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ABSTRACT

The process of predicting the water quality is done by
various predictions algorithms using Neural network
based on Artificial Intelligence and Machine Learning
methods. Several water quality detecting indicators are
used to measure the purity level of water with the
amount of usage based on topography and area of
utilization. Its objective is to lessen the water scarcity in
the region by giving valuable guidance and solutions. In
order to handle wastewater treatment and forecasting, a
hybrid wastewater forecasting model has been presented.
Among many other factors, this prediction procedure
takes into account pH, COD, BOD, ammonia, pressure, and
humidity. Long Short-Term Memory (LSTM), Convolutional
Neural Networks (CNN), and Discrete Wavelet Transform
(DWT) are all integrated in a Hybrid Deep Wavelet
Network (HDWN). In HDWN model, CNNs retrieve spatial
information, LSTMs model temporal dependencies, and
DWT breaks down input signals. This integration makes it
possible to make precise forecasts and insights, which
makes it easier to monitor and optimize treatment
systems effectively and lessen South Tamil Nadu's water

scarcity. This model performance evaluated using metrics
MSE is 0.068, RMSE is 0.2325, MAPE is 0.55 MAE is
0.1945 and R?is 0.932. The comparative analysis of the
tested results based on Integrated Neural Network LSTM
model shows best predictions. Hence this HDWN model is
useful for prediction and forecasting the wastewater
quality.

Keywords: Prediction Algorithms, Wastewater treatment,
Water Quality Parameter, Machine Learning, Convolution
Neural Networks, Long Short-Term Memory Algorithm.

1. Introduction

The Urbanization leads to the need of water demand in
various purposes of agriculture, large factories,
household, manufacturing unit etc. The various sources of
water are pre-owned by many human activities which in
turn lead to the rise of water scarcity in many areas of our
country. Several factors such as increase in man power,
development of cities and factories and domesticated life
style makes all the renewable resources depleted in
future years. The authors guvava, M et al. (2019) insisted
the essential usage of pure water in adequate quantity
with measurable quality range in various levels of
applications in many districts need plenty of fluid
resources. It is possible to reuse the treated water from
industry and costal water. Ziadi, A. et al. (2019) This
research investigation in the sources of pollution and
mineralization in the Lebna, Cap Bon, Tunisia's coastal
water sources. In order to determine the anthropogenic
and natural elements influencing water quality, hydro
chemical features were observed. The research revealed
serious pollution caused by saline intrusion and farming
practices, endangering the area's water supplies. Zhou, Y.
et al. (2020) The authors say the research evaluated
methods for reducing pollution in coastal waterways that
are significantly impacted by human activity. It made clear
that in order to effectively prevent pollution, coordinated
methods integrating technological, ecological, and
regulatory measures are required. Many physical factors
are analysed to measure the water purity level by
predicting the amount of usage and wastage. The water
purified by the process of waste water management by

J. Priskilla Angel Rani and C. Yesubai Rubhavathi (2025), Smart wastewater management: A hybrid deep wavelet network model for
improved water quality forecasting, Global NEST Journal, 27(9), 06306.


https://doi.org/10.30955/gnj.06306

applying biological factors, physical factors and chemical
treatments. Many upcoming methodologies are discussed
in various research regarding the water quality prediction
and aim in measuring the pure water and its availability in
various sectors. In order to forecast the Coastal Water
Quality Index (waQl), Uddin et al. (2022) assessed a
number of machine learning models, such as Decision
Trees, Random Forests, and Extreme Gradient Boosting.
According to their research, tree-based models fared
noticeably better than other models in terms of prediction
accuracy. These models were used to assist manage water
quality in coastal habitats by lowering uncertainty and
offering a solid foundation. This method represents a shift
from conventional pollution control techniques, such as
those proposed by Tayeb et al. (2015), to predictive, data-
driven water management. Chaukura, C. et al. (2020)
provides a detailed review of current concerns about the
presence and elimination of disinfection byproducts in the
consumption of water. This research discusses the
challenges and developments in addressing the issues. In
2020, Alvarez-Ruiz, R. and Picd, Y.carried out research
analyzing the contaminants and new methods affecting
different types of water resources. It emphasizes the
importance of water treatment and monitoring the
difficulties of treatment process. Ahmed, U. et al. (2019)
examined effective water quality prediction by means of
supervised machine learning algorithms. Effluent waste
water treatment is essential for the treating the waste
water to improve the quality and quantity of usage in
several applications. The process includes eight stages of
purification first is the screening technique of the sample
followed by the effective screening and clarification
process with aeration to avoid unwanted effluents in
water and supply of chlorination to avoid disinfection and
water testing is done for better results which result in
disposal of major and minor wastes and avoids loss of
water quality enabling better purified water as the end
product. Many sensing techniques are used to measure
the rate of water evaporation or transpiration occurred
which may cause water loss apart from being
contaminated. Industrial wastes, household waste and
other solid and liquid waste gets mixed with the available
water and reduce the level of availability of pure water.
Measuring the water purity is based on pressure and this
includes two process one is primary process and another
one is secondary process. These methods include adding
chlorine and finally with ozone treatment based on
pressure retention that separates pure water and
removes other impurities which makes 99.8 percent of
purity measure and this percentage differs based on
topography. This ozone treatment method can treat
germs better than chlorine. This water can be taken as
samples from various soil texture for analysing and
predicting the level of purity based on factors mentioned
above. Arepalli, Naik, and Amgoth (2024) suggested an
Internet of Things-based framework utilizing the Cluster-
Guided Temporal Flexible Network (CGTFN) model to
improve the precision of water quality analysis and
categorization in treatment procedures. Because it
incorporates ambient and water characteristics to
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enhance classification accuracy and guarantee energy-
efficient, real-time monitoring, this framework is ideal for
smart aquaculture systems.

