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Graphical abstract

Abstract

In this study, a spatial attention iterative multi-layer
perceptron model (SAi-MLP) is designed based on the
temporal variation characterization of the pixels based on
the Spatial-Spectra data. By extracting the spatial and
temporal features of the data to predict the output, the
output is used as a new feature channel input to
iteratively predict the value of the next time node for
ensuring the temporal continuity of the time series
prediction. This study was carried out using the multi-
temporal vegetation content of the Yellow River Basin as
the base spatial-spectral dataset. The experimental results
are as follows. (1) The performance metrics of SAi-MLP
compared to other models are improved by about 2% in
R2 and reduced by about 0.16%, 1.16%, and 1.35% in
MSE, MAE, and RMSE, respectively. (2) SAi-MLP can
spatially maintain spatial nearest neighbor information
compared to MLP. (3) From 2000 to 2020, the vegetation
cover of the Yellow River Basin showed an increasing
trend. The highest average value of vegetation cover in
2018 and 2020 is 0.78, and the average value of
vegetation cover in 2030 is 0.82, an increase of 0.22
compared with 2000.

Keyword : Iterative Time Series Prediction ; SAi-MLP ;
Trend Analysis ; Yellow River Basin

1. Introduction

Spatial-spectral data have the characteristics of
synchronous observation over a large area, strong
timeliness, and the ability to objectively reflect the
changes of terrain and surface features, which have
become the main data source in environmental
computing (Zheng et al. 2023). A large number of

prediction models have been proposed to realize high-
precision time series prediction with spatial-spectral data
(Alhnaity et al. 2021). The prediction models include
traditional statistical models, machine learning models,
deep learning models and hybrid models (Sundarapandi et
al. 2024). Statistical models have limited prediction
performance for abrupt changes in time series, while the
application of machine learning and deep learning
techniques address the problem of mutation prediction
performance better. So far researchers have further
utilized the use of combined prediction models to
combine the advantages of each single prediction model
(Yu et al. 2021). In this study, a self-iterative cascade
prediction model is proposed, SAi-MLP, to predict the
temporal changes of vegetation content as a feature of
the spatial-spectral data.

Vegetation as a hub in terrestrial ecosystems is closely
linked to ecological elements such as atmosphere, soil and
hydrology, which plays a key role in maintaining and
optimizing ecosystem services (Chen et al. 2021).
Vegetation is the material basis for human survival and
development (Luo et al. 2023), it also plays a pioneering
role in energy flow and material cycling in ecosystems
(Piao et al. 2011).Exploring vegetation changes by
monitoring vegetation cover and growth conditions can
reveal both the ecological environment evolution and its
response mechanism. At the same time, it is of great
significance for the in-depth understanding of the
information transfer process of the ecosystem (Ding et al.
2016). In turn, it can provide theoretical basis for the
governance and management of regional ecological
environment (Wang h 2023c).Vegetation is generally
calculated using both field observation and remote
sensing image estimation (Gao et al. 2020). The maturity
of remote sensing technology has enabled large-scale,
high-precision remote sensing satellites to quickly and
accurately reflect vegetation cover (Xiao et al. 2017).

Geographic Information System (GIS) has powerful spatial
analysis and processing capabilities, so currently the
method of combining remote sensing and GIS is mainly
adopted (Song et al. 2015). Remote sensing image
observation becomes the mainstream way to calculate
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FVC, which acquires effective vegetation cover data
through the combination between remote sensing data
bands. Normalized vegetation index (NDVI) is
characterized by the elimination of instrumental
calibration and radiometric errors, as well as long time
series and easy arithmetic (Wang et al. 2023b). The
sensitivity of biological characteristics that change during
vegetation growth largely attenuates the effects of
atmosphere, soil background and vegetation type, so
NDVI is widely used in the calculation of vegetation cover
dynamics monitoring (Xie et al. 2023). The use of pixel
dichotomous modeling to estimate FVC from NDVI
content at different surface locations has been proposed
for application (Liu et al. 2023).

