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Abstract  

A crucial component of the cryosphere in the the Karakoram 
range of mountains are glacier lakes. Glacial lake outbursts 
floods (GLOFs) pose a short-term hazard to downstream 
communities and ecosystems due to rising temperatures 
caused by climate change. As a result, monitoring GLOF 
dangers requires the use of the Glacial Lake map method. Data 
from the Sentinel-1 Ground Range Detected (GRD) microwave 
mission were used in this analysis. Regardless of the weather 
or cloud cover, it can penetrate and use dual polarization (HH 
+ HV or VV + VH). The purpose of this research is to examine 
how algorithms based on machine learning may be used to 
extract water bodies from GRD data and how effective they are. 
Supervised Machine Learning classifiers and GRD 
backscattering analysis form the backbone of the research 
methodology. Common deep learning methods include FCN, U-
Net, U-Net++, and others. The suggested Residual Attention U-
Net++ model in this research makes use of both extraction 
maps and attention maps. In the research region, both 
approaches provide superior results for mapping glacial lakes. 
However, when it comes to total backscattering analysis, the 
mean backscatter parameter has the greatest accuracy rate. 
The classification method also included comparing each 
classifier's output to the reference data to determine its 
correctness. In order to ascertain the brief flood outburst and 
implement future preventative measures, the high precision of 
classification achieved while extracting glacial lakes utilizing 
our method will prove valuable. 

Keywords: Sentinet-1 GRD; Residual Attention U-Net++; 
Himalaya Glacial Lake Extraction; Super Pixel Segmentation; 
Data Augmentation  

1. INTRODUCTION 

   Manual field surveys are arduous, costly, and time-consuming 
ways to determine the outburst vulnerability of glacier lakes.  
Consequently, in order to efficiently extract glacial lakes from 
satellite data, a trustworthy and autonomous system is 

needed.  The main obstacles to gathering data on the area 
around the glacier lake are the satellite pictures' uneven 
backgrounds and low spectral contrast [1].  In order to assess 
the potential for glacial lake eruptions, it is essential to extract 
lake areas from satellite pictures.  The majority of the methods 
that have been mentioned thus far depend significantly on 
labor-intensive, costly, and time-consuming field surveys.  
Consequently, the precise extraction of glacial lake regions 
from satellite data necessitates a reliable and autonomous 
system.  Extracting information from Landsat8 satellite pictures 
in the glacier lake region is very challenging because to the low 
contrast and varied backgrounds [2].  A large number of glacial 
lakes, particularly in Tibet's southeastern region—the main 
concentration region for marine-type glaciers—are very 
vulnerable to the effects of climate change.  While glacial lakes 
are vital to the region's freshwater ecosystems, they also 
threaten local communities and infrastructure with devastating 
floods when they break [3].   

   In order to detect and avoid glacial lake catastrophes, remote 
sensing tracking of these bodies of water is crucial.  While 
current methods for extracting glacial lakes from Landsat 
images have shown impressive results, the algorithms used to 
do so aren't equipped to handle the unique spectral, shape, and 
texture characteristics of glacial lakes, and they necessitate 
human intervention in the form of design parameters in order 
to automate their optimization [4].  In the south of Tibet, glacial 
lakes provide a significant supply of freshwater.  Nonetheless, 
locals' safety has been seriously compromised by floods caused 
by glacial lake outbursts.  The areal fluctuations in glacial lakes 
need to be evaluated over the long period with the help of local 
data if we want to know how these lakes are changing as a 
result of climate change [5].  For the purpose of identifying 
changes in water supplies and possible dangers in alpine 
cryospheric zones, it is crucial to continuously monitor and 
record the fluctuation of glacier lakes.  There is a lot of 
subjectivity and inefficiency in the present semi-automated 
glacier lake mapping approaches [6].  An efficient method of 
tracking the spread of bodies of water and eruptions is the 
remote sensing extraction of glacier lakes.  Imperfect precision 
and erroneous glacier lake outlines are now the result of 
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semantic segmentation networks' edge identification difficulty 
and a dearth of resources pertaining to glacial lakes [7].  

