation

Water quality plays an indispensable role in sustainable
WRM and environmental protection. Numerous variables
impact water quality and in turn its suitability for human
consumption such as mining, industrialization, pollution,
and natural occurrences. Current WQ methods gather

water samples manually and examine the physical,
chemical, and biological agents to identify the type of WQ.
These approaches' shortcomings include limited space or
time range, time consumption, greater system costs, and
insufficient real-time WQ assessment. These factors are
the motivation behind this research which is intended to
develop a novel REmote WAteR Sensing for quality
assessment (REWAR-Sense) methodology to address
these complexities. The proposed REWAR-Sense
methodology aims to provide an automated system for
the prediction and classification of WQ in Gulshan Lake.

Objectives

The major objective of this research is to deploy an
innovative automated WQ monitoring system to enhance
the sustainability of ecosystems which is tailored for
Gulshan Lake. The REWAR-Sense methodology reduces
the complexity of the data through feature extraction and
the WQI is predicted to identify the water conditions of
the Gulshan Lake. The REWAR-Sense methodology
categorizes the WQ into such categories to enhance the
management of the water resources. These analyses are
drawn out by the research through various techniques of
WQ analysis on Gulshan Lake employing DL networks and
an adaptive metaheuristic optimization algorithm. These
Research Methodology is cost-effective, energy
sustainable, reliability of data transmission, less time
delay, high network coverage, and sensor accuracy.

The remainder of the research is organized as follows: The
related research for detecting WQP is provided in Section
2. The recommended REWAR-Sense methodology for
WQP is covered in Section 3. The experiment results of
the REWAR-Sense methodology is described in Section 4.
Section 5 concludes the REWAR-Sense methodology with
future enhancement.

2. Literature survey

Numerous studies that have examined to efficiently
monitor and manage, and forecast WQ have focused on
the intersection of loT, DL, and ML technology. The
related research discusses and highlights the following
pertinent works and contributions below.

In (Prasad et al. 2022) suggested WQP and assessed using
both DL and Auto-DL techniques. For both binary class and
multiclass water data conventional DL outperforms
AutoDL by 1.8% and 1% respectively. While the accuracy
of the traditional model achieves 98% to 99%, the
accuracy of the AutoDL approach achieves 96% to 98%
respectively.

In (Islam and Irshad 2022) suggested a DL-enabled
categorization and WQP model for artificial ecosystem
optimization. The suggested AEODL-WQPC method
predicts the WQI using an Optimal Stacked Bidirectional
Gated Recurrent Unit (OSBiGRU) model and classifies WQ
using an AEO with an enhanced Elman Neural Network
(AEO-IENN) model. Validated on a WQ dataset, the
AEODL-WQPC strategy outperforms more recent state-of-
the-art techniques.

In (Wan et al. 2022) suggested a model that tackles WQP
caused by pollution from non-point sources using feature



extraction and DL methods. When the suggested SOD-
VGG-LSTM approach was applied, the Lijiang River
watershed showed the largest relative differences
between the expected and observed values for DO,
CODMnN, NH3-N, and TP. It consists of 8.47%, 19.76%,
24.1%, and 35.4% of errors respectively. The SOD-VGG-
LSTM's R2 was between 32% and 39.3% greater than that
of the ARIMA, SVR, and RNN.

In (Talukdar et al. 2023) suggested lake WQ indicators
using DL methods based on sensitivity-uncertainty
analysis. The suggested approach forecasts the WQl by
combining the models of the Generalized Linear Model
(GLM), Neural Network (NN), and Gradient Boosting
Machine (GBM). The water samples were found to have
poor to very poor quality as indicated by their WQI which
varied from 90.75 to 145.29. This model outperformed
the existing models with a prediction accuracy of 25.77,
RMSE of 5.07, MAE of 3.5, and R2 of 0.98 respectively.

In (Rahu et al. 2023) suggested frameworks for WQ
analysis and prediction enabled by ML and the loT. To
gather data from Rohri Canal, SBA, Pakistan, the IloT
framework is outfitted with sensors for temperature, pH,
turbidity, and Total Dissolved Solids (TDS). According to
the data, the SVR model has the lowest R-squared at 0.73,
while the MLP regression model has the greatest at 0.93.
The Random Forest algorithm has the best accuracy,
precision, recall, and Fl-score of 0.91, 0.93, and 0.92,
respectively among classification techniques.

In (Chhipi-Shrestha et al. 2023) suggested Applications of
Artificial Intelligence (Al) and soft computing to assess the
quality of drinking water. The adaptive neuro-fuzzy
inference system, multilayer perceptron-based ANN,
support vector machines, Bayesian networks, and general
regression neural networks are some of the Al and SC
approaches used in the digital water method to effectively
monitor WQ. Al's and SC's primary roles in the suggested
digital water were to model physicochemical and
microbiological factors and assess the water's quality
respectively.

