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Abstract 

To support China's strategic goals of achieving carbon 
peaking and carbon neutrality, this study explores the 
spatial network structure characteristics of industrial 
carbon emissions and their significance in promoting 
energy conservation and emission reduction in the 
industrial sector. Taking Taizhou City in Zhejiang Province 
as a case study, we construct a spatial correlation network 
of carbon emissions based on data from industrial 
enterprises above the designated size (IEDS) across nine 
counties from 2015 to 2021, and apply an improved 
gravity model, integrated with social network analysis, to 
equantify inter-county linkages and identify key driving 
factors. Our results indicate that: (1) the spatial network 
correlation degree of IEDS carbon emissions remained at 1 
throughout the study period, whereas network density 
gradually increased and network hierarchy as well as 
efficiency steadily decreased; (2) Economically advanced 
eastern counties—Yuhuan, Wenling and Jiaojiang—form 
the network core and exert marked influence on spatial 
carbon-emission linkages, whereas the less-developed 
counties of Sanmen, Tiantai and Xianju lie at the periphery 
with limited impact; (3) Based on network positions, 
Jiaojiang, Xianju, Wenling, and Linhai are classified as 
'Broker Block', Sanmen and Tiantai as 'Net Spillover Block', 
Huangyan as 'Two-way Spillover Block', and Luqiao and 

Yuhuan as 'Net Benefit Block'; (4) The ERGM analysis 
revealed a hierarchical influence structure with five 
factors showing extremely high significance (p<0.001). 
Carbon emission intensity emerged as the strongest 
negative inhibitor (β = -18.245), while energy intensity 
showed the strongest positive effect (β = 14.567) . This 
research reveals that while industrial carbon emissions 
exhibit significant spatial correlations across regions, there 
remains considerable potential for strengthening inter-
regional coordination, suggesting the need to establish 
cross-regional collaborative emission reduction 
mechanisms to promote industrial energy conservation 
and emission reduction. 

Keywords: Carbon emissions, The industrial enterprises 
above designated size (the IEDS), Spatial correlation, 
Social network analysis, Driving factors. 

1. Introduction 

Achieving carbon peak and carbon neutrality is a strategic 
imperative for addressing resource and environmental 
constraints and advancing sustainable development in 
China. It also reflects the nation’s commitment to 
fostering a global community with a shared future. As a 
key pillar of the national economy, the industrial sector 
contributes nearly 80% of China's total carbon emissions 
(Wang et al. 2024), underscoring the critical role of its 
green transformation in meeting the dual carbon goals. 
However, with the increasing mobility of production 
factors and the ongoing transfer of industries, the spatial 
distribution of industrial carbon emissions has become 
more dynamic and heterogeneous. The efficiency of 
resource allocation and interregional coordination 
mechanisms plays a pivotal role in emission reductions, 
highlighting the systemic and cross-jurisdictional nature of 
carbon mitigation that cannot be addressed through 
isolated efforts (Fang et al. 2024). Moreover, deepening 
division of labor along supply chains and the associated 
flows of intermediate goods and services have led to 
hidden emissions and carbon leakage across regions. This 
has given rise to a complex spatial network of emissions, 
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structured around regional nodes and interconnected 
through industrial linkages. Driven by both market 
dynamics and policy interventions, this network forms a 
multi-level and interdependent system. Therefore, 
accurately mapping the characteristics of the industrial 
carbon emission spatial network and identifying its 
underlying drivers are essential for formulating effective 
cross-regional carbon reduction strategies, facilitating 
low-carbon industrial transformation, and optimizing 
spatial planning. 

Following the introduction of China's dual carbon targets, 
industrial carbon emissions have emerged as a critical 
research frontier in environmental and economic studies, 
with scholarly attention converging on three primary 
domains: First, the measurement and comprehensive 
analysis of industrial carbon emissions have gained 
unprecedented prominence across multiple spatial scales, 
encompassing national, regional, urban and enterprise 
levels. Nationally, studies focus on the evolution of total 
industrial carbon emissions and their relationships with 
industrial growth and energy efficiency (Sun et al. 2024; 
Zhao et al.). Regionally, analyses often center on 
provinces with strong industrial bases, such as Sichuan, 
Hebei and Liaoning (Fang et al. 2024; Chen et al. 2025; 
Zhang et al. 2022), as well as key urban clusters like the 
Beijing-Tianjin-Hebei and Yangtze River Delta (YRD) (Wang 
et al. 2015; Zhang et al. 2022). At the enterprises level, 
empirical investigations are conducted through surveys 
and fieldwork (Zhao et al. 2024), while sectoral studies 
mainly concentrate on energy-intensive industries such as 
chemicals, steel, and power generation (Na et al. 2024; Xu 
et al. 2024; Bai et al. 2023). Second, the assessment and 
analysis of industrial carbon emission efficiency constitute 
another significant research domain. Methodologically, 
scholars predominantly employ radial and non-radial 
efficiency models, often integrated with ArcGIS spatial 
analysis techniques , to elucidate the spatiotemporal 
evolution patterns of emission efficiency across diverse 
geographical scales. Suo applied the three-stage DEA 
model proposed to evaluate the efficiency of industrial 
carbon emissions in western China. (Suo et al. 2024). Li 
applied the unexpected output SBM model to evaluate 
industrial carbon emission efficiency in the Huaihai 
Economic Zone from 2010 to 2020 (Li et al. 2023). Recent 
research further explores how climate transition risks 
affect emission efficiency in energy enterprises, revealing 
that such risks initially hamper efficiency, but robust 
innovation capabilities can buffer these negative effects, 
especially in the electricity sector (Wu et al. 2025). Third, 
regarding the driving mechanisms of industrial carbon 
emissions scholars widely recognize energy structure, 
economic scale, population size, and energy consumption 
intensity as primary determinants. Within the Chinese 
context specifically, researchers have increasingly 
examined the multifaceted impacts of international trade 
integration, technological advancement, and 
environmental regulatory frameworks on industrial 
carbon emissions. (Lv et al. 2024; Zhao et al. 2024; Xie et 
al. 2024). Moreover, innovation capability not only 
mediates the effect of digital investment on 

environmental performance, but also serves as a crucial 
buffer against climate transition risks (Wu et al. 2025). 
Digital investment, as a pivotal driver, shapes corporate 
environmental performance through a U-shaped 
trajectory mediated by technological innovation, 
underscoring its role in advancing green development (Jin 
et al. 2023). Additionally, Lei et al. (2024) utilized a three-
party evolutionary game model to analyze the dynamics 
among government, enterprises, and environmental social 
organizations in green production behaviors, emphasizing 
the differentiated impacts of climate change on green 
total factor productivity across regions (Li et al. 2024). 
These findings provide actionable insights for formulating 
adaptive environmental regulations and promoting 
sustainable development.  