    Since GLs affect snowmelt runoff, stream flow, water 
resources, and GLOF (glacial lake outburst flood), tracking their 
regional and temporal variations is crucial against the backdrop 
of continuing climate change.  When multi-year time-series 
analysis is taken into account, however, accurately identifying 
and mapping GLs in the backdrop of snow-clad mountains by 
visual interpretation of satellite imagery is a tough and arduous 
undertaking [8].  Changes to the Tibetan Plateau's glaciers 
while glacial lakes due to climate change need a thorough 
assessment.  A typical monsoonal marine glacier region, the 
Southeastern Tibetan Plateau is very susceptible to the effects 
of climate change.  Humid and warm currents from the Indian 
Ocean impact it [9].  Glaciers in high-mountain regions across 
the globe are undergoing a dynamic metamorphosis due to 
climate change-induced recession. As a consequence, glacial 
lakes are formed, grow, and eventually disappear, which might 
endanger people downstream and highlights the need of 
constant monitoring [10].  
This research intends to establish an automated, accurate, and 

robust glacial lake mapping strategy that is not constrained by 

weather conditions, cloud cover, or complexity of mountainous 

terrains. The broad aim of this project is to use Sentinel-1 SAR 

GRD data in combination with machine learning algorithms by 

improving the glacial lake mapping through the disasters of the 

proposed Residual-Attention UNet++ where it has used 

attention mechanisms, residual units, and dense skip 

connections in order to improve feature learning, minimize the 

semantic gap and minimize the model's ability to detect 

everything that is not a water body. This ensures reliable 

detection of water bodies even in challenging cryospheric 

environments. The aim of this research is a response to the 

increasing danger of glacial lake outburst floods (GLOFs) 

resulting from accelerated glacier melting due to climate 

change. Communities downstream of the Karakoram range and 

similar high-altitude areas are at considerable risk, emphasizing 

the need for timely, consistent, and high-resolution monitoring 

of glacial lakes. Furthermore, existing methods using optical 

methods are often constrained by cloud cover, In addition, data 

availability is inconsistent. SAR imagery can be obtained in all-

weather conditions and day or night, therefore permanent 

monitoring is feasible. The scope of this work done by 

encompasses many test sites across High Mountain Asia, the 

Alps, and the Andes, supporting potential application of the 

model and the research in diverse topography options. The 

project also involved standardizing the preprocessing 

workflows we used for the SAR data processing. We were also 

able to identify niche techniques for orbited file correction, 

thermal and border noise removal, calibration, speckle 

filtering,and terrain correction. This model and workflow will 

introduce a robust preprocessing and deep learning combined 

approach and a globally scalable and potentially transferable 

and open-source solution for large-scale monitoring of the 

cryosphere. In the end, the goal of these frameworks and from 

the materials used is to develop platform that contributes to 

early warning systems, disaster preparedness, and responsible 

resource management in vulnerable mountainous 

communities. 

The following is an overview of the main points made by 
this work: 

• UNet++ was updated with the addition of the 
attention mechanism and residual unit to address the 
degradation issue and boost the weight of goal 
regions. 

•  For the purpose of glacial lakes picture segmentation, 
the Residual-Attention UNet++ model was presented. 

•  Results showed that experimental techniques 
outperformed state-of-the-art approaches in 
segmentation tasks on three different glacial lakes 
imaging datasets. 

•  Residual-Attention UNet++ has the ability to improve 
the segmentation job by giving more weight to the 
target region and suppressing the background area 
that is unimportant. 

•  Outperformed other UNet-based algorithms in a 
comparison. 

•  With little performance hit, the trimmed Residual-
Attention UNet++ allowed for quicker inference. 

This is how the rest of the material is structured.  Following 
an overview of relevant literature in Section 2, this article 
introduces its suggested designs in Section 3, specifies the 
datasets, experiments, and findings in Section 4, and ultimately 
draws conclusions in Section 5. 

2. RELATED WORK 

Based on microwave Sentinel-1 SAR GRD data [16]. It has the 
potential to dual-polarize (HH+HV or VV+VH) and penetrate 
clouds and other meteorological conditions. This study 
suggests a method for analyzing GRD data and to evaluate the 
accuracy of machine learning algorithms for water body 
identification. Important to the study technique are GRD 
backscattering analysis and supervised Machine Learning 
classifiers. ML methods are more effective than the other when 
it comes to mapping glacial lakes in the study area. On the other 
hand, the mean backscatter factor yields the most accurate 
results in total backscattering study. As part of the classification 
process, we checked the accuracy of each classifier by 
comparing their results to the reference data. Their approach 
was able to accurately extract glacial lakes, which will aid in the 
prediction of when floods would occur and in the development 
of strategies to mitigate such disasters. Researchers in the 



 

 

