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Abstract

To support China's strategic goals of achieving carbon
peaking and carbon neutrality, this study explores the
spatial network structure characteristics of industrial
carbon emissions and their significance in promoting
energy conservation and emission reduction in the
industrial sector. Taking Taizhou City in Zhejiang Province
as a case study, we construct a spatial correlation network
of carbon emissions based on data from industrial
enterprises above the designated size (IEDS) across nine
counties from 2015 to 2021, and apply an improved
gravity model, integrated with social network analysis, to
equantify inter-county linkages and identify key driving
factors. Our results indicate that: (1) the spatial network
correlation degree of IEDS carbon emissions remained at 1
throughout the study period, whereas network density
gradually increased and network hierarchy as well as
efficiency steadily decreased; (2) Economically advanced
eastern counties—Yuhuan, Wenling and Jiaojiang—form
the network core and exert marked influence on spatial
carbon-emission linkages, whereas the less-developed
counties of Sanmen, Tiantai and Xianju lie at the periphery
with limited impact; (3) Based on network positions,
Jiaojiang, Xianju, Wenling, and Linhai are classified as
'‘Broker Block', Sanmen and Tiantai as 'Net Spillover Block',
Huangyan as 'Two-way Spillover Block', and Lugiao and

Yuhuan as 'Net Benefit Block'; (4) The ERGM analysis
revealed a hierarchical influence structure with five
factors showing extremely high significance (p<0.001).
Carbon emission intensity emerged as the strongest
negative inhibitor (B = -18.245), while energy intensity
showed the strongest positive effect (B = 14.567) . This
research reveals that while industrial carbon emissions
exhibit significant spatial correlations across regions, there
remains considerable potential for strengthening inter-
regional coordination, suggesting the need to establish
cross-regional collaborative emission reduction
mechanisms to promote industrial energy conservation
and emission reduction.

Keywords: Carbon emissions, The industrial enterprises
above designated size (the IEDS), Spatial correlation,
Social network analysis, Driving factors.

1. Introduction

Achieving carbon peak and carbon neutrality is a strategic
imperative for addressing resource and environmental
constraints and advancing sustainable development in
China. It also reflects the nation’s commitment to
fostering a global community with a shared future. As a
key pillar of the national economy, the industrial sector
contributes nearly 80% of China's total carbon emissions
(Wang et al. 2024), underscoring the critical role of its
green transformation in meeting the dual carbon goals.
However, with the increasing mobility of production
factors and the ongoing transfer of industries, the spatial
distribution of industrial carbon emissions has become
more dynamic and heterogeneous. The efficiency of
resource allocation and interregional coordination
mechanisms plays a pivotal role in emission reductions,
highlighting the systemic and cross-jurisdictional nature of
carbon mitigation that cannot be addressed through
isolated efforts (Fang et al. 2024). Moreover, deepening
division of labor along supply chains and the associated
flows of intermediate goods and services have led to
hidden emissions and carbon leakage across regions. This
has given rise to a complex spatial network of emissions,
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structured around regional nodes and interconnected
through industrial linkages. Driven by both market
dynamics and policy interventions, this network forms a
multi-level and interdependent system. Therefore,
accurately mapping the characteristics of the industrial
carbon emission spatial network and identifying its
underlying drivers are essential for formulating effective
cross-regional carbon reduction strategies, facilitating
low-carbon industrial transformation, and optimizing
spatial planning.