Despite significant progress in the study of industrial carbon 
emissions, several critical knowledge gaps persist: First, the 
existing literature predominantly concentrates on macro-
scale analyses at national, regional, and sectoral levels, 
while urban-scale investigations remain relatively scarce, 
largely attributable to data accessibility constraints and 
methodological challenges.. As the fundamental unit for 
implementing green industrial policies, counties require 
more in-depth analysis of their industrial carbon emissions 
and driving mechanisms. Second, contemporary research 
paradigms predominantly rely on attribute-based analytical 
approaches to investigate spatial clustering phenomena of 
carbon emissions across geographical units, while network-
based methodologies utilizing relational data to decipher 
inter-regional connectivity patterns and functional roles 
within carbon emission networks remain underexplored. 
For example, Taizhou, located within the Yangtze River 
Delta (YRD) urban cluster, is undergoing rapid 
transformation. It has recently received industrial transfers 
from core YRD cities like Shanghai and southern Jiangsu. 
The number of industrial enterprises in Taizhou increased 
from 2,531 in 2012 to 2,861 in 2020 (Zhao et al. 2022; 
Cheng et al. 2023), leading to a notable rise in carbon 
emissions, with industry being the primary source (Li et al. 
2020). The “Yangtze River Delta eco-green Comprehensive 
Development demonstration zone Land Space General 
Plan” highlights that such transitioning cities hold significant 
potential for urbanization and low-carbon transformation. 
To address these methodological and empirical gaps, this 
study adopts Taizhou City as a representative case study, 
implementing an enhanced gravity model framework to 
construct a comprehensive spatial association network of 
industrial carbon emissions across county-level 
administrative units. Subsequently, advanced social 
network analysis techniques are deployed to systematically 
uncover the structural roles, positional characteristics, and 
relational dynamics of constituent counties within the 
emergent network architecture. This aims to provide 
scientific support for formulating precise carbon reduction 
policies in Taizhou and offer exemplary insights for other 
transitioning cities or regions within the YRD. 

2. Material and methods 

2.1. Data sources 
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Based on the statistical standards of Taizhou City, nine 
counties of Taizhou were selected as the research object. 
Data regarding industrial energy consumption, gross 
industrial production and end-of-year resident population 
primarily derive from the Taizhou Statistical Yearbook 
spanning from 2016 to 2022. To eliminate price effects 
(Song et al. 2024), the GDP deflator method was adopted 
to uniformly convert the data into comparable price in 
2015. The industrial added value data includes a total of 
13 industry types, as shown in Table 1. In the production 
process, the IEDS in Taizhou City mainly use raw coal, 
coke, gasoline, diesel, heat, electricity and other energy 

sources. Carbon emissions were calculated following the 
guidelines outlined in the 2006 IPCC Guidelines for 
National Greenhouse Gas Inventories. Spatial adjacency 
matrices and the shortest spatial distances between each 
county were obtained by ArcGIS 10.8. The system 
boundary diagram for this study is illustrated in Graphical 
Abstract. It is mainly divided into three parts. Part1: 
Analysis of spatial network structure characteristics of 
carbon emissions in the IEDS. Part 2: ERGS analysis. Part 3: 
Policy implications. 

 

Table 1. The industrial added value data includes a total of 13 industry types 

Industry ID Industry type Industry ID industry type 

S1 Mining industry S8 Rubber and plastic products industry 

S2 Food and beverage industry S9 Non-metallic mineral products 

S3 Textile And Garment Industry S10 Metal smelting and rolling industry 

S4 Furniture and wood products industry S11 Machine building industry 

S5 Paper and cultural products industry S12 Abandoned resource utilization industry 

S6 
Petroleum processing, coking and nuclear fuel 

processing industries 
S13 

Electricity, gas, and water production and 

supply industry 

S7 Pharmaceutical chemical industry   

Table 2. Standard coal conversion factors and carbon emission factors for various fuels 

Energy source Raw coal Hard coke Casoline Diesel oil Heat Electricity 

Conversion coefficient of standard coal /(tce/t) 0.7143 0.9714 1.4714 1.4571 0.03412 1.229 

Carbon emission coefficient/(tCO2/tce) 1.9003 2.8604 2.9251 3.0959 0.26 0.7935 

 

2.2. Measurement of the IEDS carbon emissions  

Following the IPCC guidelines (Garg et al. 2006), the 
carbon emissions from the IEDS in each county of Taizhou 
City can be calculated according to equation 1: 
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Where i represents each county; j represents the type of 
energy consumption; t represents the year; Cit represents 
the total carbon emissions for i county in t year (104 t); Eijt 
represents the total amount of consumption for j type 

energy in t year of i county; j represents the carbon 
emission factor for j type of energy (Table 2). 

Data Source: International Coal Network and General 
Rules for Comprehensive Energy Consumption Calculation 
(GB/T 2589-2020); carbon emission factor is based on 
standard coal; discounted standard coal coefficient of 
tce/GJ for heat and tce/(MW·h) for electricity. 

2.3. The gravity model for the IEDS 

According to the combing of existing literature, the 
modified gravity model is employed to illustrate the 
extent of correlation between the IEDS across counties, 
and to establish the industrial carbon emission network 
relationship in Taizhou City (Zhang et al. 2022). The 
industrial carbon emission network is constructed using 
indicators including industrial carbon emissions, industrial 
added value, and end-of-year resident population. 
Additionally, the parameter k was introduced to reflect 
the carbon emission weight of each county, which 
demonstrates the gravitational relationship of the 

industrial carbon emissions across counties in Taizhou 
City. The degree of carbon emission correlation can be 
calculated according to equation 2: 
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Where Fij represents the spatial connection degree of 
carbon emissions between i county and j county; Pi and Pj 
respectively represent the end-of-year resident 
population of counties i and j, 104 people; Ci and Cj 
respectively represent the total carbon emissions of the 
IEDS in county i and j, 103 t; Si and Sj respectively 
represent the industrial added value in county i and j, 108 
CNY; dij represents the shortest spatial distance between 

county i and j, km; is  and js  respectively represent the 

per capita industrial added value of county i and j, CNY; k 
represents the empirical constant, reflecting the 
contribution rate of county i to the carbon emission 
correlation of county j. Equation 2 is utilized to compute 
the gravity matrix of the IEDS carbon emissions in Taizhou 
City, where the magnitude of values indicates the 
intensity of carbon emission gravity across counties. If 
each element in a row of the matrix exceeds the average 
value of that row, it is recorded as 1, indicating a 
correlation between the IEDS carbon emissions across 
counties. If the gravity is less than the average, it is 
recorded as 0, indicating no correlation. This process helps 
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in obtaining the binarized matrix of spatial connections for 
the IEDS carbon emissions in Taizhou City. 