In (Mahesh et al. 2024) suggested WQP effectively
manages water by integrating a normalizer with LSTM.
While maintaining the intrinsic properties of the data the
suggested LSTM-CN model incorporates normalization
calculation techniques for adaptive processing of multi-
factor data. To learn the properties of the data and
produce precise prediction results, the LSTM-CN model
works in tandem with the codec. The suggested LSTM-CN
approach produces 99.3% accuracy, 95% precision, 18.0%
MSE, 11.45% RMSE, and 93.6% recall respectively.

In (Venkatraman et al. 2023) suggested The logistic Giant
Armadillo  Optimization (GArO) deep differential
recurflownet is used to forecast and classify WQ with
precision. An Optimization driven Deep Differential
RecurFlowNet (ODD-RecurFlowNet) is suggested to
predict and classify WQ. The ODD-RecurFlowNet approach
produces an overall accuracy of 98.01% and an RMSE
value of 0.039 using a standard dataset for WQ.
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In (Pavan kalyan et al. 2024) suggested An Analysis of
Support Vector Machine (SVM) and Decision Tree (DT)
Methods for Predicting Tomato Growth and Yield in
Hydroponic Systems Using Deep Water Culture (DWC). In
the suggested approach, the efficacy of SVM and DT
methods in hydroponic tomato production is assessed
using the DWC method. In contrast, the suggested
approach provides more accuracy with SVM.

In (Raveena et al. 2024) suggested Coffee crop irrigation
systems are continuously monitored and optimized using
recycled water and bi-directional RNNs and loT sensors.
The recommended technique collects data on soil
moisture, weather, WQ, temperature, humidity, pH, and
nutrient value. In terms of irregularity and watering
schedules, the recommended method produces an
accuracy of 95.66% respectively.

In (Li et al. 2024) suggested an analysis of the
modernization and transformation of manufacturing firms
using a four-way game and industrial internet platforms. A
revenue sharing contract coefficient guarantees the
steady growth of the suggested approach and ongoing
collaboration. The model gives platforms, manufacturing
companies, governments, and developers a theoretical
foundation for choosing a strategy.

In (Wang and Ma, 2024) suggested a study on the
connection between rising carbon emissions and the
expansion of inclusive digital banking. The suggested
approach examines carbon emissions and digital inclusive
financing are related in Chinese cities between 2011 and
2022. By contrast, the suggested approach shows that
carbon emissions can be reduced by 0.311% for every 1%
expansion and that China's digital inclusive finance index
has increased since 2011.

In (Wang et al. 2024) suggested an examination of the
regions in China that produce the most energy in terms of
carbon emissions. The suggested approach forecasts
carbon emissions from 2021 to 2040 using an open
STIRPAT model. The study also highlights the importance
of controlling per capita GDP and energy consumption for
effective emission reduction strategies.

In (Suresh Maruthai et al. 2025) suggested Real-time
monitoring by combining HG-RNN with loT sensor vision
and wastewater recycling. The suggested approach uses
loT sensors to efficiently clean and monitor contaminated
ponds and turn them into sources of pure water. To
deliver the best possible WQ while avoiding pollution, the
HG-RNN algorithm predicts WQ parameters, examines
future trends, and incorporates real-time treatment
decisions.

In (Zhang et al. 2025) suggested a consideration of
heterogeneity and variable interaction in the relationship
between artificial intelligence (Al) and digitization (D&AI)
and carbon emissions. The suggested Decision Deep and
Cross Feature-Transformation Network (DDCFTN) analyzes
the carbon impacts of urban emissions. The suggested
model works better than the traditional models and
demonstrates that the influence of interacting effects
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exacerbates the overestimated contribution of D&AI to
carbon emissions.

In (Wu et al. 2025) suggested the impact of green finance
regulations on the ESG performance of construction firms.
The suggested approach states that by setting financing
caps and promoting the advancement of green
technologies, the green credit policy greatly improves ESG
performance. These findings are particularly significant
among smaller and non-state-owned firms. The suggested
approach enhances the ESG performance and reduces the
environmental risks.

In (Zeng et al. 2025) suggested a multi-scale spillover and
a tail risk contagion between the top US technology
shares and the green finance index. The proposed method
identifies Microsoft and the S&P 500 ESG index as the
primary risk sources, and the net risk spillover
characteristics show fluctuation and cyclicality. According
to these findings, volatility connectedness increases in
beneficial market conditions and is stronger at extreme
tails.