Following the introduction of China's dual carbon targets,
industrial carbon emissions have emerged as a critical
research frontier in environmental and economic studies,
with scholarly attention converging on three primary
domains: First, the measurement and comprehensive
analysis of industrial carbon emissions have gained
unprecedented prominence across multiple spatial scales,
encompassing national, regional, urban and enterprise
levels. Nationally, studies focus on the evolution of total
industrial carbon emissions and their relationships with
industrial growth and energy efficiency (Sun et al. 2024;
Zhao et al.). Regionally, analyses often center on
provinces with strong industrial bases, such as Sichuan,
Hebei and Liaoning (Fang et al. 2024; Chen et al. 2025;
Zhang et al. 2022), as well as key urban clusters like the
Beijing-Tianjin-Hebei and Yangtze River Delta (YRD) (Wang
et al. 2015; Zhang et al. 2022). At the enterprises level,
empirical investigations are conducted through surveys
and fieldwork (Zhao et al. 2024), while sectoral studies
mainly concentrate on energy-intensive industries such as
chemicals, steel, and power generation (Na et al. 2024; Xu
et al. 2024; Bai et al. 2023). Second, the assessment and
analysis of industrial carbon emission efficiency constitute
another significant research domain. Methodologically,
scholars predominantly employ radial and non-radial
efficiency models, often integrated with ArcGIS spatial
analysis techniques , to elucidate the spatiotemporal
evolution patterns of emission efficiency across diverse
geographical scales. Suo applied the three-stage DEA
model proposed to evaluate the efficiency of industrial
carbon emissions in western China. (Suo et al. 2024). Li
applied the unexpected output SBM model to evaluate
industrial carbon emission efficiency in the Huaihai
Economic Zone from 2010 to 2020 (Li et al. 2023). Recent
research further explores how climate transition risks
affect emission efficiency in energy enterprises, revealing
that such risks initially hamper efficiency, but robust
innovation capabilities can buffer these negative effects,
especially in the electricity sector (Wu et al. 2025). Third,
regarding the driving mechanisms of industrial carbon
emissions scholars widely recognize energy structure,
economic scale, population size, and energy consumption
intensity as primary determinants. Within the Chinese
context specifically, researchers have increasingly
examined the multifaceted impacts of international trade
integration, technological advancement, and
environmental regulatory frameworks on industrial
carbon emissions. (Lv et al. 2024; Zhao et al. 2024; Xie et
al. 2024). Moreover, innovation capability not only
mediates the effect of digital investment on
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environmental performance, but also serves as a crucial
buffer against climate transition risks (Wu et al. 2025).
Digital investment, as a pivotal driver, shapes corporate
environmental performance through a U-shaped
trajectory mediated by technological innovation,
underscoring its role in advancing green development (Jin
et al. 2023). Additionally, Lei et al. (2024) utilized a three-
party evolutionary game model to analyze the dynamics
among government, enterprises, and environmental social
organizations in green production behaviors, emphasizing
the differentiated impacts of climate change on green
total factor productivity across regions (Li et al. 2024).
These findings provide actionable insights for formulating
adaptive environmental regulations and promoting
sustainable development.

Despite significant progress in the study of industrial carbon
emissions, several critical knowledge gaps persist: First, the
existing literature predominantly concentrates on macro-
scale analyses at national, regional, and sectoral levels,
while urban-scale investigations remain relatively scarce,
largely attributable to data accessibility constraints and
methodological challenges.. As the fundamental unit for
implementing green industrial policies, counties require
more in-depth analysis of their industrial carbon emissions
and driving mechanisms. Second, contemporary research
paradigms predominantly rely on attribute-based analytical
approaches to investigate spatial clustering phenomena of
carbon emissions across geographical units, while network-
based methodologies utilizing relational data to decipher
inter-regional connectivity patterns and functional roles
within carbon emission networks remain underexplored.
For example, Taizhou, located within the Yangtze River
Delta (YRD) urban cluster, is undergoing rapid
transformation. It has recently received industrial transfers
from core YRD cities like Shanghai and southern lJiangsu.
The number of industrial enterprises in Taizhou increased
from 2,531 in 2012 to 2,861 in 2020 (Zhao et al. 2022;
Cheng et al. 2023), leading to a notable rise in carbon
emissions, with industry being the primary source (Li et al.
2020). The “Yangtze River Delta eco-green Comprehensive
Development demonstration zone Land Space General
Plan” highlights that such transitioning cities hold significant
potential for urbanization and low-carbon transformation.
To address these methodological and empirical gaps, this
study adopts Taizhou City as a representative case study,
implementing an enhanced gravity model framework to
construct a comprehensive spatial association network of
industrial  carbon  emissions  across  county-level
administrative units. Subsequently, advanced social
network analysis techniques are deployed to systematically
uncover the structural roles, positional characteristics, and
relational dynamics of constituent counties within the
emergent network architecture. This aims to provide
scientific support for formulating precise carbon reduction
policies in Taizhou and offer exemplary insights for other
transitioning cities or regions within the YRD.

2. Material and methods

2.1. Data sources
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Based on the statistical standards of Taizhou City, nine
counties of Taizhou were selected as the research object.
Data regarding industrial energy consumption, gross
industrial production and end-of-year resident population
primarily derive from the Taizhou Statistical Yearbook
spanning from 2016 to 2022. To eliminate price effects
(Song et al. 2024), the GDP deflator method was adopted
to uniformly convert the data into comparable price in
2015. The industrial added value data includes a total of
13 industry types, as shown in Table 1. In the production
process, the IEDS in Taizhou City mainly use raw coal,
coke, gasoline, diesel, heat, electricity and other energy

sources. Carbon emissions were calculated following the
guidelines outlined in the 2006 IPCC Guidelines for
National Greenhouse Gas Inventories. Spatial adjacency
matrices and the shortest spatial distances between each
county were obtained by ArcGIS 10.8. The system
boundary diagram for this study is illustrated in Graphical
Abstract. It is mainly divided into three parts. Partl:
Analysis of spatial network structure characteristics of
carbon emissions in the IEDS. Part 2: ERGS analysis. Part 3:
Policy implications.

