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Abstract 26 

Since 2012, China has implemented a series of carbon trading pilot programs across different regions. 27 

However, the impact of carbon trading policies on green innovation has not yet been fully discussed. 28 

This study utilizes nine-year panel data from 31 provinces and employs the Difference-in-Differences 29 

(DID) method to examine the differential effects of carbon trading policies on green innovation by 30 

categorizing green patents into six subsectors. The findings reveal substantial variations in policy 31 

impacts across different green innovation subsectors. Institutional factors emerge as crucial 32 

determinants in the influence mechanism. Specifically, carbon trading policies exhibit a significantly 33 

positive impact on green innovation when institutional innovation is incorporated; however, this 34 

positive effect is substantially diminished when institutional innovation factors are excluded and the 35 

focus shifts solely to pure green technology innovation. 36 

1.Keywords: carbon trading, green innovation, institutional innovation, technology innovation 37 

Introduction 38 

Controlling anthropogenic climate change driven by fossil fuel consumption while balancing 39 

emissions mitigation with economic growth constitutes one of the most critical global policy 40 



 

 

challenges (Acemoglu et al., 2012). Effective climate policies must therefore simultaneously achieve 41 

decarbonization objectives and maintain economic vitality. To minimize growth disruptions, market-42 

based mechanisms like carbon trading have emerged as prevalent policy instruments in climate 43 

governance. Currently operational in the European Union, New Zealand, China, South Korea, and 44 

other areas, carbon markets now regulate approximately 17% of global emissions1. These systems 45 

offer distinct advantages: By establishing market-driven trading rules, they enable enterprises to 46 

optimize emission reduction strategies through cost-benefit analysis. When abatement costs exceed 47 

carbon credit prices, firms may purchase allowances, while entities with lower mitigation costs can 48 

profit from selling excess reductions. This theoretically facilitates optimal resource allocation and 49 

cost-effective emissions control under capped pollution levels. However, this idealized market model 50 

faces practical implementation challenges. Transaction costs in carbon trading systems prove 51 

substantially higher than anticipated, while the administrative expenses required to establish and 52 

maintain market infrastructure often exceed those of conventional regulatory approaches. 53 

As one of the world's largest carbon emitters2, China has implemented comprehensive measures to 54 

regulate its CO₂ emissions, with carbon emission trading serving as a particularly significant policy 55 

instrument. Eight pilot emissions trading systems (ETS) have been established across major Chinese 56 

cities and provinces: Beijing, Tianjin, Shanghai, Chongqing, Hubei, Guangdong, Fujian and 57 

Shenzhen. Given the substantial variations in industrial structures among these pilot regions, each has 58 

developed distinct carbon trading mechanisms tailored to local conditions. 59 

What impacts do carbon trading policies generate for enterprises and society? The Porter Hypothesis 60 

posits that properly designed environmental regulations can stimulate innovation. Consequently, 61 

 
1 ICAP. Emissions Trading Worldwide Status Report 2023, 2023. https://icapcarbonaction.com/system/files/document/ICAP%

20Emissions%20Trading%20Worldwide%202023%20Status%20Report_0.pdf 

2 World Bank. Word Bank Open Data,2023. https://data.worldbank.org.cn/ 



 

 

innovation effects have emerged as a crucial metric for evaluating environmental policy effectiveness 62 

(Liu and Wang, 2017). Innovation can be categorized into green innovation and conventional 63 

innovation, with green innovation representing the essential pathway for addressing environmental 64 

challenges and achieving sustainable development. As a cornerstone environmental policy in China, 65 

understanding carbon trading's influence on green innovation is therefore paramount. Investigating 66 

this relationship enables us to: (1) assess whether carbon trading aligns with sustainable development 67 

principles, and (2) ensure its stimulative effects on clean technologies are properly acknowledged, 68 

rather than being overshadowed by potential crowding-out effects on conventional innovations. 69 

To better understand the relationship between carbon trading and green innovation, this study sets out 70 

to examine the impact of carbon trading on green innovation. Based on provincial-level panel data 71 

from China and employing the DID methodology, the research focuses on addressing two core 72 

questions: (1) whether China's carbon trading pilot policies positively influence green innovation, and 73 

the magnitude of such effects; (2) how these impacts vary across different green innovation sectors, 74 

identifying which subsectors demonstrate more pronounced responses. The findings provide 75 

theoretical foundations for enhancing carbon trading mechanisms. 76 

2.Literature review 77 

Research on carbon trading can be divided into three general categories. The first category examines 78 

the scheme itself, such as studies conducted by Jiang et al. (2016) and Munnings et al. (2016). The 79 

most important uncertain variable in a carbon trading scheme is the carbon price, meaning that 80 

research on carbon prices is relatively extensive, including studies by Chevallier (2011) and Fan and 81 

Todorova (2017). The second category investigates antecedent variables of the schemes and carbon 82 

prices, i.e., what causes fluctuations in carbon prices; for example, research by Alberola et al. (2008). 83 

The third category explores consequence variables of the scheme and carbon prices, namely, what 84 