The research evaluation states that people forecast WQ
and offer alerts on potential ecological contamination
based on past environmental indicators. Determining the
quality of water is difficult because of the complicated
data. The decline of the surface water ecosystem
exacerbates these problems. Predicting and monitoring
surface WQ is essential. To overcome these issues, a novel
REWAR-Sense methodology has been proposed to predict
the WQ of Gulshan Lake using DL techniques.

3. The REWAR-sense methodology

In this section, a novel REmote WAteR Sensing for quality
assessment (REWAR-Sense) methodology has been
proposed to develop an automated system for the
prediction and classification of WQ in Gulshan Lake.
Initially, the raw environmental data related to WQ
parameters are gathered from Gulshan Lake using Hepta
Sensors such as Total Dissolved Solids (TDS) Sensor,
Dissolved Oxygen (DO) Sensor, Total Organic Carbon (TOC)
Sensor, Temperature Sensor, Turbidity Sensor, pH Sensor,
and Chlorophyll Sensor to monitor various physical,
chemical, and biological parameters in real-time over a
specific period. Several Internet of Things protocols and
wireless technologies are employed to transmit these
data directly to the ThinkSpeak Cloud for storage. These
gathered data are fed to the preprocessing module to
attain an accurately reliable formatted data by using
Handling Missing Values, Data Standardization, and Data
Cleaning for feature extraction. The ghost network
extracts significant features related to the WQ and
reduces data dimensionality to ensure efficient WQ
prediction. After feature extraction, the WQI is predicted
by an AFSO optimization algorithm that represents
whether the quality of water is excellent, fair, or poor
through numerical scores. Finally, an Attention based
BiRNN categorizes the WQ into respective categories such
as potable water, palatable water, contaminated water,
and infected water for accurate real-time environmental

monitoring in WRM. The overall workflow of the proposed
REWAR-Sense methodology is depicted in Figure 2.
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Figure 2. Proposed REWAR-Sense Methodology
3.1. Data collection (Hepta Sensors)

The REWAR-Sense system utilizes the interconnected
devices and Hepta Sensors such as Temperature sensor,
Turbidity sensor, pH sensor, TDS sensor, Chlorophyll
sensor, Dissolved Oxygen sensor, and TOC sensor
deployed along the Gulshan Lake to automate data
collection. These Hepta Sensors would continuously
measure parameters such as temperature, turbidity, pH,
concentration  of  dissolved solids, chlorophyll
concentration, DO concentration, and TOC contents from
the lake. The Hepta Sensor measures the temperature
level of the water for concerning the ecosystem health
and turbidity level for detecting the amount of pollutant
levels in the water. In the Hepta Sensor, the alkalinity of
water is determined using a pH sensor, and the
concentration of dissolved ions is measured by a TDS
sensor. The Hepta Sensor monitors the chlorophyll levels
as well as oxygen levels in water which is vital for aquatic
organisms and detects the pollution from organic matter.
The Hepta Sensor quantifies the organic carbon content to
provide insights into water pollution and decomposition
levels. Several loT protocols and wireless technologies
enable the ThinkSpeak Cloud to store this processed data.

3.2. Data preprocessing

Those data gathered by using the Hepta Sensor are fed to
the preprocessing module to attain accurately reliable
formatted data by using Handling Missing Values, Data
Standardization, and Data Cleaning for feature extraction.

Handling Missing Values:

Due to regular maintenance of monitoring stations and
occasional equipment failures, some WQ data may be
missing. To ensure the validity of the experiment,
complete data must be provided to the prediction model.
It uses linear interpolation to handle missing data. The
formula for linear interpolation is represented in Equation
(1),

yk:y(u+(yr_yw) (1)

r—w



In the formula, k, w, and r represent time, yx denotes the
missing value at time k, y» represents the known data
corresponding to the most recent time w before yk, and yr
denotes the known data corresponding to the most recent
time r after y«.

Data Standardization:

The mean of the rescaled features is zero, and their
standard deviation is one. Outlier features have the
potential to substantially skew distributions. The influence
of outliers is lessened by standardization since it focuses
on the distribution. Since feature coefficients are all
normalized to the same scale. This method can be used to

determine a feature's importance. The Mean
standardization uses the following Equation (2),
XStandurdized :(X_m)/Sd (2)

Where m is the mean, x is the starting value, and sd is the
standard deviation. Gaussian normalization which fits a
Gaussian distribution, and scaling by interquartile range
are two further standardization techniques.

Data Cleaning:

QOutliers are eliminated from the data preparation
framework through a process known as data cleaning.
Data points that exhibit a significant departure from the
norm are known as outliers which distort statistical
analysis and model training. Finding and managing
outliers is necessary to improve the reliability and quality
of the data.