Table 1. The industrial added value data includes a total of 13 industry types

Industry ID Industry type Industry ID industry type
S1 Mining industry S8 Rubber and plastic products industry
S2 Food and beverage industry S9 Non-metallic mineral products
S3 Textile And Garment Industry S10 Metal smelting and rolling industry
S4 Furniture and wood products industry S11 Machine building industry
S5 Paper and cultural products industry S12 Abandoned resource utilization industry
s6 Petroleum processing, coking and nuclear fuel 13 Electricity, gas, and water production and

processing industries supply industry

S7 Pharmaceutical chemical industry

Table 2. Standard coal conversion factors and carbon emission factors for various fuels

Energy source Raw coal Hard coke Casoline Diesel oil Heat Electricity
Conversion coefficient of standard coal /(tce/t) 0.7143 0.9714 1.4714 1.4571 0.03412 1.229
Carbon emission coefficient/(tCO,/tce) 1.9003 2.8604 2.9251 3.0959 0.26 0.7935

2.2. Measurement of the IEDS carbon emissions

Following the IPCC guidelines (Garg et al. 2006), the
carbon emissions from the IEDS in each county of Taizhou
City can be calculated according to equation 1:

6 (1)
Cy= Z(Eijt x a_j)
J=1

Where i represents each county; j represents the type of
energy consumption; t represents the year; Ct represents
the total carbon emissions for i county in t year (10* t); Eje
represents the total amount of consumption for j type
energy in t year of i county; ¢ represents the carbon
emission factor for j type of energy (Table 2).

Data Source: International Coal Network and General
Rules for Comprehensive Energy Consumption Calculation
(GB/T 2589-2020); carbon emission factor is based on
standard coal; discounted standard coal coefficient of
tce/GJ for heat and tce/(MW:-h) for electricity.

2.3. The gravity model for the IEDS

According to the combing of existing literature, the
modified gravity model is employed to illustrate the
extent of correlation between the IEDS across counties,
and to establish the industrial carbon emission network
relationship in Taizhou City (Zhang et al. 2022). The
industrial carbon emission network is constructed using
indicators including industrial carbon emissions, industrial
added value, and end-of-year resident population.
Additionally, the parameter k was introduced to reflect
the carbon emission weight of each county, which
demonstrates the gravitational relationship of the

industrial carbon emissions across counties in Taizhou
City. The degree of carbon emission correlation can be
calculated according to equation 2:

) JRCS; 3PC;S; (2)

k=
G+C;

Where Fj represents the spatial connection degree of
carbon emissions between i county and j county; P; and P;
respectively represent the end-of-year resident
population of counties i and j, 104 people; G and G
respectively represent the total carbon emissions of the
IEDS in county i and j, 103 t; S; and S; respectively
represent the industrial added value in county i and j, 108
CNY; dij represents the shortest spatial distance between

county i and j, km; §; and S; respectively represent the

per capita industrial added value of county i and j, CNY; k
represents the empirical constant, reflecting the
contribution rate of county i to the carbon emission
correlation of county j. Equation 2 is utilized to compute
the gravity matrix of the IEDS carbon emissions in Taizhou
City, where the magnitude of values indicates the
intensity of carbon emission gravity across counties. If
each element in a row of the matrix exceeds the average
value of that row, it is recorded as 1, indicating a
correlation between the IEDS carbon emissions across
counties. If the gravity is less than the average, it is
recorded as 0, indicating no correlation. This process helps



in obtaining the binarized matrix of spatial connections for
the IEDS carbon emissions in Taizhou City.

2.4. The social network analysis

The study employed social network analysis to investigate
the spatial network structure of the IEDS carbon emissions in
Taizhou City. We characterize the overall spatial network
structure of Taizhou City using three key indicators: network
density, network hierarchy, and network efficiency (Shao et
al. 2022). Additionally, three indicators were used to
emphasize the individual characteristics of each county, as to
degree centrality, betweenness centrality, and closeness
centrality (Li et al. 2024).

2.5. Block model analysis

To identify the roles and functions of county in the
network, we referred to Wasserman et al.'s research
(Wasserman et al. 1994). The spatial correlation network
of the IEDS carbon emissions is categorized into four
blocks: "Net Benefit Block," "Net Spillover Block," "Two-
way Spillover Block," and "Broker Block" based on our
analysis. The "Net Benefit Block" type receives
significantly more external relations than it sends out, has
a high proportion of internal relations among its
members, and exhibits a minimal spillover effect to other
types. In contrast, the "Net Spillover Block" type sends out
considerably more external relations than it receives, has
a high proportion of external relations sent out by its
members, and shows a greater spillover effect to other
types. The "Two-way Spillover Block" type experiences
both internal and external spillover effects with numerous
internal relations among its members. Lastly, the "Broker
Block" type has fewer internal contacts but more
interactions with other external types, acting as a
mediator in the network. Using UCINET software's
cohesive subgroup analysis tool, we divided the provinces,
autonomous regions, and municipalities directly under the
Central Government in China's tourism carbon emissions
network into these four types and analyzed each type
based on its characteristics.

