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Abstract 

The digital economy development (DED) contributes to 
breaking the path dependency dilemma of industrial 
carbon lock-in and achieving high-quality development 
that balances economic and ecological benefits. This 
study, based on the panel data from 274 cities in China 
from 2013 to 2022, aims to identify the phased 
relationship between the digital economy development 
and industrial carbon unlocking efficiency (ICUE). The 
main findings are as follows: (1) The impact of digital 
economy development on industrial carbon unlocking 
efficiency exhibits a double-threshold effect. After 
verification through grouped instrumental variable (IV) 
regression, the conclusion remains valid. It shows a "U-
shaped" relationship of first decreasing then increasing, 
and finally reaching equilibrium. (2) Digital economy 
development could significantly promote industrial carbon 
unlocking efficiency in multi-dimensional adjacent regions 
based on the "tunnel model"; (3) Once digital economy 
development enters maturity stage, industrial carbon 
unlocking efficiency is mainly improved through two key 
pathways: technological innovation and institutional 
regulation; (4) Based on training and simulations of 
existing samples, cities most likely to achieve optimal 
industrial carbon unlocking performance in digital industry 
development are mainly concentrated around China's "Hu 
Huanyong Line" and the southeast coastal areas, which 

can fully leverage their resource endowments, location 
advantages, and leading roles. 

Keywords: digital economy; industrial carbon unlocking; 
panel threshold model; techno-institutional complex; 
tunnel model; machine learning model 

1. Introduction 

The report of the 20th National Congress of the 
Communist Party of China (CPC) emphasized the key 
strategy of “promoting green development and fostering 
harmony between humanity and nature”. In addition, a 
coordinated approach for industrial restructuring while 
simultaneously advancing carbon reduction, pollution 
control, green expansion and economic growth has been 
proposed to manifest the determination of Chinese 
government to achieve carbon peaking by 2030 and 
carbon neutrality by 2060 (Cai et al. 2024). In practice, 
since the 12th Five-Year Plan has firstly incorporated the 
reduction of CO2 emission per unit of GDP as a binding 
target in China’s national economic and social 
development planning, subsequent several Five-Year 
Plans continued to include similar mandatory carbon 
reduction targets.  

However, at the end of 2021, China’s total annual CO2 
emissions were 10.523 billion tons, accounting for 45% of 

global emissions and still the world’s largest emitter1. The 
persistent challenge stems from the entrenched reliance 
on fuels in certain regions, which locks industrial 
development into carbon-intensive energy systems, 
creating the dilemma of “industrial carbon lock-in” (Unruh 
2000). Carbon lock-in results from the path dependency of 
traditional industry development, leading to a self-
reinforcing and stable operational model (Niu &Liu 2021). 
It inhibits the adoption and diffusion of low-carbon 
technologies, thereby weakening the effectiveness of 
carbon reduction policies. 

 
1 Referring to: Analysis of global carbon dioxide emissions in 

2021: more than half of carbon emissions in the Asia-Pacific 

region, 

https://www.163.com/dy/article/HF7K0OPQ055360RU.html  
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The digital economic development (DED) characterized by 
the fusion of financial and technological elements (Tian et 
al. 2024), provides a promising pathway for carbon 
unlocking due to its features of “low-carbon emission, 
high output, and high returns.” The digital transformation 
is usually linked with carbon sink and negative carbon 
technologies, and DED embodies both technological and 
institutional transformation, providing a dual-pronged 
approach for industrial carbon unlocking. On one hand, as 
digital technologies increasingly permeate various sectors, 
their integration with traditional industries has become a 
crucial driving force for economic transformation and 
stable growth. On the other hand, the institutional 
reforms of DED, such as piloting the establishment of 
“National Big Data Comprehensive Pilot Zones” and the 
“Broadband China” initiative, have emerged as key 
mechanisms for cities to realize their “dual carbon” goals. 
However, some scholars have also proposed the concept 
of “digitization paradox”, which is adopted to describe the 
economic growth paradox (Li and Wu 2023) or carbon 
reduction paradox (Bai et al. 2023) with the development 
of digital economy and technology. The study aims to 
explore the relationship between DED and industrial 
carbon unlocking in China, with a focus on the puzzle of 
the “digitization paradox” in carbon unlocking. The 
findings hold significantly theoretical and practical value 
for promoting China’s low-carbon transformation. 

2. Literature review 

In recent years, the relationship between DED and urban 
carbon emissions has gradually gained significant 
academic attention. DED is not only seen as a new driver 
of economic growth, but also a key enabler of sustainable 
development (Nara et al. 2021). Some studies suggest that 
DED facilitates the transition to a green economy by 
accelerating industrial upgrading through the widespread 
dissemination and integration of knowledge, ultimately 
promoting low-carbon development (Paschou et al. 2020). 
However, some other studies indicate that the 
relationship between DED and carbon emissions is 
nonlinear. The carbon reduction effect of DED will only 
become apparent when it reaches a certain scale 
(Kwilinski 2024; Xin et al. 2023a). Due to the “carbon-
intensive” characteristic of digital industry expansion and 
infrastructure construction in its early stage, which leads 
to increasing energy consumption (Bai et al. 2023). At the 
same time, various digital technology types could cause 
differential impacts on carbon reduction. At the early 
stage of the integration of digital innovation such as 
information, calculation, communication and connection 
technologies, it could be identified that carbon emission 
will rapidly grow with the construction of digital 
infrastructure without other policy intervention (Jiang et 
al. 2021). But the commercial application of digital 
technology, such as the visualization reform, digital 
transformation, could gradually result in carbon reduction 
significantly, since these digital technologies development 
are linking to industrial process emission reduction and 
carbon sink, negative carbon technologies (Zhang et al. 
2022). 

In the field of the industrial carbon lock-in, existing 
literature has explored its formation mechanism, 
measurement methods and possible mitigation pathways. 
Unruh (2000) first proposed the concept of “carbon lock-
in”, arguing that economic development has gradually 
locked into a fossil fuel-based energy system during the 
evolution of modern industry. Furthermore, the 
interaction between outdated technologies and rigid 
institutional frameworks reinforces the carbon 
dependency (Unruh &Carrillo-Hermosilla 2006). Various 
methods have been developed to measure the degree of 
carbon lock-in. The traditional approach of calculating 
carbon overload rate is defined as the ratio between 
carbon sequestration capacity and carbon emissions (Zhao 
et al. 2024). Another method is to construct an indicator 
system that evaluates carbon lock-in from multiple 
dimensions, including industrial structure, institutional 
framework, technological progress, and social norms (Niu 
&Liu 2021). Regarding carbon unlocking strategies, 
existing research has explored the key pathways, including 
local government interventions (Dong et al. 2020), 
reducing income inequality (Jin et al. 2020), and 
implementing energy and environmental policies.  