1.1. Related Work

In recent decades, both mechanical and non-mechanical
way of water quality predictions were applied for water
quality prediction purposes. Ahmed, U. et al. (2019) When
predicting water quality, a non-mechanical method can
yield forecasts that are more accurate than those
produced by conventional methods. Based on regression
and random forest WQl is predicted. Liu, P. et al. (2019)
and Hu, Z. et al. (2019) both investigated and provide the
prediction of water quality using deep learning
algorithms. The two experiments demonstrate how LSTM
networks may enhance water quality prediction and
management. LSTM model is used to predict the PH and
COD variable with historical values for prediction. The
model performed better than the ARIMA and SVR models,
with a mean squared error (MSE) of 0.0017. By applying a
data-mining technique, Asami, H. et al. (2021) simulated
the Biological Oxygen Demand (BOD), Chemical Oxygen
Demand (COD) and Total Suspended Solids (TSS) particles
in wastewater treatment facilities. The research used
advanced data-mining techniques to model and forecast
important wastewater treatment parameters. The
outcomes showed how these methods could be used to
maximize the effectiveness and efficiency of wastewater
treatment systems. likewise, data mining has been
effectively applied to environmental evaluations of
wastewater treatment plants in order to estimate missing
data and reduce monitoring expenses.

Boyd et al. (2019) and Chaoui et al. (2023) managed
missing data in their wastewater dataset using an ARIMA-
based imputation technique, and then employed an ANN
and RNN models for prediction. Their enhanced approach
yielded a 90% increase in oxygen injection and a 37%
reduction in energy use throughout the evaluation period,
demonstrating that machine learning may greatly
optimize resource use in wastewater treatment. Rani et
al. (2022) and Furgan Rustam et al. (2022) developed an
efficient artificial neural network (ANN) model for
predicting water quality and usage. The model
outperformed earlier techniques and shown resilience
while processing data on water quality. However, an
unbalanced dataset that can lead to overfitting hampered
the study. Future studies should focus on expanding and
balancing the dataset in order to improve the
generalizability of the model. Vijay Anand et al. (2023)
developed a neural network model that uses images of
water samples to predict water quality using CNN,
TensorFlow, and Keras. The program evaluates water
compatibility based on color and overall quality, with an
initial testing accuracy of 85%. Despite showing promise
for the initial screening, more data integration and
algorithm improvement are needed to enhance its
efficacy. In 2022, Junhao Wu and Zhaocai Wang
introduced a novel ANN-WT-LSTM model that uses
wavelet transform and time-series imputation to reduce
noise.Across all model this model outperforms. An loT-
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enabled aquaculture pond's water quality can be classified
using a Flexible Temporal Network (FTN) model based on
deep learning, according to Arepalli and Naik (2025). Their
method allows for precise real-time monitoring by
efficiently  capturing  temporal fluctuations in
environmental and water data. However, the accuracy of
the model as a whole may be impacted by the quality and
dependability of the sensor data.

Similarly, to assess aquatic water quality data, Arepalli and
Khetavath (2023) created a Time-Series Convolutional

appropriate for dynamic aquatic environments because it
can detect short-term trends in water quality
measurements with little preprocessing. Notwithstanding
its advantages, this model has trouble identifying long-
term relationships, which restricts its capacity to forecast
long-term trends in water quality.

The below table presents a comprehensive review of the
wastewater quality prediction studies, highlighting the
methodologies used in each paper (Table 1).

Neural

Network

(TS-CNN)

model.

Table 1. Survey on Water Quality Prediction.

