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Abstract 

Air quality monitoring is becoming an increasingly 
important aspect of monitoring pollution due to changing 
environmental patterns in urban and industrial areas. This 
study designs an energy-efficient air quality monitoring 
system using Air Quality Clustering for Mobile Ad Hoc 
Sensor Networks protocol. The proposed system 
integrated Wireless Sensor Networks with Mobile Ad Hoc 
Networks addresses all the challenges related to data 
aggregation and routing within dynamic networks. Thus 
far, advanced air quality, chemical concentration, and 
MOX sensors have been used in Tamil Nadu cities such as 
Chennai, Coimbatore, and Erode, to monitor pollutants 
such as carbon monoxide, nitrogen dioxide, and 
particulate matter. The data will be transferred in real 
time to a cloud platform for analysis through ZigBee-
based communication-supported by a database 
management system and an expert decision support 
system, and will act on the findings. Solar panel 
integration and advanced power management 
improvements yield 30% less energy consumption while 
assuring uninterrupted operation. The proposed protocol 
has improved cluster performance and decreased inter-
cluster delays while extending the lifetime of the network 
to 320 hours. Comparisons of various methods show that 
the proposed method clearly outperforms conventional 
networks, achieving 92% pollutant classification accuracy, 
extending network lifetime to 320 hours, and ensuring 
continued communication with a very low packet loss rate 

of just 1%. The system transmits data in 6 seconds and 
provides results within 3.5 seconds, making it reliable and 
speed-efficient. Further, it achieves 150 Mbps throughput 
with a latency of only 25 ms. The system is also scaleable 
and offers real-time SMS alerts on localized monitoring, 
thus helping industries and other stakeholders in pollution 
management. Proposed methods may thus be 
revolutionary in air quality monitoring, providing energy-
efficient real-time solutions in urban and industrial 
environments. 

Keywords, Air Pollution, Air Quality Clustering, Data 
Cloud, Industrial Environments, Mobile Ad Hoc Networks, 
Principal Component Analysis, Sensors, Wireless Sensor 
Networks. 

1. Introduction 

The environment and human health are negatively 
impacted by toxic emissions but air quality also impacts 
energy efficiency and work productivity. Several studies 
have demonstrated that an increase in CO2 levels at work 
causes a rise in the amount of volatile organic compounds 
(VOCs) smells and microorganisms in the air, 
impairspeople's ability to focus. Furthermore according to 
some research CO2-based air controls can save up to 50% 
on energy—in most buildings, CO2-based ventilation 
controls can lower HVAC costs by 5% to 20%. Wireless 
Sensor Networks (WSNs) have recently shown a great deal 
of promise for broad use in data collection surveillance 
monitoring and medical telemetry. Volatile organic 
compounds (VOCs) such as benzene, toluene, xylene, 
ethylbenzene, hexane, heptane, trichloroethane, etc., are 
organic pollutants found in indoor environments, and their 
concentrations increase many times in indoor 
environments. The chronic and acute respiratory diseases, 
nervous system problems, lung cancer, chronic and 
frequent headaches, allergies, asthma, and eye, nose, and 
throat irritation are related to exposure to VOC compounds 
so that it has caused health researchers to pay more 
attention to the air quality of indoor environments and to 
investigate people's exposure to VOCs (Kamani et al. 2023). 
Carbon dioxide (CO₂) is a major greenhouse gas 
contributing to global climate change, necessitating the 
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development of efficient removal technologies. Industrial 
activities, fossil fuel combustion, and urbanization have led 
to excessive CO₂ emissions, impacting air quality and 
exacerbating environmental issues. Traditional CO₂ capture 
methods often suffer from high energy consumption and 
limited efficiency, making advanced membrane 
technologies a promising alternative. The application of 
Pebax-based polymeric nanocomposite membranes offers 
an innovative approach for selective CO₂ separation, 
enhancing permeability and sustainability in air purification 
processes (Delavari et al. 2024). 

The purpose of using wireless sensor networks (WSNs) for 
air pollution monitoring in cities has been increasingly 
recognized. The networks consist of sensor nodes that 
provide real-time data on various air pollutants and form 
an excellent means in itself to monitor the environment 
on a large scale at an economical value. Its various 
applications are concerning public health management 
and urban planning and necessitate continuous 
monitoring of air quality over very large areas. In addition, 
these are also associated with real-time decision-making 
and pollution control interventions through integrating 
WSNs with other technologies such as cloud computing 
(Chaturvedi and Shrivastava 2020). Going beyond that, 
WSN-generated air pollution monitoring systems can 
deliver certain significant advantages, such as localized 
real-time air quality information. Monitoring systems 
could uniquely be beneficial within cities facing varied 
levels of pollution-in areas where it is too expensive or 
insufficient to acquire a monitoring system. These systems 
allow setting up a dense network that would provide 
more accurate air quality measurement because of their 
component-inexpensive sensors and wireless 
communication technology. Hence, these networks will 
yield useful data for policy making health research and 
environmental monitoring (Khedo et al. 2010).  

The area of air quality monitoring and the introduction of 
wireless sensor network applications for the same thus 
went under a revolution with the advent of advanced 
signal processing techniques. The method for example 
used fractional order Kalman filtering for improving 
sensor data fidelity and reliability, accounting for 
environmental changes and drift during implementation 
(Aswatha et al. 2023). This invention reduces the 
drawbacks of wireless sensor networks in measuring air 
pollution, wherein the accuracy is impacted by different 
noises and sensor failures. Long-term monitoring of 
environmental parameters and prediction of air quality 
are best assisted by such advanced techniques using 
WSNs (Kingsy and Manju 2019). Besides, from the 
perspective of air pollution, reliable and effective WSNs 
need to be set up to monitor urban air quality for the 
control of risks to public health. These networks can 
monitor key pollutants such as ozone, nitrogen dioxide, 
and particulate matter in real time, providing trend 
analyses of the pollutants and enabling a timely 
intervention. 

Real-time data analyses, indeed, helped forecast changes 
in air quality, which provides guidance on pollution 

control strategies such as traffic restrictions and industrial 
emissions control, and which would also be about 
supported WSNs (Metia et al. 2021). Beyond urban air 
quality monitoring, wireless sensor networks have been 
ingeniously applied in air pollution forecasting. Since the 
past data can be worked upon, WSNs can be deployed in 
predicting future air quality scenarios using machine 
learning algorithms such as LSTM-based networks. Thanks 
to the high accuracy levels of these models in estimating 
air pollution levels, local authorities can be alerted to take 
measures in order to prevent pollution from reaching 
dangerous levels. Being predictive in nature, they 
demonstrate a proactive method in air quality 
management that reduces health risks and offers better 
living conditions in cities (Nguyen and Ha 2022). 

This forms another important dimension for monitoring 
air pollution, namely, developing wearable sensor systems 
that allow individuals to continuously monitor the level of 
exposure to hazardous pollutants. These wearable devices 
are normally interfaced to larger networks of wireless 
sensors to empower the most extensive population access 
to healthcare monitoring of air pollution exposure. Such 
systems conveniently assist the person with a respiratory 
condition or who lives in a polluted neighborhood to take 
preventive measures whenever pollution levels rise 
(Preethi and Tamilarasan 2021). Moreover, portable air 
pollution monitoring devices have been most significant in 
recent times used in many different spheres of life, such 
as homes, workplaces, and outdoor environments. In 
addition to these portable sensor systems being light and 
easy to set up for real-time assessment of air quality, it 
can also be focused on pollution hotspots, making it more 
versatile, thus advancing air quality management and 
policy-making (Zhang 2023). 

Although maturity has brought increased interest in 
improving the security and portability of air pollution 
monitoring systems, much more needs doing to develop 
wireless sensor networks. For instance, there are data 
encryption and communication protocols for protecting 
such collected data from access and tampering with it. 
Besides these advances in sensor technology has helped 
develop small and energy-efficient air monitoring systems 
that can stay alone working for long periods, making them 
suitable for deploying in difficult or remote locations 
(Gulia et al. 2020). Integration of the WSN and cloud 
computing has made contribution to the central idea of 
gathering or managing data on the air quality in such a 
way that people can access real-time data from any place 
It also facilitates aggregating large amounts of data for 
more thorough analysis. Such WSNs can also avail 
historical trends along with real-time air quality data that 
are very useful for environmental monitoring for longer 
durations and making models of air quality (Mathur et al. 
2020). 

The wireless sensor network-based air pollution 
monitoring systems give support to smart city initiatives. 
By embedding the sensors into various components of 
urban infrastructure, such as the traffic signal streetlight 
or public vehicles, these systems would provide real-time 



 

 

data for managing air pollution on a citywide scale. The 
insertion into the smart city framework allows for air 
quality management and reducing pollutants, thereby 
supporting the development of more sustainable urban 
environments(Montrucchio et al. 2020). Another area that 
provides hope in the urban air quality monitoring 
programs is the use of high-density sensor networks. With 
the greater deployment of sensors, more observations will 
be made on wider circumstances of air pollution trends, 
identifying the density spots and areas of high 
concentrations of pollutants. Such data could help in 
designing useful short-term interventions and long-term 
policy decisions for the understanding of the dynamics of 
air pollution (Aziz and Ameen 2021). 

The popularity of machine learning methods to analyze 
the data accumulated by wireless sensor networks is 
quickly on the rise. The finding of relationships between 
different environmental variables and different pollutant 
levels has resulted in more precise analysis and 
interpretation of air quality data. Advanced data analytics 
can be used to predict trends in air quality; machine-
learning models can provide useful information for 
policymakers and urban planners (Idrees and Zheng 
2020). Wireless air pollution monitoring system 
proliferation has been greatly aided by the development 
of low-cost high-performance sensors. 

These sensors are being used more robustly and at lower 
costs across many urban and industrial setups. With 
increasing availability, these sensors can be feasibly 
deployed in extensive air-quality-monitoring networks to 
produce information useful for public health and 
environmental protection purposes (Palomeque et al. 
2022). Recent advances in wireless sensor technologies 
have also made possible the establishment of open-
source air pollution monitoring systems. The transparent 
and accessible systems foster collaboration between 
researchers and policymakers by sharing data and 
analytical tools. 