3.3. Feature extraction using ghostnet

A deep learning based GhostNet framework was
implemented to extract the features from the
preprocessed data for WQP. A ghost module has been
built in the CNN network as shown in Figure 3, that
extracts multi-scale bottom-level features to increase the
feature utility and reduce the network capacity. In order
to identify the features from the inputs while maintaining
the correlation between preprocessed data this network
initializes random distributions. The layer's input volume

Nrt related to the

Ky *Kig

ich i s K *K
which is represented as M,_,0Z™"" ™

N, )
¥ defines

the locations of identified features within the input data
which is formulated in Equation (3).

bias vector and an arbitrary feature R,de

Ry =Dy *M

s bias,f (3)

When applying convolutional kernels to input data
Equation (3) indicates that each input element-wise
product with the filter weight is dumped into the local
receptive field.

In a = G-[Ky-1/2] and =b-[Ky-1/2], the spectral indexes are
represented as $ and S;, and the indexes along the spatial
proportions of weights are a, b, G and b is represented in
Equation (4).

Ry* = Df7* *My""* + bias)” )

Xy Sif
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As a result, the nonlinearities of the data are learned using

a non-linear activation function A(.) which yields the final

Ky *Ki*N,

output feature maps as M,fo‘Z ¥ is represented in

Equation (5).
My =A(Ry) (5)

Where the RelLU function which is typically employed in
backpropagation methods is applied as A. Ghost
convolution uses fewer variables and less computational
power to produce redundant data. Intrinsic features M
are updated in a few simple ways as the output features

Kie*Kig

My are developed as "ghosts." M0 Z M is the group

name for these intrinsic feature maps which are
generated by a primary convolution from Equation (5).
Furthermore, all of the features are combined and
vectorized by the pooling module, which then delivers the
result to the WQI prediction module. The ghost network
extracts significant features related to the WQ and
reduces data dimensionality to ensure efficient WQ
prediction.

Identity -,

INPUT LAYER OUTPUT LAYER

Physicochemical

Comprehensive Data A R Y Features
Standardized Data - { l JEE ‘ .- Derived Features
Filtered Data 4 ) ' Temporal Features
Convolutional
Layer
GHOST LAYER

Figure 3. Architecture of Ghost Network

3.4. Water quality index prediction via adaptive fish
swarm optimization

After feature extraction, the WQl is predicted by an AFSO
optimization algorithm to represent the quality of the
water. The group of fish is the individual, and the hunting
space is the search space. The model begins with a set of
populations based on member distribution. There are two
types of the suggested routing protocol which are blocks
and chasers. Equation (6)-(7) formulates the initialization
step,

q; =rand.(B*" —b" )+ b (6)
i=1,2,.mj=12,..,m,
e(cr): fo —,u,z,le,z,...g; (7)
9fec,
r=1,2,...

Using rand to define the random number, which is in the
interval [0,1]. Following the aforementioned methods, the
entire population Q is divided into discrete groups, or
subpopulations, whose behavior can be modeled
separately. Equation (8)-(10) displays the mean square
error between the cluster ur and data points. Fish
population Q is the initial data.
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E(C)=Y(c,) )

r=1

O =@ +a®Levy(S),0<B<2 (9)
0.001s

s /10

max

B=(E(C)x0.099)+ (10)

In order to determine whether the prey has been moved,
it will submerge itself in the crack and explore multiple
nooks. On occasional walks, the Cr will shift its position
and search for any crevices where prey may be hiding. The
new position is then determined using Equation (4). Since
o =1 and @ is the entry-wise multiplication, a indicates
the step size in this method. An algorithm for Wal
prediction via AFSO Algorithm is derived in Algorithm 1.

Algorithm 1: WQI Prediction via AFSO Algorithm
Input: Physiochemical Features, Derived Features, and Temporal Features
Output: WQI Score
1. Initialize random fish population (Q) within bounds
2. Cluster each fish groups (C,.) and evaluate the cluster centroids (u,.) via MSE
3. Update the positions of each fish using Levy flight
Ditt = df + alevy(f),0< <2
4. Assess the fitness function for each fish using WQI
5. Update the best position () of the fish according to the low error rate
6. Modify the positions of chaser and blocker fish based on its spiral motion and average
movement

7. Return WQI score

The tail regulates the distribution probability, where B is
the Levy index. This can be represented using Equation
(11)-(14).

T=Ta®levy(p)~a ﬁ (0; -5, (11)
u~M(0,07) (12)
v~M(0,07) (13)
O =T 4T (14)

Where, T is the randomly selected step. The u and v stand
for the normal distribution as per Equation (15). The
Equation (16), is used to assess the fitness of the CF at the
new sites.