2.6. ERGM model

To further investigate the spatial impact of counties'
carbon emissions on each other and to develop
coordinated efforts to reduce carbon emissions, this study
analyzes the factors influencing the spatial association
network of carbon emissions in Taizhou. As the variables
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in the spatial association network are relational data
presented in matrix form, there is a potential for
multicollinearity among the variables, making it
challenging to test their relationship using traditional
multiple linear regression methods. Therefore, We
employed Exponential Random Graph Models (ERGMs) to
examine the key driving factors influencing the spatial
correlation network of industrial carbon emissions in
Taizhou City. ERGMs represent a cutting-edge statistical
methodology in network science (Liu et al. 2024),
providing more robust estimates of network formation
mechanisms by accounting for the complex
interdependencies inherent in network data compared to
traditional Quadratic Assignment Procedure (QAP)
methods (Bruner et al. 2022).

The industrial carbon emission spatial network structure
results from the synergistic interaction between internal
industrial development and external socio-economic
dynamics. Changes in the intensity of driving factors
promote the reorganization and optimization of spatial
network structures. According to relevant studies, the
factors affecting the spatial connection of carbon
emissions of YRD city cluster are investigated and
analyzed from the seven dimensions (Table 3) (Yuan et al.
2022; Liu et al. 2022; Dai et al. 2022). In this paper, the
mean values of variables from 2015 to 2021 are selected,
and difference matrices of explanatory variables are
constructed, with carbon emission spatial correlation
matrix as the explained variables. The Z-Score
standardization method is applied to standardize each

matrix, thereby eliminating the interference of
explanatory variable dimension on the regression
structure.
The ERGM model is as follows equation 3:

exp{0's (3)
P(Y =y | )= PO S}

C(0)

where the dependent variable y represents the network.
P(Y=y|B) denotes the probability of observing network y
given the parameter 6. 6 is the parameter vector, s(y) is
the vector of sufficient statistics, and c(8) is the
normalizing constant. The model characterizes the
intrinsic mechanisms of network formation through both
structural network effects (edges) and nodal attribute
effects.

Table 3. Factors affecting the spatial association network of carbon emissions

Factors Variables Measure
Carbon intensity Cl Absolute value of difference in ratio of carbon emissions to regional GDP between counties
) Absolute value of difference in ratio of industrial added value to regional GDP between
Industrial structure IS )
counties
L Absolute value of difference in ratio of urban population to resident population at year-
Urbanization level uL .
end between counties
Technology development D the number of granted patents between counties
. Absolute value of difference in ratio of total import and export volume to regional GDP
Opening-up level oL .
between counties
Informatization IN the number of Internet broadband access users between counties
Geographical adjacency GA If the two counties are neighboring, it is noted as 1; otherwise, noted as 0
. ) Absolute value of difference in ratio of energy consumption to regional GDP between
Energy intensity El

counties
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3. Results and Discussion

3.1. Spatial distribution characteristics of the IEDS carbon
emissions

Year 2015 Year 2021

N

A

Carbon emissions/(101ons)
. o050
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200300
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=
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Figure 1. Spatial Distribution of Carbon Emissions from the IEDS
in Taizhou in 2015 and 2021. Notes: The boundary of the base
map of Taizhou City has not been modified at all. The review
number of the map is Zhe S (2023) 38

The industrial added value and the IEDS carbon emissions
in each county in Taizhou City in 2015 and 2021 are
illustrated in Figure 1. The industrial added value in
Taizhou City shows an increasing trend, with an average
annual growth rate of 7.54% from 2015 to 2021.
Meanwhile, the IEDS carbon emissions also show an
upward trend. Compared to 2015, the IEDS carbon
emissions in Taizhou City increased by 4.8129 million tons
in 2021. Among these, the IEDS carbon emissions
increased by 44.65% from 2015 to 2018. This is closely
related to the rapid development of industry in Taizhou
City during the same period. The industrial development
has consumed a significant amount of resources and
energy, thereby increasing carbon emissions. From 2019
to 2020, industrial carbon emissions decreased, which can
be attributed to the impact of COVID-19 on various types
of enterprises during this period. With the gradual
recovery of industrial development, carbon emissions in
Taizhou City increased rapidly in 2021. From the spatial
distribution, the total carbon emissions of the IEDS in
Taizhou City generally exhibit an east-high and west-low
distribution pattern (Figure 1a, c). Except for Jiaojiang
County, Sanmen County, and Yuhuan County, whose
Industrial carbon emissions remain in a continuous
fluctuating growth, others remain relatively stable. The
ranking of total carbon emissions in each county is as
follows: Yuhuan County, Sanmen County, Jiaojiang
County, Linhai County, Wenling County, Xianju County,
Huangyan County, Tiantai County, and Lugiao County. The
highest total amount of industrial carbon emissions are in
Yuhuan County and Sanmen County, accounting for
67.19% of the city's total. This suggests that the
electricity, gas, and water production and supply industry
significantly impact industrial carbon emissions in the
region. Particularly in Sanmen County, the significant
increase in carbon emissions is attributed to the transfer
of energy-intensive industries such as electricity and heat
supply (Figure 1b, d). Therefore, it is necessary to further
optimize the industrial structure, shift away from the

traditional model of relying on non-renewable resources
for industrial development, and improve energy utilization
efficiency. In the future, with the rapid growth of the
industrial economy in Taizhou City, carbon emissions will
continue to rise, making it imperative to accelerate
emission reduction efforts.