The TS-CNN is

S.No. Author(s) and Year Method / Algorithm Task / Application Dataset / Context Advantage(s) Limitation(s)
Estimate missing .
. . Improves system Requires
[1] Asami et al. (2021) Data Mining data, reduce Sensor networks . .
o efficiency preprocessing
monitoring cost
. i . Captures temporal Vanishing gradients;
[2] Chaoui et al. (2023) ARIMA, RNN WWT plant control Time series data . .
trends linear assumptions
U. Ahmed et al. . wal/wQc Surface water Classification + L o
[3] Regression, RF, MLP o . Limited generalizability
(2019) prediction data regression
Water use & quality Mixed sensor + Dual target .
[4] Rustam et al. (2022) ANN o . Overfitting risk
prediction external data modeling
[5] Vijay Anand et al. CNN Water quality Local features Effective spatial Imbalanced and
(2023) classification from sensors feature extraction limited features
Forecasting water Historical time- Captures sequence Needs large data; high
(6] Hu et al. (2019) LSTM ) ) )
quality series data dependencies compute cost
. . - Single-variate Deep learning Needs tuning and
[7] P. Liu et al. (2019) LSTM, DNN Quality prediction . . . o
time series effectiveness optimization
Single-point . . .
. . . Combines multiple Lacks spatial
[8] Wu & Wang (2022) WT, ANN, LSTM reservoir quality Reservoir data K L
L techniques generalization
prediction
. . Flexible Temporal loT-enabled pond Sensor-driven Real-time
[9] Arepalli & Naik (2025) . L Sensor dependency
Network (FTN) water classification aquaculture prediction
Arepalli & Khetavath Time-Series CNN (TS-  Water quality trend . . Strong short-term Poor at long-term
[10] ) IoT time-series i )
(2023) CNN) detection pattern recognition learning

The working model discusses in detail about the process
of purification followed by water sample analysis.

2. Working methodology

2.1. Water Purification by Ozone at various pressure levels

Ozone air is pumped into the sample in the sample tank
and the ozone is not directly taken by sample. It is good to
pump ozone with a maintained level of 40 — 50 Pascal unit
of pressure at optimal rate. The small amount of water
taken 12.4 gallon per meter is pumped in to transparent
tube with electrical charges plated at the ends and ozone
is pushed into the tube for purification and the particles
are dissociated as then the water components are
separated from impure components and the wastewater
is removed in gaseous state. The oxygen combines with
ozone and hydrogen is released. This removes the waste
and the germs from the water and a pressure is applied
backward to retain the purification of water till the
process completes.

The quality of water is important for various usage based
on where the water is obtained by us for our needs and
several factors determine the water gets affected by

impure substances, germs, viruses and harmful chemicals
which makes it not suitable for usage of the human [Zhou,
Y. et al. (2020), Holkar, C.R. et al. (2016)]. A large number
of neural network models have been created to forecast
the long-term quality of water. These models make use of
neural units that can handle various datasets with
different water samples according to a number of physical
characteristics. They are categorized, trained to produce
desired results, and often their performances are
compared [Guedes-Alonso, R. et al. (2020)]. Ahmed, U. et
al. (2019) done his research on efficient quality prediction
in wastewater using supervised ML algorithms. Several
purification approaches based on water quality and
quantity obtained at raise or fall of level in source are
evaluated by many valuable factors that physical
(pressure, humidity, evapotranspiration, temperature etc)
or chemical (acid rain, polluted water wastes). However,
this research relies on large dataset for training the model
and also which could restrict its application in areas with
discontinuous or poor water quality data. In our research
proposal a simulated and comparative studies are done
based on ANN-LSTM, DWT-LSTM and CNN-LSTM to
improve the efficacy of the neural models and



comparative tables and graphs are generated using
python code.

2.2. Treatment of Water Sample

The water treatment can be carried out based on
chlorination techniques in which sample of water gets
added to the different forms of chlorine such as sulphates,
hydrates which are capable of removing germs and many
hard substances found in water samples and convert it to
a suitable form for drinking. The water quality is the most
powerful element considered as the best outcome among
the threats created by population and pollution in recent
era. The physical parameters we had addressed in the
research are pressure and evapotranspiration.

In order to improve water management, Ashwini, K. et al.
(2022) carried out research to create an intelligent model
for predicting water quality. The LSTM working suggests
many quality factors for prediction that are evaluated
with improved correlation mapping when analysed with
other neural models (Figure 1).

_—
L’ Control Panel

Caygen  [—== —
Ak ﬁ,—:) ‘Water in Tank

Generation
Modulator
Pumped | |
Vessel
Ozone [ " User System
Pumping

Figure 1. Model of Ozone purification.

Some oxygen elements are extracted from the air when it
is pressured and pumped into the vacuum vessel on a
great force then when ozone is pumped in to the water
sample in the tank which is capable of purifying the
sample. The whole system is supported by the modulator
and managed by the controller by the control panel,
based on various atmospheric pressure the process is
repeated again and again for better accuracy (Figure 2).
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Figure 2 Waste Water Treatment Process.
2.3. Waste water treatment process

The main objective of wastewater treatment methods is
to improve the accuracy of water treatment. There are
two basic stages in the waste treatment that can be basic
and additional technique, which can be essential for
treating the waste samples to a purified water. In the
basic step, the unwanted material is sedimented at the
bottom and selector removes those wastes by residual
activation and additional methods includes sludge
handling and buffering and the process is repeated to
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remove the aerobic digestion from pre thickening of the
sediments and there by the water gets purified effectively.
Chen, H.J. et al. (2013) looked into the effectiveness of
treatment and the microbial community. subsequently
explored the relationship between microbial diversity and
the effectiveness of treatment.

2.4. Effects of Water and water quality in ground water

There are several factors for water loss and majority of
the water are dirty and not suitable for usage for various
purposes. Wang, M. et al. (2017) researched on how
effectively wastewater treatment works to prevent the
spread of antibiotic resistance in the environment. To
safeguard human health, the ecosystem's integrity, and
the economy's sustainability, it is imperative to have a
complete understanding of the effects on water quality.
Contaminated water poses serious risks to human health,
harms aquatic ecosystems, and impedes agricultural and
industrial operations. Thus, in order to address the
shortage of water and guarantee that different water-
dependent areas have access to high-quality water, water
treatment is important for the purification and can avoid
the rate of evaporation from the soil is predicted by the
radiation level of the soil top to maintain the water level.
There by we can retail the water level and quality at a
considerable rate on the living areas. The fertility of the
soil is depleted by crops as they develop quickly; this is
dependent on the cultivated area. Crop growth inhibition
lowers soil water loss because it decreases
evapotranspiration. The rate of water loss is noticeably
higher in mature trees, nevertheless. The transpiration
covered from the layer of sand, can be the major process.
Water obtained is measured as the amount got per unit
area (litre/ meter). This amount refers to the water
vapour from sources of water by the above two process.
The heat of evaporization (Hevap) denotes the hotness
used for evaporation of water to vapour. If 1ml of water is
vaporised then energy can be in vaporised form based on
the regions either hot, cod or medium in temperature. In
the area of humid climate or rainfall region the
evaporation is less compared to the high temperature
regions.

The table below gives the temperature and water loss of
several regions in Tamil Nadu . The region as classified as
tropical, sub-tropical, humid, arid area and temperature
varies accordingly and the rate of water evaporated
differs based on many aspects.

The scarcity of water in dry areas or the excess intake of
water by living organs (plants, animals or humans) can
also affect the cycle of inhabitation and the process of
evapotranspiration. Management of water supply to the
crops the intake and usage of living beings can also
considered for improving the water cycle rate based on
evaporation, transpiration, precipitation and so on. The
method of growing crops can be also taken into account
along with the climate, type of plants, soil nature, and
area of cultivation. The rainfall, wind, temperature also
has serious factors to be considered. Water demand rises
as a result of substantial effects on different areas caused
by decreases in water levels from sources like
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groundwater or rainfall. One of the main causes of water
scarcity in all its manifestations is still the dryness of the
soil surface. One of the main indicators of water scarcity is
the persistence of dry soil surfaces. Various irrigation
techniques, such as drip systems, bore wells, and
traditional methods, can be used to decrease water loss in
cultivated lands in order to address this issue. The type of
plants grown determine the rate of water loss by

evaporation or by transpiration. Every factor to be
considered is to minimise the water loss. Prasad, A.N. et
al. (2015), Mohammed, H. et al. (2018), and Singh, P. et al.
(2017) researched a variety of methods for monitoring
and predicting water quality. To maintain the ecosystem
wellbeing waste water can be treated and water quality
must be maintained and properly channelized for the
proper usage of water in all conditions (Table 2).

Table 2. Shows the regions and temperature changes that affect the water evapotranspiration.

Avg Temp (°C)

Regions Cold Medium Hot
~5°C 25°C > 40°C
Regions of Tropical
- humid / sub 4-5 3.5-45 6.5-8
-arid area 1.8-3.6 4.0-5.6 7-8.1
Region of Temperate
- humid area 09-1.8 2.3-5 3.6-6.8
-arid/ semi 1.2-3.8 3.7-6.7 7.5-10

3. Materials and methods
3.1. Handling data sets
3.1.1. Data mining with normalization

Normalization results bring the output of many different
working models in neural networks that are scaled and
classified and the correlation derived gives a normalized
value based on experimentation with diffused samples of
water based on parameters of air pressure or
evapotranspiration. The samples mean is calculated with
maximized or minimized samples as

X mean= Xi— Xmin / Xmax — Xmin (1)

The mean value is obtained by the above formulation or
equation (1) based on normalization which gives the
extract of datasets based on data variability.

3.2. Proposed methodology for water quality prediction

The diagram below shows the quality prediction based on
HDWN models, which helps to determine the samples
been tested and then trained for various predictions.
Initially data samples were collected from Tamil Nadu
regions and the model process are given blew

3.2.1. Data preprocessing

Data processing is the first step to dealing with missing
values, outliers, other anomalies in the data, preliminary
data cleaning and preprocessing are necessary. Using the
Discrete Wavelet Transform (DWT), the input time series
data is divided into various frequency bands.

3.2.2. Feature selection

Convolutional Neural Networks (CNNs) are used to extract
spatial characteristics from the date set. Even though the
data set contains many features and select the feature
which are more helpful in the prediction process. Within
the wastewater treatment settings, convolutional layers
with filters are used to capture spatial correlations and
local trends.

