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Abstract 20 

To support China's strategic goals of achieving carbon peaking and carbon neutrality, this study 21 

explores the spatial network structure characteristics of industrial carbon emissions and their 22 

significance in promoting energy conservation and emission reduction in the industrial sector. Taking 23 

Taizhou City in Zhejiang Province as a case study, we construct a spatial correlation network of carbon 24 

emissions based on data from industrial enterprises above the designated size (IEDS) across nine 25 

counties from 2015 to 2021, and apply an improved gravity model, integrated with social network 26 

analysis, to equantify inter-county linkages and identify key driving factors. Our results indicate that: 27 

(1) the spatial network correlation degree of IEDS carbon emissions remained at 1 throughout the 28 

study period, whereas network density gradually increased and network hierarchy as well as efficiency 29 

steadily decreased; (2) Economically advanced eastern counties—Yuhuan, Wenling and Jiaojiang—30 

form the network core and exert marked influence on spatial carbon-emission linkages, whereas the 31 

less-developed counties of Sanmen, Tiantai and Xianju lie at the periphery with limited impact; (3) 32 

Based on network positions, Jiaojiang, Xianju, Wenling, and Linhai are classified as 'Broker Block', 33 

Sanmen and Tiantai as 'Net Spillover Block', Huangyan as 'Two-way Spillover Block', and Luqiao and 34 

Yuhuan as 'Net Benefit Block'; (4) The ERGM analysis revealed a hierarchical influence structure 35 

with five factors showing extremely high significance (p<0.001). Carbon emission intensity emerged 36 

as the strongest negative inhibitor (β = -18.245), while energy intensity showed the strongest positive 37 

effect (β = 14.567) . This research reveals that while industrial carbon emissions exhibit significant 38 

spatial correlations across regions, there remains considerable potential for strengthening inter-39 

regional coordination, suggesting the need to establish cross-regional collaborative emission reduction 40 

mechanisms to promote industrial energy conservation and emission reduction. 41 
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1. Introduction 50 

Achieving carbon peak and carbon neutrality is a strategic imperative for addressing resource and 51 

environmental constraints and advancing sustainable development in China. It also reflects the 52 

nation’s commitment to fostering a global community with a shared future. As a key pillar of the 53 

national economy, the industrial sector contributes nearly 80% of China's total carbon emissions 54 

(Wang et al. 2024), underscoring the critical role of its green transformation in meeting the dual carbon 55 

goals. However, with the increasing mobility of production factors and the ongoing transfer of 56 

industries, the spatial distribution of industrial carbon emissions has become more dynamic and 57 

heterogeneous. The efficiency of resource allocation and interregional coordination mechanisms plays 58 

a pivotal role in emission reductions, highlighting the systemic and cross-jurisdictional nature of 59 

carbon mitigation that cannot be addressed through isolated efforts (Fang et al. 2024). Moreover, 60 

deepening division of labor along supply chains and the associated flows of intermediate goods and 61 

services have led to hidden emissions and carbon leakage across regions. This has given rise to a 62 

complex spatial network of emissions, structured around regional nodes and interconnected through 63 

industrial linkages. Driven by both market dynamics and policy interventions, this network forms a 64 

multi-level and interdependent system. Therefore, accurately mapping the characteristics of the 65 

industrial carbon emission spatial network and identifying its underlying drivers are essential for 66 

formulating effective cross-regional carbon reduction strategies, facilitating low-carbon industrial 67 

transformation, and optimizing spatial planning. 68 

Following the introduction of China's dual carbon targets, industrial carbon emissions have emerged 69 

as a critical research frontier in environmental and economic studies, with scholarly attention 70 

converging on three primary domains: First, the measurement and comprehensive analysis of 71 

industrial carbon emissions have gained unprecedented prominence across multiple spatial scales, 72 

encompassing national, regional, urban and enterprise levels. Nationally, studies focus on the 73 

evolution of total industrial carbon emissions and their relationships with industrial growth and energy 74 

efficiency (Sun et al. 2024; Zhao et al.). Regionally, analyses often center on provinces with strong 75 

industrial bases, such as Sichuan, Hebei and Liaoning (Fang et al. 2024; Chen et al. 2025; Zhang et 76 

al. 2022), as well as key urban clusters like the Beijing-Tianjin-Hebei and Yangtze River Delta (YRD) 77 

(Wang et al. 2015; Zhang et al. 2022). At the enterprises level, empirical investigations are conducted 78 

through surveys and fieldwork (Zhao et al. 2024), while sectoral studies mainly concentrate on energy-79 



 

 

intensive industries such as chemicals, steel, and power generation (Na et al. 2024; Xu et al. 2024; 80 

Bai et al. 2023). Second, the assessment and analysis of industrial carbon emission efficiency 81 

constitute another significant research domain. Methodologically, scholars predominantly employ 82 

radial and non-radial efficiency models, often integrated with ArcGIS spatial analysis techniques , to 83 

elucidate the spatiotemporal evolution patterns of emission efficiency across diverse geographical 84 

scales. Suo applied the three-stage DEA model proposed to evaluate the efficiency of industrial carbon 85 

emissions in western China. (Suo et al. 2024). Li applied the unexpected output SBM model to 86 

evaluate industrial carbon emission efficiency in the Huaihai Economic Zone from 2010 to 2020 (Li 87 

et al. 2023). Recent research further explores how climate transition risks affect emission efficiency 88 

in energy enterprises, revealing that such risks initially hamper efficiency, but robust innovation 89 

capabilities can buffer these negative effects, especially in the electricity sector (Wu et al. 2025). Third, 90 

regarding the driving mechanisms of industrial carbon emissions scholars widely recognize energy 91 

structure, economic scale, population size, and energy consumption intensity as primary determinants. 92 

Within the Chinese context specifically, researchers have increasingly examined the multifaceted 93 

impacts of international trade integration, technological advancement, and environmental regulatory 94 

frameworks on industrial carbon emissions. (Lv et al. 2024; Zhao et al. 2024; Xie et al. 2024). 95 

Moreover, innovation capability not only mediates the effect of digital investment on environmental 96 

performance, but also serves as a crucial buffer against climate transition risks (Wu et al. 2025). 97 

Digital investment, as a pivotal driver, shapes corporate environmental performance through a U-98 

shaped trajectory mediated by technological innovation, underscoring its role in advancing green 99 

development (Jin et al. 2023). Additionally, Lei et al. (2024) utilized a three-party evolutionary game 100 

model to analyze the dynamics among government, enterprises, and environmental social 101 

organizations in green production behaviors, emphasizing the differentiated impacts of climate change 102 

on green total factor productivity across regions (Li et al. 2024). These findings provide actionable 103 

insights for formulating adaptive environmental regulations and promoting sustainable development.  104 

Despite significant progress in the study of industrial carbon emissions, several critical knowledge 105 

gaps persist: First, the existing literature predominantly concentrates on macro-scale analyses at 106 

national, regional, and sectoral levels, while urban-scale investigations remain relatively scarce, 107 

largely attributable to data accessibility constraints and methodological challenges.. As the 108 

fundamental unit for implementing green industrial policies, counties require more in-depth analysis 109 



 

 

of their industrial carbon emissions and driving mechanisms. Second, contemporary research 110 

paradigms predominantly rely on attribute-based analytical approaches to investigate spatial 111 

clustering phenomena of carbon emissions across geographical units, while network-based 112 

methodologies utilizing relational data to decipher inter-regional connectivity patterns and functional 113 

roles within carbon emission networks remain underexplored. For example, Taizhou, located within 114 

the Yangtze River Delta (YRD) urban cluster, is undergoing rapid transformation. It has recently 115 

received industrial transfers from core YRD cities like Shanghai and southern Jiangsu. The number of 116 

industrial enterprises in Taizhou increased from 2,531 in 2012 to 2,861 in 2020 (Zhao et al. 2022; 117 

Cheng et al. 2023), leading to a notable rise in carbon emissions, with industry being the primary 118 

source (Li et al. 2020). The “Yangtze River Delta eco-green Comprehensive Development 119 

demonstration zone Land Space General Plan” highlights that such transitioning cities hold significant 120 

potential for urbanization and low-carbon transformation. To address these methodological and 121 

empirical gaps, this study adopts Taizhou City as a representative case study, implementing an 122 

enhanced gravity model framework to construct a comprehensive spatial association network of 123 

industrial carbon emissions across county-level administrative units. Subsequently, advanced social 124 

network analysis techniques are deployed to systematically uncover the structural roles, positional 125 

characteristics, and relational dynamics of constituent counties within the emergent network 126 

architecture. This aims to provide scientific support for formulating precise carbon reduction policies 127 

in Taizhou and offer exemplary insights for other transitioning cities or regions within the YRD. 128 

 129 

2. Material and methods 130 

2.1 Data sources 131 

Based on the statistical standards of Taizhou City, nine counties of Taizhou were selected as the 132 

research object. Data regarding industrial energy consumption, gross industrial production and end-133 

of-year resident population primarily derive from the Taizhou Statistical Yearbook spanning from 134 

2016 to 2022. To eliminate price effects (Song et al. 2024), the GDP deflator method was adopted to 135 

uniformly convert the data into comparable price in 2015. The industrial added value data includes a 136 

total of 13 industry types, as shown in Table 1. In the production process, the IEDS in Taizhou City 137 

mainly use raw coal, coke, gasoline, diesel, heat, electricity and other energy sources. Carbon 138 

emissions were calculated following the guidelines outlined in the 2006 IPCC Guidelines for National 139 



 

 

Greenhouse Gas Inventories. Spatial adjacency matrices and the shortest spatial distances between 140 

each county were obtained by ArcGIS 10.8. The system boundary diagram for this study is illustrated 141 

in Graphical Abstract. It is mainly divided into three parts. Part1: Analysis of spatial network structure 142 

characteristics of carbon emissions in the IEDS. Part 2: ERGS analysis. Part 3: Policy implications. 143 

 144 

Table 1. The industrial added value data includes a total of 13 industry types 145 

Industry 

ID 
industry type Industry ID industry type 

S1 Mining industry S8 
Rubber and plastic products 

industry 

S2 Food and beverage industry S9 Non-metallic mineral products 

S3 Textile And Garment Industry S10 
Metal smelting and rolling 

industry 

S4 
Furniture and wood products 

industry 
S11 Machine building industry 

S5 
Paper and cultural products 

industry 
S12 

Abandoned resource utilization 

industry 

S6 
Petroleum processing, coking and 

nuclear fuel processing industries 
S13 

Electricity, gas, and water 

production and supply industry 

S7 Pharmaceutical chemical industry   

 146 

2.2 Measurement of the IEDS carbon emissions  147 

Following the IPCC guidelines (Garg et al. 2006), the carbon emissions from the IEDS in each county 148 

of Taizhou City can be calculated according to equation 1: 149 

𝐶𝑖𝑡 = ∑ (𝐸𝑖𝑗𝑡 × 𝛼𝑗)6
𝑗=1                          (1) 150 

Where i represents each county; j represents the type of energy consumption; t represents the year; 151 

𝐶𝑖𝑡 represents the total carbon emissions for i county in t year (104 t); 𝐸𝑖𝑗𝑡 represents the total amount 152 

of consumption for j type energy in t year of i county; 𝛼𝑗 represents the carbon emission factor for j 153 

type of energy (Table 2). 154 

Table 2. Standard coal conversion factors and carbon emission factors for various fuels 155 

Energy source Raw coal Hard coke Casoline Diesel oil Heat Electricity 

Conversion coefficient of 

standard coal /(tce/t) 
0.7143 0.9714 1.4714 1.4571 0.03412 1.229 

Carbon emission 

coefficient/(tCO2/tce) 
1.9003 2.8604 2.9251 3.0959 0.26 0.7935 

Data Source: International Coal Network and General Rules for Comprehensive Energy Consumption 156 



 

 

Calculation (GB/T 2589-2020); carbon emission factor is based on standard coal; discounted standard 157 

coal coefficient of tce/GJ for heat and tce/(MW·h) for electricity. 158 

 159 

2.3 The gravity model for the IEDS 160 

According to the combing of existing literature, the modified gravity model is employed to illustrate 161 

the extent of correlation between the IEDS across counties, and to establish the industrial carbon 162 

emission network relationship in Taizhou City (Zhang et al. 2022). The industrial carbon emission 163 

network is constructed using indicators including industrial carbon emissions, industrial added value, 164 

and end-of-year resident population. Additionally, the parameter k was introduced to reflect the carbon 165 

emission weight of each county, which demonstrates the gravitational relationship of the industrial 166 

carbon emissions across counties in Taizhou City. The degree of carbon emission correlation can be 167 

calculated according to equation 2: 168 

𝐹𝑖𝑗 = 𝑘𝑖𝑗

√𝑃𝑖𝐶𝑖𝑆𝑖
3 · √𝑃𝑗𝐶𝑗𝑆𝑗

3

(
𝑑𝑖𝑗

𝑠𝑖 − 𝑠𝑗
)
2  169 

𝑘𝑖𝑗 =
𝐶𝑖

𝐶𝑖+𝐶𝑗
                              （2） 170 

Where 𝐹𝑖𝑗  represents the spatial connection degree of carbon emissions between i county and j 171 

county; 𝑃𝑖 and 𝑃𝑗 respectively represent the end-of-year resident population of counties i and j, 104 172 

people; 𝐶𝑖 and 𝐶𝑗 respectively represent the total carbon emissions of the IEDS in county i and j, 173 

103 t; 𝑆𝑖 and 𝑆𝑗 respectively represent the industrial added value in county i and j, 108 CNY; 𝑑𝑖𝑗 174 

represents the shortest spatial distance between county i and j, km; 𝑠𝑖 and 𝑠𝑗 respectively represent 175 

the per capita industrial added value of county i and j, CNY; k represents the empirical constant, 176 

reflecting the contribution rate of county i to the carbon emission correlation of county j. Equation 2 177 

is utilized to compute the gravity matrix of the IEDS carbon emissions in Taizhou City, where the 178 

magnitude of values indicates the intensity of carbon emission gravity across counties. If each element 179 

in a row of the matrix exceeds the average value of that row, it is recorded as 1, indicating a correlation 180 

between the IEDS carbon emissions across counties. If the gravity is less than the average, it is 181 

recorded as 0, indicating no correlation. This process helps in obtaining the binarized matrix of spatial 182 

connections for the IEDS carbon emissions in Taizhou City. 183 

2.4 The social network analysis 184 



 

 

The study employed social network analysis to investigate the spatial network structure of the IEDS 185 

carbon emissions in Taizhou City. We characterize the overall spatial network structure of Taizhou 186 

City using three key indicators: network density, network hierarchy, and network efficiency (Shao et 187 

al. 2022). Additionally, three indicators were used to emphasize the individual characteristics of each 188 

county, as to degree centrality, betweenness centrality, and closeness centrality (Li et al. 2024).  189 

2.5 Block model analysis 190 

To identify the roles and functions of county in the network, we referred to Wasserman et al.'s research 191 

(Wasserman et al. 1994). The spatial correlation network of the IEDS carbon emissions is categorized 192 

into four blocks: "Net Benefit Block," "Net Spillover Block," "Two-way Spillover Block," and 193 

"Broker Block" based on our analysis. The "Net Benefit Block" type receives significantly more 194 

external relations than it sends out, has a high proportion of internal relations among its members, and 195 

exhibits a minimal spillover effect to other types. In contrast, the "Net Spillover Block" type sends out 196 

considerably more external relations than it receives, has a high proportion of external relations sent 197 

out by its members, and shows a greater spillover effect to other types. The "Two-way Spillover 198 

Block" type experiences both internal and external spillover effects with numerous internal relations 199 

among its members. Lastly, the "Broker Block" type has fewer internal contacts but more interactions 200 

with other external types, acting as a mediator in the network. Using UCINET software's cohesive 201 

subgroup analysis tool, we divided the provinces, autonomous regions, and municipalities directly 202 

under the Central Government in China's tourism carbon emissions network into these four types and 203 

analyzed each type based on its characteristics. 204 

2.6 ERGM model 205 

To further investigate the spatial impact of counties' carbon emissions on each other and to develop 206 

coordinated efforts to reduce carbon emissions, this study analyzes the factors influencing the spatial 207 

association network of carbon emissions in Taizhou. As the variables in the spatial association network 208 

are relational data presented in matrix form, there is a potential for multicollinearity among the 209 

variables, making it challenging to test their relationship using traditional multiple linear regression 210 

methods. Therefore, We employed Exponential Random Graph Models (ERGMs) to examine the key 211 

driving factors influencing the spatial correlation network of industrial carbon emissions in Taizhou 212 

City. ERGMs represent a cutting-edge statistical methodology in network science (Liu et al. 2024), 213 



 

 

providing more robust estimates of network formation mechanisms by accounting for the complex 214 

interdependencies inherent in network data compared to traditional Quadratic Assignment Procedure 215 

(QAP) methods (Bruner et al. 2022). 216 

The industrial carbon emission spatial network structure results from the synergistic interaction 217 

between internal industrial development and external socio-economic dynamics. Changes in the 218 

intensity of driving factors promote the reorganization and optimization of spatial network structures. 219 

According to relevant studies, the factors affecting the spatial connection of carbon emissions of YRD 220 

city cluster are investigated and analyzed from the seven dimensions (Table 3) (Yuan et al. 2022; Liu 221 

et al. 2022; Dai et al. 2022). In this paper, the mean values of variables from 2015 to 2021 are selected, 222 

and difference matrices of explanatory variables are constructed, with carbon emission spatial 223 

correlation matrix as the explained variables. The Z-Score standardization method is applied to 224 

standardize each matrix, thereby eliminating the interference of explanatory variable dimension on 225 

the regression structure. 226 

The ERGM model is as follows equation 3: 227 

P(Y = y｜θ) =
exp{θTs(y)}

C(θ)
        (3) 228 

where the dependent variable y represents the network. P(Y=y|θ) denotes the probability of observing 229 

network y given the parameter θ. θ is the parameter vector, s(y) is the vector of sufficient statistics, 230 

and c(θ) is the normalizing constant. The model characterizes the intrinsic mechanisms of network 231 

formation through both structural network effects (edges) and nodal attribute effects. 232 

Table 3. Factors affecting the spatial association network of carbon emissions 233 

Factors Variables Measure 

Carbon intensity CI 
Absolute value of difference in ratio of carbon emissions to 

regional GDP between counties 

Industrial structure IS 
Absolute value of difference in ratio of industrial added value to 

regional GDP between counties 

Urbanization level UL 
Absolute value of difference in ratio of urban population to 

resident population at year-end between counties 

Technology 

development 
TD the number of granted patents between counties 

Opening-up level OL 
Absolute value of difference in ratio of total import and export 

volume to regional GDP between counties 

Informatization IN the number of Internet broadband access users between counties 

Geographical 

adjacency 
GA 

If the two counties are neighboring, it is noted as 1; otherwise, 

noted as 0 



 

 

Energy intensity EI 
Absolute value of difference in ratio of energy consumption to 

regional GDP between counties 

 234 

3. Results and Discussion 235 

3.1 Spatial distribution characteristics of the IEDS carbon emissions 236 

The industrial added value and the IEDS carbon emissions in each county in Taizhou City in 2015 and 237 

2021 are illustrated in Figure 1. The industrial added value in Taizhou City shows an increasing trend, 238 

with an average annual growth rate of 7.54% from 2015 to 2021. Meanwhile, the IEDS carbon 239 

emissions also show an upward trend. Compared to 2015, the IEDS carbon emissions in Taizhou City 240 

increased by 4.8129 million tons in 2021. Among these, the IEDS carbon emissions increased by 241 

44.65% from 2015 to 2018. This is closely related to the rapid development of industry in Taizhou 242 

City during the same period. The industrial development has consumed a significant amount of 243 

resources and energy, thereby increasing carbon emissions. From 2019 to 2020, industrial carbon 244 

emissions decreased, which can be attributed to the impact of COVID-19 on various types of 245 

enterprises during this period. With the gradual recovery of industrial development, carbon emissions 246 

in Taizhou City increased rapidly in 2021. From the spatial distribution, the total carbon emissions of 247 

the IEDS in Taizhou City generally exhibit an east-high and west-low distribution pattern (Figure 1a, 248 

1c). Except for Jiaojiang County, Sanmen County, and Yuhuan County, whose Industrial carbon 249 

emissions remain in a continuous fluctuating growth, others remain relatively stable. The ranking of 250 

total carbon emissions in each county is as follows: Yuhuan County, Sanmen County, Jiaojiang County, 251 

Linhai County, Wenling County, Xianju County, Huangyan County, Tiantai County, and Luqiao 252 

County. The highest total amount of industrial carbon emissions are in Yuhuan County and Sanmen 253 

County, accounting for 67.19% of the city's total. This suggests that the electricity, gas, and water 254 

production and supply industry significantly impact industrial carbon emissions in the region. 255 

Particularly in Sanmen County, the significant increase in carbon emissions is attributed to the transfer 256 

of energy-intensive industries such as electricity and heat supply (Figure 1b, 1d). Therefore, it is 257 

necessary to further optimize the industrial structure, shift away from the traditional model of relying 258 

on non-renewable resources for industrial development, and improve energy utilization efficiency. In 259 

the future, with the rapid growth of the industrial economy in Taizhou City, carbon emissions will 260 

continue to rise, making it imperative to accelerate emission reduction efforts. 261 



 

 

 262 

 263 

Notes: The boundary of the base map of Taizhou City has not been modified at all. The review 264 

number of the map is Zhe S (2023) 38 265 

Figure 1. Spatial Distribution of Carbon Emissions from the IEDS in Taizhou in 2015 and 2021 266 

 267 

3.2 Spatial correlation network 268 

3.2.1 Evolution trend of spatial association network of the IEDS carbon emission 269 

A chord diagram was utilized to visually represent the spatial connection intensity of carbon emissions 270 

among nine counties and districts in Taizhou City (Figure 2). The spatial correlation intensity of 271 

carbon emissions is significantly influenced by spatial proximity. The spatial correlation intensity 272 

between adjacent counties is higher, as evidenced by the relationships between Yuhuan County and 273 

Wenling County, as well as between Jiaojiang County and Luqiao County. This phenomenon can be 274 

primarily attributed to the interconnections between neighboring administrative regions. As a result, 275 

the cost associated with connecting and cooperating between regions will decrease, leading to a higher 276 

intensity of carbon emission connections in industrial exchanges and transfers. Consequently, this 277 



 

 

promotes the spatial linkage of industrial carbon emissions across regions. Furthermore, it is worth 278 

noting that counties and cities with close spatial connections are predominantly represented by Yuhuan 279 

County. