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Abstract 8 

This study examined water quality trends in the Fen River Basin from 2016 to 2023, utilizing data from 9 

seven monitoring stations. Advanced statistical methods, including the Daniel trend test, Seasonal and 10 

Trend decomposition using Loess (STL), grey correlation analysis, and Long Short-Term Memory 11 

(LSTM) neural networks, were employed to identify trends and key influencing factors. Over this 12 

period, the average Chemical Oxygen Demand (COD) and Ammonia Nitrogen (NH₄⁺-N) 13 

concentrations across Fen River Basin were (25.3±17.3) mg·L⁻¹ and (3.6±3.2) mg·L⁻¹, respectively. 14 

Water quality improved significantly, transitioning from severe pollution in 2016 to mild pollution in 15 

2023. The upstream consistently maintained higher quality, generally classified as Class I or II 16 

according to GB 3838-2002 standards, while the middle and lower reaches exhibited poorer conditions. 17 

The previously prevalent inferior Class V water quality has largely been eradicated. Key indicators 18 

such as COD and NH₄⁺-N in the middle and lower reaches demonstrated statistically significant 19 

improvements at a 95% confidence level. However, reductions in NH₄⁺-N concentrations were 20 

inconsistent in some upstream areas. These improvements are consistent with enhanced water source 21 

protection and stricter pollution control measures. Nonetheless, excessive pollutant discharge, 22 

particularly from domestic and industrial sources, continues to challenge the river's self-purification 23 

capacity, resulting in localized water quality fluctuations, which are most evident in the middle and 24 

lower reaches. Notably, a significant improvement in water quality was observed during the 25 

COVID-19 lockdown, attributed to reduced water usage across industrial, agricultural, and domestic 26 

sectors. This highlights the efficacy of emission reduction strategies and the potential for targeted 27 

management to achieve further gains. LSTM-based predictions suggest that COD concentrations in the 28 

middle and lower reaches will meet Class II surface water standards (15 mg/L) by the end of the 14th 29 

Five-Year Plan. However, NH₄⁺-N concentrations are projected to exceed the Class II limit (0.5 mg/L) 30 

during dry seasons. Future efforts should concentrate on mitigating seasonal NH₄⁺-N variations to 31 

sustain and enhance water quality improvements. 32 
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1 Introduction 34 

Rivers serve as vital water resource transportation channels from land to lakes and 35 

oceans, fulfilling critical societal needs such as drinking water, irrigation, and 36 

hydropower generation (Grill et al., 2019). They support domestic, agricultural, and 37 

energy needs, playing a pivotal role in sustaining human society. However, rapid 38 

socio-economic development over recent decades have led to high-intensity human 39 

activities that have not only depleted significant water resources but also severely 40 

degraded water quality. This degradation has damaged river ecosystems and poses a 41 

serious threat to human water safety and the integrity of aquatic ecosystems (Chen et 42 

al., 2019；Xia et al., 2020). Recent studies have highlighted that the input of pollutants 43 

from rivers in China is significant. Pollutant loads include 2.8×10⁷ tons of dissolved 44 

nitrogen, 3×10⁶ tons of dissolved phosphorus (Chen et al., 2019), and nearly 2.5×104 45 

tons of antibiotics (Zhang et al., 2015). In 2022, data from 3,629 monitoring stations 46 

across China showed that 87.9% of water quality assessments fell within Classes I to 47 

III, while only 0.7% were rated as Class V. Key pollution indicators included 48 

chemical oxygen demand (COD), total phosphorus (TP), and potassium permanganate 49 

index (CODMn) (Ministry of Ecology and Environment, 2023). This water pollution 50 

crisis is further compounded by an annual shortage of 40 billion tons of water in 51 

China (Tao and Xin, 2014).  52 

Many studies have increasingly focused on the evolution of water quality in China’s 53 

major rivers and the factors driving these changes, particularly in the seven key river 54 

systems that are vital to the nation’s economy, ecology, and society. (Meng and 55 

Zhang,2023; Qiao et al.,2021; Huang et al.,2021). For instance, Zhang et al. (2020) 56 

identified COD, biochemical oxygen demand (BOD), and TP as the primary water 57 

pollution indicators in these river systems. Their study also noted significant 58 

improvements in China's Class V surface water between 2005 and 2017. To analyze 59 

the spatio-temporal variations in river water quality, researchers commonly employ 60 

statistical methods such as Mann Kendall test, Daniel trend test, cluster analysis, 61 

spatial interpolation, Spearman correlation analysis, and grey correlation analysis 62 