 

 

social and economic effects are brought about by carbon trading schemes. The topic of this paper 85 

belongs to the third category. Scholars have conducted substantial relevant research in this category. 86 

For example, Cong and Wei (2010) established an agent-based model to study the potential impact of 87 

introducing CET (Carbon Emission Trading) on China's power sector and discussed the impact of 88 

different allowance allocation options. Wu et al. (2016) used a CGE model to assess the economic 89 

impact of ETS policies in Shanghai. Cao et al. (2017) studied the impact of carbon trading policies 90 

and low-carbon subsidy policies on manufacturers' production and carbon emission reduction levels. 91 

The research on technology innovation can also be divided into these three categories: research on 92 

technology innovation itself, such as Acemoglu (2002); research on antecedent variables of 93 

technology innovation; and research on the consequence variables of technology innovation. The 94 

topic of this paper belongs to the second category. Scholars have done a lot of relevant research on 95 

this category. For example, Shu et al. (2016) studied whether green management in firms operating 96 

in China fosters radical product innovation; Chakraborty and Chatterjee (2017) studied the indirect 97 

impact of environmental regulation on innovation activities of upstream firms in India; and El-Kassar 98 

and Singh (2019) developed and tested a holistic model that depicts and examines the relationships 99 

between green innovation and its drivers. 100 

As for the relationship between carbon trading and technology innovation, there are also many studies 101 

focusing on this topic. Lin et al. (2017) estimated the potential influence of China's future nationwide 102 

carbon market on clean technology innovation. Because the national trading market had not been 103 

built yet, this paper used energy prices as a shadow price of carbon prices. The results indicate that 104 

the redirection effect overwhelms the crowding-out effect. Zhu et al. (2019) employed firm-level data 105 

and a quasi-experimental design to study how carbon trading affects low-carbon innovation in China, 106 

finding that China’s pilot programs increased low-carbon innovation among ETS firms by 5–10% 107 



 

 

without crowding out other technological innovations, and this increase accounted for approximately 108 

1% of the growth in regional low-carbon patents. Wang and Hao (2024) used panel data from 2007 109 

to 2017 for 30 Chinese provinces and found that the carbon-trading policy significantly contributed 110 

to the coordinated advancement of green technologies across provinces while exhibiting a local 111 

siphoning effect. Zhao et al. (2024) based on panel data from 284 Chinese cities, examine the impacts 112 

of ETS on green innovation and find that ETS can significantly promote green innovation. In addition 113 

to examining the impact of carbon trading on regional green innovation, some scholars have also 114 

explored its effects on corporate green innovation. For example, Feng et al. (2017) used carbon 115 

emissions trading pilot policy as a quasi-natural experiment and found that the implementation of 116 

carbon emissions trading policies significantly reduced enterprise innovation in general, while 117 

promoting green technological innovation and inhibiting non-green technological innovation. Wang 118 

et al. (2024) explored the mechanisms of carbon trading in green innovation efficiency using a sample 119 

of A-share listed manufacturing enterprises in China, finding that carbon trading can significantly 120 

promote the green innovation efficiency of manufacturing enterprises. Jia et al. (2024) used DID to 121 

investigate the effect of carbon emission trading on green technology innovation in energy enterprises, 122 

suggesting that carbon emission trading has a positive impact on green technology innovation in 123 

energy enterprises. Hou (2024) using A-share listed firms in Shanghai and Shenzhen, analyzes the 124 

impact of China's carbon trading policy on green innovation and finds that the policy stimulates green 125 

innovation.The literature review shows that empirical evidence on the impact of carbon trading on 126 

green technology innovation is insufficient. There is no further subdivision of green innovation to 127 

explore the impact of carbon trading on different subsectors of green technology innovation. Green 128 

innovation involves different subsectors. By studying the impact of carbon trading on different 129 

subsectors, we can better understand its heterogeneous effects on green innovation across subsectors. 130 



 

 

This paper will make some attempts in this aspect. 131 

3. Theoretical model 132 

"Institutions play a more fundamental role in society and are the primary determinants of long-term 133 

economic performance" (North, 1990). Drawing upon institutional economics theory, we recognize 134 

institutions as critical factors influencing economic development. Therefore, we incorporate 135 

institutional factors into the economic growth equation(Eq.1): 136 

         Y = F(K, L, I)                                 （1） 137 

Furthermore, Write the above formula as Cobb Douglas production function(Eq.2):   138 