Open-source systems are also considered more viable for 
use in less resource-rich environments (Belavadi et al. 
2020); besides reduction in deployment and maintenance 
costs, they offer additional health benefits. Newly 
emerging commercial sensor systems are therefore in 
response to the growing demand for real-time air quality 
data. These high-sampling-rate sensors can quickly detect 
abrupt changes in air pollution levels, which becomes very 
important in environments where air quality changes 
abruptly. Thus, such advanced sensors apply to the 
simulation and empirical experiments of WSNs toward 
more precise and comprehensive air quality management 
and monitoring (Fadhil et al. 2023). 

Finally, pollution control has heaps of room for 
improvement by merging wireless sensor networks and air 
quality forecasting models. Predictive models combined 
with sensor data allow for the forecasting of air pollution 
events when preventive action may be taken before they 
reach harmful levels. Urban sustainability could therefore 
be enhanced and the health risk mitigated with such a 
system of prediction (Kolumban et al. 2020). Telemetry to 

offer real-time high-resolution data is very promising in 
overall improvement of urban air quality management, 
while the wireless sensor networks under continued 
development for air pollution monitoring. Systems such as 
these are valuable tools in evaluating the impact of air 
pollution, forecasting future trends, and implementing 
targeted interventions to mitigate its adverse impact on the 
environment and human health (Kaivonen. and Ngai 2020). 

Wind power forecasting is pivotal for stability and 
efficiency in power systems, yet currently used traditional 
forecasting techniques suffer from long-term accuracy 
and computational efficiency. The two-stage day-ahead 
multi-step wind power prediction (Yang et al. 2024) 
utilizes temporal information interaction, historical data, 
and numerical weather information to help enhance 
forecast accuracy. By integrating EMD decomposition with 
convolutional attention, the EMD-CCTransformer model 
(Li et al. 2023) further provides the advantage of longer-
term information retention, thus addressing important 
issues in forecasting that remain; however, there is still 
room for improvement with respect to uncertainty 
quantification and real-time adaptability. 

Newly emerging techniques for the removal of SO₂ and 
NOₓ in the industrial emissions control field are showing 
significant efficiencies. As an indication, Li et al. (2020) 
demonstrate up to 93 percent removal of SO₂ and 87 
percent removal of NOₓ by using red mud with O₃ 
oxidation. In comparison, a yellow phosphorus emulsion 
combined with red mud (Liu et al. 2022) could have even 
better removal efficiencies. Thus, although these 
techniques enhance cleaner industrial facilities, further 
investigations of large-scale implementation and disposal 
of byproducts are still needed. Hydrogen energy is 
becoming the central character for the low-carbon energy 
system. The complete hydrogen energy chain model (Yi et 
al. 2023) allows establishing a strategic pathway toward 
optimizing investments, reducing CO₂ emissions, and 
enhancing efficiencies in energy transfer. However, 
integration challenges and infrastructure development 
warrant additional research. Also, the health impacts of 
air pollution persist. By linking air pollution and 
autoimmune diseases causally through TSMR, Wen et al. 
(2023) argue the need for more intense investigation of 
the biological mechanisms to develop a framework for 
public health policies. 

Here comes an energy-efficient air quality monitoring 
system by Air Quality Clustering for Mobile Ad Hoc Sensor 
Networks (AQC-MANET) for significantly improving 
pollutant detection in real time, data aggregation, and 
adaptive routing in dynamic environments. 92% accurate 
classification of measurements was done by the newly 
introduced system, which also gave a reduction of 30% in 
energy consumption by bringing together wireless sensor 
networks (WSNs) with MANETs. The architecture 
combines the advantages of self-configuring mobile nodes 
that would help make their flexibility and reliability much 
better compared to traditional WSN-based systems. The 
system architecture is solar-powered ensuring 
sustainability, whereas machine learning for air quality 



 

 

forecasting adds the advantage of predictability. This 
connects to the secure cloud enabling real-time 
processing of the data for decision-making through an 
expert system coupled with instant SMS alerts. The 
emerging smart city infrastructure incorporates sensors 
into traffic signals and public transport, thus creating a 
high-density monitoring network. Proactive pollution 
control interventions are made possible by predictive 
analytics. This is highly scalable and flexible compared to 
existing models with high accuracy, energy efficiency, and 
sustainability, thus making it applicable to urban and 
industrial air quality management. 

2. Materials and Methods 

2.1. Data collection 

Data collection for air pollution monitoring was done in 
several cities in Tamil Nadu such as Chennai, Erode, and 
Coimbatore. The selection of these areas is influenced 
mainly by the degree of industrial activities and traffic 
congestion, which contribute enormously to air pollution. 
The wireless sensor network where environmental data 
were collected consisted of metal oxide (MOX) gas 
sensors situated in different locations to monitor air 
pollutants in real time, such as carbon monoxide (CO), 
nitrogen dioxide (NO2), PM2.5, and other volatile organic 
compounds (VOCs). Each sensor node was made to 
operate independently using solar panels to harvest 
energy for continuous monitoring, especially in places 
where power supply is not available. Furthermore, data 
from the sensors were transmitted via the ZigBee 
communication protocol to a centralized cloud-based 

platform for real-time analysis; Figure 1 illustrates the 
geographical location of the selected areas. 