(Zhai et al.,2014；Huang et al.,2021). However, while these methods have provided 63 

valuable insights, the mechanisms underlying water quality evolution are complex 64 

and multifaceted (Venkatraman et al., 2025). Key influencing factors include both 65 



 

 

human activities and natural conditions (Cheng et al., 2019). Despite significant 66 

progress in understanding these dynamics, a major limitation in current research is the 67 

lack of long-term observational data, which hinders the ability to fully grasp the 68 

long-term trends and causes of water quality fluctuations (Suresh et al., 2025). 69 

Furthermore, there is limited integration of manual and automatic monitoring data, 70 

which restricts comprehensive comparisons and analyses of river water quality 71 

evolution using advanced multiple spatio-temporal methods. Ongoing human 72 

activities have hindered further exploration of the natural and human factors driving 73 

water quality and their contributions. The COVID-19 pandemic, however, has 74 

provided an unprecedented opportunity to study the rapid improvement in water 75 

quality resulting from the reduction of human activities.  During the lockdowns, 76 

decreased industrial production, transportation, and other human activities led to 77 

noticeable improvements in water quality, as documented in several studies (Kang et 78 

al., 2020; Deng and Peng, 2020; Le et al., 2020). This phenomenon has been observed 79 

globally, with notable examples including the canals of Venice (Saadat et al., 2020), 80 

the Yamuna River in India (Arif et al., 2020), and sections of the Yangtze River in 81 

China (Liu et al, 2022). Similarly, in the Fen River Basin, located in Shanxi Province, 82 

water quality has emerged as a critical concern. As the birthplace of the Three Jin 83 

Civilization, the Fen River Basin is densely populated and serves as the economic hub 84 

of Shanxi. (Gu et al., 2020). Despite severe surface water pollution and significant 85 

water shortages, the demand for water in urban, industrial, and agricultural sectors 86 

remains high. The quality of water in the Fen River directly impacts both resource 87 

utilization and sustainable economic development (Shanxi Provincial Bureau of 88 

Statistics, 2023). Consequently, water quality analysis and pollution control are 89 

central to the ecological and environmental protection strategy outlined in Shanxi 90 

Province's 14th Five-Year Plan. 91 

To address these challenges, this study utilized manual and automatic water quality 92 

monitoring data collected from seven stations across the Fen River Basin, spanning 93 

the period from 2016 to 2023. A range of analytical methods—including Daniel trend 94 

analysis, STL trend decomposition, grey correlation degree, and long short-term 95 

memory (LSTM) neural network—was applied to comprehensively analyze water 96 

quality variations and identify key influencing factors. The goal is to provide 97 

technical support for pollution control measures and sustainable water management in 98 



 

 

the Fen River Basin. 99 

2 Materials and methods 100 

2.1 Study area and observations 101 

The Fen River, often referred to as the "mother river" of Shanxi, is the second-largest 102 

tributary of the Yellow River and plays a crucial role in the ecological security of the 103 

middle and lower reaches of the Yellow River. Originating from Ningwu County, the 104 

Fen River flows through six cities in Shanxi Province: Xinzhou, Taiyuan, Lvliang, 105 

Jinzhong, Linfen, and Yuncheng. It traverses the Jinzhong and Linfen basins, joined 106 

by more than ten tributaries along its 716 km length. With a drainage area of 39,721 107 

km2, the Fen River accounts for approximately 25.5% of Shanxi Province's t total 108 

surface area (Figure.1). The river’s upper reaches extend from its source to Shanglan 109 

Station in Taiyuan City, primarily flowing through mountainous areas. The middle 110 

section spans from Shanglan Station to Shitan in Hongdong County, passing through 111 

the Jinzhong Basin. The downstream section runs from Shitan to Huangkou. The Fen 112 

River Basin experiences a semi-arid to semi-humid continental monsoon climate, with 113 

an average annual precipitation of 504.8 mm, predominantly occurring between June 114 

and September. The basin’s total water resources amount to 3.358 billion cubic meters, 115 

representing approximately 27.2% of Shanxi Province's total water resources (Shanxi 116 

Provincial Bureau of Statistics, 2023). Water quality monitoring data, including 117 

chemical oxygen demand (COD) and ammonia nitrogen (NH₄⁺-N), were obtained 118 

from seven monitoring stations in the Fen River Basin between 2016 and 2023. These 119 

data were sourced from the Shanxi Provincial Ecological Environment Bureau’s 120 

Surface Water Environmental Quality Report 121 

(https://sthjt.shanxi.gov.cn/shjzl/dbsszyb/, as shown in Fig.1). T The seven monitoring 122 

stations are located at Leiming Temple (LMS), Hexi Village (HXC), Fen Reservoir 123 