𝑌 = 𝐴𝐾𝛼𝐿𝛽𝐼𝛾                                 （2） 139 

Take logarithm on both sides of the equation(Eq.3):  140 

𝐿𝑛𝑌 = 𝐿𝑛(𝐴) + 𝛼𝐿𝑛(𝐾) + 𝛽𝐿𝑛(𝐿) + 𝛾𝐿𝑛(𝐼)                      （3） 141 

Put Ln(A) on the left side of the equation(Eq.4): 142 

𝐿𝑛(𝐴) = 𝐿𝑛𝑌 − 𝛼𝐿𝑛(𝐾) − 𝛽𝐿𝑛(𝐿) − 𝛾𝐿𝑛(𝐼)                      （4） 143 

In economic development research, Ln(A) is conventionally employed to measure technological 144 

progress factors. Since technological progress stems from innovation, the above formulation suggests 145 

that institutional factors may exert significant influence on innovation outcomes. Given that patent 146 

counts serve as a key metric for innovation, this study adopts green patent applications as a proxy for 147 

green innovation. Consequently, we posit that institutional arrangements targeting green development 148 

may significantly affect green patent outputs. Currently, China's primary institutional mechanism for 149 

green development is its carbon trading scheme. Therefore, this paper investigates the scheme's 150 

impact on green innovation. Building on the preceding analysis, we formulate the following 151 

hypotheses: 152 

Hypothesis 1: The carbon trading scheme positively promotes regional green innovation. 153 



 

 

Hypothesis 2: The scheme's promotional effects exhibit significant variation across different green 154 

innovation subsectors. 155 

4. Model specification and variable declaration 156 

4.1 model specification 157 

This paper intends to employ the DID method to assess the net effects of carbon trading on green 158 

innovation. Treating the implementation of carbon trading as a quasi-natural experiment, the study 159 

defines a dummy variable for "whether a region is a carbon trading pilot" to divide the sample into 160 

treatment and control groups, and another dummy variable for "before and after the operation of the 161 

carbon market" to categorize the sample into before and after carbon market operation. By 162 

constructing an interaction term between these two dummy variables, the paper evaluates the net 163 

impact of the carbon market's operation. The baseline DID model is specified in Equation (5). 164 

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑃𝑡 + 𝛽3𝑇𝑖𝑃𝑡 + 𝜇𝑖𝑡                      （5） 165 

Here, 𝑇𝑖  is the grouping dummy variable. If individual 𝑖  belongs to a carbon emissions trading 166 

pilot, it is assigned to the treatment group with 𝑇𝑖 = 1; otherwise, it is assigned to the control group 167 

with 𝑇𝑖 = 0. 𝑃𝑡 is the policy implementation dummy variable, taking the value 0 before the policy 168 

is enacted and 1 afterward. The interaction term 𝑇𝑖𝑃𝑡   combines the grouping and policy 169 

implementation dummy variables, and its coefficient 𝛽3 captures the net effect of the policy. 170 

Among China's provincial-level administrative units, seven provinces and municipalities launched 171 

carbon markets starting in 2013, providing a suitable quasi-natural experiment for applying DID. 172 

Specifically, seven provinces and cities had established carbon trading pilots, forming the treatment 173 

group, while the remaining provinces without carbon trading policies served as the control group. 174 

The carbon markets in these pilot regions began operating at different times: Beijing, Shanghai, 175 

Tianjin, and Guangdong started in 2013, Chongqing and Hubei in 2014, and Fujian in 2016. 176 



 

 

Accordingly, we construct a dummy variable CT, which takes the value 1 for pilot regions in the years 177 

when their carbon markets were operational and 0 otherwise. Based on this, we establish a two-way 178 

fixed effects econometric model (Eq. 6) to implement the DID approach and examine the net effects 179 

of carbon emissions trading on the outcome variables. 180 

𝑌𝑖𝑡 = 𝛼0 + 𝛼1𝐶𝑇𝑖𝑡 + 𝛽𝑋𝑖𝑡 + 𝜗𝑡 + 𝜇𝑖 + 𝜀𝑖𝑡                      （6） 181 

Here, 𝑌𝑖𝑡  denotes the dependent variable, for this study is the number of green patents. The 182 

subscripts  𝑖  and  𝑡  represent the i-th province/municipality and the t-th year, respectively. 𝜗𝑡 183 

captures time-fixed effects, 𝜇𝑖   represents province-level individual fixed effects, and 𝑋𝑖𝑡  denotes 184 

other control variables. In the model above, the estimated coefficient 𝛼1 is the primary focus of this 185 

study, as it measures the net impact of carbon emissions trading on dependent variable. 186 

4.2 variable declaration 187 

This study utilizes panel data from 31 provincial-level administrative regions (including 188 

municipalities and autonomous regions) in mainland China for the period 2009-2017. The variable 189 

specifications are presented as follows: 190 

Dependent Variable: The dependent variable is green patent output. We identify green patents using 191 

the International Patent Classification (IPC) Green Inventory developed by the World Intellectual 192 

Property Organization (WIPO). The patent data were collected from the PatSnap database 193 

(https://www.zhihuiya.com/) between October and December 2019. Considering the typical 18-26 194 

months publication lag for patent data (Zhu et al., 2019), our dataset covers patents granted through 195 

2017. 196 

The WIPO IPC Green Inventory categorizes green technologies into seven subsectors: Alternative 197 

energy production (ae), Transportation (tr), Energy conservation (ecs), Waste management (wm), 198 

Administrative regulatory or design aspects (ar), Nuclear power generation (npg). We aggregate 199 

https://www.zhihuiya.com/


 