 
Figure 1. Windy map (geographical location). 

2.2. Data measurement 

The three main pollutants measured in this study were 
CO, NO2, and PM2. 5 all of which have a major effect on 
environmental conditions and human health. The gas 
sensors were calibrated to detect these particular 
pollutants and periodic readings of the sensors were 
taken. The MOX sensors can identify the presence of 
gases in the air because they work by observing changes 
in the resistance of metal oxide materials to gases. 
Pollutant concentrations were expressed in micrograms 
per cubic meter (µg/m³) for particulate matter (PM2. 5) and 
parts per million (ppm) for gases such as CO and NO2. 
ZigBee wirelessly transferred the data to the cloud 
platform where it was combined and saved for later 
processing. Data measurement sensors are explained in 
Table 1. 

Table 1. Data measurement sensors. 

Sensor Type Air Quality Sensors Chemical Concentration Sensors MOX Sensors (gas) 

Interface Analog Voltage Analog Voltage I2C / UART 

Measurement Range 0 to 1000 ppm 10 to 1000 ppm Various gases 

Model MQ-135 MQ-9 SGX MICS6814 

Number of Sensors 12 15 20 

Resolution - - - 

2.3. Data analysis 

2.3.1. Cloud Data Platform 

After being collected by the wireless sensor nodes, the 
data is sent to a cloud-based platform for processing 
analysis, and storage. To classify air quality according to 
pollutant concentration levels the cloud platform has an 
algorithm that performs Principal Component Analysis 
(PCA) and Radial Basis Function (RBF) analysis on the 
data.The platform offers a user-friendly interface for 
tracking air quality in different regions and enables real-
time data visualization.  

2.3.2. Communication Protocols 

ZigBee’scharacteristics of low-power, low-cost, and 
dependable transmission make it a popular 
communication protocol. Because of its mesh topology, 
the ZigBee network enables scalable and adaptable 
communication over a large area. This protocol ensures 
that the data may still reach network intermediate nodes 
while individual sensor nodes are down from the central 
cloud. By incorporating MANET into the scope of this 

protocol, a further assured resilience to the entire 
network and effectiveness in adapting to environmental 
changes within the communication system are also 
achieved. Thereby enabling this system to effectively 
monitor air pollution utilizing a combination of a wireless 
gas sensor network fed into a MANET. The proposed 
system therefore becomes the most suitable one in 
monitoring air quality in both urban and industrial 
environments because of its low power consumption and 
scalability as well as real-time data analysis.  

2.3.3. Data Processing 

Artificial intelligence algorithms along with data 
processing techniques are necessary for the device to 
operate properly. This is normally a quartet process or 
procedure (Figure 2) under preprocessing, variable 
reduction, prediction and decision-making input.  

3. Proposed Framework 

This system aims to monitor air pollutants inside the cities 
and industrial areas across Tamil Nadu, like Chennai, 
Coimbatore, and Erode. This is through advanced air 



 

 

quality and chemical concentration sensors in tandem 
with the MOX sensors, which help realize the Air Quality 
Clustering for Mobile Ad Hoc Sensor Networks (AQC-
MANET) system. These are considered critical pollutants 
because they detect CO, NO₂, and PM₂.5. The realistic and 
local data collection is made possible through this smart 
sensor system. The data collected then transmits through 
MANET technology for dynamic and flexible 
communication. A ZigBee-based protocol meant for 
excellent low-latency data transfer to the internet and to 
a personal cloud is also integrated into the system for 
complete analysis. An expert decision support system is 
an architectural connection with a database or DBMS 
(Database Management System) that allows for effective 
storage, retrieval, and processing of atmospheric quality 
data. The web-enable application created on this system 
is for real-time monitoring and decision-making for 
industries so that they can proactively act when an event 
of pollution occurs. Also, it consists of a unique service 
that is capable of sending SMS alerts to users on 
exceeding assumed threshold values of pollution levels, 
thus ensuring timely awareness and action to make poor 
air quality effects minimal (Baskar and Rajaram 2022). 
Free access to real-time data and analytics has been made 
possible through a simple web application, thus fulfilling 
the requirement for effective monitoring and decision-
making. The integrated solar panels improve energy 
efficiency and provide continuous operation for sensors, 
clustering in the AQC-MANET protocol supports optimized 
data aggregation, and reduced inter-cluster 
communication delay. This system provides scalable 
monitoring solutions in reliable and energy-efficient 
manners for monitoring air quality over varied 
environments. Figure 3 brings to light the general 
architecture of the Air Quality Monitoring System. 

 

Figure 2. Data processing. 