Statistical analysis using available time-series data to infer
trends in vegetation evolution is important for ecological
monitoring. Studies have been conducted to discuss the
characteristics of spatial and temporal changes in
vegetation through multi-temporal vegetation trend
analyses at large scales (Sun et al. 2021), but fewer
methods have been used for prediction of long time
series. The development of computer disciplines provides
new methods for predicting the spatial evolutionary
distribution of vegetation (Nelson et al. 2024), such as
differential autoregressive moving average model
(ARIMA) and Hurst index (Kang et al. 2021) applied in
ecological time series prediction. This shift in disciplinary
research perspectives reflects the transition from
traditional geoscientific sample analysis to
multidisciplinary fusion analysis. Machine learning
theories have provided additional perspectives for
environmental prediction meanwhile the use of LSTM and
RNN to compute ecological factors to drive spatial
evolution prediction techniques is relatively mature
(Wang et al. 2023a).

However, how to parse the vegetation cover data can be
better applied to the training of machine learning models
must be further introduced to explore the interpretability.
Vegetation cover has a large uncertainty in its estimation
due to its spatial heterogeneity at horizontal and vertical
scales, as well as differences in parameter factors and
modeling methods (Xu et al. 2018). Quantitative
assessment of spatial and temporal patterns of vegetation
cover through gridded can more effectively explore the
distribution of vegetation in spatial areas. Researchers
used the grid scale for remote sensing data processing to
sample the large-scale study area into small-scale grid
cells. Each grid cell was used as data input for a machine
learning model to fit the spatial and temporal evolution of
ecological features (Zhang et al. 2020). There is
information loss when resampling remotely sensed data
into small-scale grid cells. At the same time, due to the
use of grid cells as data drivers for machine learning
methods, each grid cell is treated as independent of each
other. Thereby, the geospatial interaction of information
is severed and spatial proximity is ignored (Tobler et al.
1970). Images are essentially multi-channel matrices
consisting of a number of pixels. Computer vision image
processing algorithms were employed to transform 2D or
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3D images into matrices for computation to establish
connections between pixels (Li et al. 2023a). Therefore, in
this study, the pixels of remote sensing images are used as
the data driver of the machine learning method to avoid
the information loss caused by scale transformation. In
terms of maintaining the nearest neighbor effect in the
image space, the latitude and longitude are considered to
represent the distribution of each image in the space. The
latitude and longitude are calculated for each pixel to
extract its spatial domain information. In terms of
analyzing the variation of vegetation content over
multiple time periods, the self-attention mechanism is
introduced to extract feature domain information. The
self-attention mechanism is a special kind of attention
mechanism that allows the model to process a sequence
taking into account the relationship of each element of
the sequence with all other elements. This mechanism can
help the model to better interpret the contextual
information in the sequence and to further process the
sequence data more accurately (Li et al. 2023b).

Multi-Layer Perceptron (MLP) is generalized from
Perceptron (PLA). Due to its multiple neuron layers, it is
also called Deep Neural Network (DNN). MLP is a type of
deep learning algorithm which consists of input, hidden
and output layers (Murtagh. 1991). MLP uses back
propagation to train the algorithm, which implements
linear transformations through multiple hidden layers,
thus being able to align the null-domain information with
the feature-domain information output dimensions. It is
widely used in ecological computing (Nunno et al. 2023).
Previous researchers have used machine learning
methods to predict future moment changes by targeting
temporal data. Discrete temporal nodes are characterized
by time domain discontinuity due to independent
prediction tasks between inputs and outputs. For this
reason in this study, the output sequence data is
considered as a new sequence input to the model for
iterative prediction to ensure the continuity of the time
domain.

Therefore this study proposes a timing prediction self-
iterative cascade model SAi-MLP based on the working
mechanism of MLP. This model unites the spatial and
temporal feature domains of the pixels,and predicts the
future evolutionary distribution of changes in vegetation
temporal sequence through multivariate feature fusion.
Finally, the trend analysis is used to study the regional
change trend. The overall design first uses pixels to
guantitatively calculate the spatial variation of vegetation.
Then the spatial module is constructed to extract the
spatial near-neighbor information index of the pixels by
latitude and longitude. Meanwhile, the data module
based on self-attention mechanism is constructed to
analyze the relationship between time series data. The
features of the two modules are further spliced and fused
into the prediction module for prediction. The results
obtained from the prediction are iteratively incorporated
into the model prediction as new features for a new
round of evolutionary prediction. The Yellow River Basin
was selected as the study area. The model performance
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was evaluated by using multi-temporal FVC spatial-
spectral data to validate the analysis and iteratively
predicting the future vegetation change characteristics in
the Yellow River Basin. The Theil-Sen Median (Sen) trend
analysis and Mann-Kendall (MK) test were combined in
the validation session to analyze the evolutionary trends.