 

patent counts for each subsector and calculate total green patents (gp) to examine both the overall and 200 

subsector-specific effects of carbon trading on green innovation. As China's carbon trading pilots 201 

currently exclude the primary industry, our dataset accordingly excludes patents classified under the 202 

agriculture/forestry sector. For the remaining six subsectors, we add a value of 1 to all patent counts 203 

before logarithmic transformation to address zero values. Regarding patent classifications spanning 204 

ranges (e.g., H01M4/86-4/98), we collect data at the subgroup level or higher due to the impracticality 205 

of manual collection for all individual IPC codes within these ranges. 206 

Explanatory variable: The explanatory variable is a binary indicator representing the implementation 207 

status of carbon trading schemes. It takes the value of 1 for regions and years where the carbon trading 208 

policy was implemented, and 0 otherwise. The implementation data were obtained from official 209 

policy documents issued by the seven pilot regional governments in China. 210 

Control variables: include gross domestic product (GDP), R&D funds of industrial enterprises above 211 

designated size (RD), energy industry investment (EI), local fiscal expenditure for environmental 212 

protection (GE), and coke production (CP). GDP represents the level of economic development of a 213 

region and is an important variable that affects the level of science, technology, and innovation, and 214 

thus the level of green innovation in a region; generally, the higher the GDP, the higher the level of 215 

green innovation. The GDP data used in this paper are real values adjusted to 2005 constant prices. 216 

R&D expenditure of industrial enterprises above designated size is used to measure the innovation 217 

capital investment of key enterprises in the province, and generally this variable is proportional to the 218 

level of green innovation. Energy industry investment measures the capital investment used for fossil 219 

energy development and production, which has a crowding-out effect on the green development of 220 

energy and is inversely proportional to green innovation. Local fiscal expenditure on environmental 221 

protection measures a regional government's support for environmental protection and is directly 222 



 

 

proportional to green innovation. 223 

Based on the resource curse hypothesis, this paper adds coke production as a control variable. It 224 

should be noted that this curse may not be reflected in GDP, because resource-rich regions can obtain 225 

higher GDP and per capita income by selling resources, but the number of green patents related to 226 

sustainable development and technological innovation is likely to be affected, and the future 227 

development of these regions may be constrained. Energy production rather than reserves or 228 

extraction was chosen to characterize the resource curse hypothesis because changes in reserves are 229 

more random and sudden, while extraction data are not easily available. Coke production was chosen 230 

over petrol, diesel, natural gas, etc., for energy production because China's coal resources can be 231 

developed by each province, while oil and gas resources are developed centrally. The data for the 232 

control variables are all from the official website of the National Bureau of Statistics of China 233 

(http://data.stats.gov.cn/). This section uses panel data from 2011 to 2017 for 29 provincial 234 

administrative units in mainland China (excluding Tibet and Hainan), and Table 1 presents 235 

descriptive statistics for all the data used in this section. 236 

Table 1. Result of the descriptive statistics of variables. 237 

variables Mean Median Maximum Minimum Std. Dev. 

GP 3793.54 1888.50 31864.00 25.00 5385.91 

AE 430.83 261.00 3419.00 5.00 546.39 

TR 179.03 142.50 799.00 1.00 183.34 

ECS 1855.02 991.00 15639.00 7.00 2709.67 

WM 245.57 133.00 1703.00 5.00 309.61 

AR 1030.16 365.50 12528.00 1.00 1793.07 

NPG 58.93 17.50 381.00 1.00 91.80 

RD 3579610.00 1970481.00 16762749.00 77940.00 4444303.00 

GDP 16 681.98 12 748.05 69 075.06 996.10 13 588.80 

http://data.stats.gov.cn/


 

 

EI 1110.56 976.11 2998.27 232.10 607.33 

GE 128.87 111.75 458.44 32.24 73.00 

CP 1780.11 1278.19 6677.74 133.00 1634.17 

5. Result  238 

The estimated results of the equations are reported in Table 2. It can be seen that for the overall 239 

number of green patents, the impact of carbon trading on it is significantly positive at the 1% 240 

significance level, the overall equation passes the F-test, with an adjusted R-squared of 87.47%, 241 

indicating that the operation of the carbon market has a significantly positive effect on enhancing 242 

regional green innovation levels. This conclusion is consistent with Calel and Dechezlepretre (2016) 243 

and Feng et al.(2017). 244 

An essential assumption in employing the DID approach to assess the impact of carbon trading on 245 

green innovation is that, in the absence of carbon trading intervention, the development trends of 246 

green innovation in both treatment and control groups would remain consistent without systematic 247 

divergence over time—that is, the trends should exhibit parallel patterns between the two groups. The 248 

parallel trend assumption test was performed following the methodologies outlined in Zhou and Chen 249 

(2005) and Liu and Zhao (2015). Specifically, we construct a dummy variable parallel to indicate 250 

whether a provincial-level administrative unit belongs to the treatment group (assigned a value of 1, 251 

regardless of whether carbon trading was implemented in a given year) or the control group (assigned 252 

