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ABSTRACT 

The process of predicting the water quality is done by 
various predictions algorithms using Neural network 
based on Artificial Intelligence and Machine Learning 
methods. Several water quality detecting indicators are 
used to measure the purity level of water with the 
amount of usage based on topography and area of 
utilization. Its objective is to lessen the water scarcity in 
the region by giving valuable guidance and solutions. In 
order to handle wastewater treatment and forecasting, a 
hybrid wastewater forecasting model has been presented. 
Among many other factors, this prediction procedure 
takes into account pH, COD, BOD, ammonia, pressure, and 
humidity. Long Short-Term Memory (LSTM), Convolutional 
Neural Networks (CNN), and Discrete Wavelet Transform 
(DWT) are all integrated in a Hybrid Deep Wavelet 
Network (HDWN). In HDWN model, CNNs retrieve spatial 
information, LSTMs model temporal dependencies, and 
DWT breaks down input signals. This integration makes it 
possible to make precise forecasts and insights, which 
makes it easier to monitor and optimize treatment 
systems effectively and lessen South Tamil Nadu's water 

scarcity. This model performance evaluated using metrics 
MSE is 0.068, RMSE is 0.2325, MAPE is 0.55  MAE is 
0.1945 and R2 is 0.932. The comparative analysis of the 
tested results based on Integrated Neural Network LSTM 
model shows best predictions. Hence this HDWN model is 
useful for prediction and forecasting the wastewater 
quality. 

Keywords: Prediction Algorithms, Wastewater treatment, 
Water Quality Parameter, Machine Learning, Convolution 
Neural Networks, Long Short-Term Memory Algorithm. 

1. Introduction 

The Urbanization leads to the need of water demand in 
various purposes of agriculture, large factories, 
household, manufacturing unit etc. The various sources of 
water are pre-owned by many human activities which in 
turn lead to the rise of water scarcity in many areas of our 
country. Several factors such as increase in man power, 
development of cities and factories and domesticated life 
style makes all the renewable resources depleted in 
future years. The authors guvava, M et al. (2019) insisted 
the essential usage of pure water in adequate quantity 
with measurable quality range in various levels of 
applications in many districts need plenty of fluid 
resources. It is possible to reuse the treated water from 
industry and costal water. Ziadi, A. et al. (2019) This 
research investigation in the sources of pollution and 
mineralization in the Lebna, Cap Bon, Tunisia's coastal 
water sources. In order to determine the anthropogenic 
and natural elements influencing water quality, hydro 
chemical features were observed. The research revealed 
serious pollution caused by saline intrusion and farming 
practices, endangering the area's water supplies. Zhou, Y. 
et al. (2020) The authors say the research evaluated 
methods for reducing pollution in coastal waterways that 
are significantly impacted by human activity. It made clear 
that in order to effectively prevent pollution, coordinated 
methods integrating technological, ecological, and 
regulatory measures are required. Many physical factors 
are analysed to measure the water purity level by 
predicting the amount of usage and wastage. The water 
purified by the process of waste water management by 
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applying biological factors, physical factors and chemical 
treatments. Many upcoming methodologies are discussed 
in various research regarding the water quality prediction 
and aim in measuring the pure water and its availability in 
various sectors. In order to forecast the Coastal Water 
Quality Index (WQI), Uddin et al. (2022) assessed a 
number of machine learning models, such as Decision 
Trees, Random Forests, and Extreme Gradient Boosting. 
According to their research, tree-based models fared 
noticeably better than other models in terms of prediction 
accuracy. These models were used to assist manage water 
quality in coastal habitats by lowering uncertainty and 
offering a solid foundation. This method represents a shift 
from conventional pollution control techniques, such as 
those proposed by Tayeb et al. (2015), to predictive, data-
driven water management. Chaukura, C. et al. (2020) 
provides a detailed review of current concerns about the 
presence and elimination of disinfection byproducts in the 
consumption of water. This research discusses the 
challenges and developments in addressing the issues. In 
2020, Álvarez-Ruiz, R. and Picó, Y.carried out research 
analyzing the contaminants and new methods affecting 
different types of water resources. It emphasizes the 
importance of water treatment and monitoring the 
difficulties of treatment process. Ahmed, U. et al. (2019) 
examined effective water quality prediction by means of 
supervised machine learning algorithms. Effluent waste 
water treatment is essential for the treating the waste 
water to improve the quality and quantity of usage in 
several applications. The process includes eight stages of 
purification first is the screening technique of the sample 
followed by the effective screening and clarification 
process with aeration to avoid unwanted effluents in 
water and supply of chlorination to avoid disinfection and 
water testing is done for better results which result in 
disposal of major and minor wastes and avoids loss of 
water quality enabling better purified water as the end 
product. Many sensing techniques are used to measure 
the rate of water evaporation or transpiration occurred 
which may cause water loss apart from being 
contaminated. Industrial wastes, household waste and 
other solid and liquid waste gets mixed with the available 
water and reduce the level of availability of pure water. 
Measuring the water purity is based on pressure and this 
includes two process one is primary process and another 
one is secondary process. These methods include adding 
chlorine and finally with ozone treatment based on 
pressure retention that separates pure water and 
removes other impurities which makes 99.8 percent of 
purity measure and this percentage differs based on 
topography. This ozone treatment method can treat 
germs better than chlorine. This water can be taken as 
samples from various soil texture for analysing and 
predicting the level of purity based on factors mentioned 
above. Arepalli, Naik, and Amgoth (2024) suggested an 
Internet of Things-based framework utilizing the Cluster-
Guided Temporal Flexible Network (CGTFN) model to 
improve the precision of water quality analysis and 
categorization in treatment procedures. Because it 
incorporates ambient and water characteristics to 