(FHSK), Shanglan (SL), Wangzhuang Bridge South (WZQN), Shangpingwang 124 

(SPW), and Miaoqian Village (MQC). Water quality indicators were manually 125 

monitored once per month, and the sampling, analysis, and evaluation were carried 126 

out in accordance with the "Surface Water Environmental Quality Standards" 127 

(GB3838-2002). In certain months, no measurements were available due to 128 

dehydration or icing. In addition to the manual monitoring data, automatic water 129 

quality monitoring data from five stations in the Fen River Basin were used for the 130 

period from 2020 to 2023. These data were sourced from the national real-time data 131 

https://sthjt.shanxi.gov.cn/shjzl/dbsszyb/


 

 

release system for surface water quality monitoring 132 

(http://106.37.208.243:8068/GJZ/Business/Publish/Main.html). The five monitoring 133 

stations are located at Hexi Village (HXC), Fen Reservoir (FHSK), Shanglan (SL), 134 

Wangzhuang Bridge South (WZQN), and Shangpingwang (SPW). The main water 135 

quality indicators monitored include dissolved oxygen (DO), chemical oxygen 136 

demand (CODMn), ammonia nitrogen (NH4+-N), total phosphorus (TP), and water 137 

turbidity (TUR). Monitoring was conducted every four hours, with readings taken at 138 

4:00, 8:00, 12:00, 16:00, and 20:00. 139 

Data on annual precipitation and surface water resources across various cities in the 140 

Fen River Basin from 2016 to 2023 were sourced from the Water Resources Bulletin 141 

of Shanxi Province (http://slt.shanxi.gov.cn/zncs/szyc/szygb/). Discharge data for 142 

sewage and wastewater from various cities in the Fen River Basin, covering the 143 

period from 2016 to 2022, were obtained from the Statistical Yearbook of Urban and 144 

Rural Construction (http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/). Additionally, 145 

GDP, population, and other statistical data from the cities within the Fen River Basin 146 

from 2016 to 2023 were sourced from the Shanxi Provincial Statistical Yearbook 147 

(http://www.shanxi.gov.cn/sj/tjnj/). 148 
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Fig.1 Geographical location and distribution of monitoring station 150 

2.2 Daniel Trend Test 151 

To analyze the trends of the water quality indicators, the Daniel trend test is applied in 152 

this study. Also known as Spearman's rank correlation coefficient test 153 

(Spearman,1904), this method is used to assess the correlation between two sets of 154 

variables (Daniel et al.,1990). Spearman's rank correlation coefficient is a 155 



 

 

non-parametric statistical measure, meaning it does not rely on the distribution of data. 156 

The principle of the test involves assigning ranks to two variables, X and Y, where 157 

iX  and iY  represent the ranks of the variables, respectively. The correlation between 158 

these two variables is then calculated using the following equation 2.1. 159 
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(EQ2.1) 160 

In equation 2.1, sr  presents the Spearman rank correlation coefficient; iX  and 161 

iY are the ranks of the respective variables, and N is the number of observations. If | sr | 162 

≥WP and Rs is positive, the data represents a significant upward trend; when | sr | ≥WP 163 

and sr  is negative, the data indicates a significant downward trend. Daniel Trend 164 

Test is suitable for the correlation test of a single factor with a small sample size, and 165 

it is concise with high accuracy. However, it performs poorly in the trend test of 166 

long-term sequences. 167 

2.3 STL decomposition method 168 

The STL (A Seasonal and Trend decomposition using Loss) method, introduced 169 

by Cleveland et al. (1979), is used for time series decomposition. It is based on 170 

LOESS (Locally Weighted Scatterplot Smoothing), a non-parametric regression 171 

technique that assigns varying weights to data points based on their proximity, 172 

allowing for flexible smoothing of non-linear data (Cleveland and Devlin, 1988). 173 

Each recursive process of the STL method requires three LOESS and one sliding 174 

average to be performed separately. In the STL method, the original data tY  is 175 

decomposed into three components: trend ( tTrend ), seasonal ( tSeasonal ), and 176 

residual ( tResidual ): 177 

tt t tY Trend Seasonal Residual= + +       (EQ 2.2) 178 

The trend component represents the long-term, low-frequency behavior of the 179 

data under specific climatic conditions, while the seasonal term captures periodic 180 

fluctuations. STL has been widely applied in various fields such as economics, 181 

environmental science, and water quality analysis (Silawan et al., 2008). And it can 182 

handle seasonal components of different lengths and periods, and is applicable to time 183 

series data of various seasonal patterns. 184 

2.4 LSTM method for prediction 185 

Long Short-Term Memory (LSTM) networks, an improved version of Recurrent 186 



 

 