(DZZ; = Zmzest +II7T (15)
T=Ya| (16)

= (W

s+1

@it =2,.e” cos2np+O, (17)

The value of T is provided by Equation (17). A logarithmic
spiral represents the Blocker Fish's (BF) movement. They

always follow the logarithmic spiral motion of BF, which
may be found in Equation (18)-(20).

2, =|1.o, - ¢; (18)
{CD,,(p;}eC, (19)
s+1 — G)best +qjs‘ (20)

! 2
The number that breaks the distance of Zf in [-1,1] is I. A
new location will be chosen to find new prey after the
search space is fully occupied. In these situations, the
AFSORP model analyzes overexploitation using the A
parameter. The following Equation (21)-(24) has been
used to determine the WQ.

N
L4 XW;
wal =—Z':1N (21)
Zf:lw"
g, :100{—‘/" :&de"’ j (22)
i Ideal
w, =X
i s (23)
P

- ZN S (24)

Where wi is the unit weight for each parameter as
determined by Equation (21), N is the total number of
parameters used in the WQI computations, and qi is the
quality rating scale for each parameter i, as specified by
Equation (24). The AFSO algorithm represents that the
quality of water is excellent, fair, or poor through
numerical scores.

3.5. Water quality classification using ABIRNN

An Attention based BiRNN categorizes the WQ for
accurate real-time environmental monitoring in WRM.
The ability to extract temporal correlations and contextual
information from input data makes this method especially
suitable for WQ classification. An attention strategy could
increase accuracy and reduce noise from irrelevant data
by concentrating on the most crucial components is
represented in Equation (25). The architecture of the
ABIRNN structure is depicted in Figure 4.

h,=f(Ux, +Wh,_, +b) (25)

In the following equation, f is the nonlinear activation
function which is used to find the hidden state ht of the
RNN at time t. BiRNN uses the forward and backward
RNNs which is represented in Equation (26)-(27),

h, :f(Uxt +Wh, +5) (26)

h, :f(Uxt +Wh,,, +E) (27)
These represent the trainable parameters such as U~, W',
b~, U, W, and b". The nonlinear activation functions are
f and f. By analyzing the x: to x1 series, the reverse RNN



generates the backward hidden layers (h1,...,h"¢) which is
represented by using Equation (28).

h=[RTH | (28)

After evaluating a set of forward hidden statistics
(h"y...,h"s), the forward RNN analyzes the input series
from x1 to x:.

By concatenating the backward hidden layers with A"t and
h’t, the ht hidden layer of BiRNN at time t is developed.
Using Equation (29)-(30), where ct is the output and x:... x1
is the input series that finds the attention module's output
at time t.

-
Ct = Zatkhk (29)
k=1

exp(o?tk)
a, =—ZTX exp(o?’) (30)
J=L t
If the weight of the h« hidden layer is ai, then C: and ak
reflect the weighted total of the RNN's hidden states (hi,
..., hy). Equation (18) represents a: in conjunction with
other module components. Finally, the ABiRNN Classifies
the quality of the water into respective categories such as
potable water, palatable water, contaminated water, and
infected water for for efficient environmental monitoring.

Potable Water
Palatable Water
Contaminated Water

OUTPUT LAYER Infected Water

Softmax Layer

ay ay as a,,
“ A s
ATTENTION LAYER a, agl- a, ’ ay-
RNN' Y | RNN' % | RNN % | RNN
HIDDEN LAYER L
_ RNN _RNN . RNN _ RNN
xy X, X3 2
INPUT LAYER
Nmneriv:;l‘qI

Scores

Figure 4. Architecture of ABIRNN Network
4. Result and discussion

This section discusses the results of classifying the WQ
using the proposed REWAR-Sense methodology. In the
REWAR-Sense methodology, the data are collected
through Hepta sensors including pH, DO, TOC, TDS,
turbidity, temperature, and chlorophyll. The REWAR-
Sense methodology was simulated by using MATLAB
R2023a and it is validated by Gulshan Lake Dataset. The
investigation makes use of an Intel i7 processor, 8 GB of
RAM, and a Windows 10 OS system. The real-time sensor
data are stored and visualized by using the ThingSpeak
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cloud platform. A comparison is made between the
proposed REWAR-Sense methodology and existing
methods such as AutoDL (Prasad et al. 2022), SOD-VGG-
LSTM (Wan et al. 2022), and LSTM-CN (Mahesh et al.
2024), according to the metrics including accuracy,
precision, recall, specificity, F1-score, WQP Time, MSE,
RMSE, and Computational Time.