enhance classification accuracy and guarantee energy-
efficient, real-time monitoring, this framework is ideal for 
smart aquaculture systems. 

1.1. Related Work 

In recent decades, both mechanical and non-mechanical 
way of water quality predictions were applied for water 
quality prediction purposes. Ahmed, U. et al. (2019) When 
predicting water quality, a non-mechanical method can 
yield forecasts that are more accurate than those 
produced by conventional methods. Based on regression 
and random forest WQI is predicted. Liu, P. et al. (2019) 
and Hu, Z. et al. (2019) both investigated and provide the 
prediction of water quality using deep learning 
algorithms. The two experiments demonstrate how LSTM 
networks may enhance water quality prediction and 
management. LSTM model is used to predict the PH and 
COD variable with historical values for prediction. The 
model performed better than the ARIMA and SVR models, 
with a mean squared error (MSE) of 0.0017. By applying a 
data-mining technique, Asami, H. et al. (2021) simulated 
the Biological Oxygen Demand (BOD), Chemical Oxygen 
Demand (COD) and Total Suspended Solids (TSS) particles 
in wastewater treatment facilities. The research used 
advanced data-mining techniques to model and forecast 
important wastewater treatment parameters. The 
outcomes showed how these methods could be used to 
maximize the effectiveness and efficiency of wastewater 
treatment systems. likewise, data mining has been 
effectively applied to environmental evaluations of 
wastewater treatment plants in order to estimate missing 
data and reduce monitoring expenses. 

Boyd et al. (2019) and Chaoui et al. (2023) managed 
missing data in their wastewater dataset using an ARIMA-
based imputation technique, and then employed an ANN 
and RNN models for prediction. Their enhanced approach 
yielded a 90% increase in oxygen injection and a 37% 
reduction in energy use throughout the evaluation period, 
demonstrating that machine learning may greatly 
optimize resource use in wastewater treatment. Rani et 
al. (2022) and Furqan Rustam et al. (2022) developed an 
efficient artificial neural network (ANN) model for 
predicting water quality and usage. The model 
outperformed earlier techniques and shown resilience 
while processing data on water quality. However, an 
unbalanced dataset that can lead to overfitting hampered 
the study. Future studies should focus on expanding and 
balancing the dataset in order to improve the 
generalizability of the model. Vijay Anand et al. (2023) 
developed a neural network model that uses images of 
water samples to predict water quality using CNN, 
TensorFlow, and Keras. The program evaluates water 
compatibility based on color and overall quality, with an 
initial testing accuracy of 85%. Despite showing promise 
for the initial screening, more data integration and 
algorithm improvement are needed to enhance its 
efficacy. In 2022, Junhao Wu and Zhaocai Wang 
introduced a novel ANN-WT-LSTM model that uses 
wavelet transform and time-series imputation to reduce 
noise.Across all model this model outperforms.  An IoT-
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enabled aquaculture pond's water quality can be classified 
using a Flexible Temporal Network (FTN) model based on 
deep learning, according to Arepalli and Naik (2025). Their 
method allows for precise real-time monitoring by 
efficiently capturing temporal fluctuations in 
environmental and water data. However, the accuracy of 
the model as a whole may be impacted by the quality and 
dependability of the sensor data. 

Similarly, to assess aquatic water quality data, Arepalli and 
Khetavath (2023) created a Time-Series Convolutional 
Neural Network (TS-CNN) model. The TS-CNN is 

appropriate for dynamic aquatic environments because it 
can detect short-term trends in water quality 
measurements with little preprocessing. Notwithstanding 
its advantages, this model has trouble identifying long-
term relationships, which restricts its capacity to forecast 
long-term trends in water quality. 

The below table presents a comprehensive review of the 
wastewater quality prediction studies, highlighting the 
methodologies used in each paper (Table 1). 

 

Table 1. Survey on Water Quality Prediction. 

S.No. Author(s) and Year Method / Algorithm Task / Application Dataset / Context Advantage(s) Limitation(s) 

[1] Asami et al. (2021) Data Mining 

Estimate missing 

data, reduce 

monitoring cost 

Sensor networks 
Improves system 

efficiency 

Requires 

preprocessing 

[2] Chaoui et al. (2023) ARIMA, RNN WWT plant control Time series data 
Captures temporal 

trends 

Vanishing gradients; 

linear assumptions 

[3] 
U. Ahmed et al. 