Neural Networks (RNN), were introduced by Hochreiter and Schmidhuber (1997) to 187 

address the vanishing gradient problem. In this study, the LSTM network is utilized 188 

for water quality prediction, as it excels in modeling temporal dependencies in time 189 

series data.  190 

Unlike traditional RNNs, which rely on a single neuron with a tanh activation 191 

function, LSTM introduces a "gate" mechanism that regulates the flow of information 192 

through the network’s cell state. (Gers et al., 2003). Specifically, LSTM contains 193 

three gates: the input gate, the output gate, and the forget gate. These gates control the 194 

information added to or removed from the cell state, which allows the network to 195 

retain long-term dependencies. 196 

The LSTM model used in this study has 200 hidden layer nodes, a sliding 197 

window size of 3 months, and a total of 12 iterations. For prediction, the fourth 198 

month’s water quality is forecasted based on data from the first three months, the fifth 199 

month based on data from months 2-4, and so on. 200 

The corresponding LSTM equations are as follows 201 

1f = ( [ , ] )t f t t fW h x b − +
                                (EQ2.3) 202 

1i = ( [ , ] )t i t t iW h x b − +
                                 (EQ 2.4) 203 

1= tanh( [ , ] )t c t t cC W h x b− +
                               (EQ2.5) 204 

1t t t t tC f C i C−= +
                                     (EQ2.6) 205 

t 1( [ , ] )t t oW h x b  −=  +
                              (EQ2.7) 206 

tanh( )t t th o C=
                                      (EQ2.8) 207 

In these equations, xt is the input at time t; W is the weight matrix; b is the bias 208 

matrix; and tC is the cell state at time t; Ct is the updated value at time t; ht and ht−1 209 

represent the outputs at times t and t−1, respectively. It is relatively insufficient in 210 

processing extremely long sequence data, and the training process has high 211 

computational complexity and takes a lot of time. 212 



 

 

3 Results and Discussions 213 

3.1 Temporal variations in water quality 214 

As shown in Fig.2, during the sampling period from 2016 to 2023, the average 215 

concentrations of COD and NH4
+-N at four monitoring sites in the upper reaches of 216 

the Fen River Basin were (5.6 ± 3.3) mg·L-1 and (0.12±0.09) mg·L-1, respectively. In 217 

contrast, the average COD and NH4
+-N concentrations at three monitoring points in 218 

the middle and lower reaches were (25.3±17.3) mg·L-1 and (3.6 ± 3.2) mg·L-1, 219 

respectively. These results highlight the poor water quality in the middle and lower 220 

reaches compared to the upstream sections. At the WZQN, SPW and MQC sites in the 221 

middle and lower reaches, water quality was generally classified between Class III 222 

and Class V. The primary pollutants in these areas were COD, NH4
+-N, and TP, but 223 

concentration of these pollutants have notably decreased in recent years. Taking the 224 

year 2023 as an example, only the concentration of at WZQN, SPW and MQC sites in 225 

the middle and lower reaches of the Fen River Basin exceeded the Class II limit of 226 

surface water ammonia nitrogen (0.5 mg·L-1), with 3, 2, and 2 instances of exceeding 227 

the limit, respectively.  228 

The original time series data (Table 1 and Table 2) indicate significant 229 

improvements in water quality indicators at all seven monitoring stations between 230 

2016 and 2023.Most of the time series passed the 95% confidence interval of Daniel 231 

significance trend test. Specifically, except for the SL station, COD concentrations at 232 

all other six stations showed significant downward trends with a 95% confidence 233 

level. Similarly, except for the LMS and HXC sites, NH4
+-N concentration at the 234 

other five stations also showed significant downward trends. These trends were 235 

consistent with the results from the Daniel significance trend applied to the trend 236 

component of the original data, confirming a significant reduction in pollutant 237 

concentrations. 238 

Seasonal variations in water quality were also evident. The concentrations of 239 

NH4
+-N and DO were significantly higher during dry seasons compared to the wet 240 

seasons at all seven monitoring stations. In contrast, COD and TP concentrations were 241 

much higher during the wet seasons. The seasonal fluctuations in water quality are 242 

influenced by both natural and anthropogenic factors both natural and anthropogenic 243 

factors. Industrial, domestic, and agricultural non-point emissions have contributed to 244 

poorer water quality in certain areas. Additionally, the tributaries of the Fen River are 245 



 

 

mainly seasonal rivers, characterized by flood events in the summer and water 246 

shortages during the dry season. During the dry season, the river's runoff mainly 247 

comes from wastewater discharged from domestic and industrial production along the 248 

way, resulting in higher concentrations of water pollutants, especially NH₄⁺-N. 249 