2.4. The social network analysis 

The study employed social network analysis to investigate 
the spatial network structure of the IEDS carbon emissions in 
Taizhou City. We characterize the overall spatial network 
structure of Taizhou City using three key indicators: network 
density, network hierarchy, and network efficiency (Shao et 
al. 2022). Additionally, three indicators were used to 
emphasize the individual characteristics of each county, as to 
degree centrality, betweenness centrality, and closeness 
centrality (Li et al. 2024).  

2.5. Block model analysis 

To identify the roles and functions of county in the 
network, we referred to Wasserman et al.'s research 
(Wasserman et al. 1994). The spatial correlation network 
of the IEDS carbon emissions is categorized into four 
blocks: "Net Benefit Block," "Net Spillover Block," "Two-
way Spillover Block," and "Broker Block" based on our 
analysis. The "Net Benefit Block" type receives 
significantly more external relations than it sends out, has 
a high proportion of internal relations among its 
members, and exhibits a minimal spillover effect to other 
types. In contrast, the "Net Spillover Block" type sends out 
considerably more external relations than it receives, has 
a high proportion of external relations sent out by its 
members, and shows a greater spillover effect to other 
types. The "Two-way Spillover Block" type experiences 
both internal and external spillover effects with numerous 
internal relations among its members. Lastly, the "Broker 
Block" type has fewer internal contacts but more 
interactions with other external types, acting as a 
mediator in the network. Using UCINET software's 
cohesive subgroup analysis tool, we divided the provinces, 
autonomous regions, and municipalities directly under the 
Central Government in China's tourism carbon emissions 
network into these four types and analyzed each type 
based on its characteristics. 

2.6. ERGM model 

To further investigate the spatial impact of counties' 
carbon emissions on each other and to develop 
coordinated efforts to reduce carbon emissions, this study 
analyzes the factors influencing the spatial association 
network of carbon emissions in Taizhou. As the variables 

in the spatial association network are relational data 
presented in matrix form, there is a potential for 
multicollinearity among the variables, making it 
challenging to test their relationship using traditional 
multiple linear regression methods. Therefore, We 
employed Exponential Random Graph Models (ERGMs) to 
examine the key driving factors influencing the spatial 
correlation network of industrial carbon emissions in 
Taizhou City. ERGMs represent a cutting-edge statistical 
methodology in network science (Liu et al. 2024), 
providing more robust estimates of network formation 
mechanisms by accounting for the complex 
interdependencies inherent in network data compared to 
traditional Quadratic Assignment Procedure (QAP) 
methods (Bruner et al. 2022). 

The industrial carbon emission spatial network structure 
results from the synergistic interaction between internal 
industrial development and external socio-economic 
dynamics. Changes in the intensity of driving factors 
promote the reorganization and optimization of spatial 
network structures. According to relevant studies, the 
factors affecting the spatial connection of carbon 
emissions of YRD city cluster are investigated and 
analyzed from the seven dimensions (Table 3) (Yuan et al. 
2022; Liu et al. 2022; Dai et al. 2022). In this paper, the 
mean values of variables from 2015 to 2021 are selected, 
and difference matrices of explanatory variables are 
constructed, with carbon emission spatial correlation 
matrix as the explained variables. The Z-Score 
standardization method is applied to standardize each 
matrix, thereby eliminating the interference of 
explanatory variable dimension on the regression 
structure. 

The ERGM model is as follows equation 3: 

Texp{θ s(y)}
P(Y y θ)  

C(θ)
= =｜  

(3) 

where the dependent variable y represents the network. 
P(Y=y|θ) denotes the probability of observing network y 
given the parameter θ. θ is the parameter vector, s(y) is 
the vector of sufficient statistics, and c(θ) is the 
normalizing constant. The model characterizes the 
intrinsic mechanisms of network formation through both 
structural network effects (edges) and nodal attribute 
effects. 

Table 3. Factors affecting the spatial association network of carbon emissions 

Factors Variables Measure 

Carbon intensity CI Absolute value of difference in ratio of carbon emissions to regional GDP between counties 

Industrial structure IS 
Absolute value of difference in ratio of industrial added value to regional GDP between 

counties 

Urbanization level UL 
Absolute value of difference in ratio of urban population to resident population at year-

end between counties 

Technology development TD the number of granted patents between counties 

Opening-up level OL 
Absolute value of difference in ratio of total import and export volume to regional GDP 

between counties 

Informatization IN the number of Internet broadband access users between counties 

Geographical adjacency GA If the two counties are neighboring, it is noted as 1; otherwise, noted as 0 

Energy intensity EI 
Absolute value of difference in ratio of energy consumption to regional GDP between 

counties 
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3. Results and Discussion 

3.1. Spatial distribution characteristics of the IEDS carbon 
emissions 

 

Figure 1. Spatial Distribution of Carbon Emissions from the IEDS 

in Taizhou in 2015 and 2021. Notes: The boundary of the base 

map of Taizhou City has not been modified at all. The review 

number of the map is Zhe S (2023) 38 

The industrial added value and the IEDS carbon emissions 
in each county in Taizhou City in 2015 and 2021 are 
illustrated in Figure 1. The industrial added value in 
Taizhou City shows an increasing trend, with an average 
annual growth rate of 7.54% from 2015 to 2021. 
Meanwhile, the IEDS carbon emissions also show an 
upward trend. Compared to 2015, the IEDS carbon 
emissions in Taizhou City increased by 4.8129 million tons 
in 2021. Among these, the IEDS carbon emissions 
increased by 44.65% from 2015 to 2018. This is closely 
related to the rapid development of industry in Taizhou 
City during the same period. The industrial development 
has consumed a significant amount of resources and 
energy, thereby increasing carbon emissions. From 2019 
to 2020, industrial carbon emissions decreased, which can 
be attributed to the impact of COVID-19 on various types 
of enterprises during this period. With the gradual 
recovery of industrial development, carbon emissions in 
Taizhou City increased rapidly in 2021. From the spatial 
distribution, the total carbon emissions of the IEDS in 
Taizhou City generally exhibit an east-high and west-low 
distribution pattern (Figure 1a, c). Except for Jiaojiang 
County, Sanmen County, and Yuhuan County, whose 
Industrial carbon emissions remain in a continuous 
fluctuating growth, others remain relatively stable. The 
ranking of total carbon emissions in each county is as 
follows: Yuhuan County, Sanmen County, Jiaojiang 
County, Linhai County, Wenling County, Xianju County, 
Huangyan County, Tiantai County, and Luqiao County. The 
highest total amount of industrial carbon emissions are in 
Yuhuan County and Sanmen County, accounting for 
67.19% of the city's total. This suggests that the 
electricity, gas, and water production and supply industry 
significantly impact industrial carbon emissions in the 
region. Particularly in Sanmen County, the significant 
increase in carbon emissions is attributed to the transfer 
of energy-intensive industries such as electricity and heat 
supply (Figure 1b, d). Therefore, it is necessary to further 
optimize the industrial structure, shift away from the 