Based on the work of previous researchers, this study
predicts the future evolutionary distribution of vegetation
temporal changes through multidisciplinary integration,
and also investigates regional change trends through
trend analysis. The purpose of this study is to analyze the
evolutionary trend of vegetation in the temporal
sequence. This study has the following significance: (1)
The self-iterative cascade model SAi-MLP model is
proposed for the temporal prediction of spatial-spectral
data, which can extract the spatial information features of
spatial-spectral data pixels, and at the same time extract
the temporal features of the data based on the
mechanism of self-attention. The model is able to achieve

consideration of spatio-temporal data characteristics. (2)
The modeling approach proposed in this study analyzes
the vegetation evolution trend from the beginning to the
end of the period in a spatial region by means of self-
iterative trends, which provides support for regional
environmental monitoring in the medium and long term.

2. Methods

2.1. Spatial Attention iterative Multi-Layer Perceptron
Model

The SAi-MLP model consists of a cascade of three Multi-
Layer Perceptron (MLP) modules (Figure 1). The data
module learns the weight parameters on the temporal
order of the pixels through a self-attentive mechanism.
The spatial module converts sparse one-hot vectors into
dense embedding vectors by splicing longitude features
and latitude features of pixels. The embedding vectors
and weighting parameters are then concatenated in the
prediction module to obtain the predicted vegetation

an iterative prediction function based on full content values for the next time node.
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Figure 1. Architecture of SAi-MLP

2.1.1. Spatial Module

Longitude and latitude denote where each pixel is located
in geographic space. We divide the study area into L and L'
spatial segments according to longitude and latitude,

respectively, and for a given Sta and SL"g, take their
indexes and convert them into solo heat vectors

GRIXL IxL'
Via €R , Vig €N , Which are used to denote the
indexes of the pixels in terms of longitude and latitude.

ELat and

Vi

Elng are obtained by dimensionality reduction

of "L and Ving through Embedding layer, and the two

layers are fused by one-dimensional stretching. The pixel
latitude and longitude features are connected, then the
connected data input into the MLP layer. The input data
dimensions are changed by the MLP hidden layer. Finally

the output is the matrix My of (R, M) .

2.1.2. Data Module

In 2017 Vaswani et al. proposed Multi-head Self-Attention
Mechanism (Vaswani et al. 2017). It reflects the
relationship between features through trainable Q, K, V
parameters. The multi-head self-attention mechanism
uses multiple heads employing the same computational
approach given different parameters, which results in
feature representation from multiple subspaces and is
able to capture richer feature information (Li et al. 2023c).
With the computation of Eqg. (1), each head will get an
output result of the correlation between features.

(1)

ak’

%
N
Where Q, K, V are the parameter matrices and dk is the
latitude of the input sample set.

Attention (Q,K,V)= softmax (

The data feature weights are computed into the MLP
through the multi-head self-attention mechanism, the
input data dimensions are changed through the hidden
layer. As the result, the output is the matrix Ma of (S, M).



2.1.3. Prediction Module

Two matrices Ms and Ma of the same dimension obtained
from Spatial Module and Data Module are connected to
obtain the matrix G:

G= concat [(Ms,Mp),dim= 1] (2)

The information matrix obtained by concatenating the
spatial information matrix with the feature matrix is fed
into the MLP and finally fed into the fully connected layer
to predict the output through dimensional changes. The
output is a new one-dimensional array of temporal
features, populated into the original feature matrix,
changing the original dk in the Data Module to dk+1. The
number of self-attentive channels increases the number
of channels with the increase of features, and the output
through the MLP is the matrix Ma of (S, M) , which is
connected to the Spatial Module to start the next round
of prediction.

Algorithm: SAi-MLP algorithm

Tnput: {(Lat,, Lng, . F,(Vear) ot nesios) ni " dataset of spatial-spectral Data Elements