The existing literature emphasizes the urgent need to 
explore effective carbon unlocking pathways for industrial 
development under the constrains of the carbon peaking 
and carbon neutrality goals. As a key driver for achieving 
dual-carbon goals, the digital economy fosters both 
economic growth and ecological sustainability. 
Meanwhile, it cannot be ignored that the construction of 
digital infrastructure might rely on carbon-intensive 
industries and greatly promote carbon lock-in. However, 
current research lacks a rigorous identification of the non-
linear relationship between DED and industrial carbon 
unlocking efficiency. Additionally, few studies assess 
carbon unlocking performance from the perspective of 
input-output efficiency. To address these gaps, this study 
is grounded in the “digitization paradox” hypothesis of 
industrial carbon unlocking. It aims to identify the phased 
relationship between DED and industrial carbon unlocking 
efficiency (ICUE) based on China’s city samples. 
Specifically, it examines the impact mechanisms of DED on 
ICUE within the “techno-institutional” framework. 
Furthermore, leveraging policy learning models from 
machine learning, the study proposed optimization 
strategies for enhancing ICUE through DED. 

3. Theoretical framework 

The study explores the relationship between DED and 
ICUE in China, grounded in the digitization paradox, 
externality theory, and the “techno-institutional” 
analytical framework. Furthermore, it aims to identify the 
impact effects, potential mechanisms, and optimization 
strategies. The specific analytical framework is shown in 
Figure 1. 

3.1. The digitization paradox of industrial carbon 
unlocking 

The DED promotes industrial carbon unlocking through 
both technological innovation and institutional regulation 
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mechanisms: (1) Technological innovation perspective. 
The DED is closely related to big data technologies and 
holds significant potential to achieve both economic 
growth and ecological sustainability (Wu et al. 2025). 
Firstly, digital technologies facilitate knowledge diffusion, 
accelerate industrial upgrading and transformation, 
thereby paving the way for low-carbon economy. 
Secondly, digitization enhances energy monitoring and 
management capabilities, it partially replaces the public 
supervision which could reduce the cost of clean energy 
utilization, and supports the transition to renewable 
energy (Cai, et al. 2025). (2) Institutional regulation 

perspective. Industrial carbon lock-in is reinforced by self-
perpetuating institutional frameworks. Bergek et al (2013) 
emphasized the necessity to empower participants within 
new technological innovation system to overcome the 
institutional barriers of carbon lock-in. The widespread 
adoption of digital technologies requires strong 
government policy support to mobilize resources and 
create market demand. For example, increasing subsidies 
for local digital infrastructure can foster technological 
innovation, improve energy efficiency, and ultimately 
break the vicious cycle of carbon lock-in (Healy &Barry 
2017). 

 

Figure 1. Logical framework 

However, the DED heavily relies on industrial 
infrastructure construction, electronic component 
manufacturing, digital machinery production, and other 
high energy-intensive industries. Therefore, the early 
stage of DED may drive up energy consumption, and 
hinder industrial carbon unlocking. In the initial phase of 
digitization, the marginal benefits derived from 
investments in digital infrastructure are lower than the 
marginal costs. It results in a U-shaped relationship 
between digital investment and total factor productivity 
(TFP) (Jin &Yu 2022). The increase in TFP driven by 
digitization on the early stage often triggers a series of 
rebound effects, leading to an unexpected rise in overall 
energy consumption. This rebound effect could possibly 
offset the positive effects of technological innovation and 
industrial restructuring, aligning with the Jevons Paradox 
(Blake 2005). Given this reassessment of the digitization 
paradox, this study proposes the following hypothesis: 

H1: The relationship between DED and ICUE in China 
follows a U-shaped pattern at city-level, initially 
decreasing and then increasing. 

3.2. Spatial spillover effect and “tunnel model” of digital 
economy 

According to the externality theory and regional 
interdependence theory (Ertur &Koch 2007), the DED 
could significantly promote ICUE in cities with multi-
dimensional proximity (Chaudhuri 1996). The concept of 
muti-dimensional proximity city networks suggests that, 
as the digital economy evolves, spatial spillover effects 
have transcended the traditional geographical clusters, 
forming interconnected networks across geographical, 
technological, relational, cognitive, and cultural 
dimensions through the “tunnel model” of digital 
technologies. The potential mechanisms include: (1) 
Trickle-down effect: when the regional central city’s DED 
exceeds a certain threshold, industrial relocation, 
investment diffusion and technological spillovers will 
expand to surrounding areas. That is, cities with highly 
developed digital industries enable their multi-
dimensional adjacent cities to utilize digital infrastructure, 
improve local energy and industrial structure, while 
mitigating the negative effects associated with the early 
stage of DED (Liu et al. 2024). (2) Learning-Sharing effect: 
Innovations in digital technologies, such as big data, block-
chain, and artificial intelligence, have improved the 
efficiency of cross-border information, talent, and 
technology flows. This process promotes the cross-
regional transmission of advanced technologies, facilitates 
spatial interactions and shared utilization of new digital 
infrastructure (Fichman et al. 2014). (3) Race-to-the-top 
Competition effect: Driven by the local government 
promotion tournament mechanism and the project-based 
nature of digital industry development, local governments 
increasingly prioritize leveraging the digital economy to 
promote industrial carbon unlocking. This focus might 
trigger a race-to-top competition among cities in the field 
of digital technology development. Through 
demonstration and spillover effects with inter-city 
competition (Fluck &Mayer 2005), it could realize the 
improvement of ICUE in surrounding cities. Accordingly, 
we propose the following hypothesis: 

H2: The DED exhibits a significant spatial spillover effect, 
improving the ICUE of cities with multi-dimensional 
proximity. 

3.3. Identification of carbon unlocking pathways with DED 
under the “Techno-Institutional” framework 

The techno-institutional complex formed by the inertia of 
high-carbon energy consumption reinforces the industrial 
carbon lock-in effect in certain cities, making industrial 
production and social consumption dependent on carbon-
based energy systems. It not only hinders the adoption of 
low-carbon technologies, but also weakens the 
effectiveness of relevant carbon reduction policies (Seto 
et al. 2016). (1) Technological pathways: Firstly, the 
existing fossil fuel-based energy system has been highly 
mature, with strong complementarity among mainstream 
technologies, which reduces the uncertainty of sustained 
investment. In contract, low-carbon and renewable 
energy technologies lack integration with dominant 
energy system, contributing to higher short-term 
opportunity costs for their adoption (Janipour et al. 2020). 
Secondly, there are still substantial sunk costs in 
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transforming fossil fuel infrastructure, including industrial 
production lines, logistics support, and equipment, which 
lock the energy system into a high-carbon trajectory 
(Arbuthnott &Brett 2013). To achieve scale economy and 
maintain competitive advantages, related carbon-
intensive enterprises tend to adhere to current energy 
utilization and production models. (2) Institutional 
pathways: Firstly, the vested interests in high-carbon 
energy sector have institutional advantages in power 
distribution, allowing them to formulate policy rules that 
obstruct the transition to low-carbon energy. For 
example, in Norway, high emission private enterprises 
leveraged exclusive social networks to resist tax incentives 
policies for renewable energy vehicles, thereby 
maintaining fossil fuel dependence in the transportation 
sector (Normann 2017). Secondly, existing policies, 
technical standards, and energy production contracts 
predominantly encourage firms to focus on technological 
innovation and production related to fossil fuels, leaving 
little institutional improvement space for disruptive green 
innovation niche (Sanden &Hilman 2011). Therefore, 
breaking carbon lock-in requires strategies that address 
both technological and institutional barriers. 