traditional model of relying on non-renewable resources 
for industrial development, and improve energy utilization 
efficiency. In the future, with the rapid growth of the 
industrial economy in Taizhou City, carbon emissions will 
continue to rise, making it imperative to accelerate 
emission reduction efforts. 

3.2. Spatial correlation network 

3.2.1. Evolution trend of spatial association network of the 
IEDS carbon emission 

 

Figure 2. Spatial connection strength of carbon emission from 

the industrial enterprises above designated size in Taizhou. 

Notes: The contact area between the arc and the circle signifies 

the degree or proportion of inter-county relationships, while the 

thickness of the arcs for counties indicates the strength of spatial 

linkage in carbon emissions. 

A chord diagram was utilized to visually represent the 
spatial connection intensity of carbon emissions among 
nine counties and districts in Taizhou City (Figure 2). The 
spatial correlation intensity of carbon emissions is 
significantly influenced by spatial proximity. The spatial 
correlation intensity between adjacent counties is higher, 
as evidenced by the relationships between Yuhuan County 
and Wenling County, as well as between Jiaojiang County 
and Luqiao County. This phenomenon can be primarily 
attributed to the interconnections between neighboring 
administrative regions. As a result, the cost associated 
with connecting and cooperating between regions will 
decrease, leading to a higher intensity of carbon emission 
connections in industrial exchanges and transfers. 
Consequently, this promotes the spatial linkage of 
industrial carbon emissions across regions. Furthermore, 
it is worth noting that counties and cities with close 
spatial connections are predominantly represented by 
Yuhuan County. Notably, Yuhuan County exhibits the 
highest average spatial correlation strength with other 
counties and cities, due to its reputation for low-efficiency 
and high industrial added value machinery within the 
manufacturing industry. Its advanced technology level has 
a radiating effect on other regions, positioning it as a 
"leader" within the space network structure. From a 
geographical perspective, the areas with closely 
connected carbon emissions are primarily situated in the 
southern part of Taizhou City, with relatively limited 
impact in the northern region. From an economic 
perspective, the central nodal areas consist of counties 
with high industrial added value and significant social 
influence, such as Yuhuan County, Wenling County, and 
Jiaojiang County (Figure 1b, d). Moreover, it should be 
noted that the strength of spatial correlation in Taizhou 



6  SONG et al. 

City is not limited to traditional geographical proximity, 
exhibiting evident spatial spillover and intricate network 
characteristics in the cross-regional spatial network. 

3.2.2. Overall network characteristics of spatial 
association network of the IEDS carbon 
emission 

The relationship matrix was utilized to compute the 
overall network structure characteristic indicators of 
Taizhou City from 2015 to 2021 (Table 4). The results 
show that the spatial correlation network of the IEDS in 
Taizhou City has strengthened over time, while the degree 
of network correlation has remained moderate. The 
network density has gradually increased to 0.3611. 
However, the network density between counties and 
districts remains low, indicating the continued need for 
regional cooperation to promptly achieve the dual carbon 

goals. The network correlation degree from 2015 to 2021 
is 1. This indicates that the spatial network structure is 
stable in Taizhou City, and the overall spatial correlation 
and spillover effects between counties and cities are 
common, exceeding the influence of geographical 
proximity. The network efficiency gradually decreased 
from 0.6786 to 0.6429, indicating that the number of 
connections in the carbon emission network structure of 
Taizhou City continues to increase, and the stability of the 
spatial network structure has been improved. The 
network hierarchy gradually decreased from 0.6452 to 
0.5588, indicating a reduction in status differences among 
Taizhou’s counties. However, the phenomenon of regional 
development imbalance still exists. Therefore, it is still 
urgent to strengthen the inter-regional cooperation in 
emission reduction. 

Table 4. Evolution trend of the overall network of Carbon Emissions from the IEDS in Taizhou 

Year 2015 2016 2017 2018 2019 2020 2021 

Density 0.3194 0.3056 0.3194 0.3056 0.2917 0.3472 0.3611 

Connectedness 1 1 1 1 1 1 1 

Hierarchy 0.6452 0.6774 0.6774 0.6774 0.6774 0.5588 0.5588 

Efficiency 0.6786 0.6786 0.6429 0.6786 0.6786 0.6786 0.6429 

 

3.2.3. Individual network characteristics of spatial association 
network of the IEDS carbon emission 

A detailed analysis of the network structural 
characteristics was undertaken across different regions of 
Taizhou City, focusing on the 'centrality' of nodes within 
the spatial network and their interrelationships. This 
approach aimed to assess the impact of each county on 
surrounding regions. From 2015 to 2021, Yuhuan County, 
Linhai County, and Luqiao County consistently ranked high 
in centrality. The year 2021 was used as a reference for 
centrality analysis (Figure 3). Generally speaking, Yuhuan 
County exhibited higher centrality index values than other 
regions, suggesting its dominant network position and 
greater potential for carbon emissions. Luqiao County 
closely follows, indicating that the spatial network is 
primarily centered around Yuhuan County and Luqiao 
County, influencing the spatial distribution of carbon 
emissions in Taizhou City. Linhai County ranks slightly 
below Yuhuan County and Luqiao County, playing an 
important role in connecting distant areas such as Tiantai 
County, Xianju County, and Sanmen County. 

3.2.4. Block model analysis 

Using the CONCOR (Convergent Correlations) conjugate 
gradient method, with the maximum split density set to 2 
and the convergence criterion of 0.2, the 9 counties in 
Taizhou City are clustered into 4 clusters. The density 
values between groups are obtained simultaneously, 
enabling comprehensive analysis within each group. Our 
objective is to elucidate the specific roles of each county 
in the carbon emission network in Taizhou City. Block I 
consists of four counties, including Jiaojiang County, 
Xianju County, Wenling County, and Linhai County. Block II 
consists of two counties, including Sanmen County and 
Tiantai County. Block IIII consists of one county in 

Huangyan County. Block IV consists of two counties, 
including Luqiao County and Yuhuan County.  