v

Output: {(Lat,.Lng,.F,(time)) ),

1 repeat
2 ifE<timedo
3 E = end of the period

4 for 1€N_;, do

3 for 1EN,, do

6 EM = Embedding (La7,.LNg))

7 M, =MLPEM)

3 MH = Mulﬁ—HEad—Attemmn(P:,(l'emjfm_hwmj _Updating the feature field
9 M, =MLP(MH)

10 G = Combine [(M,.34,)]

1 F(E+1) =MLP(G)

12 end of the period €~ end of the period + 1

13 end

14 end

15 elseremm {F(E+D}%

16 end

2.2. Sen-MK Trend Analysis

The Theil-Sen Median (Sen) trend analysis is a robust
nonparametric statistical method for trend calculation
that reduces the effect of data outliers (Yu et al. 2023).
Mann-Kendall (MK) is a nonparametric statistical test that
has the advantage that it does not require the
measurements to follow a normal distribution, nor does it
require that the trend be linear, and is not affected by
missing values and outliers, it has been very widely used
in trend significance test for long time series data (Yuan et
al. 2013). Usually Sen is combined with MK test for trend
analysis of long time series data (Feng et al. 2022). The
Sen slope is calculated as:

b= Median(M) "j> i) (3)
Where Median () indicates that the median value is taken.
If B is greater than O, it indicates an increasing trend in
vegetation cover and vice versa for a decreasing trend.

The Mann-Kendall statistical test formula is as follows.
Define the standardized test statistic Z as:
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i S (4)
$>0
1 «}Var(S)
zZ= 0 S=0
S+1 5<0
\fVar(S)
where,
r1 o (5)
S:a a sgn(Xj— X;)
=1 j=i+1
1 Xj- ;>0 (6)
sgn(Xj- X,‘):J,O Xj- X/:O
-1 Xj- %<0
Var(s)= n(n- 11);2n+ 5) (7)

where n is the number of data in the sequence, X; and X;
are the jth and i-th time series data, respectively.

2.3. Metrics of Evaluation
The study used the FVC data of the Yellow River Basin

Sx20
from 2000 to 2020 as the input £ €9 for the training
and test sets, and the model predicted output as

Sx20
PER . The FVC data of 2021 was used as the true

Sx1

. The model performance was evaluated
using MAE, MSE, RMSE and R2. The expressions are given
below.

(8)

MAE=1°S - gl
Sal d
—

o (9)
MSE = %a (r- gf

=1

f S (10)
RMSE = %é - g2
=1

S (11)

where S denotes the sample size.

2.4. Experimental environment

The hardware and software devices used in this study are
shown in Tablel

Tablel. Experimental platform configuration

Title Versions
CPU Intel i5-12450HX
GPU NVIDIA GeForce RTX 4060Ti

Operating system Windows11 64bit

CUDA 11.2

Programming language Python 3.7

Experimental platforms Pycharm, Matlab
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3. Materials

The study used vegetation cover (FVC) as a time series
predictive spatial-spectral data feature. Vegetation is
often used as an important characterization factor in
ecological restoration (Gong et al. 2021), ecological driver
studies (Pan et al. 2023), and ecological change analyses
(Yu et al. 2023) due to its unique ecological significance in
spatial regions. The spatial area of the Yellow River Basin
was selected for the study. In this study, the FVC air
spectrum data were selected to evaluate and validate the
model. After calculating the evolution pattern, the trend
of vegetation evolution in the Yellow River Basin was
analyzed to provide research value for environmental
management.

3.1. Study Area

The Yellow River is the second largest river in China and
the fifth largest river in the world. The river basin covers
102°02'~103°12'E  longitude  and  34°52'~35°48'N
latitude(Figure 2). The Yellow River originates from the
northern foot of Ba Yan Ka La Mountain on the Qinghai-
Tibet Plateau, and flows through nine provinces
(autonomous regions), namely Qinghai Province, Sichuan
Province, Gansu Province, Ningxia Hui Autonomous
Region, Inner Mongolia Autonomous Region, Shanxi
Province, Shaanxi Province, Henan Province and Shandong
Province. The total length of the basin is 5,464 km, with an
area of 795,000 km2 . The Yellow River basin spans from
west to east, connecting the Tibetan Plateau, the Loess
Plateau, and the North China Plain, and eventually joins
the Bohai Sea. The climate of the basin is continental, with
semi-humid in the southeast, semi-arid in the center, and
arid in the northwest, with large climatic differences,
diverse landforms, and complex habitats (Wang et al.
2023d). With its large elevation drop and fragile
ecosystem, it is both an important link covering and
radiating the economic and social development of the
eastern, central, and western provinces and regions, and
one of the regions with the most intense human activities
in the world. Maintaining the ecological health of the
Yellow River plays a very important role in both national
economic, social development and ecological security (Fan
et al. 2020).
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Figure 2. Study area

3.2. Materials sources

The remote sensing data acquired for the study were
Landsat8 remote sensing images of the Yellow River Basin
from 2000 to 2022. The dataset was obtained from USGS
Earth Explorer by selecting the data of August when the
vegetation cover grows luxuriantly. Firstly, Landsat8 multi-
temporal remote sensing images were extracted by
masking using the vector boundaries of the study area as
the basic data source. Then the remote sensing data were
processed by atmospheric correction, image stitching and
image decoding. Finally, the hyperspectral data were
filtered and smoothed by Savitzky-Golay method to
reduce the interference of noise. The data sources are
shown in Table2.