The relationship between DED and industrial carbon lock-
in exhibits a strong correspondence within the “techno-
institutional” framework. The digital economy can 
similarly break industrial carbon lock-in through both 
technological innovation and institutional regulation. 
However, the initial construction of digital infrastructure 
might partially offset the optimization effects driven by 
digital innovation and industrial structural improvements. 
Thus, this study put forward Hypothesis 3: 

H3: In the early stage of DED, digital infrastructure 
investment weakens ICUE. However, once the 
construction of digital infrastructure reaches a certain 
level of maturity, the DED mainly enhances ICUE through 
a dual mechanism of technological innovation and 
institutional regulation. 

According to the empirical results, the improvement 
effects of carbon unlocking efficiency before and after the 

maturity threshold are -29.17% and 38.39%, respectively, 
showing a "U-shaped" relationship of first decreasing then 
increasing, and finally reaching equilibrium. At the same 
time, the key carbon unlocking pathways of “techno-
institutional” complex are identified through intermediary 
mechanism analysis while “tunnel model” of DED is also 
proved with spatial econometric regression. These 
theoretical hypotheses above have been quantitatively 
validated. 

4. Data, Variables and Models 

4.1. Data source 

The study selects a sample of 274 Chinese cities from 
2013 to 2022. Data of carbon emissions and most socio-
economic variables come from the China City Statistical 
Yearbook, China Regional Statistical Yearbook, China 
Energy Statistical Yearbook, and various municipal-level 
statistical yearbooks. The indicator Digital Inclusive 
Finance Index is calculated based on the Digital Inclusive 
Finance Indicator System and Index Compilation (Guo et 
al. 2020). The Green Patent Authorization data comes 
from the National Intellectual Property Patent Database, 
while Industrial Land Transfer data is obtained from the 
transaction records on the China Land Market website. 

4.2. Variables measurement 

4.2.1. Dependent variable: Industrial Carbon Unlocking 
Efficiency (ICUE) 

The measurement of ICUE should consider the balance 
between socio-economic benefits and ecological 
sustainability, and systematically evaluate the efficiency of 
industrial carbon unlocking at the city level from an input-
output perspective. Following the Super-efficiency SBM 
model proposed by Tone &Tsutsuim (2009), the study 
constructs an input indicator system from institutional, 
technological and social dimensions, and the output 
indicator system consists of desirable economic output 
and undesirable carbon emissions output (Table 1), 
aiming to evaluate the multi-objective performance of 
economic growth and carbon reduction. 

Table 1. The input-output indicator system for the measurement of ICUE 

Dimension 
Indicator 

type 
Specific indicator Measurement method 

Input indicators 

Institutional 

input 

Environmental regulation level 
Ratio of energy conservation &environmental 

protection expenditure to local fiscal expenditure 

Institutional quality level Marketization index 

Technological 

input 

R&D investment Ratio of R&D expenditure to local GDP 

R&D human resources Number of R&D personnel per 10000 people 

Social input 
Public environmental awareness 

Environmental attention index (Baidu search 

index) 

Urban greening investment Built-up area greening rate 

Output indictors 

Desirable 

output 
Economic development level GDP per capita 

Undesirable 

output 
Carbon emission intensity Ratio of local CO2 emissions to GDP 
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4.2.2. Independent variable and threshold variable: Digital 
economy development (DED) level and 
Digital infrastructure level 

This study comprehensively evaluates the DED level across 
multiple domains, including digital infrastructure, digital 
industries and digital finance (Xin et al. 2023b). Several 
sub-dimension indicators are selected to construct the 
assessment framework for the DED level (dig_econ), 
namely: long-distance optical cable density, per capita 
broadband internet access ports, mobile phone 

penetration rate, internet penetration rate, employment 
ratio in information transmission, computer services and 
software industries, per capita telecommunications 
business revenue, and the digital inclusive finance index 
(Table 2). Entropy method is adopted to determine the 
indicator weights, with a standardized scoring process 
involving normalization, weight assignment, weighted 
aggregation and logarithmic transformation to generate a 
panel dataset reflecting the DED level. 

 

Table 2. The measurement index system of DED level 

Dimension Indicator 

Digital infrastructure 

Long-distance optical cable density 

Per capita broadband internet access ports 

Mobile phone penetration rate 

Internet penetration rate 

Digital industry 
Employment ratio in information transmission, computer services and software industries 

Per capita telecommunications business revenue 

Digital finance Digital inclusive finance index 

 

According to hypothesis 1, in the early stage of DED, the 
high-carbon energy requirement for digital infrastructure 
construction might result in its marginal costs exceeding 
marginal benefits, however, it could promote low-carbon 
transition when digital infrastructure emerging from the 
integration of digitalization and low-carbon development 
(Lei et al. 2025). Therefore, the study employs the digital 
infrastructure level (dig_infra) as the threshold variable. 

4.2.3. Mechanism variables: Corporate green innovation 
and Governmental industrial regulation 

Based on hypothesis 3, the study explores the mechanism 
pathways of DED promoting ICUE within the “techno-
institutional” framework. The technological pathway 
could be measured by Corporate green innovation at city 
level, with the number of granted green patents (patent) 
as an indicator, aiming to capture the scale of corporate 
green innovation output from a technological perspective. 
The calculation is based on the total number of granted 
green invention patents and green utility model patents 
each year. 

The institutional pathway could be evaluated by the 
intensity of local government industry regulation, 
measured by the deviation of industrial land transfer 
prices at city level. Local governments regulate the 
industrial sectors through differential land supply 
strategies, utilizing selective industrial land pricing 
mechanisms (Wang et al. 2021). Specially, when local 
governments exhibit a weak preference for selective land 
supply, they tend to adopt unified pricing policy, leading 
to low deviations in industrial land prices. Conversely, 
they adopt a “one plot, one price” method to screen 
industrial projects, resulting in significant deviations in 
industrial land prices. The formula for calculating 
industrial land price deviation is shown as follow: 

2

1
( )

_

n

ijt jt
j

it

P P

Land SD
n

=
−

=


 

(1) 

Where Land_SDit represents the industrial land price 
deviation index, used to measure the intensity of local 
government industry regulation. Pijt denotes the average 

land transfer price for industry j in city i in year t, while Pijt 

is the overall average land transfer price for all industries 
in city i in year t. And n represents the number of 
industrial sectors.  