 

Figure 3. Spatial pattern of average degree centrality, 

betweenness centrality and closeness centrality of the IEDS 

carbon emissions network in Taizhou City from 2015 to 2021 

The number of members and correlations within each 
block are identified, as shown in Table 5. As show in Table 
5, By analyzing the spatial network structure and spillover 
relationships of carbon emissions, Taizhou exhibits a total 
of 26 spatial network relationships. Among these, there 
are two intra-Module relationships, accounting for 7.69% 
of the total, while there are 24 inter- Block relationships, 
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accounting for 92.31%. This indicates a discernible 
spillover effect of carbon emissions in Taizhou, with 
regional spillover being the predominant factor. Block I 
exhibits 12 spillover relationships, with 9 originating from 
other Blocks and 1 internal to the Block. The expected 
proportion of internal relationships is 37.5%, which is 
higher than the actual proportion of 8.33%, suggesting 
that Block I plays a " Broker Block " role in facilitating 
spillover relationships within and beyond the Block 
boundaries. Block II has 6 spillover relationships, with no 
inflows from other Blocks and 1 internal relationship. The 
expected proportion of internal relationships is 12.5%, 
whereas the actual proportion is 16.67%, suggesting that 
Block II plays a "Net Spillover Block" role. The Block 
typically show significant carbon emission overflow effects 
due to substantial energy output. Block III shows 2 
spillover relationships, with 4 spillover relationships from 
other Blocks and no internal relationships, suggesting that 
Block III plays a "Two-way Spillover Block" role. Block IV 
exhibits 6 overflow relationships, with 11 overflow 
relationships from other Blocks and no internal 
relationships, also classifying it as a " Net Benefit Block " 
Block. Block III and IV are characterized by significant 
industrial value-added areas. They are positioned 
dominantly in the network, typically receiving spillover 
effects from other Blocks within the network. For a 
comprehensive depiction of the correlations among the 
four blocks, we generated visual representations of their 
spatial correlation relationships using the data from Table 
5. These correlations are displayed in Figure 4. 

To enhance the depiction of how industrial carbon 
emissions propagate across Blocks, we constructed a 
network density matrix based on the spatial structure of 
carbon emission networks as compared to the overall 

density (0.3611) shown in Table 4. If the network density 
of the Blocks is higher than 0.3611, the corresponding 
density value in the matrix is assigned as 1, and otherwise 
0, so that the network density matrix is transformed into 
an image matrix (Li et al. 2024). Blocks with network 
densities exceeding 0.3611 indicate more significant 
carbon emission spillover effects. As shown in Table 6, it is 
apparent that Block II exhibits internal correlations with 
Block III and IV, as well as receiving spillover relationships 
from them. This suggests its dependence on energy inputs 
from other Blocks, since its own resources are insufficient 
to meet local demand. Additionally, Block I and II show no 
direct associations with Block III and IV. The correlation 
between regions should be strengthened to fully leverage 
the regional advantages of each Blocks and further 
enhance the spatial correlation of the IEDS carbon 
emissions in Taizhou City. 

 

Figure 4. Block model analysis. Notes: The yellow shading on the 

map denotes the geographic locations of the counties and 

municipalities within each plate. 

Table 5. The spillover effects of the spatial correlation plates of the industrial enterprises above designated size carbon emission in Taizhou 

Block 
Accepted relationships 

Overflow 
relationships 

Expected internal relationships Actual internal relationships 

Inside Outside Inside Outside   

Block I 1 9 1 11 37.5 8.33 

Block II 1 0 1 5 12.5 16.67 

Block III 0 4 0 2 0 0 

Block IV 0 11 0 6 12.5 0 

Table 6. Spatial correlation module division and density value of the industrial enterprises above designated size carbon emission in Taizhou 

 Density matrix Image matrix 

Block Block I Block II Block III Block IV Block I Block II Block III Block IV 

Block I 0.083 0.000 0.750 1.000 0 0 1 1 

Block II 0.125 0.500 0.500 0.750 0 1 1 1 

Block III 0.500 0.000 / 0.000 1 0 0 0 

Block IV 0.750 0.000 0.000 0.000 1 0 0 0 

3.3. ERGM analysis 

To explore the influencing factors of the spatial 
correlation network of carbon emission in the IEDS, we 
aim to identify and analyze the key driving factors through 
the formation mechanism of the carbon emission spatial 
correlation network using the ERGM. The ERGM utilizes 
the Akaike Information Criterion (AIC) and the Bayesian 
Information Criterion (BIC) to assess model fit, with 
smaller AIC and BIC values indicating better model fit. The 
standardized ERGM coefficients and their significance 

levels are presented in Table 7. The model converged 
successfully with excellent goodness-of-fit indicators 
(AIC=59.0, BIC=80.6), demonstrating superior explanatory 
power. The ERGM results revealed a distinct hierarchical 
structure among the influence factors, with four variables 
achieving extremely high significance (p<0.001), three 
variables showing high significance (p<0.01), and one 
variable demonstrating negligible influence. 
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Table 7. ERGM correlation analysis results of spatial correlation of carbon emissions in the IEDS and its influencing factors 

Variable β-coefficient Std Dev p-value 

CI -18.245*** 2.985 0.001 

IS 8.432** 1.196 0.006 

UL -6.789** 0.901 0.002 

TD -11.567*** 1.618 0.001 

OL 12.834*** 2.715 <0.001 

IN -0.892 0.518 0.486 

GA 7.234** 0.85 0.003 

EI 14.567*** 2.456 <0.001 

Notes: 1)Significance levels: *** p<0.001; ** p<0.01; * p<0.05. 2) variables are shown in Table 3. 

 

The ERGM results revealed a hierarchical structure among 
influence factors. Carbon intensity emerged as the 
strongest negative inhibitor with a coefficient of -18.245, 
indicating that regions with higher carbon emission 
intensity are significantly less likely to form network 
connections. This suggests a "carbon isolation" 
phenomenon where high-emission areas become 
disconnected from regional cooperation networks. Energy 
intensity showed the strongest positive effect (14.567), 
suggesting that energy-intensive regions are more likely to 
form collaborative networks, possibly reflecting 
integration demands of energy supply chains and energy 
security cooperation drivers. Opening-up level exhibited a 
significant positive coefficient of 12.834, confirming the 
role of economic openness in promoting network 
formation. Technology development showed a negative 
coefficient of -11.567, revealing a competition effect 
where technologically advanced regions may reduce 
connections with less advanced areas. Among moderately 
significant factors, industrial structure (8.432) and 
geographical adjacency (7.234) showed positive effects, 
while urbanization level (-6.789) demonstrated negative 
influence. Informatization level showed negligible 
influence (-0.892, p=0.486). 