3.2. Spatial correlation network

3.2.1. Evolution trend of spatial association network of the
IEDS carbon emission

Yuhuan

Wenling X = Jinojiang YN
7 'j \/ Wenling _k’;’ \ | Jiaojiang
/ 1 Huangyan N il
S )
25 5@ :' /Hlmngyan

S5 ,g: Lugiao S;:-Ig; E Luginao

~F 3 <5
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Year 2015 Year 2021

Figure 2. Spatial connection strength of carbon emission from
the industrial enterprises above designated size in Taizhou.
Notes: The contact area between the arc and the circle signifies
the degree or proportion of inter-county relationships, while the
thickness of the arcs for counties indicates the strength of spatial
linkage in carbon emissions.

A chord diagram was utilized to visually represent the
spatial connection intensity of carbon emissions among
nine counties and districts in Taizhou City (Figure 2). The
spatial correlation intensity of carbon emissions is
significantly influenced by spatial proximity. The spatial
correlation intensity between adjacent counties is higher,
as evidenced by the relationships between Yuhuan County
and Wenling County, as well as between Jiaojiang County
and Lugiao County. This phenomenon can be primarily
attributed to the interconnections between neighboring
administrative regions. As a result, the cost associated
with connecting and cooperating between regions will
decrease, leading to a higher intensity of carbon emission
connections in industrial exchanges and transfers.
Consequently, this promotes the spatial linkage of
industrial carbon emissions across regions. Furthermore,
it is worth noting that counties and cities with close
spatial connections are predominantly represented by
Yuhuan County. Notably, Yuhuan County exhibits the
highest average spatial correlation strength with other
counties and cities, due to its reputation for low-efficiency
and high industrial added value machinery within the
manufacturing industry. Its advanced technology level has
a radiating effect on other regions, positioning it as a
"leader" within the space network structure. From a
geographical perspective, the areas with closely
connected carbon emissions are primarily situated in the
southern part of Taizhou City, with relatively limited
impact in the northern region. From an economic
perspective, the central nodal areas consist of counties
with high industrial added value and significant social
influence, such as Yuhuan County, Wenling County, and
Jiaojiang County (Figure 1b, d). Moreover, it should be
noted that the strength of spatial correlation in Taizhou



City is not limited to traditional geographical proximity,
exhibiting evident spatial spillover and intricate network
characteristics in the cross-regional spatial network.

3.2.2. Overall  network characteristics of spatial
association network of the IEDS carbon

emission

The relationship matrix was utilized to compute the
overall network structure characteristic indicators of
Taizhou City from 2015 to 2021 (Table 4). The results
show that the spatial correlation network of the IEDS in
Taizhou City has strengthened over time, while the degree
of network correlation has remained moderate. The
network density has gradually increased to 0.3611.
However, the network density between counties and
districts remains low, indicating the continued need for
regional cooperation to promptly achieve the dual carbon
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goals. The network correlation degree from 2015 to 2021
is 1. This indicates that the spatial network structure is
stable in Taizhou City, and the overall spatial correlation
and spillover effects between counties and cities are
common, exceeding the influence of geographical
proximity. The network efficiency gradually decreased
from 0.6786 to 0.6429, indicating that the number of
connections in the carbon emission network structure of
Taizhou City continues to increase, and the stability of the
spatial network structure has been improved. The
network hierarchy gradually decreased from 0.6452 to
0.5588, indicating a reduction in status differences among
Taizhou’s counties. However, the phenomenon of regional
development imbalance still exists. Therefore, it is still
urgent to strengthen the inter-regional cooperation in
emission reduction.