(2019) 
Regression, RF, MLP 

WQI/WQC 

prediction 

Surface water 

data 

Classification + 

regression 
Limited generalizability 

[4] Rustam et al. (2022) ANN 
Water use & quality 

prediction 

Mixed sensor + 

external data 

Dual target 

modeling 
Overfitting risk 

[5] 
Vijay Anand et al. 

(2023) 
CNN 

Water quality 

classification 

Local features 

from sensors 

Effective spatial 

feature extraction 

Imbalanced and 

limited features 

[6] Hu et al. (2019) LSTM 
Forecasting water 

quality 

Historical time-

series data 

Captures sequence 

dependencies 

Needs large data; high 

compute cost 

[7] P. Liu et al. (2019) LSTM, DNN Quality prediction 
Single-variate 

time series 

Deep learning 

effectiveness 

Needs tuning and 

optimization 

[8] Wu & Wang (2022) WT, ANN, LSTM 

Single-point 

reservoir quality 

prediction 

Reservoir data 
Combines multiple 

techniques 

Lacks spatial 

generalization 

[9] Arepalli & Naik (2025) 
Flexible Temporal 

Network (FTN) 

IoT-enabled pond 

water classification 

Sensor-driven 

aquaculture 

Real-time 

prediction 
Sensor dependency 

[10] 
Arepalli & Khetavath 

(2023) 

Time-Series CNN (TS-

CNN) 

Water quality trend 

detection 
IoT time-series 

Strong short-term 

pattern recognition 

Poor at long-term 

learning 

 

The working model discusses in detail about the process 
of purification followed by water sample analysis.  

2. Working methodology 

2.1. Water Purification by Ozone at various pressure levels 

Ozone air is pumped into the sample in the sample tank 
and the ozone is not directly taken by sample. It is good to 
pump ozone with a maintained level of 40 – 50 Pascal unit 
of pressure at optimal rate. The small amount of water 
taken 12.4 gallon per meter is pumped in to transparent 
tube with electrical charges plated at the ends and ozone 
is pushed into the tube for purification and the particles 
are dissociated as then the water components are 
separated from impure components and the wastewater 
is removed in gaseous state. The oxygen combines with 
ozone and hydrogen is released. This removes the waste 
and the germs from the water and a pressure is applied 
backward to retain the purification of water till the 
process completes. 

The quality of water is important for various usage based 
on where the water is obtained by us for our needs and 
several factors determine the water gets affected by 

impure substances, germs, viruses and harmful chemicals 
which makes it not suitable for usage of the human [Zhou, 
Y. et al. (2020), Holkar, C.R. et al. (2016)]. A large number 
of neural network models have been created to forecast 
the long-term quality of water. These models make use of 
neural units that can handle various datasets with 
different water samples according to a number of physical 
characteristics. They are categorized, trained to produce 
desired results, and often their performances are 
compared [Guedes-Alonso, R. et al. (2020)]. Ahmed, U. et 
al. (2019) done his research on efficient quality prediction 
in wastewater using supervised ML algorithms. Several 
purification approaches based on water quality and 
quantity obtained at raise or fall of level in source are 
evaluated by many valuable factors that physical 
(pressure, humidity, evapotranspiration, temperature etc) 
or chemical (acid rain, polluted water wastes). However, 
this research relies on large dataset for training the model 
and also which could restrict its application in areas with 
discontinuous or poor water quality data. In our research 
proposal a simulated and comparative studies are done 
based on ANN-LSTM, DWT-LSTM and CNN-LSTM to 
improve the efficacy of the neural models and 
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comparative tables and graphs are generated using 
python code. 

2.2. Treatment of Water Sample 

The water treatment can be carried out based on 
chlorination techniques in which sample of water gets 
added to the different forms of chlorine such as sulphates, 
hydrates which are capable of removing germs and many 
hard substances found in water samples and convert it to 
a suitable form for drinking. The water quality is the most 
powerful element considered as the best outcome among 
the threats created by population and pollution in recent 
era. The physical parameters we had addressed in the 
research are pressure and evapotranspiration.  

In order to improve water management, Ashwini, K. et al. 
(2022) carried out research to create an intelligent model 
for predicting water quality. The LSTM working suggests 
many quality factors for prediction that are evaluated 
with improved correlation mapping when analysed with 
other neural models (Figure 1). 

 

Figure 1. Model of Ozone purification. 

Some oxygen elements are extracted from the air when it 
is pressured and pumped into the vacuum vessel on a 
great force then when ozone is pumped in to the water 
sample in the tank which is capable of purifying the 
sample. The whole system is supported by the modulator 
and managed by the controller by the control panel, 
based on various atmospheric pressure the process is 
repeated again and again for better accuracy (Figure 2). 

 

Figure 2 Waste Water Treatment Process. 