4. Discussion 

The findings of this study align with previous research 
highlighting the spatial heterogeneity of carbon emissions in 
industrial clusters (Yu et al. 2024), yet provides novel insights 
through county-level analysis and ERGM methodology. Our 
results reveal three key mechanisms governing inter-county 
carbon emission networks that challenge conventional 
assumptions about regional cooperation. 

First, the pronounced 'carbon isolation' effect (β = 
−18.245, P<0.001) demonstrates that environmental 
performance has become a critical determinant of 
regional integration, contrasting with traditional 
proximity-based cooperation models. High-emission 
counties face systematic exclusion from collaborative 
networks, potentially driven by environmental regulatory 
pressures and competitive disadvantages in attracting 
clean technology partnerships (Wang et al. 2024). This 
finding suggests the need for targeted policy interventions 
to prevent marginalization of high-carbon regions while 
incentivizing their low-carbon transitions. 

Second, the energy-environment paradox-whereby energy 
intensity promotes connectivity (β= 14.567, P <0.001) 

despite potential environmental costs-illuminates 
complex resource dependencies in regional development. 
Energy-intensive regions form stronger networks through 
supply chain integration demands and energy security 
imperatives, consistent with previous studies (Song et al. 
2024; Guan et al. 2023). This presents opportunities for 
leveraging energy cooperation frameworks to promote 
broader environmental coordination. 

Third, contrary to traditional spillover theories, 
technological development exhibits a negative effect 
(β=−11.567, P < 0.001), revealing competitive dynamics 
where technologically advanced counties strategically 
limit connections with less advanced areas. This 
competition effect may arise from intellectual property 
concerns and preferences for collaborating with similarly 
advanced partners, necessitating technology-sharing 
mechanisms to overcome these barriers (Wei et al. 2024). 

However, several limitations warrant acknowledgment: 
First, the relatively short temporal span (2015-2021) may 
limit the generalizability of findings, particularly given 
potential structural disruptions from the COVID-19 
pandemic during 2020-2021, which could have altered 
traditional inter-county collaboration patterns and 
industrial production networks. Specifically, the 2020 
pandemic disrupted traditional industrial networks 
through supply chain interruptions, mobility restrictions, 
and emergency production adjustments, evidenced by the 
notable network density increase to 0.3472 in 2020 
compared to 0.2917 in 2019. Second, the omission of 
environmental regulation intensity as a driving factor 
represents a significant analytical gap, as regulatory 
heterogeneity across counties likely influences carbon 
emission spatial correlations through compliance costs 
and policy-induced technological adoption patterns. Third, 
while the gravity model effectively quantifies spatial 
connections, it cannot fully elucidate the qualitative 
mechanisms underlying these relationships, such as 
informal institutional arrangements, political economy 
factors, and social capital dynamics that may drive or 
constrain inter-county cooperation. Fourth, the county-
level analysis, while providing valuable sub-regional 
insights, may overlook intra-county heterogeneity and 
enterprise-level variations that could influence network 
formation mechanisms. Future research should 
incorporate multi-dimensional regulatory indicators, 
extend temporal coverage to capture long-term structural 
changes, and integrate mixed-methods approaches to 
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better understand the qualitative dimensions of spatial 
carbon emission networks. 

5. Conclusion and policy implications 

Through the application of an enhanced gravity model 
coupled with social network analysis, this study 
systematically investigates the spatial network 
architecture of industrial carbon emissions across nine 
counties in Taizhou City over the period 2015-2021, 
thereby elucidating critical insights for regional carbon 
governance and strategic policy development. 

5.1. Conclusion 

5.1.1. Network Evolution and Structure 

The spatial correlation network governing industrial 
carbon emissions in Taizhou has demonstrated 
progressive strengthening over the study period while 
exhibiting remarkable structural stability (network 
correlation degree = 1). Notably, network density 
increased to 0.3611, concomitant with a hierarchical 
reduction from 0.6452 to 0.5588, signifying diminishing 
status disparities among counties. However, persistent 
developmental imbalances necessitate enhanced inter-
regional collaborative mechanisms. 

5.1.2. Spatial Roles and Connectivity 

Yuhuan County and Luqiao District have emerged as 
pivotal network actors, functioning as critical intermediary 
nodes that facilitate spatial carbon emission 
interconnections. The eastern economically advanced 
regions—namely Yuhuan, Wenling, and Jiaojiang—occupy 
strategically central network positions, whereas their less 
economically developed counterparts (Sanmen, Tiantai, 
Xianju) are relegated to peripheral positions. Through 
comprehensive block analysis, four functionally distinct 
roles were delineated: Broker Blocks (encompassing 
Jiaojiang, Xianju, Wenling, and Linhai), Net Spillover Blocks 
(comprising Sanmen and Tiantai), Two-way Spillover 
Blocks (represented by Huangyan), and Net Benefit Blocks 
(including Luqiao and Yuhuan). 

5.1.3. Key Driving factors  

The ERGM analysis unveiled a hierarchical constellation of 
influence patterns, with carbon emission intensity 
functioning as the most potent negative inhibitor (β = -
18.245), while energy intensity emerged as the predominant 
positive driver (β = 14.567). These findings substantiate a 
distinctive "carbon isolation" phenomenon, wherein high-
emission regions experience systematic disconnection from 
collaborative networks, contrasting sharply with energy-
intensive regions that forge enhanced cooperative linkages 
through supply chain integration mechanisms. 

5.2. Policy Implications 

Based on the distinct network roles identified, four 
targeted strategic interventions emerge for achieving 
dual-carbon objectives:  

(1) For Net Spillover Blocks (Sanmen and Tiantai): 
implement differentiated carbon tax mechanisms that 
account for their energy output characteristics, 
establishing carbon pricing structures that incentivize 

emission reductions while maintaining their spillover 
functions within the regional energy supply chain; 

(2) For Net Benefit Blocks (Luqiao and Yuhuan): design 
technology transfer incentive programs that leverage 
their dominant network positions, creating innovation 
hubs that facilitate knowledge diffusion to peripheral 
counties through preferential R&D funding and tax 
credits for collaborative green technology 
development;  

(3) For Broker Blocks (Jiaojiang, Xianju, Wenling, and 
Linhai): establish coordination mechanisms that 
utilize their intermediary roles effectively, developing 
cross-regional carbon trading platforms and emission 
monitoring systems that capitalize on their strategic 
network positions to facilitate inter-county carbon 
flow optimization;  

(4) For Two-way Spillover Blocks (Huangyan): implement 
balanced regulatory frameworks that support both 
emission reduction and technology absorption 
capabilities, fostering bidirectional knowledge 
exchange through specialized green innovation 
incubators. 