Table 2. Data description

Spatial Collection
Data R . Data sources
resolution time
Landsat 8 1km 2000-2023 USUG
DEM 1km 2022 RESDC

3.3. Research description

The flow of this study is shown in Figure 3. firstly, the
remote sensing data collected from the study area from
2000 to 2022 were banded to calculate the vegetation
cover (FVC). Secondly, the SAi-MLP spatio-temporal
prediction model was designed based on the time series
FVC data of pixels, and the performance indexes of
different learning models and the SAi-MLP spatio-
temporal prediction model were compared and verified to
predict the future vegetation changes. Ablation
experiments are designed to observe the performance
and effect. Then the predicted results are used to analyze
the trend of vegetation evolution in the Yellow River Basin
in 2030 and construct the spatial pattern of vegetation
evolution. Use Sen-MK to analyze the trend of vegetation
change from 2000 to 2030.

Woear] 20HHL- 2023 )
S ¥ car{ 200K 20123}
Remate sensing —e FVE —
Imiage dara

Model comparison .
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Somroe duts
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Ablation experiment .

ML S-AILE
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Cheamging irembs == Sen-5k tremd analysis == Spatial diseribution

SARMLP
MLFP

SA-MLEP

Figure 3. Research method
3.4. Calculation of feature

Vegetation cover was calculated by pixel dichotomous
modeling. The principle of image-element dichotomous
modeling allows the NDVI value of an pixel to be
expressed in the form of a surface composition with a



vegetated portion versus a non-vegetated portion (Ma et
al. 2023). The formula is as follows:

(NDVI- NDViy) (12)
(NDV/veg' NDVIgoif)

FVC=

Where FVC is the vegetation cover value and NDVI is the
actual Normalized Difference Vegetation Index value.

NDVI and NDVI, represent NDVI values for bare soil

and pure vegetation, respectively. In calculating the FVC,

it is critical to determine the NDVI,; and NDVl

values. Thresholds are typically determined using a
confidence level based on the distribution of all NDVI

values over the entire image. In this study, NDVI is the

NDVI value of (0.05) for a cumulative frequency of 1% and

NDVI, is the NDVI value of (0.9) for a cumulative

frequency of 99%.

NDVI is calculated using the formula:

(NIR- Red) (13)
(NIR+ Red)

NDVI=

Where NIR denotes the near-infrared band, Red denotes
the red light band.

The FVC content of each pixel from 2000 to 2022 was
counted. Use it as a sample of time series data and divide
the training set and test set for predictive model training
in the ratio of 7:3.

4. Result
4.1. Characteristics of spatial variation

The spatial variation of vegetation cover in the Yellow
River Basin from 2000 to 2022 was calculated using the

Table 3. FVC Data Statistics 2000-2022
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pixel dichotomy method as shown in Figure 4. In 2000, the
vegetation cover in the upstream and downstream areas
of the Yellow River Basin is high. The middle reaches of
the basin, including Gansu, Ningxia, and Inner Mongolia,
have a low content of vegetation cover. In 2020, the
vegetation cover in the upper and lower reaches of the
Yellow River Basin remain stable, and it present a rich
vegetation area in the whole basin. The vegetation cover
in the middle reaches gradually improves. The direction of
vegetation change shows an increasing trend from 34° N
to 35° N, with the highest increasing content of 0.5.

Year(2000) Year(2010)

= FVC
—_ High: |

S Low:0

.

-

Vegetation change
w High : 0.5

o W ow:-05

0 300 600
— KM

Figure 4. Changes in FVC content in the Yellow River Basin over a
20-year period (2000-2020)

The FVC content of each pixel was counted from 2000 to
2022, and the data statistics are shown in Table 3. Among
them, the mean value of FVC in 2018 and 2020 is the
highest in the same period, reaching 0.78. The variance is
the smallest in 2018, which indicate that the differences in
the content of each region of the Yellow River Basin in the
period of vegetation abundance in 2018 are smaller than
that in the other 21 years, and the overall performance
present relatively stable.