2.3. Waste water treatment process 

The main objective of wastewater treatment methods is 
to improve the accuracy of water treatment. There are 
two basic stages in the waste treatment that can be basic 
and additional technique, which can be essential for 
treating the waste samples to a purified water. In the 
basic step, the unwanted material is sedimented at the 
bottom and selector removes those wastes by residual 
activation and additional methods includes sludge 
handling and buffering and the process is repeated to 

remove the aerobic digestion from pre thickening of the 
sediments and there by the water gets purified effectively. 
Chen, H.J. et al. (2013) looked into the effectiveness of 
treatment and the microbial community. subsequently 
explored the relationship between microbial diversity and 
the effectiveness of treatment. 

2.4. Effects of Water and water quality in ground water 

There are several factors for water loss and majority of 
the water are dirty and not suitable for usage for various 
purposes. Wang, M. et al. (2017) researched on how 
effectively wastewater treatment works to prevent the 
spread of antibiotic resistance in the environment. To 
safeguard human health, the ecosystem's integrity, and 
the economy's sustainability, it is imperative to have a 
complete understanding of the effects on water quality. 
Contaminated water poses serious risks to human health, 
harms aquatic ecosystems, and impedes agricultural and 
industrial operations. Thus, in order to address the 
shortage of water and guarantee that different water-
dependent areas have access to high-quality water, water 
treatment is important for the purification and can avoid 
the rate of evaporation from the soil is predicted by the 
radiation level of the soil top to maintain the water level. 
There by we can retail the water level and quality at a 
considerable rate on the living areas. The fertility of the 
soil is depleted by crops as they develop quickly; this is 
dependent on the cultivated area. Crop growth inhibition 
lowers soil water loss because it decreases 
evapotranspiration. The rate of water loss is noticeably 
higher in mature trees, nevertheless. The transpiration 
covered from the layer of sand, can be the major process. 
Water obtained is measured as the amount got per unit 
area (litre/ meter). This amount refers to the water 
vapour from sources of water by the above two process. 
The heat of evaporization (Hevap) denotes the hotness 
used for evaporation of water to vapour. If 1ml of water is 
vaporised then energy can be in vaporised form based on 
the regions either hot, cod or medium in temperature. In 
the area of humid climate or rainfall region the 
evaporation is less compared to the high temperature 
regions. 

The table below gives the temperature and water loss of 
several regions in Tamil Nadu . The region as classified as 
tropical, sub-tropical, humid, arid area and temperature 
varies accordingly and the rate of water evaporated 
differs based on many aspects. 

The scarcity of water in dry areas or the excess intake of 
water by living organs (plants, animals or humans) can 
also affect the cycle of inhabitation and the process of 
evapotranspiration. Management of water supply to the 
crops the intake and usage of living beings can also 
considered for improving the water cycle rate based on 
evaporation, transpiration, precipitation and so on. The 
method of growing crops can be also taken into account 
along with the climate, type of plants, soil nature, and 
area of cultivation. The rainfall, wind, temperature also 
has serious factors to be considered. Water demand rises 
as a result of substantial effects on different areas caused 
by decreases in water levels from sources like 
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groundwater or rainfall. One of the main causes of water 
scarcity in all its manifestations is still the dryness of the 
soil surface. One of the main indicators of water scarcity is 
the persistence of dry soil surfaces. Various irrigation 
techniques, such as drip systems, bore wells, and 
traditional methods, can be used to decrease water loss in 
cultivated lands in order to address this issue. The type of 
plants grown determine the rate of water loss by 

evaporation or by transpiration. Every factor to be 
considered is to minimise the water loss. Prasad, A.N. et 
al. (2015), Mohammed, H. et al. (2018), and Singh, P. et al. 
(2017) researched a variety of methods for monitoring 
and predicting water quality. To maintain the ecosystem 
wellbeing waste water can be treated and water quality 
must be maintained and properly channelized for the 
proper usage of water in all conditions (Table 2). 

Table 2. Shows the regions and temperature changes that affect the water evapotranspiration. 

Regions 

Avg Temp (°C) 

Cold Medium Hot 

~5°C 25°C > 40°C 

Regions of Tropical 

- humid / sub 4 – 5 3.5 – 4.5 6.5 – 8 

-arid area 1.8 – 3.6 4.0 – 5.6 7 – 8.1 

Region of Temperate 

- humid area 0.9 – 1.8 2.3 – 5 3.6 – 6.8 

-arid/ semi  1.2 – 3.8 3.7 – 6.7 7.5 – 10 

3. Materials and methods 

3.1. Handling data sets 

3.1.1. Data mining with normalization 

Normalization results bring the output of many different 
working models in neural networks that are scaled and 
classified and the correlation derived gives a normalized 
value based on experimentation with diffused samples of 
water based on parameters of air pressure or 
evapotranspiration. The samples mean is calculated with 
maximized or minimized samples as 

 mean    min /  max –  minX Xi X X X= −  (1) 

The mean value is obtained by the above formulation or 
equation (1) based on normalization which gives the 
extract of datasets based on data variability. 