4.2.4. Instrumental variable 

Given the potential endogeneity caused by reverse 
causality or omitted variables in the relationship between 
DED and ICUE, the study adopts an instrumental variable 
(IV) approach, following the methodology proposed by 
Chen &Chen (2018). Local governments’ preferences for 
DED are quantified by counting the frequency of digital 

economy-related terms2 (IV_word) in the annual work 
reports of municipal governments. Since these reports are 
typically released at the beginning of the year, setting the 
policy agendas in advance, the carbon reduction 
performance within the same year cannot retrospectively 
affect their intentions. Meanwhile, to address the omitted 
variable bias caused by geographical and natural factors, 
the study incorporates the average slop of the city (IV_pd) 
as another instrumental variable. All in all, the study 
constructs an interaction term between the frequency of 
digital economy-related terms in local government reports 
and the reciprocal of the city’s average slope as the final 
instrumental variable (IV) for DED. 

4.2.5. Control variables 

To mitigate potential confounding effects, the study 
incorporates a series of control variables, including: (1) 
The degree of openness (fore_gdp): It could be measured 
by the ratio of foreign direct investment (FDI) to local 

 
2 Using Python for text processing, a digital economy-specific 

corpus was employed to segment and extract 39 relevant terms, 

including “smart economy”, “information economy”, “intelligent 

economy”, “information and communication technology”, “ICT”, 

and “telecommunication infrastructure.” 
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GDP; (2) Population density (pop_den): It could be 
measured by the number of population per unit of 
administrative area; (3) Industrial structure (second): It 
could be represented by the ratio of the added value of 
the secondary industrial to GDP; (4) Local government 
fiscal capacity (fis_income): It could be measured by the 
proportion of local fiscal revenue to GDP; (5) Innovation 
potential (uni_stu): It could be measured by the ratio of 
the number of registered higher education students to the 
total local population. (6) Road transport capacity 
(traffic): It can serve as an indicator of the level of local 
transportation infrastructure. 

4.3. Model designing 

4.3.1. Panel threshold model 

Some related studies chose to adopt the quadratic 
regression method of independent variable to identify the 
non-linear relationship (Li et al. 2025), but it might cause 
multi-collinearity issues of regression coefficients. The 
study adopts a panel threshold regression model based on 
Hansen’s panel threshold framework (Hansen 1999), with 
the digital infrastructure level as the threshold variable. As 
the threshold value changes, the relationship between 
DED and ICUE exhibits nonlinear characteristics. 
therefore, the baseline regression model for this study is 
formulated as Equation (2): 

1 2

3 4 5

6 1 1

2 1 2

3 2

_ _

_ _

_ * ( _ )

_ * ( _ )

_ * ( _ ) 

it it it

it it it

it it

it it

ICUE fore gdp pop den

second fis income uni stu

traffic dig econ I dig infra

dig econ I dig infra

dig econ I dig infra
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  

  

  

  

= + +

+ + +

+ + 

+  

+  +
 

(2) 

Equation (2) represents a double-threshold panel 
regression model, where dig_econ denotes the digital 
economy development level, and dig_infra serves as the 

threshold variable in the study, with the threshold 
number determined through estimation. In the equation, i 
represents the city number, t denotes the year, and α is 
the constant term. 𝛽𝑛 represent the coefficients of the 
control variables, while 𝜃𝑛  denote the regression 
coefficients of the core dependent variable dig_econ. 
Finally, ε is the error term. 

4.3.2. Spatial econometric model 

Given that DED exceeds the geographical constraints, its 
impacts on ICUE might exhibit spatial spillover effects. To 
account for this, a spatial econometric model is 
constructed based on the baseline regression model. 
Previous studies have compared the estimation results of 
the Spatial Durbin model (SDM), Spatial Auto-regressive 
model (SAR), and Spatial Error model (SLM), concluding 
that only the SDM could provide unbiased estimates and 
represent the most general form of spatial econometric 
modeling (LeSgae &Pace 2009). Therefore, the study 
adopts the following SDM model:  

1 1 1

           
= = =

= + + + + + +  
n n n

it it ij jt ij it i t it

i j j

ICUE X W ICUE W X

 

(3) 

In Equation (3), the DED level is selected as the core 
independent variable, while 𝐼𝐶𝑈𝐸𝑖𝑡  represents the ICUE of 
city i in year t. The term 𝑋𝑖𝑡 denotes the set of covariates, 
including both the core independent variable and control 
variables. The spatial weigh matrix 𝑊𝑖𝑗  captures the 

spatial dependency between city i and city j. In this study, 
a nested matrix combining economic distance and 
geographical distance is used to identify the spatial 
spillover effects of DED on multi-dimensional adjacent 
cities. The term 𝜇𝑖  represents city-fixed effects, 𝜏𝑡 denotes 
year-fixed effects, 𝜀𝑖𝑡 is the error term, and 𝜌 is the spatial 
auto-regressive coefficient. 

Table 3. The descriptive statistics 

Type Variable Symbol Sample Mean Std. Dev. Min Max 

Dependent 

variable 
Industrial carbon unlocking efficiency ICUE 2694 1.014 0.114 0.381 2.899 

Independent 

variable 
Digital economic development level dig_econ 2740 0.006 0.005 0.001 0.056 

Threshold 

variable 
Digital infrastructure level dig_infra 2720 0.036 0.035 0.003 0.703 

Mechanism 

variables 

Green patent grants patent 2740 
841.34

1 
2356.129 0 34670 

Deviation of industrial land price lnland_SD 2740 4.393 0.778 1.882 9.963 

Instrumental 

variables 

Frequency of digital economy-related 

terms 
IV_word 2660 39.501 24.685 0 188 

Slope IV_pd 2740 10.626 5.567 1.592 27.139 

Interaction term IV 2660 5.505 5.837 0 45.618 

Control variables 

Degree of openness fore_gdp 2740 0.002 0.003 0 0.029 

Population density lnpop_den 2740 5.771 0.901 1.609 7.882 

Industrial structure 

lnsecond 2740 3.778 0.263 2.368 4.477 

lnfis_incom

e 
2740 6.599 0.331 5.457 7.729 

Innovation potential lnuni_stu 2740 10.669 1.285 5.793 14.161 

Highway transport capacity lntraffic 2740 8.126 1.111 2.303 12.016 
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4.4. Descriptive statistics 

The descriptive statistics for the dependent variable, 
independent variables, threshold variable, mechanism 
variables, instrumental variables and control variables 
used in the study are listed in Table 3. In order to reduce 
the heteroscedasticity of the results, natural logarithm 
transformation is applied to continuous variables where 
appropriate. 

 

Figure 2. Sample scatter plot of the relationship between the 

DED level and ICUE 

Before conducting the baseline regression, the study first 
conducts a preliminary analysis of the sample data. 
Through plotting a scatter diagram of DED level and ICUE, 
we compare the goodness of fit between linear and 
nonlinear regression models. As shown in Figure 2, the 
quadratic fit demonstrates a significantly higher goodness 
of fit than the linear model, indicating that the 

relationship between DED and ICUE can be better 
captured using a quadratic function. The preliminary 
result supports the nonlinear hypothesis mentioned 
above.  