4.1. Dataset description

Gulshan Lake is located in Dhaka, which is Bangladesh's
northernmost city. Gulshan Lake is considered to be one
of the primary sources of surface water in these areas.
The entire surface area of Gulshan Lake is around 100
hectares, and it is 3.8 kilometers long. The Environment
Department (DOE) and Bangladesh's Environment and
Forest Ministry provided these samples. Where, the data
are gathered from the Gulshan Lake through a Total
Dissolved Solids (TDS) Sensor, Dissolved Oxygen (DO)
Sensor, Total Organic Carbon (TOC) Sensor, Temperature
Sensor, Turbidity Sensor, pH Sensor, and Chlorophyll
Sensor. In 2023, the monthly measurements were made
of the WQ factors. The dataset used in this investigation
contained 108 specimens. Based on the WQI prediction
the WQ of the Gulshan Lake is categorized into potable,
palatable, contaminated, and infected classes comprising
around 25% even distribution among the Gulshan Lake
dataset. This distribution across these classification
phases employed a stratified partition with a 60:20:20
ratio of training, validation, and testing inputs. A 3-fold
cross-validation strategy is employed to effectively assess
the model’s generalization ability and reduce the risk of
overfitting. This operation was repeated three times to
ensure that each part had an opportunity to serve as the
validation set. Through this approach, all the training data
has been used for model training and evaluation thereby
avoiding information wastage due to data partitioning.
The parameter of epoch was set to 100 and the sample
number per batch was set to 20. The Gulshan Lake dataset
with epoch 100 was studied and their Val-Loss was
calculated which is shown in Figure 6. During transitional
climate periods the monthly data may not reflect daily or
seasonal fluctuations. Therefore, the data preprocessing
phase addresses these potential biases through data

cleaning, handling  missing values, and data
standardization. The data  preprocessing phase
standardizes the data to balance these seasonal

fluctuations. In this context, the Gulshan Lake dataset
achieves superior results for predicting and classifying the
overall WQ.

4.2. Performance analysis

The diverse methods used by these models resulted in
varying assessments of the results they generated as,

1 .
MSE =;Z(y, -5,) (31)
i=1
1 A N\2
RMSE = ;Z(yi—y,) (32)
i=1

Number of Correct Predictions
Accuracy =

Total Number of Predictions (33)



REWAR-SENSE: HEPTA SENSORS INTEGRATED ADAPTIVE DEEP LEARNING MODEL 9

.. True Positives and RMSE, equations (31)—(32) show the divergence
Precision = (34)
True Positives + False Positives between the expected and actual values that are
. susceptible to outliers. Equation (33)—(36) shows the
True Positives . L.
Recall = — - (35) metrics of accuracy, precision, recall, and F1 score that
True Positives + False Negatives were used to assess the models' performance.
recisionx Recall
Flscore:2><p__— (36)
Precision+ Recall

However, by quantifying the mean absolute error
between the predicted and actual values using the MSE

] Iy ——

i(a) Temperature Prediction (1) Chlorophyll Prediction

(e) DO Prediction (f) TOC Prediction

— sl pti
~ = Paedcted ph

1] 3 1 an h a5
Tirme dbaesp |Pnsr|

(g) pH Prediction
Figure 5. Prediction Effect of Hepta Sensors
The prediction effect of the Hepta sensors for WQP is prediction using Hepta sensors is to enable real-time and

depicted in Figure 5. Each sensor monitors a specific accurate assessment of WQ for environmental
parameter critical for assessing WQ. The purpose of this monitoring, and public health protection. The advantage
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of using Hepta sensors for WQP provides continuous real-
time data which enhances the responsiveness of
monitoring systems. The integration of multiple
parameters improves decision-making and supports
sustainable WRM to ensure ecological balance and public
safety.

10f 127 5
— Train_Loss

NWW‘W JJ\\\,\N\/M\,\N»/\A\/ Val_Loss

—— Train_Accuracy
Val_Accuracy

[ 20 w0 & & 160 ] 20 £ 6 ) 100
Epochs Epochs

(a) (b)

Figure 6. Accuracy and Loss curve for REWAR-Sense Method

Potable Water

Palatable Water

Actual Class

Contaminated Water

Infected Water

Predicted Class

Figure 7. Confusion Matrix

The proposed REWAR-Sense system is a model for
characterizing the quality of the water. The classification
outcomes and accuracy of the validation data set for each
model are displayed in Figure 6. The accuracy and loss
ratio increase correspondingly when the verification data
employs only quality data. The experimental result shows
that improved accuracy and loss as well as graph
stabilization for the proposed REWAR-Sense model.