3.2. Proposed methodology for water quality prediction 

The diagram below shows the quality prediction based on 
HDWN models, which helps to determine the samples 
been tested and then trained for various predictions. 
Initially data samples were collected from Tamil Nadu 
regions and the model process are given blew 

3.2.1. Data preprocessing 

Data processing is the first step to dealing with missing 
values, outliers, other anomalies in the data, preliminary 
data cleaning and preprocessing are necessary. Using the 
Discrete Wavelet Transform (DWT), the input time series 
data is divided into various frequency bands. 

3.2.2. Feature selection 

Convolutional Neural Networks (CNNs) are used to extract 
spatial characteristics from the date set. Even though the 
data set contains many features and select the feature 
which are more helpful in the prediction process. Within 
the wastewater treatment settings, convolutional layers 
with filters are used to capture spatial correlations and 
local trends. 

3.2.3. Modeling with LSTM 

Using Long Short-Term Memory (LSTM) layers to model 
temporal dependencies and identify long-term trends in 
time series data. LSTM learns the hierarchical information 
about the data in prediction process. 

3.2.4. Model Architecture 

Decomposed input signals are accepted by the input layer. 
DWT layers: Use DWT to separate the input signals into 
their component frequencies. CNN layers: Convolutional 
layers are used to extract spatial information from the 
decomposed data. LSTM layers: Recognize long-term 
trends in the data and model temporal dependencies.  

Output Layers Produces forecasts for future wastewater 
parameters at the output layer. 

3.2.5. Training and Testing 

Eighty percent of the data in this suggested technique 
were utilized for training the model, and twenty percent 
were used for assessing the model's predictive 
capabilities. MSE, RMSE, MAE, and MAPE have all been 
used to evaluate the model (Figure 3). 

Finally measured the quality and quantity of water based 
on the sample parameters considered for various water 
collected from several areas based on Ph, COD, BOD, Total 
Nitrogen temperature, humidity, soil texture they are 
analysed and tabulated and finally the comparative results 
show the best water prediction models and the factors to 
be considered in future evaluations. The detailed process 
of the HDWN model is given below in Algorithm 1. 

3.3. Data Flow Diagram 

The dataflow diagram is the pictorial representation of 
workflow of how the water sample are analysed and 
predicted based on several long- and short-term memory 
process and the classification and predictions are made 
with best accuracy and the output is compared with 
several iterative analysis and predictions made many 
times which is capable of providing many precise outputs. 
The Figure 4 shows the data flow diagram is with the 
process of prediction and comparison. 



6  RANI and RUBHAVATHI 

 

 

Figure 3. Architecture of Hybrid Deep Wavelet Network Model. 

 

Figure 4. Data Flow Diagram of prediction and comparison of 

water samples. 

3.4. Neural Network Structure 

The Neural models in machine learning which includes 
three basic units called the input layer, the middle layer 
and output layer, where Xi is the input sample and middle 
layer denoted as Xim and output layer Yi. The model 
diagram below shows the neural network with n number 
of nodes. 

 

Figure 5. Structure of the Neural Network Model. 

The neural model's structure is depicted in Figure 5. It 
analyzes X input samples, sends them to many hidden 
layers, and then outputs Y samples. 

 

Figure 6. Shows the wavelet transform generation based on n 

samples with Fourier formulation. 

3.5. Formulation in Wavelet Transform 

Transformation of Wavelet series holds samples based on 
time, error value (mean/sample) or other factors for 
processing the outcomes. The Fourier transform in series 
which super imposes the input with varied frequencies. 
This wavelet transforms based on CNN or DWT-CNN with 
support of LSTM helps in predicting the values with high 
efficacy depending on varied frequency range. This 
wavelet transformation divides the waves considered as 
input in many bands of signals with varied feature namely 
frequency, time, error, and bandwidth. This is capable of 
enhancing the signal localization to overcome its basic 
limitations. An CNN-LSTM with Attention mechanism for 
forecasting effluent quality is presented by Li Y et al. in 
2023.To improve prediction accuracy, attention 
mechanisms with CNN and LSTM networks. Their results 
point to promising developments in effluent wastewater 
quality prediction, which can greatly enhance wastewater 
treatment procedures and guarantee water quality 
standards (Figure 6). 

Algorithm 1:  Hybrid Deep Wavelet Network (HDWN) Wastewater Quality Prediction Model  

1: Input data D= {d1, d2, …… dn,} // ex: Ph, turbidity, COD, BOD, etc., 

2: Preprocessing: handling missing data and Normalization 

      DClean = Normalize (Clean (D)) 

3: Wavelet Decomposition  

      Wavelet Function: W= Wavelet(type) 

      Decompose data:  C=Decompose (Dclean, W)   

      where C = {Clow, Chigh}. 

4: Feature Extraction 

      F=Extract_Features(C) // Extract from both time and frequency domains. 

5: Model Initialization 

      M=HDWN_Model () 

      Design the hybrid model using convolutional (CNN and LSTM). 