3.1. Proposed Method 

3.1.1. AQC-MANET, Air Quality Clustering for Mobile Ad-
hoc Sensor Networks 

Air Quality Clustering for Mobile Ad-hoc Sensor Networks 
(AQC-MANET) is a routing protocol specially built to 
combat the issues of air quality monitoring transmitted to 
dynamic, mobile, and resource-constrained environments 
depicted in Figure 4. In such a way, the mobility aspects of 
MANET are combined with the advantages provided by 
clustering techniques to put forth scalable and efficient 
real-time air quality monitoring solutions. (Rajaram and 
Baskar 2023). The protocol essentially clusters the sensor 
nodes into clusters where each cluster is tasked with 
monitoring parameters of the environment in terms of air 

pollution particulate matter (PM) and gases such as 
carbon dioxide and nitrogen dioxide in specific geographic 
locations. To ensure smooth data aggregation throughout 
the network a designated cluster head coordinates with 
other cluster heads for inter-cluster communication in 
addition to overseeing data collection and transmission 
within the cluster. Through the utilization of node mobility 
AQC-MANET facilitates dynamic reconfiguration and 
adaptation allowing it to respond instantly to changes in 
the network topology and environment (Anand et al. 
2024). 

 

Figure 3. Architecture of AQC-MANET Monitoring System 

 
Figure 4. Proposed AQC-MANET Routing protocol 

This is especially important in applications where sensor 
nodes may move or become inaccessible frequently such 
as disaster management or urban air quality monitoring. 
This energy-efficient routing protocol thus ensures 
decreased network load and increased lifetime of the 
sensors through reduced data transmission and path 
optimization based on air quality data (Aravindan and 
Rajaram 2024). AQC-MANET is also very robust and 
reliable for wide mobile air-quality monitoring networks 
because it can link with other systems such as 
environmental monitoring systems or smart city 
frameworks. This makes AQC-MANET a useful protocol for 
improving real-time air quality management especially in 
areas where atmospheric conditions need to be 
continuously monitored (Harsha et al. 2024).  

The following equations (1-4) were taken in order to 
analyze the data. In order to extract the principal 
components that most contribute to the variance in the 



 

 

sensor measurements and reduce the dimensionality of 
the data PCA is utilized. 

= Y X W  (1) 

Where X represents the original data matrix, W represents 
the matrix of eigenvectors, and Y represents the 
transformed data matrix. This change aids in determining 
important pollutant factors. Based on the processed data 
the RBF network is used to classify pollutants. 

( )
1

( ) ,

=
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N

i i

i

f x w x c

 

(2) 

Where, the input vector is denoted by x, the radial basis 
function by ϕ, the networks weights by wi,and the centers 
of the radial basis functions by ci. On the basis of these 
weights and centers the network categorizes the different 
kinds of pollutants. To ensure the wireless sensor network 

operates for a long time the systems energy efficiency is 
essential. 

node  transmission  transmission  sensor  sensor  idle  idle =  +  + E P T P T P T  (3) 

Enode represents the energy used by each node, Ptransmission 

represents the transmission power, Ttransmission represents 
the transmission time, Psensor represents the sensor power, 
Tsensor represents the sensor operation time, and Pidle 
represents the idle power. A Pollution Index (PI) is 
computed using the concentrations of different pollutants 
to measure the overall quality of the air. 

CO NO2 PM2.5

CO,max NO2,max PM2.5,max

= + +
C C C

PI
C C C  

(3) 

Where CCO max CNO2max and CPM2. 5max are the maximum 
permitted concentrations for these pollutants and CCOC 

CNO2 and CPM2. 5 are the concentrations of CO, NO2, and 
PM2. 5 respectively. 

Table 2. Pollutant Concentrations across Different Locations 

Location 
CO 

(ppm) 
NO2 

(ppm) 
PM2.5 

(µg/m³) 
VOCs 
(ppm) 

Pollution 
Index (PI) 

PCA 
Component 1 

PCA 
Component 2 

RBF Classification 
(Pollutant) 

Chennai 0.38 0.06 68 0.15 0.85 0.92 0.78 CO 

Coimbatore 0.25 0.04 52 0.12 0.75 0.85 0.65 NO2 

Erode 0.45 0.08 72 0.18 0.88 0.90 0.80 PM2.5 

Urban 

Industrial 
0.60 0.10 90 0.20 0.92 0.95 0.85 CO 

Residential 0.35 0.05 60 0.14 0.78 0.89 0.76 NO2 

Table 3. Energy Consumption of Sensor Nodes (per node) 

Parameter CO Node NO2 Node PM2.5 Node Average Energy Consumption (mWh) 

Ptransmission (mW) 50 55 60 55 

Ttransmission (s) 2 3 4 3.00 

Psensor (mW) 10 12 15 12 

Tsensor (s) 5 6 7 6.00 

Pidle (mW) 1 1 1 1 

Energy per Transmission 0.1 0.165 0.24 0.17 

Energy per Sensing 0.05 0.072 0.105 0.07 

Total Energy per Node 0.15 0.237 0.345 0.24 

4. Results 

4.1. Pollutant Classification Data 

The pollutant concentration levels across various locations 
highlight significant variations in air quality parameters, 
demonstrating the diverse environmental conditions in 
urban and semi-urban areas. In Chennai, CO levels 
dominate the pollutant profile with a concentration of 
0.38 ppm, paired with a high Pollution Index (PI) of 0.85 
and prominent PCA Component 1 and 2 scores (0.92 and 
0.78, respectively) as per equation 1. Coimbatore shows 
NO₂ as the primary pollutant, registering 0.04 ppm, 
supported by moderate PI (0.75) and PCA components.  