The four-class classification challenge for WQ detection
may have resulted in a significant classification error
because of the increased inter-class confusion. Most
inputs are expected to fall into the category of WQ
classification, as the confusion matrix in Figure 7
illustrates. The differences between the closely related
forms of WQ, such as potable water, palatable water,
contaminated water, and infected water, might not
always be clear in contrast to the WQ detection tasks. In
line with the results, the confusion matrix shows the most
frequently predicted category in WQ detection.

The ROC curves for the REWAR-Sense model are plotted
in Figure 8 which further illustrates its classification
performance. The ROC curves reveal that the
contaminated water has the largest AUC followed by
potable water, infected water, and palatable water with
AUC values of 0.980, 0.983, and 0.978. This indicates that
these REWAR-Sense models have strong classification
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abilities for the Gulshan Lake dataset and can effectively
differentiate between positive and negative class samples.
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Figure 8. ROC Curve for REWAR-Sense Method
4.3. Comparative analysis
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- LSTM-CN
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Figure 9. Comparison of WQP Time

The WQP time consumption for different methods of
comparison is shown in Figure 9. Using all of these
methods, the parallel platform produces the average time
after running the experiment times. The Proposed
REWAR-Sense approach achieves a WQP time
improvement of approximately 43.7%, 34.8%, and 20.4%
compared to the existing approaches AutoDL (Prasad et
al. 2022), SOD-VGG-LSTM (Wan et al. 2022), and LSTM-CN
(Mahesh et al. 2024), respectively on average across all
prediction runs.
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Figure 10. Comparison of MSE
The MSE comparison of REWAR-Sense models is

illustrated in Figure 10. For the assigned WQPs, the results
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of the REWAR-Sense models are assessed in terms of
MSE. Differences in the model's performance can be seen
by comparing the dataset results. The Proposed REWAR-
Sense approach achieves an MSE improvement of
approximately 56.7%, 48.7%, and 31.8% compared to the
existing approaches AutoDL (Prasad et al. 2022), SOD-
VGG-LSTM (Wan et al. 2022), and LSTM-CN (Mahesh et al.
2024), respectively, on average across all runs.

than the current AutoDL (Prasad et al. 2022), SOD-VGG-
LSTM (Wan et al. 2022), and LSTM-CN (Mahesh et al.
2024) methods according to the metrics including
accuracy, precision, recall, and Fl-score. Specifically, it
achieves 93.45% accuracy, 92.80% precision, 93.20%
recall, and 93.00% F1-score respectively.

Figure 12 shows the typical RMSE accuracy comparison. It
displays the overall accuracy of each prediction point.
There is minimal variation in the error values between the
various methods. The Proposed REWAR-Sense approach
achieves an RMSE improvement of approximately 34.8%,
27.6%, and 16.4% compared to the existing approaches
AutoDL (Prasad et al. 2022), SOD-VGG-LSTM (Wan et al.
2022), and LSTM-CN (Mahesh et al. 2024), respectively, on
average across all runs.

204 0.19 — - --- AlutuDL
—— T i— '~ —a. 50DVGG-LSTM
=& LSTM-CN
018 —4- Proposed
e
0.17 2 e = T . LIwa
Figure 11. Performance Comparison of REWAR-Sense Method i
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Figure 13. Water Quality Prediction

Figure 13 displays each class's WQI range. Scatter plots
that forecast WQ classes, such as excellent, fair, and poor,

by taking into account the relevant WQI values are shown
in Figure 12. The Proposed AFSO approach achieves a
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WQP improvement of approximately 46.15%, 35.38%, and
28.81% compared to the existing PSO, ACO, and CSO
approaches, respectively. The AFSO algorithm provides an
accurate prediction score to identify the quality of the
water based on its dynamic WQI values. According to its
swarm behavior, the AFSO algorithm dynamically adjusts
its swarm search behavior and provides an enhancement
in WQ prediction for Gulshan Lake.
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Figure 14. Comparison of Computational Time

Even though the graph topology influences the solutions
shown in Figure 14, the run time always stays within the
constraints of a stable real-time solution and grows
linearly as the number of nodes in the network rises. The
Proposed REWAR-Sense approach achieves a computation
time improvement of approximately 34.7%, 27.5%, and
19.4% compared to the existing approaches AutoDL
(Prasad et al. 2022), SOD-VGG-LSTM (Wan et al. 2022),
and LSTM-CN (Mahesh et al. 2024), respectively on
average across all data sizes.
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Figure 15. Comparison of Feature Extraction

Figure 15 compares the feature extraction efficiency of
the Ghost Network with accuracy, precision, recall,
specificity, and Fl-score to those of current approaches.
Compared to the existing ConvNeXt, TFT-LSTM, and CNN
networks, the GhostNet extracts efficient features with
less computations. It captures the required WQ patterns
from the data without redundant complexity. According
to its lightweight framework, the GhostNet framework
captures the required features which is highly suitable for
WQ monitoring. The GhostNet method performs better
than the current ConvNeXt, TFT-LSTM, and CNN methods
according to the metrics including accuracy, precision,
recall, and Fl-score. Specifically, it achieves 95.5%
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accuracy, 92.1% precision, 91.8% recall, and 91.9% F1-
score respectively.