Conversely, the strong erosion and high sediment content during the flood season 250 

contribute to COD concentrations. 251 
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Fig.2 Temporal variations of main water quality parameters’ concentrations in Fen river basin 255 

during 2016-2023 256 

Table 1 The Daniel trend tests of the original COD and NH4
+-N concentrations in Fen river basin 257 

during 2016-2023 258 

Station Period n Water quality index WP(α=0.05) WP(α=0.01) rS Trend test 

LMS 

2016~2023 8 COD 0.707 0.834 -0.714 Significant decrease** 

2016~2023 8 NH4
+-N 0.707 0.834 0.321 Not significant 

HXC 

2016~2023 8 COD 0.707 0.834 -0.881 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 0.024 Not significant 

FHSK 

2016~2023 8 COD 0.707 0.834 -0.857 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.786 Significant decrease** 

SL 

2016~2023 8 COD 0.707 0.834 -0.524 Not significant 

2016~2023 8 NH4
+-N 0.707 0.834 -0.857 Significant decrease*** 

WZQN 

2016~2023 8 COD 0.707 0.834 -0.976 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.905 Significant decrease*** 

SPW 2016~2023 8 COD 0.707 0.834 -0.976 Significant decrease*** 



 

 

Station Period n Water quality index WP(α=0.05) WP(α=0.01) rS Trend test 

2016~2023 8 NH4
+-N 0.707 0.834 -0.976 Significant decrease*** 

MQC 

2016~2023 8 COD 0.707 0.834 -0.952 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.714 Significant decrease*** 

Mean 

2016~2023 8 COD 0.707 0.834 0.976 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 0.905 Significant decrease*** 

Note:*, **, *** means passing the significance test of α=0.1, 0.05, 0.01 respectively. 259 

Table 2 The Daniel trend tests of the trend components of COD and NH4
+-N concentrations in 260 

Fen river basin during 2016-2023 261 

Station Period n Water quality index WP(α=0.05) WP(α=0.01) rS Trend test 

LMS 

2016~2023 8 COD 0.707 0.834 -0.833 Significant decrease** 

2016~2023 8 NH4
+-N 0.707 0.834 0.310 Not significant 

HXC 

2016~2023 8 COD 0.707 0.834 -0.881 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.357 Not significant 

FHSK 

2016~2023 8 COD 0.707 0.834 -0.952 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.833 Significant decrease** 

SL 

2016~2023 8 COD 0.707 0.834 -0.548 Not significant 

2016~2023 8 NH4
+-N 0.707 0.834 -0.881 Significant decrease*** 

WZQN 

2016~2023 8 COD 0.707 0.834 -0.952 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -1.000 Significant decrease*** 

SPW 

2016~2023 8 COD 0.707 0.834 -0.976 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.905 Significant decrease*** 

MQC 

2016~2023 8 COD 0.707 0.834 -0.952 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.762 Significant decrease*** 

Mean 

2016~2023 8 COD 0.707 0.834 -0.976 Significant decrease*** 

2016~2023 8 NH4
+-N 0.707 0.834 -0.976 Significant decrease*** 

Note:*, **, *** means passing the significance test of α=0.1, 0.05, 0.01 respectively. 262 

Table 3 Statistics of water quality indexes in Fen river basin during wet and dry seasons in 2023                                                                   263 

mg·L-1 264 

Stations Periods COD NH4
+-N TP DO 

Upstream stations 

Wet season 2.1 0.05 0.045 6.4 

Dry season 1.5 0.14 0.016 9.8 



 

 

Stations Periods COD NH4
+-N TP DO 

Difference -0.6 0.09 -0.029 3.4 

Three stations in the middle and downstream 

Wet season 7.8 0.31 0.139 6.9 

Dry season 5.2 0.84 0.107 11.1 

Difference -2.6 0.53 -0.033 4.2 

Mean of seven stations 

Wet season 4.3 0.15 0.082 6.6 

Dry season 3.5 0.51 0.065 10.5 

Difference -0.9 0.36 -0.017 3.9 

In recent years, significant improvements in the environmental quality of Fen 265 

River have been continuously observed, largely due to the implementation of water 266 

source protection and pollution control measures. In 2018, Shanxi Province issued the 267 

"Overall Plan for Ecological Protection and Restoration of the 'Seven Rivers' Basin" 268 

with a Focus on the Fen River. This was followed by the "Decision on Resolutely 269 