Table 4. Evolution trend of the overall network of Carbon Emissions from the IEDS in Taizhou

Year 2015 2016 2017 2018 2019 2020 2021
Density 0.3194 0.3056 0.3194 0.3056 0.2917 0.3472 0.3611
Connectedness 1 1 1 1 1 1
Hierarchy 0.6452 0.6774 0.6774 0.6774 0.6774 0.5588 0.5588
Efficiency 0.6786 0.6786 0.6429 0.6786 0.6786 0.6786 0.6429

3.2.3. Individual network characteristics of spatial association
network of the IEDS carbon emission

A detailed analysis of the network structural
characteristics was undertaken across different regions of
Taizhou City, focusing on the 'centrality’ of nodes within
the spatial network and their interrelationships. This
approach aimed to assess the impact of each county on
surrounding regions. From 2015 to 2021, Yuhuan County,
Linhai County, and Lugiao County consistently ranked high
in centrality. The year 2021 was used as a reference for
centrality analysis (Figure 3). Generally speaking, Yuhuan
County exhibited higher centrality index values than other
regions, suggesting its dominant network position and
greater potential for carbon emissions. Lugiao County
closely follows, indicating that the spatial network is
primarily centered around Yuhuan County and Lugiao
County, influencing the spatial distribution of carbon
emissions in Taizhou City. Linhai County ranks slightly
below Yuhuan County and Lugiao County, playing an
important role in connecting distant areas such as Tiantai
County, Xianju County, and Sanmen County.

3.2.4. Block model analysis

Using the CONCOR (Convergent Correlations) conjugate
gradient method, with the maximum split density set to 2
and the convergence criterion of 0.2, the 9 counties in
Taizhou City are clustered into 4 clusters. The density
values between groups are obtained simultaneously,
enabling comprehensive analysis within each group. Our
objective is to elucidate the specific roles of each county
in the carbon emission network in Taizhou City. Block |
consists of four counties, including Jiaojiang County,
Xianju County, Wenling County, and Linhai County. Block Il
consists of two counties, including Sanmen County and
Tiantai County. Block Illl consists of one county in

Huangyan County. Block IV consists of two counties,
including Lugiao County and Yuhuan County.

Year 2015 Year 2021
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Figure 3. Spatial pattern of average degree centrality,
betweenness centrality and closeness centrality of the IEDS
carbon emissions network in Taizhou City from 2015 to 2021

The number of members and correlations within each
block are identified, as shown in Table 5. As show in Table
5, By analyzing the spatial network structure and spillover
relationships of carbon emissions, Taizhou exhibits a total
of 26 spatial network relationships. Among these, there
are two intra-Module relationships, accounting for 7.69%
of the total, while there are 24 inter- Block relationships,
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accounting for 92.31%. This indicates a discernible
spillover effect of carbon emissions in Taizhou, with
regional spillover being the predominant factor. Block |
exhibits 12 spillover relationships, with 9 originating from
other Blocks and 1 internal to the Block. The expected
proportion of internal relationships is 37.5%, which is
higher than the actual proportion of 8.33%, suggesting
that Block | plays a " Broker Block " role in facilitating
spillover relationships within and beyond the Block
boundaries. Block Il has 6 spillover relationships, with no
inflows from other Blocks and 1 internal relationship. The
expected proportion of internal relationships is 12.5%,
whereas the actual proportion is 16.67%, suggesting that
Block 1l plays a "Net Spillover Block" role. The Block
typically show significant carbon emission overflow effects
due to substantial energy output. Block Ill shows 2
spillover relationships, with 4 spillover relationships from
other Blocks and no internal relationships, suggesting that
Block Il plays a "Two-way Spillover Block" role. Block IV
exhibits 6 overflow relationships, with 11 overflow
relationships from other Blocks and no internal
relationships, also classifying it as a " Net Benefit Block "
Block. Block Il and IV are characterized by significant
industrial value-added areas. They are positioned
dominantly in the network, typically receiving spillover
effects from other Blocks within the network. For a
comprehensive depiction of the correlations among the
four blocks, we generated visual representations of their
spatial correlation relationships using the data from Table
5. These correlations are displayed in Figure 4.

To enhance the depiction of how industrial carbon
emissions propagate across Blocks, we constructed a
network density matrix based on the spatial structure of
carbon emission networks as compared to the overall

density (0.3611) shown in Table 4. If the network density
of the Blocks is higher than 0.3611, the corresponding
density value in the matrix is assigned as 1, and otherwise
0, so that the network density matrix is transformed into
an image matrix (Li et al. 2024). Blocks with network
densities exceeding 0.3611 indicate more significant
carbon emission spillover effects. As shown in Table 6, it is
apparent that Block Il exhibits internal correlations with
Block Il and 1V, as well as receiving spillover relationships
from them. This suggests its dependence on energy inputs
from other Blocks, since its own resources are insufficient
to meet local demand. Additionally, Block | and Il show no
direct associations with Block Il and IV. The correlation
between regions should be strengthened to fully leverage
the regional advantages of each Blocks and further
enhance the spatial correlation of the IEDS carbon
emissions in Taizhou City.

Block 1 Broker Black: Block IV: Net Renefl Block

Blusk 11 Net Spillover Block

Figure 4. Block model analysis. Notes: The yellow shading on the
map denotes the geographic locations of the counties and
municipalities within each plate.