Hindu Kush, Karakoram, and Himalaya (HKKH) region looked at 
the feasibility of mapping glacier lakes using PlanetScope 
pictures in [17]. Although the PlanetScope photos have a quick 
return time, thanks to 130+ small satellites, the imaging sensors 
on board these spacecraft have varied spectrum sensitivities 
and decreased dynamic range, limiting the imagery to four 
bands. The water pixels' different spectral fingerprints induced 
by differences in composition, turbidity, and depth, as well as 
cast shadows in hilly places, make it challenging to 
automatically and reliably extract surface water in PlanetScope 
pictures. While keeping these constraints in mind, the work 
uses cutting-edge deep learning models to pixel-by-pixel 
categorize PlanetScope photos as either water or backdrop. We 
then compare these findings to those of Random Forest using 
SVM classifiers. The DL model avoids most of the 
aforementioned problems was proposed by the authors of [18] 
for accurately identifying and mapping glacial lakes using multi-
source data and machine learning techniques such as the 
random forest classifier algorithm. This dataset is a compilation 
of information gathered from many sources, such as Sentinel-1 
radar backscatter and Sentinel-2 radar near-field interference 
(NDWI). In order to determine the best way to partition 
potential glacial lakes, they input these data into an expert 
system. The method's effectiveness was assessed at eight 
separate test locations distributed throughout various Alpine 
regions. The Tajiks Pamirs, the Peruvian Andes, the Swiss Alps. 
The results show that the proposed method is applicable to a 
wide range of geographical, geologic, climatic, and glacial lake 
situations. The authors of [19] helping with the concept 
creation phase of the project and have outlined the expected 
methodological steps as well as provided some early results. 
They locate potential future lake emergence sites and get basic 
information such as volume, depth, and elevation distribution 
using recently disclosed data on the distributions of glacial ice 
thickness around the world. For every mountain range on Earth 
by comparing the percentage of present glacial lakes to that of 
future glacial lakes, and they use a recently-compiled global 
inventory of glacier lakes for this. Together with a worldwide 
glacier development model, they foretell when these future 
lakes will be formed, supposing different RCPs. Their first 
objective will be to assess the area for any potential risks or 
threats. By analyzing the topography around each possible lake 
to the impacts of mass movement is assessed in a broad sense. 
The potential impact on subsequent processes will be 
evaluated by use of elementary flow routing models.  

In this work, researchers from the HKH region of Pakistan 
evaluated the risk of a glacial lake outburst flood using ground 
information [20]. The present study identified 30,44 lakes 
covering a total of about 134.8 km2 throughout the three HKH 
mountains. With 1,325 lakes, the Karakoram range has the 
most, while the Hindu Kush range had the fewest, at 722. The 
region's size increased by 7% and the number of lakes by about 
26%. There was a 91% rise in the number of lakes between 
2500 and 3500 meters, a 20% increase between 3500 and 4500 
meters, and a 31% increase between 4500 and 5500 meters. A 

minimum of 36 lakes discovered in the HKH region in 2013 were 
identified as PDGLs, or potentially dangerous glacial lakes; 
hence, these lakes have the potential to trigger GLOFs. The ESA 
Setinel-1 GRD time series data model was developed by the 
authors of [21] using the Google Earth Engine API with the 
purpose of monitoring floating rubbish in lake areas. Finding 
the optimal method for monitoring floating debris caused by 
rains is the primary objective of the research. In order to 
manage water resources while maintaining water quality, it is 
necessary to regularly monitor floating debris from 
multifunctional dams from the early generation stage onward. 
This study's bodies of water were simply identified using a 
Synthetic Aperture Radar time-series assessment approach, 
which was developed in response to the low accessibility over 
broad areas. Though SAR satellite pictures might be used to 
investigate aquatic environments inside, no studies have 
focused on identifying trash on water surface surfaces. For the 
first time, areas of floating debris were discovered in many 
lakes using GRD photos acquired by the ESA's Sentinel-1 
satellite, according to that study. Differentiating them from 
natural objects, such as invasive floating plants, was shown. 
The condition at Daecheong Dam is described in that report. 
Following heavy rain, floating debris was located using 
Sentinel-1 SAR GRD data. Finding various kinds of floating trash 
that might wind up in drinking water dams and organizing 
future collections could benefit from this.  

2.1 Research Gaps  

The growth and evolution of glacial lakes must be 
continuously monitored in order to control and mitigate the 
risks associated with these GLOFs.  To monitor and map glacier 
lakes, geospatial techniques and remote sensing satellite 
imagery have been used often because of the difficult and 
inaccessible terrain.  Traditional approaches to analyzing 
remote sensing pictures for the purpose of identifying spectral 
and textural properties of glacier lakes rely significantly on 
human involvement.  An efficient method of tracking the 
spread of bodies of water and eruptions is the remote sensing 
extraction of glacier lakes.  Currently, semantic segmentation 
networks have trouble with edge identification and there aren't 
enough glacial lake datasets, so the results aren't very reliable.  
This approach excels at refined outline identification and tiny 
glacier lake extraction; it may be used to extract glacial lakes 
from high-resolution pictures in the high-Asia area. By 
analyzing the prediction matrices, we were able to determine 
that the U-Net model had an outstanding value.  So, the 
research proves that U-Net is a great tool for finding glacial 
lakes quickly and keeping an eye on them. 