0). By replacing CT with parallel as the explanatory variable in the regression, we examine whether 253 

the grouping itself (rather than the policy) significantly affects green innovation. 254 

If parallel proves statistically significant, it would suggest that the classification into treatment and 255 

control groups inherently influences green innovation, violating the parallel trend assumption and 256 

undermining the credibility of the original DID estimates. Conversely, if parallel is statistically 257 

insignificant, it confirms no systematic pre-existing differences between the groups, validating the 258 



 

 

parallel trend assumption for the baseline model. The results of this test are presented in Column 3 of 259 

Table 2. The empirical findings show that parallel is statistically insignificant, confirming that the 260 

original DID specification satisfies the parallel trend hypothesis. 261 

To further verify the robustness of the estimation results, we conduct a counterfactual test by altering 262 

the policy implementation timeline, following methodologies employed by Zhou and Chen (2005) 263 

and Liu and Zhao (2015). Changes in green innovation might stem from other policy interventions or 264 

random factors beyond carbon trading policies. To rule out such possibilities, we uniformly advance 265 

the carbon trading launch year by two years for all pilot regions, creating a counterfactual dummy 266 

variable labeled ct-advance2. This modified variable replaces the original ct in our baseline regression. 267 

If ct-advance2 shows a statistically significant positive effect on green innovation, it would suggest 268 

that the observed changes likely originated from factors other than carbon trading implementation. 269 

Conversely, if ct-advance2 proves insignificant, it confirms that the changes in green innovation are 270 

indeed attributable to the carbon trading policy rather than other random factors. The results of this 271 

counterfactual test are presented in Column 4 of Table 2. Empirical findings demonstrate that ct-272 

advance2 is statistically insignificant, indicating that our estimation results successfully pass the 273 

counterfactual test and maintain robust validity. 274 

Table 2. The estimation results. 275 

 Ln(gp)(1) Ln(gp)(2) Ln(gp)(3) 

ct 0.2052*** 

（3.9301） 

  

parallel  -0.0349 

（-1.0085） 

 

ct-advance 2  

 

 0.0695 

（1.1808） 

Ln(gdp) 0.3767*** 

（9.5117） 

0.3244*** 

（8.3713） 

0.3408*** 

（8.9453） 

Ln(rd) 0.5918*** 

（13.6409） 

0.6469*** 

（15.1169） 

0.6193*** 

（17.4954） 



 

 

Ln(ei) -0.1456*** 

（-4.8455） 

-0.1685*** 

（-5.5082） 

-0.1572*** 

（-4.4453） 

Ln(ge) 0.5079*** 

（7.3193） 

0.5335*** 

（7.8792） 

0.5405*** 

（8.2206） 

Ln(cp) -0.1560*** 

（-25.0593） 

-0.1735*** 

（-18.3224） 

-0.1622*** 

（-20.7520） 

const -4.8880*** 

（-7.4865） 

-4.9973*** 

（-7.4117） 

-4.9624*** 

（-7.5520） 

Time effect Control Control Control 

Regional effect Control Control Control 

N 203 203 203 

Adjusted R2 0.8747 0.8728 0.8730 

Prob(F-statistic) 0.0000 0.0000 0.0000 

Note: *, **, *** represent significance levels of 10%, 5%, and 1%, respectively; the square brackets 276 

are t statistics 277 

From the empirical results above, it is evident that the implementation of carbon trading has a 278 

significant positive driving effect on green innovation development. However, does carbon trading 279 

exert a substantial positive impact on every category of green innovation? How do its effects differ 280 

across subcategories of green innovation? This section will further discuss these issues. 281 

Using the six subcategories of the IPC Green Inventory—alternative energy production (ae), 282 

transportation (tr), energy conservation (ecs), waste management (wm), administrative regulation or 283 

design (ar), and nuclear power generation (npg)—as dependent variables, we estimate Equation (6). 284 

Additionally, considering that administrative regulation or design falls under the category of 285 

institutional innovation, while the remaining five subcategories belong to technological innovation, 286 

we also estimate an equation with the aggregate of the five subcategories (excluding administrative 287 

regulation or design) as the dependent variable. This allows us to examine the differential effects of 288 

carbon trading on green institutional innovation versus green technological innovation. The 289 

estimation results are presented in Table 3. 290 

The average number of patents in the alternative energy production (ae) subcategory ranks third 291 

among the six subcategories. As a pivotal technology in green energy utilization, alternative energy 292 



 

 

production holds significant importance for achieving sustainable development. The estimation 293 

results for this subcategory as the dependent variable are presented in the "ln(ae)" column of Table 294 