Year Mean SD \' Year Mean SD \")

2000 0.606 0.288 0.083 2012 0.756 0.244 0.06
2001 0.595 0.296 0.088 2013 0.744 0.26 0.068
2002 0.64 0.262 0.069 2014 0.711 0.26 0.067
2003 0.66 0.271 0.073 2015 0.678 0.286 0.082
2004 0.668 0.275 0.076 2016 0.727 0.254 0.064
2005 0.66 0.289 0.083 2017 0.72 0.263 0.069
2006 0.66 0.29 0.084 2018 0.78 0.23 0.053
2007 0.692 0.267 0.071 2019 0.75 0.245 0.06
2008 0.683 0.272 0.074 2020 0.78 0.249 0.062
2009 0.695 0.269 0.072 2021 0.605 0.288 0.083
2010 0.694 0.276 0.076 2022 0.595 0.296 0.088
2011 0.682 0.276 0.076 2012 0.756 0.244 0.06

4.2. Performance Comparison
4.2.1. Model Comparison

RNN, LSTM, and MLP are traditional models for processing
time series data. RNN can process time series data of any
length by using neurons with feedback (Zhang et al. 2023).
RNN takes the hidden nodes of the t - 1 time slice as
inputs to the current time slice at time slice t and thus has
excellent performance on time series data. LSTM is a
unique recurrent neural network (RNN) designed to learn

long-term dependencies in sequence data. Compared to
other RNN including GRU, LSTM achieves better
performance by adding a gating mechanism to control the
flow of information as well as state and cell updates
(Hladek et al. 2019). MLP is a class of feed-forward
artificial neural networks (Voukantsis et al. 2011),
consisting of at least three layers of nodes, i.e., input
layer, hidden layer, and output layer (Jamei et al. 2020).
RNN, LSTM and MLP have a wide range of applications in
environmental monitoring (Zhang et al. 2021).
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The FVC pixel statistics data of the Yellow River Basin from
2000 to 2020 were divided into training and test sets
according to 7:3, and the data of 2021 was taken as the
real value. We use RNN, LSTM, MLP prediction model and
SAi-MLP model to compare the performance of each
index as shown in Table 4.

Table 4. Model Performance Evaluation

Table 5. Model Performance Evaluation

Model MSE MAE R2 RMSE
Ai-MLP 0.0041 0.0454 0.9447 0.064
S-MLP 0.0031 0.0405 0.9576 0.0558
SAi-MLP 0.0027 0.0367 0.964 0.0519

Model MSE MAE R2 RMSE
LSTM 0.0031 0.0396 0.945 0.0559
RNN 0.004 0.0454 0.9445 0.0641
MLP 0.0058 0.058 0.9247 0.0762

SAi-MLP 0.0027 0.0367 0.964 0.0519

Comparing the results of various time series models on
the test set, the SAi-MLP model improves about 2% on R2,
reduces about 0.16% on MSE, 1.16% on MAE and 1.35%
on RMSE as compared to RNN, LSTM and MLP models.
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Figure 5. Model Loss Curve

Figure 5 shows the loss decreasing process of MSE for
each type of model. The degree of convergence of all
types of models is more satisfactory, and the loss of SAi-
MLP model is smaller. Through several tests on the SAi-
MLP model on time series data, the loss error is within
0.04%. SAi-MLP model shows better robustness.

4.2.2. Ablation experiments

The SAi-MLP model consists of three modules: the Spatial
Module, the Data Module and the Predict Module. We
analyze and further explore the performance impact of
different parts on the baseline model by designing
ablation experiments of different modules on the dataset.
Table 5 shows the S-MLP prediction model with the
addition of Spatial Module, the Ai-MLP prediction model
with the addition of Data Module, and the SAi-MLP
prediction model with the fusion of the two Modules.
Overall, the Ai-MLP, S-MLP and SAi-MLP outperform the
basic temporal model in every performance. In addition,
SAi-MLP also has an improvement over Ai-MLP and S-MLP,
with an improvement of about 0.85% in R2, a reduction of
about 0.1% in MSE, a reduction of about 0.38% in MAE,
and a reduction of about 0.53% in RMSE. Therefore, SAi-
MLP was selected as a predictive model for vegetation
time series in the study area.