Additionally, most sample points are concentrated on the 
left side of the threshold value, indicating that most 
sample cities are still in the early stage of DED, where 
their improvement on ICUE remains relatively limited.  

5. Empirical results 

5.1. Panel threshold regression results 

The study adopts a panel threshold regression model, 
which can accurately estimate the number of thresholds 
and perform statistical significance tests on the threshold 
variables. The econometric methods help avoid subjective 
bias caused by qualitative judgments when determining 
the quantity and value of thresholds. According to 
Equation (2), digital infrastructure level is selected as the 
threshold variable. By conducting hypothesis tests for 
single-threshold, double-threshold and triple-threshold 
models, the study identifies the optimal number of 
thresholds for the baseline model. 

The test results of threshold effect are shown in Table 4. 
After 500 bootstrap iterations, it could be observed that 
the single-threshold and double-threshold effects are 
significant at the 5% and 1% confidence levels, 
respectively. Therefore, double-threshold model is 
adopted for more precise estimation results based on the 
existing samples. 

Table 4. Test results for the threshold effect of digital infrastructure level 

Threshold number F-value P-value Bootstrap iterations 1% critical value 5% critical value 10% critical value 

Single threshold 6.724** 0.010 500 6.236 2.820 2.196 

Double threshold 5.940*** 0.000 500 3.646 2.252 1.946 

Triple threshold 0.000 0.513 500 0.000 0.000 0.000 

(Notes: *p<0.10, **p<0.05, ***p<0.01.) 

Table 5. Threshold value estimation results 

Threshold  Threshold estimator 95% confidence interval 

Single threshold (γ1) 0.034 (0.016, 0.092) 

Double threshold (γ1) 0.061 (0.016, 0.105) 

Double threshold (γ2) 0.034 (0.029, 0.037) 

Triple threshold (γ3) 0.039 (0.037, 0.051) 

Table 6. Panel threshold model estimation results 

Variables Coefficient T-value Prob. Sample quantity 

dig_econ×I(dig_infra≤0.034) -2.427** -2.21 0.027 1782（66.1%） 

dig_econ×I(0.034＜dig_infra≤0.061) 3.167** 2.01 0.045 870（32.3%） 

dig_econ×I(dig_infra＞0.061) 0.339 0.50 0.616 42（1.6%） 

fore_gdp 0.128 0.10 0.917  

lnpop_den 0.001 0.27 0.789  

lnsecond 0.005 0.39 0.697  

lnfis_income -0.019* -1.79 0.073  

lnuni_stu 0.0002* 1.75 0.080  

lntraffic 0.0038 1.19 0.233  

_cons 1.084*** 13.15 0.000  

F-statistics 2.21**  0.019  

Adjusted-R2 0.0249    

(Notes: *p<0.10, **p<0.05, ***p<0.01.) 
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Table 5 presents the estimated threshold values and their 
corresponding 95% confidence intervals. Figure 3 
illustrates the likelihood ratio (LR) function curve of the 
estimated double-threshold model. The threshold 
estimates could be obtained at the points (𝛾) where the 
likelihood ratio statistic (LR) intersects the 5% significance 
level line. From the LR plot (Figure 3), it can be observed 
that the single-threshold value at 0.034 could reject the 

null hypothesis, although the F-value for the double-
threshold effect is also statistically significant, and the 
0.034 threshold value matches the single-threshold 
estimate (Table 5). Given these findings, the study adopts 
the double-threshold model for exploratory analysis, 
identifying two threshold values, 0.034 and 0.061, for 
digital infrastructure level. 

Table 6. Panel threshold model estimation results 

Variables Coefficient T-value Prob. Sample quantity 

dig_econ×I(dig_infra≤0.034) -2.427** -2.21 0.027 1782（66.1%） 

dig_econ×I(0.034＜dig_infra≤0.061) 3.167** 2.01 0.045 870（32.3%） 

dig_econ×I(dig_infra＞0.061) 0.339 0.50 0.616 42（1.6%） 

fore_gdp 0.128 0.10 0.917  

lnpop_den 0.001 0.27 0.789  

lnsecond 0.005 0.39 0.697  

lnfis_income -0.019* -1.79 0.073  

lnuni_stu 0.0002* 1.75 0.080  

lntraffic 0.0038 1.19 0.233  

_cons 1.084*** 13.15 0.000  

F-statistics 2.21**  0.019  

Adjusted-R2 0.0249    

(Notes: *p<0.10, **p<0.05, ***p<0.01.) 

 

Figure 3. Likelihood ratio function diagram of the threshold 

estimators. (a) First threshold estimator. (b) Second threshold 

estimator 

Table 6 presents the panel regression results of the 
double-threshold model. The regression coefficients of 
the core independent variable (dig_econ) vary across 
different threshold intervals, exhibiting a nonlinear 
relationship with the ICUE. Based on the estimated 
thresholds, the study classifies the digital infrastructure 
level into three different stages: (1) Expansion phase 
(Early stage: dig_infra ≤ 0.034). The relationship between 

DED and ICUE is significantly negative (θ=-2.427，

p=0.027), indicating that in the expansion stage of DED, 
the expansion of energy-intensive digital infrastructure 
offsets the carbon reduction of technological innovation 
and industrial restructuring. This phenomenon confirms 
the Jevons Paradox, which assumes that efficiency 
improvement leads to increased overall energy 
consumption. (2) Maturity phase (Mid-stage: 0.034 ≤ 
dig_infra ≤ 0.061). The relationship becomes significantly 

positive (θ=3.167 ， p=0.045). At this stage, the 

optimization effect of DED dominates, since digital 
innovation and institutional improvements play a key role 
in promoting ICUE. (3) Equilibrium phase (Final stage: 

dig_infra ＞0.061). The relationship remains positive but 

statistically insignificant (θ=0.339 ， p=0.616). It 
demonstrates that with the deep integration of new 
generation information technology and the real economy, 
a dynamic equilibrium between DED and ICUE has been 
realized. These empirical findings are consistent with the 
theoretical predictions of Xu et al. (2024). 
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Furthermore, the comparative analysis of regression 
coefficients for different stages and sample distributions 
reveals important findings. During the maturity stage, a 
10% increase in DED level promotes the ICUE by 31.67%, 
significantly exceeding the rebound effect of -24.27% 
observed in the expansion stage. This indicates that as 
digital infrastructure reaches a certain scale, its role in 
promoting ICUE through agglomeration effects becomes 
increasingly prominent. Overall, the positive impact of 
DED om improving ICUE outweighs the initial carbon lock-
in effect observed in the early stages. Additionally, the 
examination of sample distribution at different stages 
shows that 66.1% of the samples remain in the expansion 
stage, while 32.3% have entered the maturity stage, 
achieving the efficiency improvement of carbon unlocking 
driven by digital transformation. Only 1.6% of the samples 

belong to the equilibrium stage, with DED and industrial 
carbon unlocking reaching a dynamic balance.  