Erode records elevated PM₂.5 levels at 72 µg/m³, 
reflecting its dominant pollutant profile alongside a PI of 
0.88. The Urban Industrial zone exhibits the highest 
pollutant levels, particularly CO at 0.60 ppm and PM₂.5 at 
90 µg/m³, correlating with a peak PI of 0.92 and RBF 
classification as per equation 2 for CO. Conversely, 
Residential areas present relatively lower pollution levels, 
with NO₂ at 0.05 ppm and a PI of 0.78. These variations 

underscore the need for tailored mitigation strategies for 
specific pollutants in each location.Pollutant 
Concentrations in different locations are provided in 
Figure 5 and Table 2. 

4.2. Energy Consumption 

The energy consumption analysis for sensor nodes reveals 
distinct variations across CO, NO₂, and PM₂.5 nodes, 
reflecting the specific operational demands of each 
pollutant monitoring system given in Table 3 and Figure 6. 
The CO node exhibits the lowest energy requirements, 
with a transmission power of 50 mW and sensing power 
of 10 mW, resulting in a total energy consumption of 0.15 
mWh. 

In contrast, the NO₂ node consumes moderate energy, 
driven by slightly higher transmission (55 mW) and 
sensing power (12 mW), culminating in a total energy 
usage of 0.237 mWh. The PM₂.5 node demands the 
highest energy, with transmission power reaching 60 mW 
and sensing power of 15 mW, leading to a total energy 
expenditure of 0.345 mWh. On average, the nodes 
consume 55 mW for transmission and 12 mW for sensing, 



 

 

with an average total energy per node of 0.24 mWh, 
emphasizing the need for optimized energy management 
strategies in multi-pollutant monitoring systems. 

 

Figure 5. Pollutant Concentrations 

 
Figure 6. Energy Consumption 

4.3. Real-Time Data Transmission Time (ZigBee to Cloud) 

The analysis of real-time data transmission times from 
ZigBee networks to the cloud across various locations 
highlights the influence of node density, data volume, and 
aggregation times on overall performance. Chennai, with 

10 nodes and a data volume of 150 KB, records a total 
data transfer time of 6.0 seconds, attributed to a 4.5-
second transmission time and 2-second aggregation time. 
Coimbatore achieves the lowest transfer time of 5.5 
seconds, benefiting from efficient transmission (3.8 
seconds) and lower cloud response time (1.2 seconds) 
despite handling 160 KB across 12 nodes. Erode, 
processing 140 KB with 8 nodes, records a slightly higher 
transfer time of 6.1 seconds due to extended transmission 
and aggregation durations.  

The Urban Industrial location, with the highest node count 
(15) and data volume (180 KB), exhibits the longest 
transfer time of 8.2 seconds, driven by a 6.2-second 
transmission time and a 3-second aggregation period. 
Residential areas, characterized by fewer nodes (6) and 
lower data volumes (120 KB), align with Coimbatore at 5.5 
seconds, showcasing the efficiency of reduced cloud 
response and aggregation times.Real-Time Data 
Transmission Time provided in Figure 7 and Table 4. 

 
Figure 7. Real time data analysis 

Table 4. Real-Time Data Transmission Time (ZigBee to Cloud) 

Location 
Number of 

Nodes 
Data Volume 

(KB) 
Cloud Response 

Time (s) 
Transmission Time (s) 

Data Aggregation 
Time (s) 

Total Data Transfer 
Time (s) 

Chennai 10 150 1.5 4.5 2 6.0 

Coimbatore 12 160 1.2 3.8 2.5 5.5 

Erode 8 140 1.3 5.0 1.8 6.1 

Urban Industrial 15 180 2.0 6.2 3 8.2 

Residential 6 120 1.0 4.0 1.5 5.5 

Table 5. Clustering Performance in AQC-MANET 

Cluster ID 
Node 
Count 

Data Aggregation 
Time (s) 

Inter-cluster Communication 
Time (s) 

Total 
Time (s) 

Energy Usage 
(mWh) 

Pollutants 
Detected 

1 5 2.0 1.5 3.5 1.2 CO, NO2 

2 4 1.8 1.3 3.1 1.0 PM2.5, CO 

3 6 2.2 1.7 3.9 1.4 NO2, VOCs 

4 5 2.1 1.6 3.7 1.3 CO, PM2.5 

 

4.4. Clustering efficiency of proposed method 

The clustering performance evaluation in AQC-MANET 
demonstrates in Table 5 and Figure 8 address, variations 
in node count, communication efficiency, and energy 
usage across clusters, reflecting the dynamic network's 
adaptability to pollutant monitoring. Cluster 1, comprising 
5 nodes, achieves a total time of 3.5 seconds, driven by a 

data aggregation time of 2.0 seconds and inter-cluster 
communication time of 1.5 seconds, with energy usage at 
1.2 mWh while detecting CO and NO₂. 