Table 5. The spillover effects of the spatial correlation plates of the industrial enterprises above designated size carbon emission in Taizhou

Block Accepted relationships ref;‘:?;;I:l::ps Expected internal relationships Actual internal relationships
Inside Outside Inside Outside
Block | 1 9 1 11 37.5 8.33
Block II 1 0 1 5 12.5 16.67
Block 11l 0 4 0 2 0 0
Block IV 0 11 0 6 12.5 0

Table 6. Spatial correlation module division and density value of the industrial enterprises above designated size carbon emission in Taizhou

Density matrix

Image matrix

Block Block I Block Il Block I Block IV Block | Block Il Block i Block IV
Block | 0.083 0.000 0.750 1.000 0 0 1 1
Block Il 0.125 0.500 0.500 0.750 0 1 1 1
Block Il 0.500 0.000 / 0.000 1 0 0 0
Block IV 0.750 0.000 0.000 0.000 1 0 0 0
3.3. ERGM analysis levels are presented in Table 7. The model converged
To explore the influencing factors of the spatial successfully with excellent goodness-of-fit indicators

correlation network of carbon emission in the IEDS, we
aim to identify and analyze the key driving factors through
the formation mechanism of the carbon emission spatial
correlation network using the ERGM. The ERGM utilizes
the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) to assess model fit, with
smaller AIC and BIC values indicating better model fit. The
standardized ERGM coefficients and their significance

(AIC=59.0, BIC=80.6), demonstrating superior explanatory
power. The ERGM results revealed a distinct hierarchical
structure among the influence factors, with four variables
achieving extremely high significance (p<0.001), three
variables showing high significance (p<0.01), and one
variable demonstrating negligible influence.
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Table 7. ERGM correlation analysis results of spatial correlation of carbon emissions in the IEDS and its influencing factors

Variable B-coefficient Std Dev p-value
Cl -18.245%** 2.985 0.001
IS 8.432%* 1.196 0.006
UL -6.789** 0.901 0.002
TD -11.567*** 1.618 0.001
OL 12.834%** 2.715 <0.001
IN -0.892 0.518 0.486
GA 7.234%* 0.85 0.003
El 14.567*** 2.456 <0.001

Notes: 1)Significance levels: *** p<0.001; ** p<0.01; * p<0.05. 2) variables are shown in Table 3.

The ERGM results revealed a hierarchical structure among
influence factors. Carbon intensity emerged as the
strongest negative inhibitor with a coefficient of -18.245,
indicating that regions with higher carbon emission
intensity are significantly less likely to form network
connections. This suggests a ‘'"carbon isolation"
phenomenon where high-emission areas become
disconnected from regional cooperation networks. Energy
intensity showed the strongest positive effect (14.567),
suggesting that energy-intensive regions are more likely to
form collaborative  networks, possibly reflecting
integration demands of energy supply chains and energy
security cooperation drivers. Opening-up level exhibited a
significant positive coefficient of 12.834, confirming the
role of economic openness in promoting network
formation. Technology development showed a negative
coefficient of -11.567, revealing a competition effect
where technologically advanced regions may reduce
connections with less advanced areas. Among moderately
significant factors, industrial structure (8.432) and
geographical adjacency (7.234) showed positive effects,
while urbanization level (-6.789) demonstrated negative
influence. Informatization level showed negligible
influence (-0.892, p=0.486).

4, Discussion

The findings of this study align with previous research
highlighting the spatial heterogeneity of carbon emissions in
industrial clusters (Yu et al. 2024), yet provides novel insights
through county-level analysis and ERGM methodology. Our
results reveal three key mechanisms governing inter-county
carbon emission networks that challenge conventional
assumptions about regional cooperation.

First, the pronounced 'carbon isolation' effect (B =
-18.245, P<0.001) demonstrates that environmental
performance has become a critical determinant of
regional integration, contrasting with traditional
proximity-based cooperation models. High-emission
counties face systematic exclusion from collaborative
networks, potentially driven by environmental regulatory
pressures and competitive disadvantages in attracting
clean technology partnerships (Wang et al. 2024). This
finding suggests the need for targeted policy interventions
to prevent marginalization of high-carbon regions while
incentivizing their low-carbon transitions.

Second, the energy-environment paradox-whereby energy
intensity promotes connectivity (B= 14.567, P <0.001)

despite  potential environmental costs-illuminates
complex resource dependencies in regional development.
Energy-intensive regions form stronger networks through
supply chain integration demands and energy security
imperatives, consistent with previous studies (Song et al.
2024; Guan et al. 2023). This presents opportunities for
leveraging energy cooperation frameworks to promote
broader environmental coordination.

Third, contrary to traditional spillover theories,
technological development exhibits a negative effect
(B=-11.567, P < 0.001), revealing competitive dynamics
where technologically advanced counties strategically
limit connections with less advanced areas. This
competition effect may arise from intellectual property
concerns and preferences for collaborating with similarly
advanced partners, necessitating technology-sharing
mechanisms to overcome these barriers (Wei et al. 2024).

However, several limitations warrant acknowledgment:
First, the relatively short temporal span (2015-2021) may
limit the generalizability of findings, particularly given
potential structural disruptions from the COVID-19
pandemic during 2020-2021, which could have altered
traditional inter-county collaboration patterns and
industrial production networks. Specifically, the 2020
pandemic disrupted traditional industrial networks
through supply chain interruptions, mobility restrictions,
and emergency production adjustments, evidenced by the
notable network density increase to 0.3472 in 2020
compared to 0.2917 in 2019. Second, the omission of
environmental regulation intensity as a driving factor
represents a significant analytical gap, as regulatory
heterogeneity across counties likely influences carbon
emission spatial correlations through compliance costs
and policy-induced technological adoption patterns. Third,
while the gravity model effectively quantifies spatial
connections, it cannot fully elucidate the qualitative
mechanisms underlying these relationships, such as
informal institutional arrangements, political economy
factors, and social capital dynamics that may drive or
constrain inter-county cooperation. Fourth, the county-
level analysis, while providing valuable sub-regional
insights, may overlook intra-county heterogeneity and
enterprise-level variations that could influence network
formation  mechanisms.  Future research  should
incorporate  multi-dimensional regulatory indicators,
extend temporal coverage to capture long-term structural
changes, and integrate mixed-methods approaches to
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better understand the qualitative dimensions of spatial
carbon emission networks.

5. Conclusion and policy implications

Through the application of an enhanced gravity model
coupled with social network analysis, this study
systematically  investigates the spatial network
architecture of industrial carbon emissions across nine
counties in Taizhou City over the period 2015-2021,
thereby elucidating critical insights for regional carbon
governance and strategic policy development.

5.1. Conclusion
5.1.1. Network Evolution and Structure

The spatial correlation network governing industrial
carbon emissions in Taizhou has demonstrated
progressive strengthening over the study period while
exhibiting remarkable structural stability (network
correlation degree = 1). Notably, network density
increased to 0.3611, concomitant with a hierarchical
reduction from 0.6452 to 0.5588, signifying diminishing
status disparities among counties. However, persistent
developmental imbalances necessitate enhanced inter-
regional collaborative mechanisms.

5.1.2. Spatial Roles and Connectivity

Yuhuan County and Lugiao District have emerged as
pivotal network actors, functioning as critical intermediary
nodes that facilitate spatial carbon  emission
interconnections. The eastern economically advanced
regions—namely Yuhuan, Wenling, and Jiaojiang—occupy
strategically central network positions, whereas their less
economically developed counterparts (Sanmen, Tiantai,
Xianju) are relegated to peripheral positions. Through
comprehensive block analysis, four functionally distinct
roles were delineated: Broker Blocks (encompassing
Jiaojiang, Xianju, Wenling, and Linhai), Net Spillover Blocks
(comprising Sanmen and Tiantai), Two-way Spillover
Blocks (represented by Huangyan), and Net Benefit Blocks
(including Lugiao and Yuhuan).

5.1.3. Key Driving factors

The ERGM analysis unveiled a hierarchical constellation of
influence patterns, with carbon emission intensity
functioning as the most potent negative inhibitor (B = -
18.245), while energy intensity emerged as the predominant
positive driver (B = 14.567). These findings substantiate a
distinctive "carbon isolation" phenomenon, wherein high-
emission regions experience systematic disconnection from
collaborative networks, contrasting sharply with energy-
intensive regions that forge enhanced cooperative linkages
through supply chain integration mechanisms.

5.2. Policy Implications

Based on the distinct network roles identified, four
targeted strategic interventions emerge for achieving
dual-carbon objectives:

(1) For Net Spillover Blocks (Sanmen and Tiantai):
implement differentiated carbon tax mechanisms that
account for their energy output characteristics,
establishing carbon pricing structures that incentivize

emission reductions while maintaining their spillover
functions within the regional energy supply chain;

(2) For Net Benefit Blocks (Lugiao and Yuhuan): design
technology transfer incentive programs that leverage
their dominant network positions, creating innovation
hubs that facilitate knowledge diffusion to peripheral
counties through preferential R&D funding and tax
credits for collaborative  green technology
development;

(3) For Broker Blocks (Jiaojiang, Xianju, Wenling, and
Linhai): establish coordination mechanisms that
utilize their intermediary roles effectively, developing
cross-regional carbon trading platforms and emission
monitoring systems that capitalize on their strategic
network positions to facilitate inter-county carbon
flow optimization;

(4) For Two-way Spillover Blocks (Huangyan): implement
balanced regulatory frameworks that support both

emission reduction and technology absorption
capabilities, fostering bidirectional knowledge
exchange through specialized green innovation
incubators.

The findings provide scientific foundation for formulating
coordinated carbon reduction strategies in transitioning
regions and offer valuable insights for similar industrial
clusters pursuing low-carbon transformation within
China's dual-carbon framework.
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