Given this distribution, the study mainly focuses on the 
initial two stages of DED, with a particular emphasis on 
analyzing the U-shaped relationship between DED and 
ICUE at city level. 

5.2. Instrumental variable regression 

The study adopts a composite instrumental variable (IV) 
for the variable DED level, which is constructed as the 
interaction term between the frequency of digital 
economy-related words in government work reports and 
the reciprocal of local average slope. Within the 2SLS 
estimation framework, this method allows for a more 
robust evaluation of the relationship between DED and 
ICUE, addressing potential endogeneity issues caused by 
reverse causality and omitted variable bias. 

Table 7. The relationship between DED and ICUE: IV estimation 

Variable 

Expansion phase (dig_infra≤0.034) Maturity phase (dig_infra＞0.034) 

First stage: dig_econ 
Second stage: 

ICUE 
First stage: 
dig_econ 

Second stage: 
ICUE 

 (1) (2) (3) (4) 

IV 0.0001***  0.0001***  

 (7.35)  (4.77)  

dig_econ  -2.917***  3.839* 

  (-2.61)  (1.68) 

fore_gdp 0.099*** 1.342 0.309*** -4.079 

 (4.60) (1.19) (4.01) (-1.50) 

lnpop_den -0.0004*** -0.0063 -0.0009*** -0.0013 

 (-4.88) (-1.34) (-3.34) (-0.16) 

lnsecond 0.0025*** 0.301 0.0011 -0.0089 

 (11.80) (1.47) (1.39) (-0.40) 

lnfis_income 0.0006*** -0.0084 0.0044*** -0.0395 

 (3.52) (-0.95) (6.72) (-1.29) 

lnuni_stu -0.000018 0.0019 0.0006*** -0.0092 

 (-0.32) (0.69) (3.09) (-1.60) 

lntraffic 0.0004*** 0.0033 0.0009*** -0.0079 

 (6.21) (0.76) (5.17) (-1.04) 

_cons -0.0094*** 0.954*** -0.044*** 1.440*** 

 (-6.47) (10.38) (-8.77) (5.08) 

City FE YES YES YES YES 

Year FE  YES YES YES YES 

Observations  1782 1782 870 870 

R2  0.3468  0.7380 

Kleibergen-Paap 

rk Wald F statistic 
53.984  22.734  

(Notes: *p<0.10, **p<0.05, ***p<0.01. values in parentheses are T-statistics) 

 

It can be observed that columns (1) and (2) of Table 7 
present the IV estimation results for the expansion phase, 
while columns (3) and (4) report the results for the 
maturity phase. Firstly, the first-stage regression analysis 
of IV estimation shows that, regardless of whether the 
dig_infra is on the left or right side of the threshold, the IV 
is significantly and positively correlated with DED level at 
a 1% confidence level. The Kleibergen-Paap rk Wald F-
values of the first stage regression are 53.984 and 22.734, 
both far above the critical threshold of 10, indicating that 
the IV is strongly relevant and alleviating weak instrument 

concerns. Secondly, the second-stage regression results of 
the IV estimation reveal that the impact of DED on ICUE is 
consistent with the baseline regression results reported in 
Table 6 in terms of both coefficient direction and 
significance level, further verifying the U-shaped 
relationship between DED and ICUE. However, in terms of 
absolute coefficient values, the IV estimation results 
exhibit a certain degree of inflation, indicating that 
potential endogeneity issues lead to partial 
underestimation of estimated effects in the baseline 
regression. 
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In summary, Hypothesis 1 has been quantitatively 
validated through panel threshold regression and causal 

inference analysis using segmented IV approach. 

Table 8. The relationship between DED and ICUE: SDM analysis 

Variable Main W*X LR_Direct LR_Indirect 

dig_econ -0.620 0.980* -0.614 0.721* 

 (-0.63) (1.64) (-0.63) (1.67) 

fore_gdp -0.109 4.022 -0.269 4.713 

 (-0.07) (0.36) (-0.20) (0.39) 

lnpop_den -0.065 0.171 -0.059 0.140 

 (-0.78) (0.29) (-0.64) (0.20) 

lnsecond 0.027 0.018 0.029 0.032 

 (1.06) (0.17) (1.06) (0.25) 

lnfis_income -0.009 -0.098 -0.013 -0.103 

 (-0.60) (-1.52) (-0.67) (-1.35) 

lnuni_stu -0.015 0.062 -0.015 0.074 

 (-1.38) (0.67) (-1.39) (0.66) 

lntraffic 0.011* -0.007 0.011* -0.006 

 (1.88) (-0.41) (1.93) (-0.31) 

ρ (W×ICUE) 0.115***  Variance sigma2_e 0.012*** 

 (3.79)   (37.01) 

City FE YES YES YES YES 

Year FE YES YES YES YES 

Observations 2740 2740 2740 2740 

(Notes: *p<0.10, **p<0.05, ***p<0.01. values in parentheses are T-statistics) 

5.3. Spatial spillover effect and tunnel model analysis  

Spatial Durbin Model (SDM) is adopted to explore the 
spatial spillover effect of DED on ICUE. Since the DED 
relies on internet, block-chain, big data and other 
technological industries, it possesses a “tunnel model” 
advantage that transcends geographical distance. 
Therefore, the study adopts a composite nested matrix of 
economic distance and geographical distance as the 
spatial weight matrix. The detailed analysis results are 
shown in Table 8. 

Several key findings can be concluded from the estimation 
results in Table 8. Firstly, the spatial autoregressive 
coefficient ρ (W×ICUE) is significantly positive at the 1% 
level, indicating that ICUE has a strong positive spillover 
effect at city level. It validates the appropriateness of 
adopting spatial econometric model to estimate the 
spillover effects of DED. Secondly, the two indicators 
reflecting the local impact of DED on ICUE (Main and 
LR_Direct) are both statistically insignificant. It indicates 
that without considering spatial spillover effects, the 
direct impact of DED on ICUE is not significant, which is 
consistent with the nonlinear relationship assumed in the 
study above. Finally, to accurately estimate the spatial 
spillover effect of DED, in addition to checking the 
spillover effect coefficient W*X in the SDM, it is also 
necessary to decompose the influence of the independent 
variables. The indirect effect coefficient (LR_Indirect) 
further quantifies the spatial effect of DED. The results 
indicate that both mutually verified spatial spillover effect 
coefficients are significantly positive at the 10% level. 
Specially, a 10% increase of local DED level contributes to 
7.2% improvement of ICUE in surrounding areas. The 
effect is mainly caused by the functional borrowing of 
digital infrastructure from neighboring regions. Through 
trickle-down effect and learning-sharing mechanism, the 

DED generates positive externalities while mitigating the 
negative externalities of digital infrastructure 
construction. At the same time, inter-governmental 
competition tends to be rational, with no obvious “race-
to-top” effect observed. 

From the magnitude of the coefficients, the spatial 
spillover effect is noticeably lower than the optimization 
effect of DED on ICUE in the maturity phase, indicating 
that the spatial spillover effect has a certain temporal lag. 
This finding is consistent with the remaining literature (Li 
&Wang 2022), thus quantitatively verifying Hypothesis 2. 