The findings provide scientific foundation for formulating 
coordinated carbon reduction strategies in transitioning 
regions and offer valuable insights for similar industrial 
clusters pursuing low-carbon transformation within 
China's dual-carbon framework.  

Author contribution 

All authors contributed to the study conception and 
design. Liangchu Song: Methodology, Investigation, 
Writing - original draft. Binghua Gu: Artificial intelligence 
technology support. Xin Wang: Data processing, Writing - 
editing & modification. Jue Zhang: Writing - editing & 
modification. Hao Wang: Funding support, Data collection. 
Peili Zhang*: Project supervision, Research design, Writing 
- editing & modification. 

Funding 

This work was supported by the Ecological Environment 
Research and Achievement Extension Project of Zhejiang 
Province (NO. 2023HT0024) and Science and Technology 
Plan Project of Taizhou (NO. 23gyb43).  

Data availability 

The datasets generated during and/or analyzed during the 
current study are available from the corresponding author 
upon reasonable request. 

Declaration of conflicting interests 

The authors declared no potential conflicts of interest 
with respect to the research, authorship, and/or 
publication of this article. 

Competing interests 

The authors have no relevant financial or non-financial 
interests to disclose. 

Ethics approval 

Not applicable. 



10  SONG et al. 

References 

Bai M.R. and Li C.B. (2023). Study on the spatial correlation 

effects and influencing factors of carbon emissions from the 

electricity industry: a fresh evidence from China. 

Environmental science and pollution research international, 

30(53):113364-113381.  

Barnett G.A. (2011). Encyclopedia of Social Networks. Los 

Angeles: SAGE Publications. 

Bruner M.W., Mclaren C.D., Mertens N., Steffens N.，Boen F.，

Mckenzie L.，Haslam S. and Fransen K. (2022). Identity 

leadership and social identification within sport teams over a 

season: A social network analysis. Psychology of Sport and 

Exercise, 59: 102106. 

Chen L., Qin L.P., Zhou K., Li K.J., Feng H.X. and Liu G.X. (2025). 

How is decoupling status and carbon inequality? Exploring 

the relationship between provincial industrial carbon 

emissions and economic development in China, Process 

Safety and Environmental Protection, 198: 107067. 

Cheng C.G., Fang Z., Zhou Q., Yan X., Qian C.L. and Li N. (2023). 

Similar cities, but diverse carbon controls: Inspiration from 

the Yangtze River Delta megacity cluster in China. Science of 

The Total Environment, 904:166619. 

Dai D.W., Liu Y.W., Zhao S.H., and Chen Y.(2025). Study on spatial 

correlation and driving factors of industrial carbon emission in 

the hefei metropolitan area based on SNA-QAP method. 

Scientific Reports (Nature Publisher Group), 15(1), 3445. 

Dai S.L. and Zhang W.M. (2022). A comparative study on the 

effect and change trend of industrial carbon emissions in six 

provinces of Central China. Industrial Technology & 

Economy, 41(4): 152-160. 

Fang, H.Y., and Li, H.B. (2024). Analysis of influencing factors and 

prediction of the peak value of industrial carbon emission in 

the sichuan-chongqing region. Sustainability, 16(11), 4532. 

Fang G.C., Huang M., and Sun C.W. (2024). Revealing the hidden 

carbon flows in global industrial Sectors—Based on the 

perspective of linkage network structure. Journal of 

Environmental Management, 356: 120531. 

Garg A. and Pulles T. (2006) 2006 IPCC Guidelines for National 

Greenhouse Gas Inventories Volume 2. 

Guan W., Wang W. and Xu S. T. (2023). Network structure and 

factors of china’s industrial carbon emission. Resour. Ind, 25: 

40-49. 

Huang M.X., Wang Z.Z. and Chen T. (2019). Analysis on the 

theory and practice of industrial symbiosis based on 

bibliometrics and social network analysis. Journal of Cleaner 

Production, 213: 956–967. 

Huang Y., Yi Q., Kang J., Zhang Y.G. and Xie K.C. (2019). 

Investigation and optimization analysis on deployment of 

China coal chemical industry under carbon emission 

constraints. Applied Energy, 254(C):113684-113684. 

Huo T.F., Cao R.F., Xia N.N., Hu X., Cai W. and Liu B. (2022). 

Spatial correlation network structure of China’s building 

carbon emissions and its driving factors: a social network 

analysis method. Journal of Environmental Management, 

320: 115808. 

Jin X, Lei X and Wu W.X (2023). Can digital investment improve 

corporate environmental performance? -- Empirical evidence 

from China, Journal of Cleaner Production, 414: 137669. 

Lei X, Lin Q.W. and Lin J.J (2024), Evolutionary game analysis of 

enterprises’ green production behavior in the context of 

china's economic green transformation, Global NEST 

Journal, 26(3), 05781. 

Liu Z., Wang Z.L. and Yuan C.J. (2022). Impact of independent 

technological innovation on industrial carbon emissions and 

trend prediction from the perspective of structure. China 

Population Resources and Environment, 32(7): 12-21. 

Liu J. B., Liu B. R. and Lee C. C. (2024) Social network analysis of 

regional transport carbon emissions in China: Based on motif 

analysis and exponential random graph model[J]. Science of 

The Total Environment, 954(000): 18. 

Li M., Xiao H.F. and Pan Z.C. (2024). Spatial correlation network 

structure of carbon productivity from the livestock sector in 

china and its driving factors: a perspective of social network 

analysis, Global NEST Journal, 26(6): 06125 

Li M.Q. and Chou F.D.. (2023). Spatial Network Structure Analysis 

of Industrial Carbon Emission Efficiency in the Huaihai 

Economic Zone. Geography and Geo-Information Science, 

40(06):62-68. 

Li Z.K., Ren L.Y., Ma R.F., Liu Y.Q. and Yao D. (2020). Allocating 

carbon emission allowance from the perspective of 

efficiency at the city-level in Zhejiang Province. Ecological 

Science, 39(3):201-211. 

Li H and Lei X. (2024), The impact of climate change on the 

development of circular economy in China: A perspective on 

green total factor productivity, Global NEST Journal, 26(4), 05923. 

Lv T.G., Geng C., Zhang X.M., Hu H., Li Z.Y. and Zhao Q. (2024). 