3. Empirical results show that the coefficient of the carbon trading implementation dummy variable 295 

fails to pass the significance test when using this subcategory as the dependent variable, indicating 296 

that carbon trading has no statistically significant impact on patent activity in alternative energy 297 

production. This may be because most enterprises participating in carbon trading belong to traditional 298 

energy industries with limited engagement in renewable energy sectors, leading to fewer innovation 299 

efforts directed toward alternative energy technologies. The equation overall passes the F-test, with 300 

an adjusted goodness-of-fit reaching 81.63%. All control variables exhibit statistically significant 301 

coefficients, and their signs align with prior theoretical expectations. 302 

The average number of patents in the transportation (tr) subcategory ranks fifth among the six 303 

subcategories. The estimation results using this subcategory as the dependent variable are presented 304 

in the "ln(tr)" column of Table 3. Empirical findings reveal that the coefficient of the carbon trading 305 

implementation dummy variable is negative and passes the significance test at the 1% level, indicating 306 

that carbon trading exerts a negative impact on green innovation in the transportation sector. This 307 

may be attributed to the fact that, except for Shanghai, Shenzhen, and Beijing, China's carbon trading 308 

pilot programs do not cover the transportation sector, potentially creating a crowding-out effect on 309 

transportation-related green innovation. The equation overall passes the F-test, with an adjusted 310 

goodness-of-fit of 73.61%. All control variables except coke production show statistically significant 311 

coefficients, and their signs align with theoretical expectations. 312 

Under the context of limited breakthroughs in alternative energy technologies, it is crucial to optimize 313 

existing energy utilization. The energy conservation (ecs) subcategory encapsulates such green 314 

innovation efforts, with its average number of green patents ranking first among the six subcategories. 315 



 

 

The estimation results using this subcategory as the dependent variable are presented in the "ln(ecs)" 316 

column of Table 3. Empirical findings demonstrate that the coefficient of the carbon trading 317 

implementation dummy variable is positive and statistically significant at the 5% level, indicating 318 

that carbon trading significantly stimulates innovation activities in energy conservation. However, the 319 

magnitude of this effect is smaller than carbon trading’s overall promoting impact on green innovation. 320 

The equation passes the F-test with an adjusted goodness-of-fit of 87.46%. All control variables 321 

exhibit statistically significant coefficients, and their signs align with theoretical expectations. 322 

The waste management (wm) subcategory focuses on the recycling and utilization of waste materials. 323 

Given current technological capabilities and energy reserves, waste management remains a critical 324 

component of green innovation, with its average number of patents ranking fourth among the six 325 

subcategories. The estimation results using this subcategory as the dependent variable are presented 326 

in the "ln(wm)" column of Table 3. Empirical results indicate that the coefficient of the carbon trading 327 

implementation dummy variable fails to pass the significance test when using this subcategory as the 328 

dependent variable, suggesting that carbon trading has no statistically significant effect on innovation 329 

activities in waste management. The equation passes the F-test with an adjusted goodness-of-fit of 330 

73.83%. All control variables except energy industry investment exhibit statistically significant 331 

coefficients, and their signs align with prior expectations. 332 

The nuclear power generation (npg) subcategory represents a critical opportunity for global energy 333 

systems, particularly amid severe pollution from fossil fuels, depleted hydropower resources, and the 334 

instability of wind and solar energy. The advancement of nuclear fusion technology may hold the key 335 

to a permanent solution to energy challenges. Paradoxically, the average number of patents in this 336 

subcategory ranks last among the six, likely due to the high technological entry barriers associated 337 

with nuclear research. The estimation results using this subcategory as the dependent variable are 338 



 

 

presented in the "ln(npg)" column of Table 3. Empirical findings reveal that the coefficient of the 339 

carbon trading dummy variable is positive and statistically significant at the 1% level, demonstrating 340 

that carbon trading significantly promotes patent activity in nuclear power generation. Notably, the 341 

magnitude of this positive effect ranks second among all six subcategories and exceeds the coefficient 342 

of carbon trading’s overall impact on total green patents. The equation passes the F-test with an 343 

adjusted goodness-of-fit of 63.95%. All control variables exhibit statistically significant coefficients, 344 

and their signs align with prior theoretical expectations. 345 

The administrative regulation or design (ar) subcategory falls under green institutional innovation, 346 

whereas the aforementioned five subcategories belong to green technological innovation. With the 347 

implementation of carbon trading, patent applications in the administrative regulation or design 348 

subcategory are inevitably amplified, as carbon trading itself constitutes an institutional framework 349 

for green development. Regions implementing carbon trading inevitably witness extensive policy and 350 

regulatory design efforts, leading to a substantial surge in patents within this subcategory. The average 351 

number of patents in the administrative regulation or design subcategory ranks second among the six 352 

subcategories. This remarkably high ranking for an institutional innovation subcategory—distinct 353 

from technological innovation—reflects, to some extent, the complexity of China’s administrative 354 

system. 355 

The estimation results using this subcategory as the dependent variable are presented in the "ln(ar)" 356 

column of Table 3. Empirical results show that the coefficient of the carbon trading dummy variable 357 

is positive and statistically significant at the 1% level, with its magnitude exceeding the coefficients 358 

of carbon trading’s effects on the other five subcategories and overall green innovation. This raises a 359 

critical question: If the primary positive impact of carbon trading on green innovation stems from its 360 

direct influence on institutional innovation closely tied to its implementation, what is its true effect 361 



 