4.2.3. Model validation

By comparing SAi-MLP with the models in terms of
performance metrics, SAi-MLP outperforms the other
models in all the metrics. Since deep learning focuses
more on the data itself by analyzing the features between
the data to reduce the loss of fit and thus predict the
output. To explore the generalization ability of the model,
data from 2000 to 2021 were used to predict the
evolution of vegetation distribution in 2022, in parallel
with the validation of the model using the actual spatial
distribution of vegetation in the 2022 dataset. The model
generalization results are shown in Figure 6.

MLP

Figure 6. Validation Comparison

The 2022 vegetation cover data were used to validate the
generalization performance of SAi-MLP against the base
time series prediction model. The experimental results
show that SAi-MLP outperforms the base model MLP in
geospatial time series prediction, and the prediction
results can better fit the real vegetation distribution. MLP
can fit the vegetation cover in the northern and southern
parts of the study area, but its prediction results in the
central part of the study area are not satisfactory. MLP
predicts the evolutionary trend of the vegetation through
the information of the pixels, which focuses on the pixels
themselves and is more inclined to discrete prediction.
The predicted results show a discontinuous distribution of
spatial patches, therefore the central zone where north
meets south is not predicted to show a significant effect.
The SAi-MLP model utilizes the latitude and longitude of
the pixels with the surrounding pixels to maintain the
continuity of spatial information, which can better show
the continuity of spatial evolution than the MLP model.
SAi-MLP adds the connection between the spatial patches
on the discrete prediction of the MLP, so the prediction
effect in the central part of the study area is significantly
improved compared with the MLP. The prediction results
obtained from the SAi-MLP model can better reflect the
real vegetation distribution situation.

By comparing ASMLP with other models on the test set
and validation set, ASMLP's prediction effect is better
than other models. Therefore, the vegetation cover data
from 2000 to 2022 were used as inputs, and the obtained
outputs were used as inputs to the ASMLP model for new
feature iterations to predict the spatial distribution of
vegetation cover in the Yellow River Basin in 2030. The
vegetation evolution characteristics of the Yellow River



Basin in the period from 2020 to 2030 were further
analyzed.

4.3. Forecasting and analysis

The SAi-MLP model was used to predict the vegetation
distribution in the Yellow River Basin in 2023 through the
vegetation content data from 2000 to 2022 in the Yellow
River Basin, and the output was iteratively predicted as a
new characterization channel for the vegetation
distribution in 2030 as shown in Figure 7. The 2030
vegetation abundance in the Yellow River Basin is still
concentrated within the upstream and downstream
segments, with Inner Mongolia, Ningxia and Gansu as
vegetation fragile areas. The formation of this distribution
pattern is related to regional characteristics. Ningxia and
Inner Mongolia are located in Northwest China, as the
more ecologically fragile regions in China (Zhao et al.
2017), dominated by wind-eroded landscapes with serious
drought threats. Therefore, the early 21st century
manifested as the main vegetation-poor area in the
Yellow River Basin. After that, the government organized
and implemented major national forestry projects such as
the Three North Protective Forest, natural forest
protection, and returning farmland to forest. By carrying
out measures to protect vegetation such as mountain
grazing ban, sand control, wetland protection, ecological
restoration, and other related measures, the vegetation
coverage has been continuously improved, thus
enhancing the ecological environment of the watershed
as a whole (Wu et al. 2021). Compared to 2023, the upper
and lower reaches of the watershed remain solidly
vegetated in 2030, with a decreasing area of low-
vegetation in the middle reaches of the watershed. The
overall upward trend in the vegetation content of the
watershed in 2030 has a mean value of 0.72
Improvement of vulnerable vegetation areas shows an
east to west path in the Inner Mongolia section and a
south to north path in the Ningxia and Gansu sections. For
the future ecological protection of the Yellow River Basin,
Inner Mongolia, Ningxia and Gansu should be the main
management areas. It is recommended to take advantage
of the overall increase in vegetation content in the basin
to reduce the inhibition caused by external factors such as
man-made. At the same time, the implementation of
green projects should continue to be promoted, and
positive measures should be taken against wind erosion
landforms, so that the ecology of the Yellow River Basin
can be protected steadily in the end.