3.2.3. Modeling with LSTM

Using Long Short-Term Memory (LSTM) layers to model
temporal dependencies and identify long-term trends in
time series data. LSTM learns the hierarchical information
about the data in prediction process.

3.2.4. Model Architecture

Decomposed input signals are accepted by the input layer.
DWT layers: Use DWT to separate the input signals into
their component frequencies. CNN layers: Convolutional
layers are used to extract spatial information from the
decomposed data. LSTM layers: Recognize long-term
trends in the data and model temporal dependencies.

Output Layers Produces forecasts for future wastewater
parameters at the output layer.

3.2.5. Training and Testing

Eighty percent of the data in this suggested technique
were utilized for training the model, and twenty percent
were used for assessing the model's predictive
capabilities. MSE, RMSE, MAE, and MAPE have all been
used to evaluate the model (Figure 3).

Finally measured the quality and quantity of water based
on the sample parameters considered for various water
collected from several areas based on Ph, COD, BOD, Total
Nitrogen temperature, humidity, soil texture they are
analysed and tabulated and finally the comparative results
show the best water prediction models and the factors to
be considered in future evaluations. The detailed process
of the HDWN model is given below in Algorithm 1.

3.3. Data Flow Diagram

The dataflow diagram is the pictorial representation of
workflow of how the water sample are analysed and
predicted based on several long- and short-term memory
process and the classification and predictions are made
with best accuracy and the output is compared with
several iterative analysis and predictions made many
times which is capable of providing many precise outputs.
The Figure 4 shows the data flow diagram is with the
process of prediction and comparison.



Algorithm 1: Hybrid Deep Wavelet Network (HDWN) W

Quality Predicti

Model

1: Input data D= {di, d, dn} // ex: Ph, turbidity, COD, BOD, etc.,
2: Preprocessing: handling missing data and Normalization

Dciean= Normalize (Clean (D))
3: Wavelet Decomposition

‘Wavelet Function: W= Wavelet(type)

Decompose data: C=Decompose (Delean, W)

where C = {Ciow, Chigh}.
4: Feature Extraction

F=Extract_Features(C) / Extract from both time and frequency domains.
5: Model Initialization

M=HDWN_Model ()

Design the hybrid model using convolutional (CNN and LSTM).
6: Model Training

Minain =Train (M, F, L, loss="MSE’, optimizer="Adam")
7: Validation

Sva=Validate (Mirain, Dval).
8: If Sy > threshold
9:  Tune hyperparameters H={h; h», ..., hy} // Ph, BOD, COD etc.,
10: Prediction

P =Predict (Mirain, Drest) // Generate predictions for future wastewater parameters.
11: Performance Evaluation

E = Evaluate (P, Dacuwal, {RMSE, MAE, R?*})

Assess model accuracy using performance metrics.

12: Output Results

Output: Predicted parameters P, trends, and visualizations.

Pre Processing -
Al bvaits Normalization and Data
Splitting{ DWT)

HDWN MODEL

LSTM - Temporal data
classification

N 7

MQDEL PREDICTION and
EVALUATION

v

FORECASTING

HYBRID DEEP WAVELT NETWORK FOR
WASTEWATER QUALITY PREDICTION

CNN - Spatial Data
classification

)

Figure 3. Architecture of Hybrid Deep Wavelet Network Model.

‘ Collect Water samples (Varied Regions) ‘
Normalization
Data Preprocessing
Data Splitting
4

‘ Implement Integrated HDWN MODEL ‘
n
L

‘ Train & Test Model ‘

|

‘ Prediction and Forecasting ‘

|

‘ Outcome & Comparison ‘

Figure 4. Data Flow Diagram of prediction and comparison of

water samples.
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3.4. Neural Network Structure

The Neural models in machine learning which includes
three basic units called the input layer, the middle layer
and output layer, where Xi is the input sample and middle
layer denoted as Xim and output layer Yi. The model
diagram below shows the neural network with n number
of nodes.

L1 L2 L3
Hidden layer

Output layer

Input layer Hidden layer

Figure 5. Structure of the Neural Network Model.
The neural model's structure is depicted in Figure 5. It

analyzes X input samples, sends them to many hidden
layers, and then outputs Y samples.

U T T T T T

1.0 | L \ L L L
(o] 20 40 60 80 120

n

Figure 6. Shows the wavelet transform generation based on n
samples with Fourier formulation.