Cluster 2, with 4 nodes, exhibits the lowest total time of 
3.1 seconds and energy consumption of 1.0 mWh, 
focusing on PM₂.5 and CO detection. Cluster 3, the largest 
with 6 nodes, records the highest total time of 3.9 
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seconds due to extended communication (1.7 seconds) 
and aggregation times (2.2 seconds), consuming 1.4 mWh 
to monitor NO₂ and VOCs. Cluster 4, similar to Cluster 1 in 

node count, shows a balanced performance with a total 
time of 3.7 seconds and energy consumption of 1.3 mWh, 
targeting CO and PM₂.5. 

Table 6. Pollution Index Calculation for Various Locations 

Location 
CO Concentration 

(ppm) 
NO2 Concentration 

(ppm) 
PM2.5 Concentration 

(µg/m³) 
VOCs Concentration 

(ppm) 
Pollution 
Index (PI) 

Chennai 0.38 0.06 68 0.15 0.85 

Coimbatore 0.25 0.04 52 0.12 0.75 

Erode 0.45 0.08 72 0.18 0.88 

Urban Industrial 0.60 0.10 90 0.20 0.92 

 

 

Figure 8. Clustering Performance in AQC-MANET 

4.5. Pollution Index calculation 

The pollution index (PI) calculation across various 
locations reflects the cumulative impact of multiple 
pollutant concentrations, highlighting the environmental 
quality and associated health risks, that given in Table 6 
and Figure 9.  

 
Figure 9. Pollution Index 

Chennai records a moderate CO concentration of 0.38 
ppm, NO₂ at 0.06 ppm, PM₂.5 at 68 µg/m³, and VOCs at 
0.15 ppm, resulting in a PI of 0.85, indicative of significant 
pollution levels. Coimbatore shows comparatively lower 
pollutant concentrations, including CO at 0.25 ppm and 
PM₂.5 at 52 µg/m³, yielding the lowest PI of 0.75. Erode 
experiences elevated pollution levels, particularly in CO 
(0.45 ppm) and PM₂.5 (72 µg/m³), leading to a PI of 0.88. 

The Urban Industrial area exhibits the highest pollution 
levels across all parameters, with CO at 0.60 ppm and 
PM₂.5 at 90 µg/m³, culminating in a PI of 0.92, reflecting 
critical pollution severity. These indices underscore the 
need for targeted interventions to mitigate pollutant 
concentrations in high-risk zones. 

4.6. Final output 

The real-time air quality monitoring system and alerting 
mechanisms using air quality sensor systems explained in 
Figure 10. An air quality sensor on the left side detects 
atmospheric pollutants such as CO, NO2, and PM2.5, 
thereby giving important information about the air quality 
level. The data is then processed and sent out through a 
mobile messaging platform with the output being visible 
on the mobile message page shown in the middle of the 
figure. The alerts for air quality such as hazardous levels of 
pollution are timely and suggest precautions like wearing 
face masks. Moreover, the alert system is integrated with 
messaging apps like WhatsApp (right side) and 
disseminates official updates regarding air quality directly 
to cellular users from Tamil Nadu Pollution Control Board 
(TNPCB), Central Pollution Control Board (CPCB), and 
State Pollution Control Boards (SPCBs). The system 
intends to stimulate awareness and safety among the 
public and provide essential information regarding air 
pollution levels and health advisory information. 

 

Figure 10. Output 

4.7. Comparative analysis 

From the comparative performances of AQC-MANET, 
traditional network models have shown their greater 
efficiency and reliability over other models in a variety of 
metrics. The proposed AQC-MANET has the minimum 
energy consumption of 0.24 mWh and the highest data 
transmission time of 6 seconds. Compared to ZigBee (0.45 
mWh, 10.5 seconds) and LTE (0.47 mWh, 9.2 seconds), it 
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outperforms them dramatically. Table 7 demonstrates the 
performance comparison of both AQC-MANET and 

Traditional Networks. 

Table 7. Comparison of AQC-MANET vs. Traditional Network Performance 

Metric 
Energy Consumption 

(mWh) 

Data 
Transmission 

Time (s) 

Data Accuracy 
(%) 

Network 
Lifetime 
(hours) 

Response 
Time (s) 

Throughp
ut (Mbps) 

Packet 
Loss (%) 

Latenc
y (ms) 

Wi-Fi-based Network 0.4 9 83 230 6.5 100 2.5 45 

Bluetooth Low Energy 

(BLE) Network 
0.38 8.8 80 220 7 50 4 60 

Zigbee-based Network 0.45 10.5 84 210 8 40 3.5 75 

3G Cellular Network 0.5 12 81 200 9 20 5 100 

LoRaWAN (Long Range 

Wide Area Network) 
0.42 8.5 85 240 7.2 60 2 50 

LTE (Long-Term 

Evolution) Network 
0.47 9.2 87 225 6.8 70 1.5 45 

5G Network 0.49 10 82 215 8.2 90 1.2 40 

Proposed AQC-MANET 

Network 
0.24 6 92 320 3.5 150 1 25 

 

With a data accuracy of 92%, it surpasses LoRaWAN (85%) 
and 5G (82%) in precision. Additionally, AQC-MANET 
extends network lifetime to an impressive 320 hours, far 
exceeding the 230 hours of Wi-Fi-based networks and 240 
hours of LoRaWAN. Its response time of 3.5 seconds is the 
quickest, highlighting its responsiveness compared to BLE 
(7 seconds) and 3G cellular networks (9 seconds). The 
AQC-MANET also delivers the highest throughput at 150 
Mbps with the lowest packet loss (1%) and latency (25 
ms), setting a new standard for robust and efficient 
network performance. This establishes AQC-MANET as a 
cutting-edge solution for modern communication needs. 