Winning the Battle of Fen River Basin Governance" in 2019, which has contributed to 270 

substantial reductions in industrial pollutants and improvements in water treatment 271 

rates. The goal of "a flood of clean water entering the Yellow River" has been largely 272 

achieved In January 2022, the Fen River Protection Regulations were enacted, 273 

providing clear provisions for water resource management, pollution prevention, and 274 

ecological restoration. Further, the "Ecological Protection and High-Quality 275 

Development Plan for the Yellow River Basin in Shanxi Province," was issued in 276 

April 2022 emphasized pollution control in the Fen River Basin and promoted 277 

targeted, scientific, and regulatory governance. According to the Statistical Yearbook 278 

of Urban and Rural Construction in 2022, as the end of 2022, the processing capacity 279 

of sewage treatment plants in China had reached 216 million cubic meters per day, 280 

with an urban sewage treatment rate of 98.11% and a centralized collection rate of 281 

70.1% for urban domestic sewage. In Shanxi Province, sewage treatment capacity 282 

was 3.67 million cubic meters per day, with a treatment rate of 98.48% and a 283 

collection rate of 71.1%, both surpassing the national averages (Shanxi Provincial 284 

Department of Water Resources, 2023). Above all, these measures have greatly 285 

reduced the discharge of wastewater pollutants and contributed to the improved water 286 

quality in the Fen River basin.  287 

3.2 Spatial variation of water quality 288 

The spatial distribution of water quality in the Fen River Basin from 2016 to 289 



 

 

2023 (presented in Fig.3) demonstrated notable variations between the upstream and 290 

downstream regions. Water quality in the middle and lower reaches fluctuated 291 

between III and V levels, while the upstream areas consistently maintained higher 292 

water quality levels, classified as Class I and II. During this period, the proportion of 293 

Class I-III water sections in the Basin ranged from 24.0% to 68.8%, whereas the 294 

proportion of worse-than-Class V sections varied between 0% and 72.7%. A 295 

significant upward trend was observed in proportion of water quality sections in Class 296 

I-III (rs=0.415, α=0.05), with a monthly increase of 0.2 percentage points. Conversely, 297 

the proportion of Class V water sections showed a significant downward trend, 298 

(rs=-0.803, α=0.05), decreasing by 0.9 percentage points per month. Although 299 

substantial progress has been made in eliminating many poor water quality sections 300 

with Class V, the water quality in certain middle and lower reaches, such as the 301 

WZQN station, remains poor, particularly during dry seasons in recent years. Spatial 302 

clustering analysis of COD concentration divided the seven monitoring sites into two 303 

categories: LMS, HXC, FHSK and SL formed the first category, while WZQN, SPW 304 

and MQC constituted the second. For the NH4
+-N concentration, the sites were 305 

classified into three categories: LMS, HXC, FHSK and SL comprised the first 306 

category, WZQN formed the second category, and SPW and MQC constituted the 307 

third. The spatial clustering results aligned with the geographical location zoning of 308 

the seven sites. Given its location and severe pollution levels, WZQN station was 309 

selected as a representative site for focused analysis in the middle and lower reaches. 310 

The spatial influencing factors of water quality can be summarized into two 311 

categories: natural factors and human activities. This study initially selected 312 

precipitation and surface water resources as the natural factors, while the human 313 

activities factors selected population, GDP, and pollutant emissions in wastewater. 314 

Grey correlation analysis (as shown in Table 4) revealed that population density was 315 

the predominant factor in the middle and lower reaches, with wastewater emission 316 

having the most significant impact on water quality. Gu et al. (2020) pointed out that 317 

large-scale domestic sewage discharges and emissions from heavy chemical industry 318 

as the primary contributors to severe pollution at WZQN station. According to the 319 

Water Resources Bulletin of Shanxi Province, total wastewater discharge in 2017 320 

amounted to 788 million tons, with 25.2% originating from industrial sources. The 321 

Fen River received 336 million tons of wastewater, accounting for 42.6% of the 322 



 

 

province's total wastewater discharge (Shanxi Provincial Department of Water 323 

Resources, 2018). By 2022, total wastewater discharge in Shanxi Province had risen 324 

to 1.097 billion tons, with industrial contributions increasing to 41.3% (Shanxi 325 

Provincial Department of Water Resources, 2023). Furthermore, data from the Shanxi 326 

Provincial Statistical Yearbook data revealed that in 2019, total COD and NH4
+-N 327 

emissions were 109,200 tons and 11,200 tons, respectively, with domestic sources 328 

accounting for 62.5% and 87.8% of these pollutants (Shanxi Provincial Bureau of 329 

Statistics, 2023). These findings indicate a marked increase in the impact of domestic 330 

sewage on the Fen River Basin, while industrial emissions have proportionally 331 

decreased. The large volume of pollutants discharged—exceeding the river's 332 

self-purification capacity—remains the fundamental cause of the persistent and severe 333 

water pollution observed in the middle and lower reaches of the Fen River. 334 
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Fig.3 Cluster distribution of water quality in seven monitoring sections of the Fen River Basin 337 

from 2016 to 2023 338 



 