3.5. Formulation in Wavelet Transform

Transformation of Wavelet series holds samples based on
time, error value (mean/sample) or other factors for
processing the outcomes. The Fourier transform in series
which super imposes the input with varied frequencies.
This wavelet transforms based on CNN or DWT-CNN with
support of LSTM helps in predicting the values with high
efficacy depending on varied frequency range. This
wavelet transformation divides the waves considered as
input in many bands of signals with varied feature namely
frequency, time, error, and bandwidth. This is capable of
enhancing the signal localization to overcome its basic
limitations. An CNN-LSTM with Attention mechanism for
forecasting effluent quality is presented by Li Y et al. in
2023.To improve prediction accuracy, attention
mechanisms with CNN and LSTM networks. Their results
point to promising developments in effluent wastewater
quality prediction, which can greatly enhance wastewater
treatment procedures and guarantee water quality
standards (Figure 6).
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3.6. Convolution neural networks with LSTM

Convolution neural networks with LSTM in Figure 7 is
based on LSTM has many filtrations of samples in parallel
at all possible levels of working gives best trained samples
as the output. The LSTM with every other information
corresponding to the state are processed across several
times with factor of time added in turn to the input
samples considered for analysis. These different models
have predictions made very easy even though handling
many datasets as samples in an iterative.

LSTMMODEL

Toput Convelution Layer Pooling Liyerl

Convolufion Layer 1

Pooling Layer2

+ _

connection

Figure 7. Shows the LSTM model.

The input samples of water with measured quantity in
liters or milliliters are collected and convoluted as sub
samples and then pooled together and the process gets
repeated several times and passed through the hidden
layers and finally combined as a single output which best
results based on accuracy. Figure 8 shows the Process of
LSTM with convolution model for data samples collected
from different regions and the data has been transmitted
to different layer before reaching the output layer.

Sample
output as
sum of
mean
samples
e

Figure 8. Shows the LSTM with convolution model handling n
different samples.

3.7. Mechanistic Insight: DWT’s Role in Enhancing
CNN/LSTM
The proposed HDWN architecture includes a

preprocessing step using Discrete Wavelet Transform
(DWT) to address the main shortcomings of traditional
deep learning models like CNN and LSTM.While CNNs are
adept at extracting spatial features, they can overfit noisy
datasets and cannot handle temporal variability.Although
LSTMs are designed to capture temporal dependencies,
they struggle with non-stationary signals and long-term
dependencies when high-frequency fluctuations or
irregular trends are present.

To improve learning efficiency and enhance signal quality,
the input time-series data stored in CSV format were
subjected to Discrete Wavelet Transform (DWT). The
dataset was tabular, but the temporal nature of
parameters like pH, BOD, COD, ammonia, pressure, and
humidity enabled effective decomposition. DWT divides
each signal into low-frequency (approximation) and high-
frequency (detail) components, separating noise from
significant trends. Thanks to this denoised, multiresolution
representation, Convolutional Neural Networks (CNN) can
extract spatial features that are more robust, and Long
Short-Term Memory (LSTM) units can model long-range
temporal dependencies with greater accuracy. DWT
reduces input volatility and filters noise, which improves
the model's signal-to-noise ratio, speeds up convergence,
and enhances generalization performance across various
environmental conditions.

3.7.1. Performance Contrast Between HDWN and

Contemporary Models

Provide a clear comparison of HDWN with 2-3 latest
models from the literature survey regarding architecture,
pre-processing, and prediction robustness.

Table 3. Performance Contrast Between HDWN and Contemporary Models.

S.No Model Limitation HDWN Resolution
Ignores temporal dynamics; sensitive to . . .
1 CNN & P nc\:ise DWT filters noise; LSTM captures temporal dependencies
2 LSTM Struggles with non-stationary signals DWT decomposes signals into more stationary subbands
3 TS-CNN (2023) Noisy data degrades performance Pre-DWT denoising improves CNN’s feature extraction
Poor non-linear pattern learning; high HDWN captures non-linear trends via LSTM and DWT’s
4 ARIMA (2023)

bias

multi-resolution input

5  ANN-LSTM (2022) _
and signal control

Overfitting due to lack of preprocessing

DWT smooths input variation, improving generalization
and preventing overfitting

6 FTN (2025
( ) lacks inherent noise filtering

Depends heavily on sensor quality and

DWT pre-processing mitigates sensor noise and improves
signal robustness

Rustam et al.

(2022) architecture

Generalizability concerns with ANN

HDWN's hybrid design balances feature richness and
sequence modelling

4. Results and Discussion

The water samples of different physical features are taken
as input and the nature of water based on chemical
factors are evaluated and every pH, salt, hydrates,
sulphates are analysed and are tested and trail values are
excavated from various predictions and finally the best
quality of water samples with low salt, pH values are
taken to get best water as the output of purification.

The water quality value is multiplied by the factors
affecting the water and then divided by the water factors
to determine the water quality index. The given variation
shows the quality of water from number of variables,
including turbidity, pH, dissolved oxygen, and nutrient
levels. After being gathered from diverse locations, these
samples are tested and purified to provide a dataset with
varying degrees of water quality metrics. This connection
assists in the visual representation of the heat map of



water quality parameters, which shows variations in water
quality over various locations and time periods visually.
Each parameter's value is correlated with a particular
color intensity

The samples taken are send to various stages when the
input is passed to several hidden layer the unwanted
information is not considered for evaluation are left and the
reaming considerable factors are sent to the other level of
predictions and each state holds the message that re
considerable and several un wanted details are removed
while working with long short term memory model.