 

on technological innovation when institutional innovation is excluded? 362 

To address this, we construct a new dependent variable nar (representing green technological 363 

innovation) by subtracting administrative regulation or design patents from total green patents. Re-364 

estimating the original equation with nar yields results presented in the "ln(nar)" column of Table 3. 365 

The findings indicate that carbon trading exerts a statistically significant positive effect on green 366 

technological innovation at the 10% level. However, this effect is far weaker compared to its impact 367 

on green institutional innovation and overall green innovation. 368 

Therefore, this paper answers the two hypotheses put forward above. Carbon trading can indeed 369 

promote regional green innovation, and its impacts vary across different sectors of green innovation.  370 

Table 3. Regression Results with Green Patent Subcategories as Dependent Variables 371 

 Ln(ae) Ln(tr) Ln(ecs) Ln(wm) Ln(ar) Ln(npg) Ln(nar) 

ct 0.0427 

1.2871 

-0.2782*** 

-3.1104 

0.1563** 

2.5123 

-0.0924 

-1.0413 

0.5466*** 

5.7103 

0.3948*** 

2.6416 

0.0812* 

1.6547 

Ln(gdp) 0.2838** 

2.1279 

0.1806** 

2.1093 

0.5348*** 

9.4996 

0.1262** 

2.5238 

0.4316*** 

3.3069 

0.4704*** 

3.2444 

0.3730*** 

9.4502 

Ln(rd) 0.5459*** 

9.7803 

0.7097*** 

16.2046 

0.5861*** 

13.0213 

0.6725*** 

15.4124 

0.6357*** 

5.7815 

0.4856*** 

3.5668 

0.5887*** 

17.2575 

Ln(ei) -0.0730** 

-2.5298 

-0.3205*** 

-3.7992 

-0.1752*** 

-6.2574 

-0.0771 

-0.9051 

-0.1128* 

-1.7884 

-0.1533*** 

-3.0416 

-0.1319*** 

-4.2713 

Ln(ge) 0.4205*** 

6.3113 

0.9351*** 

7.6137 

0.3038*** 

4.9905 

0.3707*** 

3.9305 

0.6875*** 

3.6837 

0.6282*** 

5.1397 

0.4164*** 

8.6552 

Ln(cp) -0.1071*** 

-8.8919 

0.0427 

1.1982 

-0.1475*** 

-12.5742 

-0.1722*** 

-10.6582 

-0.2017*** 

-7.7321 

-0.1808*** 

-3.6798 

-0.1437*** 

-32.9304 

const -5.7406*** 

-13.6074 

-9.9561*** 

-20.5201 

-5.9826*** 

-10.0004 

-5.9222*** 

-10.2415 

-8.3869*** 

-6.6857 

-9.2013*** 

-15.2378 

-4.8098*** 

-8.9128 

Time effect Control Control Control Control Control Control Control 

Regional 

effect 

Control Control Control Control Control Control Control 

N 203 203 203 203 203 203 203 

A-R2 0.8163 0.7361 0.8746 0.7383 0.7737 0.6395 0.8897 

F-prob 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Note: *, **, *** represent significance levels of 10%, 5%, and 1%, respectively; the square brackets 372 

are t statistics 373 

 374 

 375 



 

 

6. Conclusion 376 

In this paper, carbon trading is added as a dummy variable into the equation to explore the influencing 377 

factors of green innovation. It is found that carbon trading has a significant positive impact on green 378 

patent applications, and this impact is different for each subsector that makes up the green patent 379 

inventory. We also find that the exclusion of green institutional innovations substantially weakens 380 

carbon trading's role in promoting green innovation. This is a very important conclusion. In the 381 

previous assessment of the impact of carbon trading, this point was often been ignored: the green 382 

innovation inventory contains the institutional innovation itself. After removing institutional 383 

innovation, carbon trading obviously can not effectively promote the development of green 384 

technology innovation. Every new institutional arrangement we have made for carbon trading is 385 

actually strengthening the bubble that carbon trading can affect green innovation. Furthermore, this 386 

study reveals that carbon trading effectively promotes green innovation within the covered industries, 387 

yet this stimulative effect shows limited spillover to non-covered sectors. Consequently, this study 388 

recommends expanding the sectoral coverage of carbon trading, with priority given to incorporating 389 

waste management and transportation industries into the trading system at appropriate stages. 390 

In the future, more attention should be paid to the impact of carbon trading policies on sustainable 391 

development. In the research process of this paper, there are still the following points that can be 392 

improved or further explored: 1. The control variables in this paper include two variables to verify 393 

the resource curse hypothesis - coal production and coke reserves - which are examined in the overall 394 

regression equation. This remains a meaningful and valuable topic for follow-up research; 2. The 395 

carbon trading scheme represents an elegant institutional arrangement, but its role in promoting 396 

sustainable development requires further examination. Could alternative policies achieve better 397 

emission reduction effects? Is the selection of this aesthetically appealing yet potentially ineffective 398 



 