 

Table 4. Grey correlation degree between water indexes and social driving factors, 339 

hydrometeorological factors in Fen river basin 340 

City Station WQI GDP Population Rainfall SWR COD emissions NH4
+-N emissions 

Xinzhou LMS 

COD 0.7676 0.8341* 0.8148 0.8290 0.5094 0.7786 

NH4
+-N 0.8260* 0.7291 0.6883 0.7186 0.5802 0.7045 

Xinzhou HXC 

COD 0.7800 0.8317* 0.8114 0.7668 0.5051 0.7767 

NH4
+-N 0.7090 0.7511 0.7388 0.8009* 0.4761 0.6973 

Taiyuan FHSK 

COD 0.7627 0.8183* 0.8177 0.6856 0.5020 0.7649 

NH4
+-N 0.6554 0.7048* 0.6978 0.6004 0.4665 0.6817 

Taiyuan SL 

COD 0.7801 0.8335* 0.7821 0.7437 0.5344 0.8214 

NH4
+-N 0.7034 0.7576 0.7453 0.6883 0.4965 0.8092* 

Jinzhong WZQN 

COD 0.7274 0.7821* 0.7224 0.7069 0.4851 0.7211 

NH4
+-N 0.5785 0.6198 0.6501 0.6162 0.5054 0.6531* 

Linfen SPW 

COD 0.7349 0.8037* 0.7183 0.6959 0.4944 0.7359 

NH4
+-N 0.6720 0.6994 0.6689 0.6403 0.4933 0.7263* 

Yuncheng MQC 

COD 0.7339 0.7996* 0.7608 0.7366 0.5856 0.7689 

NH4
+-N 0.6532 0.7100 0.6784 0.6364 0.5217 0.7059* 

Note:* means the largest GRD. 341 

3.3 Impact of the COVID‑19 Lockdown on Water Quality 342 

On December 31, 2019, the Chinese government reported the first case of 343 

COVID-19 in Wuhan, Hubei Province (Kang et al., 2020). In response to the 344 

pandemic, Wuhan implemented strict measures in January 2020 to curb the virus's 345 

spread, including self-isolation, social distancing measures, traffic restrictions, and 346 

community controls (Deng and Peng, 2020), followed closely by other major cities in 347 

China (Le et al., 2020). Wuhan was the last city to reopened in April 2020, and after 348 

that only a few provinces and cities experienced sporadic outbreaks. In March 2022, 349 

China faced another sustained epidemic that lasted for about three months, until May 350 

2022 (Meng and Zhang, 2023). During the first lockdown, industries came to a halt, 351 

commercial institutions were largely closed, and transportation systems were nearly at 352 

a standstill. The second wave of the epidemic, which affected only certain provinces 353 

and cities, did not lead to a nationwide large-scale lockdown, and is referred to as the 354 

"semi-lockdown period." If the water quality was improved during the semi lockdown 355 



 

 

period, let alone during the full lockdown period. This study selected second epidemic 356 

period and defined the research period as follows: 357 

•  Pre-lockdown period: December 2021 to January 2022 (3 months); 358 

•  Lockdown period (second epidemic): March to May 2022 (3 months); 359 

•  Post-lockdown period: June to August 2022 (3 months). 360 

Year-on-year comparison data (shown in Fig.4) reveals that during the lockdown 361 

period in 2022, concentrations of key water pollutants were significantly lower 362 

compared to the same period in 2021 and 2023. Specifically: COD concentration 363 

during the lockdown was 8.0 mg/L, 24.5% lower than in 2021 and 4.6% lower than in 364 

2023. NH4
+-N concentration was 0.42 mg/L, a 32.9% decrease from 2021 and 60.0% 365 

from 2023. TP concentration was 0.153 mg/L, 32.0% lower than in 2021 and 25.9% 366 

lower than in 2023. Turbidity during the lockdown period was 93.8 NTU, showing a 367 

29.1% decrease from 2021 and 61.1% from 2023. These results indicate that the 368 

epidemic control measures from March to May 2022 significantly reduced pollutants 369 

concentrations, improving water transparency. 370 

In the month-to-month analysis (shown in Fig.5), the following trends were 371 

observed: COD concentration was 115.8% higher during the lockdown period 372 

compared to the Pre-lockdown period, but 24.1% lower than in the post-lockdown 373 

period. NH4
+-N concentration was 39.8% lower than the pre-lockdown period and 374 