¥ear(2023) Y llow river FVC

MuUs- Sandy
Ecologieal Reserve

¥ ear(2030) Y ellow river FVC

Qinling Mountains
Ecological Reserve

Figure 7. Vegetation evolution in the Yellow River Basin
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Trend analysis of vegetation changes in the Yellow River
Basin from 2000 to 2030 yield the following results (Figure
8), where positive values indicate improvement and
negative values indicate degradation. The middle reaches
of the Yellow River, as shown in the figure, have been
significantly improved and are closely related to the green
projects implemented. From 2000 to 2030, the vegetation
changes in the basin show an upward trend, major
upward areas in Ningxia, Inner Mongolia and Shanxi
section. The direction trend of the vegetation gradually
improves from south to north and from west to east.
During the two decadal periods from 2000 to 2020, the
vegetation content within the Gansu, Ningxia and Inner
Mongolia sections showed an increasing and accelerating
trend. In 2030, the vegetation vulnerability of the Yellow
River Basin is still further improved, but the vegetation
growth shows an increasing slow growth compared to the
previous two decadal stages. The vegetation abundance in
the study area has remained relatively stable in general,
but there has been some degradation with the core areas
of degradation being in the Shaanxi and Henan regions.
The main areas of degradation are the developing cities of
Xi'an and Zhengzhou, where urban expansion has caused
major vegetation degradation.

Trend analysis
mm High: 1
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Figure 8. Trend analysis of vegetation Sen-MK from 2000 to 2030
5. Conclusion

In this paper, a spatial attention iterative multi-layer
perceptron model (SAi-MLP) is constructed for temporal
features to predict the evolution of spatial-spectral data.
Spatial spectral data of vegetation content in the Yellow
River Basin are used as the sample dataset for the model.
The features are extracted by pixel fusion using the
modeling method for multi-temporal spatial distribution
of vegetation factors.

SAi-MLP  implements  spatio-temporal  information
extraction on sample data in the temporal and spatial
domains. The spatial aspect embeds the geographic
coordinates (latitude and longitude) of the pixels thus
maintaining the proximity of the spatial data. The time
domain aspect mines the temporal variations of features
through the self-attention mechanism. The spatio-
temporal information is then fused to predict the
vegetation content at the next time node. In addition, the
SAi-MLP model ensures temporal continuity in time-series
prediction by adding the output value as an added
channel to the model to iteratively predict the output. In
this paper, the Yellow River Basin is taken as the study
area, and then the main conclusions are as follows:
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(1) By comparing SAi-MLP with other time series models,
all performance indicators are improved. The SAi-MLP
model has an improvement of about 2% in R2, a decrease
of about 0.16% in MSE, a decrease of about 1.16% in MAE,
and a decrease of about 1.35% in RMSE.

(2) Between 2000 and 2020, the vegetation in the Yellow
River Basin shows a growing trend, with the highest
growth content of 0.5. The mean value of vegetation
cover in 2018 and 2020 is the highest in the same period,
reaching 0.78. The variance is the smallest in 2018, and
the overall performance is relatively stable.

(3) The vegetation of the Yellow River Basin in 2030 is
gradually reduced by the area of low-vegetation regions
within the Ningxia and Inner Mongolia sections. The mean
value of FVC has been increased by 0.22 between 2000
and 2030, and by 0.04 between 2020 and 2030. The
differences between the vegetation of the regions of the
Yellow River Basin have a tendency to reduce.

(4) The trend of vegetation change from 2000 to 2030 is
significantly improved in the middle reaches of the basin.
There is obvious degradation of vegetation around the
cities of Xi'an and Zhengzhou.

6. Discussion

In this paper, a self-iterative cascade model (SAi-MLP) is
devised from the temporal variation of spatial-spectral
features. The features of the next time node are predicted
by extracting and fusing the spatial and temporal feature
information of the data, followed by iterative prediction
of the output as a new feature channel. The model
ensures spatial near-neighbor information between the
data in space and temporal continuity between the data
in time by iteration, which has better applicability for
spatial time-series prediction. By comparing and verifying
with other time-series models, the proposed model
performs well in terms of various performance indicators
and prediction generalization ability. This can provide a
better performance enhancement for the time-series
prediction task. In future studies, we will also conduct
follow-up research to explore the following two areas. (1)
Explore the role of imaging factors in driving temporal
changes in vegetation in anticipation of incorporating
impact factor-driven principles into temporal prediction.
(2) Further generalization capability enhancements to the
self-iterative cascade model (SAi-MLP) allow it to be
useful not only in spatial time-series prediction, but can
be applied in more time-series iterative prediction
scenarios.
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