 

policy driven by political and economic constraints? 3. Carbon trading policies originated from the 399 

sulfur dioxide emission trading market in the United States, which similarly assigned value to 400 

previously worthless pollutant emission rights. Why has the sulfur dioxide market been more 401 

successful? Is this due to the availability of substitutes for sulfur dioxide, lower treatment costs, or 402 

because the carbon market involves too many industries? 403 

 404 

 405 

References 406 

Acemoglu D. (2002). Directed technical change. Review of Economic Studies, 69, 781-809. 407 

Acemoglu D., Aghion P., Bursztyn L. and Hemous D. (2012). The environment and directed technical change. American 408 

Economic Review, 102, 131-166. 409 

Alberola E., Chevallier J. and Cheze B. (2008). Price drivers and structural breaks in European carbon prices 2005-2007. 410 

Energy Policy, 36, 787-797. 411 

Calel R. and Dechezlepretre A. (2016). Environmental policy and directed technological change: Evidence from the 412 

European carbon market. Review of Economics and Statistics, 98, 173-191. 413 

Cao K., Xu X., Wu Q. and Zhang Q. (2017). Optimal production and carbon emission reduction level under cap-and-trade 414 

and low carbon subsidy policies. Journal of Cleaner Production, 167, 505-513. 415 

Chakraborty P. and Chatterjee C. (2017). Does environmental regulation indirectly induce upstream innovation? New 416 

evidence from India. Research Policy, 46, 939-955. 417 

Chevallier J. (2011). A model of carbon price interactions with macroeconomic and energy dynamics. Energy Economics, 418 

33, 1295-1312. 419 

Cong R. G. and Wei Y. M. (2010). Potential impact of (CET) carbon emissions trading on China’s power sector: A 420 

perspective from different allowance allocation options. Energy, 35, 3921-3931. 421 

El-Kassar A. N. and Singh S. K. (2019). Green innovation and organizational performance: The influence of big data and 422 

the moderating role of management commitment and HR practices. Technological Forecasting and Social Change, 423 

144, 483-498. 424 

Fan J. H. and Todorova N. (2017). Dynamics of China’s carbon prices in the pilot trading phase. Applied Energy, 208, 425 

1452-1467. 426 

Feng C., Shi B. and Kang R. (2017). Does environmental policy reduce enterprise innovation?—Evidence from China. 427 



 

 

Sustainability, 9(6), 872. 428 

Hou J. (2024). Does carbon emission trading affect China's green innovation? an exploration from the perspective of the 429 

enterprise lifecycle. Sustainability, 16. 430 

Jia L., Zhang X., Wang X., Chen X., Xu X., and Song M. (2024). Impact of carbon emission trading system on green 431 

technology innovation of energy enterprises in China. Journal of Environmental Management, 360. 432 

Jiang J., Xie D., Ye B., Shen B. and Chen Z. (2016). Research on China’s cap-and-trade carbon emission trading scheme: 433 

Overview and outlook. Applied Energy, 178, 902-917. 434 

Lin S., Wang B., Wu W. and Qi S. (2017). The potential influence of the carbon market on clean technology innovation 435 

in China. Climate Policy, 18, 71-89. 436 

Liu R. M. and Zhao R. J. (2015). Do national high-tech zones promote regional economic development? Evidence from 437 

difference-in-differences method. Management World, 263(08), 38-46. 438 

Liu W. and Wang Z. (2017). The effects of climate policy on corporate technological upgrading in energy intensive 439 

industries: Evidence from China. Journal of Cleaner Production, 142, 3748-3758. 440 

Munnings C., Morgenstern R. D., Wang Z. and Liu X. (2016). Assessing the design of three carbon trading pilot programs 441 

in China. Energy Policy, 96, 688-699. 442 

North D. C. (1990). Institutions, institutional change and economic performance. Cambridge University Press, Cambridge. 443 

Shu C., Zhou K. Z., Xiao Y. and Gao S. (2016). How green management influences product innovation in China: The role 444 

of institutional benefits. Journal of Business Ethics, 133, 471-485. 445 

Wang J. and Hao S. (2024). Will China’s carbon-trading policy foster coordinated innovation in green technologies? Data 446 

Science & Management, 7(4). 447 

Wang M., Wang X., Liu Z., and Han, Z. (2024). How can carbon trading promote the green innovation efficiency of 448 

manufacturing enterprises? Microelectronics Journal, 53. 449 

Wu R., Dai H., Geng Y., Xie Y., Mosui T. and Tian X. (2016). Achieving China’s INDC through carbon cap-and-trade: 450 

Insights from Shanghai. Applied Energy, 184, 1114-1122. 451 

Zhao Z., Zheng Y. and Ye S. W. T. (2024). The impact of carbon emissions trading system on regional green innovation: 452 

a perspective of foreign investment agglomeration. Polish Journal of Environmental Studies., 33(4), 4973-4982. 453 

Zhou L. A. and Chen Y. (2005). The policy effects of rural tax and fee reform in China: Estimation based on a difference-454 

in-differences model. Economic Research Journal, 08, 44-53. 455 

Zhu J., Fan Y., Deng X. and Xue L. (2019). Low-carbon innovation induced by emissions trading in China. Nature 456 

Communications, 10(1). 457 