The proposed Residual-Attention UNet++ was chosen 
because it resolves some of the significant limitations currently 
seen in existing methods, such a requiring an expert to tune the 
parameters and having limited accuracy when well-made an 
when tested using imagery collected during challenging terrain 
and atmospheric conditions. Rather than being a traditional 



 

 

classifier model, our model utilizes attention gates, residual 
units, and dense skip connections to incorporate all relevant 
information from the image to build up complex glacial lake 
features, which existing methods currently fail to provide 
accurate segmentation. The proposed integrated structure 
substantially improves segmentation accuracy and 
segmentation robustness. The proposed model effectively 
segments features in all weather conditions because it only 
utilizes all-weather Sentinel-1 SAR GRD data, which ensures it 
is performing reliably without concerning about clouds 
Content. Together these properties make the Residual-
Attention UNet++ model for cryosphere monitoring much 
more relevant than previous approaches. 

3. SYSTEM MODEL  

Preprocessing GRD data obtained from the Copernicus 
Sentinel-1 mission was described in the study using a typical 
generic procedure. One goal of the method is to produce 
preprocessed Sentinel-1 SAR GRD data. With this data as a 
foundation, further products as well as operational 
downstreaming services may be developed with consistent 
Copernicus Sentinel-1 SAR GRD data. Common changes made 
by the technique include ensuring an exact acquisition orbit, 
removing noise from thermal pictures and boundaries, 
calibrating the radiometric system, using range Doppler, and 
correcting for terrain. Sentinel-1 Synthetic Aperture Radar 
(SAR) data has a high return frequency and improved spatial 
resolution, making it very adaptable.  Even while Sentinel-1 SAR 
GRD data with few changes is suitable for study, a wider range 
of users need products with an accepted set of corrections 
created.  To make Sentinel-1 SAR GRD products easier to use, 
standardizing approaches to data preprocessing is essential.  
This general standard approach may be used to preprocess 
data from the Copernicus Sentinel-1 SAR GRD mission.  As 
mentioned in the procedure, some of the objectives are to 
calibrate the radiometric sensor, eliminate border noise in 
thermal and pictures, set up an accurate acquisition orbit, apply 
a variety of standard corrections, and compensate for range 
Doppler and terrain.  To further encourage the adoption of data 
fusion methods for virtual constellations with satellites, the 
technology also makes it easier to spatially snap Sentinel-1 SAR 
GRD inputs to Sentinel-2 MSI information grids.  Following the 
provided procedure, one may generate a collection of Sentinel-
1 SAR GRD data that has been preprocessed. Using consistent 
Copernicus Sentinel-1 SAR GRD datasets, this data may then be 
used as a standard for future product and operational down-
streaming service development. Ultimately, we want to make 
sure that many communities have access to reliable 
information. The overall objective of this project is to develop 
a method and Python package called "GLakeMap" that can map 
glacial lakes independent of factors such as cloud cover, 
geographic location, weather, and lake characteristics. The 
purpose is accomplished by the integration of the Sentinel-1 
Synthetic Aperture Radar (S-1 SAR). We test our automated 
technique on each location. The following areas are potential 

locations for HMA tests: the Boshula mountain range to the 
southeast of the Tibetan Plateau, Bhutan to the east, the Koshi 
basin to the center, the state of Jammu and Kashmir to the 
west, Tajikistan close to central the Pamir Mountain Range, and 
the countries of Turkmenistan and Kazakhstan in northern Tien 
Shan. 

3.1 Data Acquisition  

  Data accessibility and availability entered a new era with the 
introduction of the European Commission's Copernicus 
Programme. The program aimed to provide six themed services 
using data gathered from Earth observation satellites and in-
situ observations. The Copernicus Programme has become the 
world's largest source of space data by making accessible, 
without charge, all satellite data—primarily acquired by 
Sentinel spacecraft. Sentinel data is useful for various 
applications because to its higher return frequency and 
improved geographical resolution.  

   Two polar orbiting satellites, Sentinel-1A and Sentinel-1B, are 
part of the Sentinel-1 mission. They can take pictures in all 
lighting or weather circumstances thanks to a C-band synthetic 
aperture radar technology that uses a core frequency of 5.405 
GHz. Synthetic Aperture Radar data with single or dual 
polarization and a 6-day return duration is gathered by 
Sentinel-1 satellite constellations.  