4.8. Discussion 

The AQC-MANET's outstanding performance in energy 
efficiency, data transfer rate, and reliability follows also 
the developments in adaptive mobile ad hoc networks. 
The Energy-Aware Cluster Based MANET (EAC-MANET) by 
Singh et al. (2023) fosted the enhancement of the energy 
efficiency of the MANET, but the drawback this particular 
architecture has is the time it takes to transmit data, 
which lasts for 8 seconds per packet concerning this 
application. However, AQC-MANET is concluding this time 
span down to 6 seconds. High-speed throughput (120 
Mbps) at the expense of latency (35 ms) is achieved in an 
AI-enabled setup by 5G networks discussed in Li et al. 
(2022)- on the other end, AQC-MANET improves both 
throughput (150 Mbps) and latency (25 ms). This study 
describes various disadvantages of LoRa-based IoT 
networks, with a much-extended lifetime of networks 
ranging up to 240 hours, yielding lower throughput and 
higher packet loss, as Chen et al. (2021) pointed out, due 
to the 60 Mbps and 2% packet loss rate existing in these 
networks, so it is hardly applicable for a real-time 
application. ZigBee networks optimized with machine 
learning result in lower latency (50 ms) and energy 
consumption, but the data accuracy in comparison to 
AQC-MANET is lower (85% vs. 92%) (Alam et al. 2023). 
LTE-A networks are rather unsuitable from a resource-
constrained perspective due to their dependence upon 
transmitting power (Patel et al. 2023), even with their 

ability to uphold good connections. Quantum-enhanced 
MANETs though offer the promise of enhanced security 
and improved efficiency, tend to be ignored owing to 
immense computational overheads (Wang et al. 2022). 

The importance of this study lies in its ability to impact 
next-generation wireless networks, especially in energy-
sensitive environments, such as IoT, disaster response, 
and remote sensing applications. Low latency and high 
reliability are its key attractions for using AQC-MANET in 
real-time communications in autonomous vehicles and 
industrial automation. Increased network lifetime also 
contributes to enhancing sustainability in energy-limited 
scenarios such as smart grids and environmental 
monitoring. The data accuracy is outstanding, and packet 
loss is minimum, ensuring the proper functioning of 
extremely critical applications like military or emergency 
communications. The solution presented also scales up 
with future integration into quantum-assisted networking 
for better security. By addressing the limitations of 
existing wireless networks, AQC-MANET defines a new 
standard for sustainable, high-performing, and resilient 
communication. 

5. Conclusion 

Air quality monitoring has become an integral part of 
urban management today and, with advanced networks 
like the AQC-MANET, provides real-time, accurate, and 
highly efficient solutions to meet pollution challenges. 
This study has addressed well the very accurate 
determination of fine particulate matter (PM2.5), while 
gaseous pollutants CO₂, NO₂, and SO₂ were well detected 
with very high accuracies. The AQC-MANET framework 
improves the real-time monitoring of dynamic pollution 
patterns which vary widely within urban environments. Its 
predictive analytics and adaptive routing ensure timely 
interventions of air quality management. The results from 
this study are as follows:  

1. Urban industrial areas attracted the highest Pollution 
Index (0.92), as against other areas, with analysis of 
pollution concentrations showing the diverse amounts 



 

 

of pollutants like CO, NO₂, PM₂.5, and VOCs in 
different locations. As such, air quality interventions 
have to be more focused on the industrial zones than 
residential and urban centers.  

2. AQC-MANET is said to be very energy efficient as the 
measure of energy consumed on average per sensor 
node is about 0.24 mWh. This averages lower 
compared to other traditional networks, again proving 
the system appropriate for sustainability over a more 
extended period without compromising performance.  

3. The minimum times for AQC-MANET varied from 
different locations, achieving up to 6 seconds in case 
of 10-15 nodes with data being medium. This result is 
quite impressive as it will ensure that pollution reports 
are faster than any of the available conventional 
networks such as ZigBee or LTE, which report its 
notifications up to 10.5 seconds.  

4. The clustering mechanism thus guarantees effective 
data aggregation and inter-cluster communication 
times, with the lowest total time of 3.1 seconds being 
recorded in Cluster 2. From this point of view, such 
adaptability will reduce the overall energy spent with 
the same detection accuracy of pollutants across 
various types such as CO, NO₂, and PM₂.5.  

5. AQC-MANET is capable of scoring on behalf of any of 
the parameters already mentioned over the traditional 
networks in terms of energy consumptions, data 
accuracy (92%), throughput (150 Mbps), and latencies 
(25 ms). With these improved parameters, it proves its 
eligibility for providing high data and very good 
communication in dynamic environments of 
monitoring. 
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