6: Model Training 

      Mtrain =Train (M, F, L, loss="MSE’, optimizer="Adam") 

 7: Validation 

      Sval=Validate (Mtrain, Dval). 

8: If Sval > threshold       

9:      Tune hyperparameters H={h1, h 2, …, hn} // Ph, BOD, COD etc., 

10: Prediction 

      P = Predict (Mtrain, Dtest) // Generate predictions for future wastewater parameters.  

11: Performance Evaluation 

       E = Evaluate (P, Dactual,{RMSE, MAE, R2}) 

       Assess model accuracy using performance metrics. 

12: Output Results 

      Output: Predicted parameters P, trends, and visualizations.  
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3.6. Convolution neural networks with LSTM 

Convolution neural networks with LSTM in Figure 7 is 
based on LSTM has many filtrations of samples in parallel 
at all possible levels of working gives best trained samples 
as the output. The LSTM with every other information 
corresponding to the state are processed across several 
times with factor of time added in turn to the input 
samples considered for analysis. These different models 
have predictions made very easy even though handling 
many datasets as samples in an iterative. 

 

Figure 7. Shows the LSTM model. 

The input samples of water with measured quantity in 
liters or milliliters are collected and convoluted as sub 
samples and then pooled together and the process gets 
repeated several times and passed through the hidden 
layers and finally combined as a single output which best 
results based on accuracy. Figure 8 shows the Process of 
LSTM with convolution model for data samples collected 
from different regions and the data has been transmitted 
to different layer before reaching the output layer. 

 

Figure 8. Shows the LSTM with convolution model handling n 

different samples. 

3.7. Mechanistic Insight: DWT’s Role in Enhancing 
CNN/LSTM 

The proposed HDWN architecture includes a 
preprocessing step using Discrete Wavelet Transform 
(DWT) to address the main shortcomings of traditional 
deep learning models like CNN and LSTM.While CNNs are 
adept at extracting spatial features, they can overfit noisy 
datasets and cannot handle temporal variability.Although 
LSTMs are designed to capture temporal dependencies, 
they struggle with non-stationary signals and long-term 
dependencies when high-frequency fluctuations or 
irregular trends are present. 

To improve learning efficiency and enhance signal quality, 
the input time-series data stored in CSV format were 
subjected to Discrete Wavelet Transform (DWT). The 
dataset was tabular, but the temporal nature of 
parameters like pH, BOD, COD, ammonia, pressure, and 
humidity enabled effective decomposition. DWT divides 
each signal into low-frequency (approximation) and high-
frequency (detail) components, separating noise from 
significant trends. Thanks to this denoised, multiresolution 
representation, Convolutional Neural Networks (CNN) can 
extract spatial features that are more robust, and Long 
Short-Term Memory (LSTM) units can model long-range 
temporal dependencies with greater accuracy. DWT 
reduces input volatility and filters noise, which improves 
the model's signal-to-noise ratio, speeds up convergence, 
and enhances generalization performance across various 
environmental conditions. 

3.7.1. Performance Contrast Between HDWN and 
Contemporary Models 

Provide a clear comparison of HDWN with 2–3 latest 
models from the literature survey regarding architecture, 
pre-processing, and prediction robustness. 

 

Table 3. Performance Contrast Between HDWN and Contemporary Models. 

S.No Model Limitation HDWN Resolution 

1 CNN 
Ignores temporal dynamics; sensitive to 

noise 
DWT filters noise; LSTM captures temporal dependencies 

2 LSTM Struggles with non-stationary signals DWT decomposes signals into more stationary subbands 

3 TS-CNN (2023) Noisy data degrades performance Pre-DWT denoising improves CNN’s feature extraction 

4 ARIMA (2023) 
Poor non-linear pattern learning; high 

bias 

HDWN captures non-linear trends via LSTM and DWT’s 

multi-resolution input 

5 ANN-LSTM (2022) 
Overfitting due to lack of preprocessing 

and signal control 

DWT smooths input variation, improving generalization 

and preventing overfitting 

6 FTN (2025) 
Depends heavily on sensor quality and 

lacks inherent noise filtering 

DWT pre-processing mitigates sensor noise and improves 

signal robustness 

7 
Rustam et al. 

(2022) 

Generalizability concerns with ANN 

architecture 

HDWN's hybrid design balances feature richness and 

sequence modelling 

4. Results and Discussion 

The water samples of different physical features are taken 
as input and the nature of water based on chemical 
factors are evaluated and every pH, salt, hydrates, 
sulphates are analysed and are tested and trail values are 
excavated from various predictions and finally the best 
quality of water samples with low salt, pH values are 
taken to get best water as the output of purification. 

The water quality value is multiplied by the factors 
affecting the water and then divided by the water factors 
to determine the water quality index. The given variation 
shows the quality of water from  number of variables, 
including turbidity, pH, dissolved oxygen, and nutrient 
levels. After being gathered from diverse locations, these 
samples are tested and purified to provide a dataset with 
varying degrees of water quality metrics. This connection 
assists in the visual representation of the heat map of 
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water quality parameters, which shows variations in water 
quality over various locations and time periods visually. 
Each parameter's value is correlated with a particular 
color intensity 

The samples taken are send to various stages when the 
input is passed to several hidden layer the unwanted 
information is not considered for evaluation are left and the 
reaming considerable factors are sent to the other level of 
predictions and each state holds the message that re 
considerable and several un wanted details are removed 
while working with long short term memory model. 

Table 3. Heat map diagram of various parameters considered for 

the sample water predicted. 

 

 

Figure 9. Sample Data set (a) Shows the pH level measured with 

the water sample (b) the COD of the water level (c) shows the 

BOD in water sample (d) The Total Nitrogen level in the water 

sample. 

The graph below shows the variation of several prediction 
algorithm used based on many water samples taken and 
the predicted. The outcome gives the best accuracy of the 
samples evaluated. The LSTM with conventional model or 
based on wavelet transform gives better results when 
compared to other ANN models of neural working 
methodologies. Then chemical on demand, the pH values, 
the salinity, the hardness, solid wastes, organic 

carbonates also determine the water quality affecting 
factors and the purification level should be high for the 
best water samples to evolve and makes the water quality 
and quantity better compared with other methods of 
testing and training. The below Figure 9 shows the original 
date values from the water samples.  

The conventional model was built to evaluate the water 
quality by machine learning methods of different 
formulations with support of regressive variables and co-
efficiency considered for better practices. 

Predictive circumstances are affected by temperature 
variations in oxygen concentration and chemical 
composition during the intervals between water sample 
collection. The sample mean formula is used to measure 
training performance, and the index shows the graphical 
yield after taking into account different parameters. Both 
long and short memory techniques are used to generate 
the variables, and to improve results, convolutional 
support and wavelet transformation-based LSTM analysis 
are used. Comprehensive measures are taken to evaluate 
the prediction model's accuracy across large training and 
testing samples. 

It is essential for preserving valuable water for sustainable 
use in the face of diminishing water resources. Current 
variations in water quality and quantity, seen in regions 
such as Tamil Nadu, India, and many other places across 
the world, show different times of need. Analyzing oxygen 
demand from evapotranspiration is made easier by using 
a neural network such as LSTM with convolutional 
analysis; wavelet transform is used to identify compounds 
in water samples and forecast carbon need. This 
predictive technique is strengthened by large datasets 
covering multiple parameters, which allows for more 
precise predictions and is reinforced by purifying 
procedures. 

4.1. Prediction of Chemical parameter of Water Quality 

The DWT-CNN-LSTM model prediction of various 
parameters from the data sample collected.  The data 
consist of Ph, COD, BOD, TN, Ammonia etc. There samples 
are pre-processed and given the model for prediction. The 
below Figure 10a to 10e shown the prediction accuracy 
level of the data which is given to the model. 

 

Figure 10a. Actual Vs Predicted BOD. 

Figure 10a show the precited values for BOD from the 
given data set original BOD for the last 50 days. The 
prediction accuracy is much better than the other 
algorithms. Figure 10b Show the predicted value of COD 
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from the given data set. Figure 10c and d are the 
prediction graph of Ammonia and Total Nitrogen. 

 

Figure 10b Actual Vs Predicted COD. 

 

Figure 10c. Actual Vs Predicted Ammonia. 

 

Figure 10d. Actual Vs Predicted Total Nitrogen. 

 

Figure 10e. Actual Vs Predicted Temperature. 

4.2. Prediction of Physical parameter of Water Quality 

Wastewater can have physical attributes that are 
quantifiable and visible without changing the water's 
chemical composition. These measurements contain vital 
information regarding the general state and properties of 
the water. In our model the physical parameter 
temperature of the water sample can be consider for the 
prediction of Waste Water treatment plant process 
efficiency. Figure 10e shows the predicted values of 
temperature. Temperature has an impact on a number of 

biological and chemical wastewater treatment processes 
and may be a sign of thermal pollution or industrial 
discharges. It may cause the misprediction if the water 
temperature is more. 

4.3. Prediction of Energy Consumption of WWTP 

The necessity for several physical, electrical, and thermal 
processes involved in wastewater treatment results in a 
considerable energy consumption in wastewater 
treatment facilities (WWTPs). WWTPs can improve overall 
sustainability, minimize operational costs, and lessen their 
environmental impact. Figure 11 Shows the energy 
consumption prediction of Waste water treatment. From 
the prediction we can regulate the sustainability, overall 
operational cost in terms of all resource’s usages. It can 
help to reduce the overall impact of environmental 
pollutants.  

 

Figure 11. Actual Vs Predicted Energy Consumption. 

This process is repeated iteratively and many predictions 
are made based on very important factors considering the 
accuracy as 98.8 percentage while handling large or small 
amount of dataset in real. 

4.4. Comparison HDWN with other models of ML 

The comparative graph was generated with several modes 
in which convolution-based LSTM model shows better 
results on calculating the mean sample valve predicted 
when compared with the n samples of water from several 
regions of hot, humid, rainy, moderate climate where the 
rate of pressure and evapotranspiration varies from time 
to time [43]. The mean rate of 110 is obtained for CNN-
LSTM model and long and short-term model with 95 mean 
rate and artificial model with 80 and persistent forecast of 
70 and so on as the output of the several predictions 
analysed form the given data set. 

Table 4 show the model prediction accuracy by the model 
evaluation. The Model Performance Evaluation is based on 
the metric MSE, RMSE, MAP MAE and R2. Our proposed 
model achieved 98.8% accuracy than other models.  

In our model we achieved better performance that can be 
shown as a graph. In Figure 12 Comparison of the 
Proposed Model Evaluation with other algorithms is given. 
Where MSE is 1.03, RMSE is 0.74, MAPE is 0.87 , MAE is 
0.42 and R2 is 0.71 the higher error rate by other 
algorithm but by our proposed method is very less than 
the other model MSE is 0.068, RMSE is 0.23, MAPE is 0.55 
,MAE is 0.19 and higher R2  0.94. Our model performance 
is increased than the other model. 
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Figure 12. Comparison of Proposed Model Evaluation with other 

algorithms. 

The various water samples are collected as input and 
those data collections are sent to the convolution layer 
and the predictions are memorised in pools and iteratively 
it is tested and trained several times based on LSTM with 
convolution and finally all the predicted samples are 
summed together to get the mean optimal samples with 
utmost trustful data output. 

The comparative study analyses many best models of 
prediction and this research can use ARIMA model, 
wavelet-based Fourier model along with LSTM model for 
many levels of predictions and can handle larger volumes 
of data collection. 

4.4.1. Innovation in Comparison with Existing Techniques 

This work's innovation is the HDWN model, which 
effectively extracts both spatial and temporal information 
from water quality data by combining the Discrete 
Wavelet Transform (DWT) with a hybrid CNN-LSTM 
architecture. The suggested model has improved 
predictive accuracy and robustness for coastal water 
quality forecasting, as evidenced by its much-reduced 
error rates (MSE: 0.068, RMSE: 0.2325, MAPE: 0.55%, 
MAE: 0.1945, R²: 0.94) in comparison to existing models 
like FTN, TS-CNN, and ARIMA. Our method differs from 
earlier research because it combines deep sequential 
learning with wavelet-based preprocessing. 

Table 4. Comparison of various Model Evaluation using metrics MSE, RMSE, MAPE  MAE and R2. 

Parameters / Model MSE  RMSE MAPE MAE R2 

HDWN 0.068 0.2325 0.55 0.1945 0.932 

FTN 0.3251 0.273 0.43 0.179 0.6749 

TS-CNN 0.5612 0.23 0.36 0.1798 0.4388 

CNN-LSTM 0.6515 0.2405 0.344 0.18975 0.3485 

ANN -LSTM 0.7745 0.64 0.87625 0.42275 0.2255 

ARIMA 1.03525 0.7395 0.29075 0.2595 0.0101 

Water quality prediction is enhanced by the HDWN 
model's integration of DWT, CNN, and LSTM, which 
combines their respective advantages. By breaking down 
and eliminating noise from the data, DWT assists in 
identifying significant frequency components. While LSTM 
learns long-term temporal connections necessary for 
time-series forecasting, CNN extracts significant spatial 
characteristics from these modified signals. In comparison 
to conventional models, this integration improves 
accuracy, resilience, and generalization by enabling the 
model to handle complicated, noisy, and non-linear water 
quality data. 

5. Conclusion and Future work 

This research emphases on prediction of water quality 
based on various samples from different area with several 
models based on LSTM with CNN or wavelet transform 
series as proposed, the water sample collected from 
various regions of south Tamil Nadu as sample input 
object and monitoring done based on pressure, humidity, 
evapotranspiration and effluent water treatment is done 
to remove the unwanted wastes from the water and 
made it useful for varied purpose both commercial and 
domestic 

(1) The fluid nature of the water with different ranges 
trained and tested with many neural models gives 
effective accuracy and this could be enhanced with 
better outcome with different samples of water 
from other districts of Tamil Nadu based on soil 
topography 

(2) The predicted samples with chemical oxygen 
demand are evaluated with models of convolution 
based long and short-term memory network and 
also based on wavelet transform neural models and 
many correlated variables are analysed and 
predictions made with high level of accuracy. This 
research could be improved based on many factors 
that determine the quality of water both physical 
and chemical parameters. 

(3) The LSTM with CNN along with ARIMA, ANN and 
Persistent models are compared and better outputs 
are given with better predicted quality of water 
when compared with other models such as ANN. 
This research considers small dataset of water taken 
from a defined area as input and predictions are 
made based on quality factors. This can be 
improved by extending the various classification 
and prediction algorithm in future. Also, the 
management of water quality if done to control the 
effects of humans as pollutions and wastage. 
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