Sentinel-1 SAR GRD uses an Earth ellipsoid framework to 
provide products that include several process that focused SAR 
data. This information is needed to alter the ellipsoid projection 
of the GRD products; as mentioned in the product generic 
annotations. Square pixels in the Sentinel-1 SAR GRD image 
have reduced speckle and represent just the measured 
amplitude; phase information is removed as a result of the 
multi-look processing. The height of the landscape is supplied 
by the general annotation that is a consequence of adjusting 
the ellipsoid projector of GRD products.  The range stays the 
same, although the terrain's height could shift in any given 
direction. 

   The concept of ground range coordinates is derived from 
slant range coordinates that are projected onto the ellipsoid of 
the Earth.  The values of the pixels stand for the magnitude that 
was really seen. There is a lack of phase data.  Reduced speckle, 
square pixel spacing, and approximately square spatial 
resolution are the outputs of the multi-look processing. 

   A data collection of noise vector annotations, which include 
thermal noise vectors, is part of the product annotations. The 
noise may then be removed from the power detected image, 
enabling users to perform thermal noise correction. One 
application that may aid in the reduction of thermal noise is the 
Sentinel-1 Toolbox. Depending on the acquisition technique 
and degree of multi-looking, GRD products may have three 



 

 

different resolutions: Full Resolution, or Good Resolution, and 
Moderate Resolution. 

3.2 Preprocessing  

Data from the Copernicus Sentinel-1 SAR GRD mission 
may be preprocessed using this standard generic methodology.  
All of the Sentinel satellite toolboxes have a similar architecture 
called the Sentinel application framework, which is where the 
workflow was developed.  Sentinel-1 SAR GRD may be 
processed with the command line graph processing paradigm 
with a 'xml' processing graph, which enables batch processing 
of big datasets. 

  Each of the seven processing stages that make up the 
pretreatment workflow is detailed in its own paragraph with 
the goal of minimizing the likelihood of error propagation in the 
next phases.  

a. Apply Orbit File 

Including incorrect orbit state vectors in the metadata of SAR 
products is typical practice.  The product is prepared a few days 
after precise satellite orbits are acquired, and they are made 
available a few days to weeks later.  Each SAR scene's product 
metadata may dynamically download and update the orbit 
condition vectors using SNAP's exact orbit operation, providing 
precise details about the satellite's location and velocity. 

b. Thermal Noise Removal 

Specifically, the Sentinel-1 image intensity is impacted by 
cumulative thermal noise in the cross-polarization channel.  By 
reducing discontinuity among sub-swaths and leveling the 
backscatter signal over the complete Sentinel-1 image, thermal 
noise reduction, in multi-swath collection modes, minimizes 
the impacts.  In SNAP for Sentinel-1 data, the temperature 
reduction of noise operators could restore signals that were 
removed during level-1 product creation, modify products 
annotation to reflect this change, and then apply the correction 
once again.  To generate corrected noisy profiles that 
correspond to the calibrated GRD data, one uses the noise look-
up table provided by Sentinel-1 level-1 output in linear power. 

c. Border Noise Removal 

When creating level-1 items, it is essential to adjust the 
specimen start time to account for the change in Earth's 
curvature.  Because of compression in both azimuth and range, 
radiometric artifacts show up around the picture's periphery.  
To eliminate low-level noise and erroneous data around scene 
borders, SNAP's border noise reduction operator was created. 
Figure 1 shows the flowchart of the preprocessing system. 
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Fig.1. Data Preprocessing Flowchart 

 

d. Calibration 

The measuring process creates radiometrically calibrated SAR 
backscatter by converting digital pixel values. A calibration 
vector is added to the Sentinel-1 SAR GRD product so that the 
calibration equation can be executed. This vector makes it 
simple to convert image intensity data into sigma nought 
values. Throughout the measurement, a range-dependent gain 
and a constant offset are applied, one of which is the absolute 
calibrating constants. The scaling factor that was used to 
produce the level-1 product is now inverted. In order to 
produce SAR backscatter that has been radiometrically 
calibrated with regard to the nominally horizontal plane, the 
suggested pre-processing step includes a LUT that produces 
sigma nought values. While the strength of reflected is 
determined by the geometric crossing section of a transmitting 
sphere, sigma is the radar cross section of a scattered target in 
comparison to what would be expected from a one square 
meter region. The parameters of the reflecting appear, the 
wavelength, polarization, and incidence angle are some of the 
variables that influence the sigma nought. 



 

 

e. Speckle Filtering 

The granular noise that appears as speckle in synthetic 
aperture radar images is actually the consequence of wave 
interference from a number of simple scatterers. Using speckle 
filtering is one method of enhancing picture quality. By doing 
this action early in the SAR data processing process, speckle is 
kept from spreading to later procedures (such dB conversion or 
terrain correction). Speckle filtering is not advised for scenarios 
where identifying fine-grained spatial structures or picture 
texture is crucial because it may remove information on these 
aspects. The enhanced Lee filter performs better than 
competing then other filters for visual interpretation. This is 
because, in comparison to its rivals, it stores more information 
about textures, point targets, and edges. The multitemporal 
speckle filter is a more recent method of speckle reduction that 
uses several SAR measurements over time. You can select 
"None" as the filter type if you wish to omit the speckle filtering 
step from the recommended pre-processing approach. 

f. Range Doppler Terrain Correction 

For the most part, while sensing SAR data, the viewing 
angle is larger than zero degrees, which causes some distortion 
in the pictures due to the geometry of side-looking.  The goal 
of applying terrain adjustments is to eliminate these artefacts 
and make the geometric depiction of the scene seem as 
accurate as feasible.  Foreshortening and shadows are among 
the geometric distortions caused by topography that range 
Doppler terrain correction removes by using a digital elevation 
model to adjust each pixel's positioning. To get the exact 
geolocation data, it makes use of the orbit state vector data 
that is already included in the metadata, the radar frequency 
annotations, the space-to-ground conversion parameters, and 
the reference data from the digital elevation model. The 
operator allows you to select the photo resampling method 
and the pixel spacing of the target CRS. This processing phase 
allows the spatial snapping of Sentinel-1 SAR GRD outputs to 
Sentinel-2 MSI information grids, which geolocates data to a 
shared spatial grid and makes the use of satellite virtual 
constellations easier. 

g. Conversion to dB 

The unit-free backscatter coefficient is transformed to dB 
with a logarithmic transformation as the last phase of the 
preprocessing method. 

3.3 Residual-Attention UNet++ 

  The overall architecture of the Residual-Attention UNet++, a 
combined neural network framework that we provide for the 
segmentation of images of glacial lakes, is shown in Figure 2. It 
incorporates the attention mechanism, residual unit, and 
UNet++'s advantages.  The suggested model employs UNet++ 
as its foundational network architecture, which utilizes 
reworked skip paths to link the encoder and decoder networks.  
Dense convolution blocks were used to transfer the encoder 
network's feature map to the decoder network.  As seen above, 
the encoder's feature graph semantic degree is near to the 
decoder's feature graph semantic level [22-25]. 

Before anything else, skip connection features to remove 

extraneous areas from the picture x ∈ RH×W × C in addition to 
the feature map generated by the lower encoder blocks with 

Transformer z ∈ RH
′×W′×C′  are fed into the AG  as shown in 

Equation (1) 

fa, = (σ(φ(δ(Θ(x)) + Θ(z)))) ⊗ x 

where φ, δ, and Θ stand for elementwise multiplication, σ for 
sigmoid activation functions, and signify linear 
transformations.  The result is then entered into the channel 
attention algorithm after being joined with the feature map.  
Equation (2) illustrates and describes the specifics of channel 
attention. 

fai = (σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))) ⊗ F 

Afterwards, two convolutions are performed.  Equation (3) 
represents the spatial normalization map created by the 
Transformer, and fz  represents the output of these two 

convolutions Ws ∈ ℝ1×H×W. 

Ws = softmax (
QKT

√dk
)V 

as seen in (4), are multiplied element by element. 

fsz = Ws ⊗ fz 

The following is the formula for the skip pathway: xi,j signifies 

the output of node Xi,j, i points to the down-sampling layer in 
accordance with the encoder sub-network, while j points to the 

dense block's convolution layer along the skip route [26]. xi,j is 
amenable to computation using the following formula: 

xt/ = {

μ{xs−1,j}, j = 0

μ {[∫  
ȷ−1

k=0

 AG(xℓk), T(xf+1,j−1)]} , j > 0
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Figure 2 Structure of the Residual-Attention UNet++

 

where ℋ{⋅} the concatenation layer, AG (⋅) stands for attention 
gate, T(⋅) for upsampling, and [] for a convolution operation 
that follows a ReLU activation.  The first skip route in Residual-
Attention UNet++ is further explained in Figure 2. To guarantee 
fair comparisons with other methods, we used test photos for 
the test dataset and a random selection of samples for training 
for the training dataset.  The performance gap between the 
suggested strategy and other models was evaluated using this 
random sampling methodology.  Following the same approach 
as in, we used a weighted function that included both the DC 
and the cross-entropy loss [27]; the former is displayed in 
Equation (5), while the latter two are illustrated in Equations 
(6) & (7), respectively.  It has been shown in other research as 
well that a compound loss function outperforms a single loss 

function.  This study used a multiclass form of the DC with 
cross-entropy algorithm as suggested in reference. 

ℓtotal = λ1 ⋅ ℓDice + λ2 ⋅ ℓcrossentropy  

where λ1 and λ2 were equally set to 0.5: 

• Cross-entropy loss: 

ℓcrossentropy (u, y) = −
1

N
∑  

C

c=1

∑ 

N

i=1

ui
clog⁡ yi 

ui
c  refers ground truth binary value N refers total amount of 

pixels, and C denotes classes Count. While yi
c refers likelihood 

of segmentation that is projected to occur. 

• Dice loss: 



 

 

ℓDice (u, y) = 1 −
2∑  C

c=1  ∑  N
t=1  ui

cyt

∑  C
c=1  ∑  N

t=1  ut
c + ∑  C

c=1  ∑  N
t=1   yt
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3.4 Deep Supervision 

Additionally, the proposed model incorporates deep 
supervision.  To get feature maps at different semantic levels 
with complete resolution from {x^(0,j),j∈{1,2,3,4}}, Residual-
Attention UNet++ exploits dense skip connections in nested 
blocks. These feature maps may be efficiently monitored by an 
expert.  We combined binary cross-entropy with dice 
coefficient to create the loss function [28] that we applied to 
each of the four nodes listed above: 

ℒ(h, h) = −
1

N
∑  

N

b=1

(
1

2
⋅ hb ⋅ log⁡ hb +

2 ⋅ hb ⋅ hb
hb + hb

) 

where hb  and hb  the batch size, and represent the flatten 
predicted probability and flatten fundamental truths of the 
b^"th" picture, respectively. 

3.5 Super pixel segmentation technique  

Asuperpixel segmentation technique, which has the benefits of 
a fast calculation process, strong edge matching, and a simple 
calculation procedure overall.  To begin, it changes the picture 
format from RGB to CIELAB, where each pixel's coordinates (x, 
y) and color value (l, a, b) make up a five-dimensional vector V 
[l, a, b, x, y].  Then, using the concept of K means, an image is 
started with k superpixels and their distance is set as S.  
Calculating the exact center of these superpixels iteratively 
using a clustering algorithm is the fundamental portion.  The 
CIELAB color space (dc) and the geometry space (ds) are both 
included in the dimension for five-dimensional vectors (D′ ).  
The distance may be determined using the following formulas: 

dc = √(lj − li)
2
+ (aj − ai)

2
+ (bj − bi)

2
, 

ds = √(xj − xi)
2
+ (yj − yi)

2
, 

D′ = √(dc/m)
2 + (ds/s)

2, 

This stands for the greatest distance in CIELAB color space with 
the maximum value in geometric space, respectively. There is a 
2S×2S pixel searching range for every superpixel center.  A pixel 
is allocated to the superpixel i center if its distance from its 
former center is smaller than the distance to the superpixel i 
center now.  As long as the pixel distances to the fresh and prior 
superpixel centers stable, optimization continues in this 
iterative procedure.  A rule-based fusion of semantic 
segmentation and SLIC segmentation is performed after 
iterating over the image's superpixel segmentation blocks.  To 
start, find out how many superpixel pixels have multiple 
semantic segmentation labels.  This superpixel segmented 

block then has the semantic label containing extra pixels 
applied to each and every one of its pixels [29]. 

4. EXPERIMENTS AND RESULTS 

The glacial lake area boundary is crucial for additional 
investigation and diagnosis.  In order to demonstrate the 
efficacy of the Residual-Attention UNet++ approach, we ran 
experiments on Sentinel 2 true color scenes of High-Mountain 
Asia (HMA) region using glacial lakes inventory of this region. It 
covers an area of 2080.12 km2 with nearly 30,121 glacial lakes. 
To create the Residual-Attention UNet++, a dataset of nearly 
1000 and 2000 glacial lake images that covers lakes with 
different shapes, sizes and radiometric signatures. The model 
was trained for 200 epochs to reach stable convergence while 
avoiding overfitting. The optimizer was Stochastic Gradient 
Descent (SGD) with momentum because of its computational 
efficiency using large-scale image datasets. The learning rate 
was initially set to a value of 1e-4 and was gradually lowered as 
model performance improved over iterations. One dataset 
dealt with extraction, while the other showed cell nuclei 
segmentation from 2D pictures.  Here, the PyTorch modules 
ran on a single GPU machine with 16 GB of RAM and an NVIDIA 
RTX 3070. While optimizing the model employing inertia and 
the stochastic gradient descent, its learning rate was gradually 
reduced throughout training.  In the beginning, we set the 
following parameters: learning rate = 0.005, momentum = 0.9, 
and weight decay = 0.0001.  The usage of adjustable learning 
rates was also used, with the rate of learning being reduced 
after a certain initial round count. The datasets were divided 
into training, validation, and test sets in a consistent approach 
considered to reduce potential bias in how the model 
evaluation is conducted and prevent overfitting. The training 
set included about 70% of the data. The validation dataset 
included 15% of the images and was used for the tuning process 
and the test set used for the final assessment of segmentation 
accuracy included 15% of the data. 