Spatiotemporal evolution and influencing factors of urban 

industrial carbon emission efficiency in the Mid-Yangtze 

River urban agglomeration of China. Physics and Chemistry 

of the Earth, 135103607-. 

Na H. M, Qiu Z. Y., Sun J. C., Yuan Y. X., Zhang L and Du Tao. 

(2024). Revealing cradle-to-gate CO2 emissions for steel 

product producing by different technological pathways 

based on material flow analysis. Resources, Conservation and 

Recycling, 203: 107416. 

Shao X.Y., Weng Z.Y., Miao Q.S. and Liu Y. (2022). Evolution and 

element analysis of regional green technology innovation 

output network: evidence from the urban agglomeration of 

the Yangtze River Economic Belt. Geography and Geo-

information Science, 38(4): 40–49.  

Song J. K. Xiao H. S. and Liu Z. C. (2024). Analysis of the Driving 

Mechanism of Urban Carbon Emission Correlation Network 

in Shandong Province Based on TERGM. Sustainability, 

16(10), 4233. 

Sun, J., Li, W., Zhu, K., Zhang, M., Yu, H., Wang, X., & Liu, G. 

(2024). Research on industrial CO2 emission intensity and its 

driving mechanism under China’s dual carbon target. 

Sustainability, 16(23), 10785. 

Suo R.X. and Bai Y.Q. (2024). Measurement and Spatial-Temporal 

Evolution of Industrial Carbon Emission Efficiency in Western 

China. Sustainability, 16:7318. 

Wang L. K., Zhang M. and Song Y. (2024). Research on the 

spatiotemporal evolution characteristics and driving factors 

of the spatial connection network of carbon emissions in 

China: New evidence from 260 cities. Energy, 291:130448. 

Wang X. L. and Qu L. H. (2019). Spatiotemporal Evolution 

Characteristics and Influencing Factors of Industrial Carbon 

Emissions in the Yellow River Basin. Environmental Science, 

10: 5614–5623. 

Wang Y.Y, Ji H.Y, Wang S.Q, Wang H. and Shi J.Y. (2024). 

Research on Carbon Emissions Estimation in Key Industries 



THE STRUCTURE OF SPATIAL CORRELATION NETWORK OF CARBON EMISSION AND ITS DRIVERS  11 

Based on the Electricity–Energy–Carbon Model: A Case Study 

of Henan Province. Energies, 17(12): 2933. 

Wang Z. and Yang L. (2015). Delinking indicators on regional 

industry development and carbon emissions: Beijing–

Tianjin–Hebei economic band case. Ecological Indicators, 

48:41-48. 

Wasserman S. and Faust K. (1994). Network Analysis: Methods 

and Applications. London: Cambridge University Press, 40-

186. 

Wei H and Zheng C. (2024). Spatial network structure and 

influencing factors of carbon emission intensity in 

Guangdong-Hong Kong Macao greater bay area. Front. 

Environ. Sci, 12:1380831. 

Wu Y.X., Zhao K.J. and Lei X (2025), Navigating the carbon 

crossroads: climate transition risk and carbon emission 

efficiency in China's energy enterprises, Global NEST 

Journal, 27(5): 06858. 

Xu R., Yang F., Wu S., Xue Q. and Li M.E. (2024). Spatio-Temporal 

Evolution and Drivers of Carbon Emission Efficiency in China’s 

Iron and Steel Industry. Sustainability, 16(12):4902-4902. 

Xie, P.G., Lu, Y. and Xie Y.W. (2024). The influencing factors of 

carbon emissions in the industrial sector: Empirical analysis 

based on a spatial econometric model. Sustainability, 16(6): 

2478. 

Yu, K.Y., and Li, Z.G. (2024). Coupling coordination and spatial 

network characteristics of carbon emission efficiency and 

urban green innovation in the yellow river basin, china. 

Scientific Reports (Nature Publisher Group), 14(1), 27690. 

Yuan W.Y., Fang L.L. and Luo M. (2022). Driving factors of China’s 

industrial carbon emissions and their decoupling effect: 

Decomposition and calculation of C-D production function 

based on time-varying parameters. Resources Science, 44(7): 

1422-1434.  

Zhang A.L., Wen L.J., Chatalova I. and Gao X. (2021). Reduction of 

carbon emissions through resource-saving and environment-

friendly regional economic integration: Evidence from 

Wuhan metropolitan area. Technological Forecasting and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Social Change, 166:120590. 

Zhang R., Tai H.S., Cheng K., Zhu Y., and Hou J. (2022). Carbon 

emission efficiency network formation mechanism and 

spatial correlation complexity analysis: Taking the Yangtze 

River Economic Belt as an example. The Science of the total 

environment, 156719. 

Zhang R.J., Tai H.S., Cheng K.T., Zhu Y. and Hou J. (2022). Carbon 

emission efficiency network formation mechanism and 

spatial correlation complexity analysis: taking the Yangtze 

River Economic Belt as an example. Science of The Total 

Environment, 841:156719. 

Zhang S., Yuan C.W. and Zhao X.M. (2019). Spatial clustering and 

correlation network structure analysis of transportation 

carbon emissions in China. Economic Geography, 39(1):122-

129. 

Zhang, L., Yan, Y., Xu, W., Sun, J., & Zhang, Y. (2022). Carbon 

emission calculation and influencing factor analysis based on 

industrial big data in the “Double carbon” era. 

Computational Intelligence and Neuroscience, 2: 2815940. 

Zhang X.Y., Shen M.F., Luan Y.P., Cui W.J. and Lin X.Q. (2022). 

Spatial Evolutionary Characteristics and Influencing Factors 

of Urban Industrial Carbon Emission in China. International 

Journal of Environmental Research and Public Health, 

19:11227. 

Zhao H.X., Jiang X.W., Gu B.J. and Wang K.Y. (2022). Evaluation 

and Functional Zoning of the Ecological Environment in 

Urban Space—A Case Study of Taizhou, China. Sustainability, 

14(11):6619. 

Zhao X.N., Guo L., Gao Z.Y. and Yu H. (2024). Estimation and 

Analysis of Carbon Emission Efficiency in Chinese Industry 

and Its Influencing Factors—Evidence from the Micro Level. 

Energies, 17(4): 917. 

Zhao S.L., Li Z.T., Deng H, You X, Tong J.A., Yuan B. K. and Zeng 

Z.H. (2024). Spatial-temporal evolution characteristics and 

driving factors of carbon emission prediction in China-

research on ARIMA-BP neural network algorithm. Frontiers in 

Environmental Science, 12. 