40.5% lower than the post-lockdown period. TP concentration was 73.8% higher than 375 

in the pre-lockdown period but 19.9% lower than in the post-lockdown periods. 376 

Turbidity was 26.2% lower than in the pre-lockdown period and 45.1% lower than in 377 

the post-lockdown periods. These month-to-month variations highlight that the water 378 

quality changes during the lockdown period were not consistent, which may be 379 

attributed to the seasonal variation in water quality caused by factors such as flood 380 

and dry seasons. 381 

 382 



 

 

Fig.4 Variations in water quality indicators at WZQN station in the Fen River Basin from March 383 

to May, 2021-2023 384 

 385 

Fig.5 Variations in water quality indicators at WZQN station in the Fen River Basin before and 386 

after the epidemic period in 2023 387 

3.4 Water Quality Simulation and Prediction 388 

This research further selected the WZQN Station, located in the heavily polluted 389 

middle and lower reaches of the Fen River Basin, for water quality prediction and 390 

analysis (as shown in Fig.6). This study set the sequence from 2016 to 2022 as the 391 

model training dataset and the sequence in 2023 as the model validation dataset. The 392 

correlation coefficients between the predicted and observed values for COD and 393 

NH4
+-N were 0.73 and 0.81, respectively, indicating a strong model fit. Additionally, 394 

the standardized mean deviations for COD and NH₄⁺-N were 0.26 and 0.07, 395 

respectively, further confirming the good predictive performance of the LSTM model. 396 

The simulated results of the LSTM are better and meet the requirements of simulation 397 

accuracy. It showed that the LSTM showed high potential in future water environment 398 

monitoring and supervision, while the higher R2 scores of 0.82 were achieved for TN 399 

prediction (Gao et al., 2024). The model predicted that the averaged COD and 400 

NH4
+-N concentrations at WZQN station from 2024 to 2025 would be 5.0 ± 2.7mg/L 401 

and 0.42 ± 0.33 mg/L, respectively. By 2025, the COD concentration is expected to 402 

stabilize below the threshold set by the Surface Water Environmental Quality 403 

Standard (GB 3838—2002) for Class II (COD ≤ 15 mg/L) water quality. However, 404 

while the NH₄⁺-N concentration is predicted to meet the water quality standard 405 

(NH₄⁺-N ≤ 0.5 mg/L), it is expected to exceed this limit during the dry season of 2025. 406 

Therefore, further attention should be given to the seasonal variations in NH₄⁺-N 407 

concentrations to ensure long-term compliance with water quality standards.  408 
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 410 

Fig.6 Prediction of COD and NH4
+-N concentrations at WZQN station based on the LSTM 411 

method 412 

4 Conclusions 413 

The research systematically analyzed the water quality evolution trends and 414 

influencing factors in Fen River Basin by comprehensively applying statistical 415 

analysis methods such as Daniel trend test, Seasonal and Trend decomposition using 416 

Loess, grey correlation and Long Short-Term Memory neural network. From 2016 to 417 

2023, the Fen River’s water quality improved significantly, shifting from severe 418 

pollution to mild pollution. Upstream areas generally exhibited Class I–II water 419 

quality under GB 3838—2002 standards, while middle and lower reaches, although 420 

still relatively poor, showed notable elimination of inferior Class V water sections. 421 

COD and NH₄⁺-N were identified as primary pollutants.  422 

Although middle and lower reaches demonstrated significant improvement trends in 423 

key water quality indicators, NH₄⁺-N concentrations at some upstream stations 424 

showed limited reduction. The improvements in the Fen River’s environmental 425 

quality can largely be attributed to the implementation of water source protection and 426 

pollution control measures in recent years. It is noteworthy that the significant 427 

reduction in water usage for industrial, agricultural, and domestic purposes during the 428 

COVID-19 lockdown markedly improved water quality. This underscores the 429 

potential of targeted reductions in human activity to improve water quality. However, 430 

we projections for the end of the 14th Five-Year Plan indicate that NH₄⁺-N 431 

concentrations may still exceed the Class II surface water quality standard (GB 432 



 

 

3838—2002) limit (0.5 mg/L) during dry seasons, necessitating continued focus on 433 

controlling domestic pollution. Otherwise, the COD and TP concentrations were 434 

much higher during the wet seasons. Therefore, we should pay close attention to the 435 

changes in water quality during this period and carry out scientific treatment of 436 

non-point source pollution in the future. Moreover, it is suggested that on the basis of 437 

doing a good job in water quality monitoring during this period, efforts should be 438 

focused on promoting the comprehensive treatment of non-point source pollution to 439 

promote the stable improvement of the river water environment.  440 
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