Models
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Figure 16. Performance Comparison with DL Techniques

A comparison between the proposed ABIRNN network
and DL techniques such as CNN-LSTM, CNN-GRU, and
RNN-FFNN is shown in Figure 16. The proposed Attention-
based BiRNN approach outperforms the existing CNN-
LSTM, CNN-GRU, and RNN-FFNN techniques in terms of
Fl-score, recall, accuracy, and precision. Specifically, it
achieves 90% accuracy, 88% precision, 87% recall, and
87% Fl-score respectively. In the REWAR-Sense
methodology, the ABIRNN network categorizes the
Gulshan Lake’s WQ by capturing long-term dependencies
in data with its bidirectional recurrent layers. The
attention layer in the ABiRNN obtains the relevant
patterns from the data and classifies the water according
to its respective qualities which enhances the WQ of the
Gulshan Lake.

5. Discussion

In this research, a novel REmote WAteR Sensing for
quality assessment (REWAR-Sense) methodology has been
proposed to develop an automated system for the
prediction and classification of WQ in Gulshan Lake.
During real-world applicability, the REWAR-Sense
framework provides continuous monitoring of Gulshan
Lake through loT sensors and gathers the data for further
processing. Due to this continuous data collection process
the sensors may transmit massive amounts of redundant
data which may arise computational overhead. These
challenges were further addressed by using the given
preprocessing and feature extraction techniques. The
REWAR-Sense framework processes the gathered data
and transforms them into a standardized format through
preprocessing techniques. Furthermore, the GhostNet
extracts the most relevant WQ patterns from the data
with less computations which is highly suitable for WQ
monitoring. Also, the REWAR-Sense framework provides
an accurate WQI score prediction through the dynamic
swarm behavior of AFSOA that ensures accurate
prediction on dynamic water qualities of Gulshan Lake.
Based on these WQI scores, the ABiRNN network captures
the long-term dependencies from the data with its
bidirectional recurrent layers and categorizes the Gulshan
Lake’s water qualities into potable water, palatable water,
contaminated water, and infected water. Therefore, while
deploying the REWAR-Sense system in different
environments, larger water bodies, or different types of
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pollutants the proposed framework is highly scalable for
WQ analysis. However, while deploying the REWAR-Sense
system in larger water bodies or different types of
pollutants there is a slight variation in its accuracies based
on the water conditions and its polluted levels of the
Gulshan Lake. However, the proposed REWAR-Sense
system achieves superior results for accurate WQ
prediction and classification of Gulshan Lake.

6. Conclusion

In this paper, a novel REWAR-Sense methodology is
proposed to develop an automated system for the
prediction and classification of WQ in Gulshan Lake. The
REWAR-Sense methodology was simulated by using
MATLAB and it is validated by Gulshan Lake Dataset. A
comparison is made between the proposed REWAR-Sense
methodology and existing methods such as AutoDL, SOD-
VGG-LSTM, and LSTM-CN, according to the metrics
including accuracy, precision, recall, specificity, F1-score,
WQP Time, MSE, RMSE, and Computational Time. In
comparison, the proposed REWAR-Sense methodology
achieves a WQP time improvement of approximately
43.7%, 34.8%, and 20.4% compared to the existing
approaches AutoDL, SOD-VGG-LSTM, and LSTM-CN
respectively. Conversely, the proposed REWAR-Sense
method achieves an accuracy of 93.45%, precision of
92.80%, recall of 93.20%, and Fl-score of 93.00%
outperforming the existing AutoDL, SOD-VGG-LSTM, and
LSTM-CN methods respectively. The GhostNet method
performs better than the current ConvNeXt, TFT-LSTM,
and CNN methods according to the metrics including
accuracy, precision, recall, and Fl-score. Specifically, it
achieves 95.5% accuracy, 92.1% precision, 91.8% recall,
and 91.9% Fl-score respectively. The REWAR-Sense
methodology is currently validated only on Gulshan Lake
which may limit its generalizability to other water bodies
with different environmental conditions. In the future, the
REWAR-Sense methodology will be further enhanced by
incorporating real-time alert mechanisms for WQ
anomalies and expanding the model to include additional
water bodies for broader applicability and generalization.
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