Table 3. Heat map diagram of various parameters considered for
the sample water predicted.
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Figure 9. Sample Data set (a) Shows the pH level measured with
the water sample (b) the COD of the water level (c) shows the
BOD in water sample (d) The Total Nitrogen level in the water

sample.

The graph below shows the variation of several prediction
algorithm used based on many water samples taken and
the predicted. The outcome gives the best accuracy of the
samples evaluated. The LSTM with conventional model or
based on wavelet transform gives better results when
compared to other ANN models of neural working
methodologies. Then chemical on demand, the pH values,
the salinity, the hardness, solid wastes, organic

RANI and RUBHAVATHI

carbonates also determine the water quality affecting
factors and the purification level should be high for the
best water samples to evolve and makes the water quality
and quantity better compared with other methods of
testing and training. The below Figure 9 shows the original
date values from the water samples.

The conventional model was built to evaluate the water
quality by machine learning methods of different
formulations with support of regressive variables and co-
efficiency considered for better practices.

Predictive circumstances are affected by temperature
variations in oxygen concentration and chemical
composition during the intervals between water sample
collection. The sample mean formula is used to measure
training performance, and the index shows the graphical
yield after taking into account different parameters. Both
long and short memory techniques are used to generate
the variables, and to improve results, convolutional
support and wavelet transformation-based LSTM analysis
are used. Comprehensive measures are taken to evaluate
the prediction model's accuracy across large training and
testing samples.

It is essential for preserving valuable water for sustainable
use in the face of diminishing water resources. Current
variations in water quality and quantity, seen in regions
such as Tamil Nadu, India, and many other places across
the world, show different times of need. Analyzing oxygen
demand from evapotranspiration is made easier by using
a neural network such as LSTM with convolutional
analysis; wavelet transform is used to identify compounds
in water samples and forecast carbon need. This
predictive technique is strengthened by large datasets
covering multiple parameters, which allows for more
precise predictions and is reinforced by purifying
procedures.

4.1. Prediction of Chemical parameter of Water Quality

The DWT-CNN-LSTM model prediction of various
parameters from the data sample collected. The data
consist of Ph, COD, BOD, TN, Ammonia etc. There samples
are pre-processed and given the model for prediction. The
below Figure 10a to 10e shown the prediction accuracy
level of the data which is given to the model.

Biological Oxygen Demang

Original Biological Oxygen Demand
—— Predicted Biological Oxygen Demand

Figure 10a. Actual Vs Predicted BOD.

Figure 10a show the precited values for BOD from the
given data set original BOD for the last 50 days. The
prediction accuracy is much better than the other
algorithms. Figure 10b Show the predicted value of COD
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from the given data set. Figure 10c and d are the
prediction graph of Ammonia and Total Nitrogen.

chamical Oxygen Demand

—— Original Chemical Oxygen Demand
—— Predicted Chemical Oxygen Demand

Eherveal oz Demare!

Figure 10b Actual Vs Predicted COD.

amenia

—— Original Ammonia
—— Predicted Ammonia

Figure 10c. Actual Vs Predicted Ammonia.

Total Hitrogen

Qriginal Total Nitrogen
Predicted Total Nitrogen

A A i LI

3
e

Figure 10d. Actual Vs Predicted Total Nitrogen.

Average Temperature Average Temperature

—— Original Average Temperature
«{ —— Predicted Average Temperature

Figure 10e. Actual Vs Predicted Temperature.

4.2. Prediction of Physical parameter of Water Quality

Wastewater can have physical attributes that are
quantifiable and visible without changing the water's
chemical composition. These measurements contain vital
information regarding the general state and properties of
the water. In our model the physical parameter
temperature of the water sample can be consider for the
prediction of Waste Water treatment plant process
efficiency. Figure 10e shows the predicted values of
temperature. Temperature has an impact on a number of

biological and chemical wastewater treatment processes
and may be a sign of thermal pollution or industrial
discharges. It may cause the misprediction if the water
temperature is more.

4.3. Prediction of Energy Consumption of WWTP

The necessity for several physical, electrical, and thermal
processes involved in wastewater treatment results in a
considerable energy consumption in wastewater
treatment facilities (WWTPs). WWTPs can improve overall
sustainability, minimize operational costs, and lessen their
environmental impact. Figure 11 Shows the energy
consumption prediction of Waste water treatment. From
the prediction we can regulate the sustainability, overall
operational cost in terms of all resource’s usages. It can
help to reduce the overall impact of environmental
pollutants.

—— Original Ammonia
—— Predicted Ammonia

Figure 11. Actual Vs Predicted Energy Consumption.

This process is repeated iteratively and many predictions
are made based on very important factors considering the
accuracy as 98.8 percentage while handling large or small
amount of dataset in real.

4.4. Comparison HDWN with other models of ML

The comparative graph was generated with several modes
in which convolution-based LSTM model shows better
results on calculating the mean sample valve predicted
when compared with the n samples of water from several
regions of hot, humid, rainy, moderate climate where the
rate of pressure and evapotranspiration varies from time
to time [43]. The mean rate of 110 is obtained for CNN-
LSTM model and long and short-term model with 95 mean
rate and artificial model with 80 and persistent forecast of
70 and so on as the output of the several predictions
analysed form the given data set.

Table 4 show the model prediction accuracy by the model
evaluation. The Model Performance Evaluation is based on
the metric MSE, RMSE, MAP MAE and R2. Our proposed
model achieved 98.8% accuracy than other models.

In our model we achieved better performance that can be
shown as a graph. In Figure 12 Comparison of the
Proposed Model Evaluation with other algorithms is given.
Where MSE is 1.03, RMSE is 0.74, MAPE is 0.87 , MAE is
0.42 and R? is 0.71 the higher error rate by other
algorithm but by our proposed method is very less than
the other model MSE is 0.068, RMSE is 0.23, MAPE is 0.55
,MAE is 0.19 and higher R? 0.94. Our model performance
is increased than the other model.
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COMPARISION OF ALGORITHMS

ll 1.03525

| 0.87625
0.932

0.7395

0.6749
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0.4388

0.3485
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»

3251

0.43
0.36
0.344
0.290°
0.0101

o
M 0.068

Performance Evaluation Metrics

u HDWN FTN TS-CNN CNN-LSTM = ANN-LSTM = ARIMA

Figure 12. Comparison of Proposed Model Evaluation with other
algorithms.

The various water samples are collected as input and
those data collections are sent to the convolution layer
and the predictions are memorised in pools and iteratively
it is tested and trained several times based on LSTM with
convolution and finally all the predicted samples are
summed together to get the mean optimal samples with
utmost trustful data output.

RANI and RUBHAVATHI

The comparative study analyses many best models of
prediction and this research can use ARIMA model,
wavelet-based Fourier model along with LSTM model for
many levels of predictions and can handle larger volumes
of data collection.

4.4.1. Innovation in Comparison with Existing Techniques

This work's innovation is the HDWN model, which
effectively extracts both spatial and temporal information
from water quality data by combining the Discrete
Wavelet Transform (DWT) with a hybrid CNN-LSTM
architecture. The suggested model has improved
predictive accuracy and robustness for coastal water
quality forecasting, as evidenced by its much-reduced
error rates (MSE: 0.068, RMSE: 0.2325, MAPE: 0.55%,
MAE: 0.1945, R%: 0.94) in comparison to existing models
like FTN, TS-CNN, and ARIMA. Our method differs from
earlier research because it combines deep sequential
learning with wavelet-based preprocessing.

Table 4. Comparison of various Model Evaluation using metrics MSE, RMSE, MAPE MAE and R2.

Parameters / Model MSE RMSE MAPE MAE R2
HDWN 0.068 0.2325 0.55 0.1945 0.932
FTN 0.3251 0.273 0.43 0.179 0.6749
TS-CNN 0.5612 0.23 0.36 0.1798 0.4388
CNN-LSTM 0.6515 0.2405 0.344 0.18975 0.3485
ANN -LSTM 0.7745 0.64 0.87625 0.42275 0.2255
ARIMA 1.03525 0.7395 0.29075 0.2595 0.0101

Water quality prediction is enhanced by the HDWN
model's integration of DWT, CNN, and LSTM, which
combines their respective advantages. By breaking down
and eliminating noise from the data, DWT assists in
identifying significant frequency components. While LSTM
learns long-term temporal connections necessary for
time-series forecasting, CNN extracts significant spatial
characteristics from these modified signals. In comparison
to conventional models, this integration improves
accuracy, resilience, and generalization by enabling the
model to handle complicated, noisy, and non-linear water
quality data.

5. Conclusion and Future work

This research emphases on prediction of water quality
based on various samples from different area with several
models based on LSTM with CNN or wavelet transform
series as proposed, the water sample collected from
various regions of south Tamil Nadu as sample input
object and monitoring done based on pressure, humidity,
evapotranspiration and effluent water treatment is done
to remove the unwanted wastes from the water and
made it useful for varied purpose both commercial and
domestic

(1) The fluid nature of the water with different ranges
trained and tested with many neural models gives
effective accuracy and this could be enhanced with
better outcome with different samples of water
from other districts of Tamil Nadu based on soil
topography

(2) The predicted samples with chemical oxygen
demand are evaluated with models of convolution
based long and short-term memory network and
also based on wavelet transform neural models and
many correlated variables are analysed and
predictions made with high level of accuracy. This
research could be improved based on many factors
that determine the quality of water both physical
and chemical parameters.

(3) The LSTM with CNN along with ARIMA, ANN and
Persistent models are compared and better outputs
are given with better predicted quality of water
when compared with other models such as ANN.
This research considers small dataset of water taken
from a defined area as input and predictions are
made based on quality factors. This can be
improved by extending the various classification
and prediction algorithm in future. Also, the
management of water quality if done to control the
effects of humans as pollutions and wastage.
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