In practice, China has initiated the construction of eight 
national computing center nodes and planned ten 
national data center clusters, forming the foundation of a 
nationwide integrated big data center system. The 
initiative, known as the “Eastern data, Western 
computing” project, promotes a “tunnel-type” 
development model that bridges spatial non-adjacent 
regions, thereby facilitating regional coordination (Bell 
&Oliver 2022). On one hand, the project systematically 
shifts the high-intensity computing demand from the 
eastern region to the western region, promoting cross-
regional data flow and alleviating energy constraints in 
the east, while simultaneously opening up new 
development pathway for the west. On the other hand, by 
leveraging the functional borrowing of digital 
infrastructure in computing center cities, the project 
promotes the diffusion of positive externalities in multi-
dimensional adjacent areas, preventing the occurrence of 
the “Jevons Paradox” in the early stage of DED. A typical 
case is the establishment of the National Big Data Science 
and Technology Innovation City in Guiyang, which has 
significantly contributed to the high-quality economic 
development with digital technology.  
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5.4. The mechanism analysis of carbon unlocking 

According to Hypothesis 3, the study adopts mediation 
effect analysis to quantitatively verify the mechanism of 
digital economy driving industrial carbon unlocking. The 
mechanisms can be measured from three perspectives: 
digital infrastructure construction, governmental 
industrial regulation and corporate green innovation. 
Table 9 shows the mechanism analysis of how DED 
weakens ICUE during the expansion phase, while Table 10 
shows the mechanism of how DED promotes ICUE during 
the maturity phase. Specially, columns (1) and (2) 
demonstrate the role of governmental industrial 
regulation, columns (3) and (4) examine the role of 

corporate green innovation, and columns (5) and (6) 
explore the impact of digital infrastructure construction. 

Table 9 shows that when DED is in the expansion phase, 
the mechanism variables, industrial land price deviation 
(lnland_SD) and the number of corporate green patent 
grants (patent), cannot form a complete causal chain. It 
indicates that in the early stage of DED, the “techno-
institutional” framework does not effectively promote 
industrial carbon unlocking. Instead, a rebound effect 
emerges due to large-scale digital infrastructure 
construction. Specially, DED significantly enhances digital 

infrastructure construction (β=0.116，T=2.61), which in 

turn significantly weakens local ICUE (β=-0.847，T=-2.87). 

Table 9. The mechanism analysis in the stage of expansion phase 

Variable lnland_SD ICUE patent ICUE dig_infra ICUE 

 (1) (2) (3) (4) (5) (6) 

dig_econ 0.026  138.801***  0.116***  

 (0.53)  (4.88)  (2.61)  

lnland_SD  0.0029     

  (0.62)     

patent    -1.16×10-6   

    (-0.16)   

dig_infra      -0.847*** 

      (-2.87) 

fore_gdp -2.137 1.054 -1072.297 1.028 0.112** 1.106 

 (-0.31) (0.84) (-0.26) (0.81) (2.11) (0.73) 

lnpop_den 0.054 -0.0024 89.317*** -0.0022 -0.0003 0.0009 

 (1.40) (-0.52) (3.56) (-0.48) (-1.18) (0.17) 

lnsecond -0.081 0.188 -103.721** 0.019 -0.003*** 0.025 

 (-1.04) (1.45) (-2.24) (1.43) (-4.89) (1.54) 

lnfis_income -0.115** -0.0136 -51.592 -0.0139 -0.0008* -0.016 

 (-2.00) (-1.32) (-1.50) (-1.34) (-1.86) (-1.34) 

lnuni_stu 0.105*** 0.0011 133.637*** 0.0017 0.0021*** 0.0012 

 (3.97) (0.31) (8.03) (0.43) (12.00) (0.30) 

lntraffic -0.049*** 0.0015 -16.205 0.0014 -0.0028*** -0.0016 

 (-2.69) (0.45) (-1.46) (0.42) (-19.26) (-0.39) 

_cons 4.301*** 0.999*** -753.036** 1.008*** 0.042*** 1.044*** 

 (7.66) (11.05) (-2.18) (11.21) (10.30) (9.95) 

City FE YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES 

Observations 1842 1817 1842 1817 1842 1799 

R2 0.0719 0.0042 0.2557 0.0074 0.3645 0.0543 

(Notes: *p<0.10, **p<0.05, ***p<0.01. values in parentheses are T-statistics) 

Table 10 shows that when DED reaches the maturity 
stage, the industrial carbon unlocking pathway under the 
“techno-institutional” framework holds a dominant 
position. From an institutional perspective, DED 
significantly prompts local governments to strengthen 

industrial regulation (β=0.349，T=5.40), which in turn 

significantly increases ICUE (β=0.014，T=2.16). And the 

regulation instruments such as resource input, punitive 
measures for non-compliance and reward incentives could 
all influence the green performance (Lei et al. 2024). From 
a technological perspective, DED significantly enhances 
the green technological innovation capability of local 

enterprises (β=2009.955，T=7.92), which also significantly 

improves local ICUE (β=6.26×10-6， T=1.86). Related 

literature has concluded the micro-mechanisms of 

technological pathway as knowledge spillover, reputation 
incentive and supervisory innovation (Lei and Xu 2025). 
However, the mediating effect of digital infrastructure 
construction is not significant. It indicates that as DED 
enters the maturity stage, new infrastructure construction 
sheds its traditional “carbon-intensive” characteristics and 
breaks the “Jevons paradox”. Thus, the mechanism of 
industrial carbon unlocking driven by the DED, as 
proposed in Hypothesis 3, is quantitatively validated.  

6. Further analysis: Exploration of optimization 
directions based on machine learning 

Policy learning model is adopted to estimate the marginal 
benefits of top-down promotion of DED (such as the 
National big data comprehensive pilot zone policy) on 
industrial carbon unlocking under resource constraints 
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(Athey & Wager 2021). Additionally, it ranks cities based 
on their potential for ICUE improvement and provides 
decision-making references for optimizing pilot policy 
implementation. Specially, following the principle of 
maximizing ICUE, the policy learning model combines both 
existing observational data and policy shocks. By training 
city-specific response functions under budget constraints, 

the model ranks cities based on their potential for 
improving ICUE. The heterogeneous impacts of DED 
driving industrial carbon unlocking in different regions 
provide a rich dataset for training the policy learning 
model. 