4.1 Evaluation Metrics 

Factors such as sensitivity (SE), F1-score, Intersection over 
Union (loU), and dice coefficient (DC) were taken into account 
for the quantitative analysis of the experimental data.  You can 
see the IoU calculation approach in Equation (4) and the SE 
calculation method in Equation (5). 

IoU =
TP

TP + FN + FP

SE =
TP

TP + FN

 

In Equation (6), the DC is shown. 

DC =
2|GT ∩ SR|

|GT| + |SR|
 



 

 

The results of the UNet++ with Residual-Attention UNet++ 
evaluations on Glacial Lakes Extraction were shown in Figure 3.  
This data is organized as follows: first, the original picture; 
second, the ground truth; third, the output from UNet++; and 
finally, the output from Residual-Attention UNet++. 

Residual-Attention UNet++ along with other algorithms' 
experimental performance on datasets is shown in Table 1. 

 

Table 1. Methods Comparison 

Methods F1-Score SE IoU (%) DC (%) 

FCN 0.8318 0.8283 88.89 88.34 

SegNet 0.8888 0.8888 89.94 81.40 

U-Net 0.8441 0.8899 84.29 84.18 

Attention UNet 0.8804 0.8048 88.19 88.81 

UNet++ 0.8923 0.8100 88.08 88.02 

Attention UNet++ 0.8928 0.8138 88.82 88.48 

Residual Attention UNet++ 0.9738 0.9788 98.48 98.41 

 

Fig. 3. Glacial Lakes Extraction

The suggested model's outstanding performance and resilience 
are further shown in Figure 4, which compares Residual-
Attention UNet++ to other approaches on IoU after many tests. 
The proposed method surpasses the competition based on the 
segmentation accuracy and boundary delineation, regardless 
of the size or shape of the segments in the glacial lakes.  In 
order to prevent misclassifications, the network was able to 
zero in on the most important characteristics with the aid of 
model-improved attention utilizing Residual-Attention UNet++.  
The segmentation job also benefited from Residual-Attention 
UNet++, which improved feature fusion among the decoder 
and the skip connections.  Additionally, feature maps of various 
sizes worked together to promote deep supervision employing 
numerous side-outputs.  When pictures are of varying sizes, 

this leads to a more solid forecast.  Lastly, optimizers find it 
simpler to solve the optimization issue between two encoders 
and decoders that are semantically comparable when dense 
skip connections are used.  The optimizer's risk of being stuck 
at a local minimum is therefore reduced. 



 

 

 

Fig 4. (a) Training and Testing Accuracy Comparison 

 

Fig 4. (b)Training and validation loss comparison 

5. CONCLUSIONS 

The proposed method utilizes remote sensing datasets 
for accurate extraction of glacial lakes. Current glacial lakes 
extraction algorithms cannot yet analyze bc and c + bc including 
features like spectral, shape, and texture characteristics, but 
rely on input parameters that require human designers to tune 
them. Hence, it is incapable of mining characteristics such as 
depth of glacial lakes using remote sensing photos with 
acceptable levels of precision. By comparison, the proposed 
Residual-Attention UNet++ achieved much higher levels of 
performance, with an F1-Score of 0.9738, Sensitivity of 0.9788, 
IoU of 98.48%, and Dice Coefficient of 98.41%. These outcomes 
surpass state-of-the-art models, UNet++, Attention UNet++, 
and SegNet when evaluating the same metrics among glacial 
lakes. This reinforces the model’s capability and effectiveness 
for accurate glacial lake extraction compared to current 

methods. There are constraints to the proposed framework, 
which include the need for large labelled datasets for training 
and possibly impracticalities in implementing real-time 
processing across large areas. Challenges to potential real-
world deployment may consist of limited internet connectivity 
in remote mountainous areas, limited computing resources at 
local authorities, and early warning systems for susceptible 
communities. User-friendly as well as localized capacity 
building of stakeholders will be vital for practical uptake. The 
model performance may also vary as a result of the extreme 
terrain variability and influences of seasonal changes on 
backscatter. Future work will include the integration of multi-
source data fusion from optical and thermal imagery to 
enhance detection accuracy. We also plan on expanding the 
model adaptability to other cryospheric regions around the 
globe. On an operational side, we will also develop near-real-
time processing pipelines and cloud-based tools to enhance 
operational monitoring. Finally, ongoing research will utilize 
unsupervised learning and semi-supervised learning to 
minimize tom-foolery with the amount of required ground 
truth data. 
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