 

Table 10. The mechanism analysis in the stage of maturity phase 

Variable lnland_SD ICUE patent ICUE dig_infra ICUE 

 (1) (2) (3) (4) (5) (6) 

dig_econ 0.349***  2009.955***  1.666***  

 (5.40)  (7.92)  (6.02)  

lnland_SD  0.014**     

  (2.16)     

patent    6.26×10-6*   

    (1.86)   

dig_infra      0.069 

      (0.70) 

fore_gdp -8.871 -0.716 -44689.32 0.237 -1.489*** -1.177 

 (-0.96) (-0.37) (-1.22) (0.07) (-2.25) (-0.60) 

lnpop_den 0.310*** -0.0002 691.536*** -0.223 0.0104*** 0.0049 

 (5.80) (-0.02) (4.34) (-1.32) (4.83) (0.74) 

lnsecond -0.364*** 0.008 -2327.959*** 0.0012 -0.022*** 0.0026 

 (-3.08) (0.41) (-5.75) (0.02) (-3.36) (0.12) 

lnfis_income 0.210** -0.0067 2174.783*** -0.057 0.0252*** 0.0006 

 (2.10) (-0.41) (6.25) (-1.14) (4.51) (0.04) 

lnuni_stu 0.191*** -0.0059 378.801*** -0.061 0.0017 -0.0056 

 (5.13) (-1.27) (3.31) (-1.35) (1.08) (-1.18) 

lntraffic -0.069*** 0.0012 363.097*** 0.016 -0.0075*** 0.0026 

 (-3.15) (0.27) (4.33) (1.13) (-5.15) (0.52) 

_cons 1.160 1.039*** -15565.51*** 3.305*** -0.055 1.054*** 

 (1.39) (8.20) (-5.60) (2.87) (-1.16) (6.71) 

City FE YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES 

Observations 898 877 898 877 878 857 

R2 0.3569 0.0608 0.4117 0.0293 0.1926 0.0191 

(Notes: *p<0.10, **p<0.05, ***p<0.01. values in parentheses are T-statistics) 

Figure 4 illustrates the distribution of ICUE improvement 
potential under the central government’s top-down policy 
support for DED, using the generalized random forest 
algorithm. The results indicate that the cities with the 
greatest improvement potential for industrial carbon 
unlocking performance are mainly concentrated along the 
“Hu Huanyong Line” and in the southeastern coastal 
regions of China. 

7. Conclusion and policy implications 

7.1. Conclusions 

The study utilizes panel data of 274 Chinese cities from 
2013 to 2022 to explore the nonlinear relationship 
between DED and ICUE at the city level. In addition, it 
identifies the mechanisms driving this process and 
proposes optimization strategies. The key findings are 
shown as follows: 

(1) The study firstly adopts a panel threshold regression 
model to identify the nonlinear “U-shaped” relationship 
between DED and ICUE. The conclusion remains robust 
after phased instrumental variable (IV) analysis. The 
findings indicate that, during the expansion phase of DED, 

the construction of digital infrastructure and growth of 
carbon-intensive industries hinder the improvements in 
ICUE, and even leading to a rebound effect for carbon 
lock-in. However, once it exceeds the maturity threshold, 
the positive effects of technological innovation and 
institutional regulation gradually become apparent. 

(2) Secondly, spatial econometric analysis reveals that 
DED has a significantly positive spillover effect on ICUE in 
multi-dimensional adjacent areas. Unlike its direct impact 
on local ICUE, DED exerts positive externalities through 
the diffusion and sharing of information technology, 
thereby enhancing ICUE in adjacent area by trickle-down 
and knowledge-sharing effects. Meanwhile, the functional 
borrowing of cross-regional digital infrastructure can help 
alleviate the “Jevons paradox” observed in the early stage 
of DED, providing empirical support for China’s 
implementation of the “Eastern data, Western 
computing” strategy. And it can be summarized as the 
“tunnel model”. 

(3) Thirdly, the study finds that after the DED exceeding 
the maturity threshold, it plays a crucial role in improving 
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ICUE through both technological and institutional 
pathways. Specially, the technological pathway is 
reflected in the promotion of digital tools, information-
based methods and green technologies, which improve 
the efficiency of energy utilization and resource 
allocation. The institutional pathway can be manifested as 
regulatory innovation and governance optimization driven 
by digital technologies, creating a more favorable 
institutional environment for industrial carbon unlocking. 

 

Figure 4. The ICUE improvement potential distribution driven by 

DED in Chinese cities 

(4) Finally, based on training and simulation using the 
existing datasets, the study adopts machine learning 
technique to identify potential directions for optimizing 
top-down support for DED. The empirical results indicate 
that cities with the highest potential for performance 
improvement are mainly located along the “Hu Huanyong 
Line” and in China’s southeastern coastal regions. Firstly, 
cities along the “Hu Huanyong Line” are mostly located in 
the core regions with energy and resource-intensive 
industries layouts due to their unique geographical 
locations and resource endowments, they own high 
potential for improving ICUE. Secondly, these cities mostly 
play the role of crucial strategic hub of China, and have 
the potential to maximize positive externalities of DED 
through large-scale digital infrastructure construction. 
Finally, other southeastern coastal cities exhibit high-
intensity economic activity, integral industrial chains and 
mostly exceeding the maturity stage threshold of DED. 
Improving ICUE in these areas could serve as an 
exemplary role for carbon reduction across the whole 
country. 

7.2. Policy implications 

Based on the empirical findings of this study, the following 
policy implications are proposed: 

(1) Accelerating digital economy development and 
seizing the opportunity window for industrial carbon 
unlocking. The central government should strengthen 
support for cities developing the digital economy, 
especially by providing policy incentives for the digital 
transformation of small and medium-sized enterprises, 
digital infrastructure construction and digital talent 
cultivation. Policymakers should seize the opportunity 
window for industrial carbon unlocking in high-potential 
cities, especially cities along the “Hu Huanyong line” and 
southeastern coastal cities, by coordinating the city 
demands, technological capabilities and policy support, 
these cities could maximize the performance of industrial 
carbon unlocking driven by the digital economy, while 
amplifying its positive spillover effects, such as their 
resource endowment, geographical connectivity and 
demonstration role, 

(2) Promoting regional coordination for digital economy 
development to maximize spillover effects. A 
coordinated development strategy for the digital 
economy should be formulated to strengthen inter-
regional information sharing, technological exchange and 
policy alignment. In practice, priority should be given to 
strengthening the inter-connectivity of digital 
infrastructure to facilitate functional borrowing across 
regions. Additionally, cross-regional industrial policies and 
subsidies support should be implemented to promote 
effective linkages among digitization transformation 
enterprises, ultimately establishing a well-balanced, 
market-oriented digital economy ecosystem on a national 
scale. 

(3) Strengthening technological innovation and 
institutional reform to promote industrial carbon 
unlocking. Policymakers should prioritize incentives for 
digital technology innovation, particularly in the 
development and application of green and low-carbon 
technologies. Digital technology identification and 
hedging policies should be promoted in the early stage to 
reduce the adverse environmental effects caused by 
digital technology exploration (Xin et al. 2023a). At the 
same time, institutional framework supporting digital 
economic growth should be refined, incorporating both 
command-and-control policies (e.g., differentiated 
industrial land allocation policies) and market-based 
mechanisms (e.g., carbon emission trading systems). 
Establishing a comprehensive and conducive regulatory 
environment will ensure the effective industrial carbon 
unlocking. 
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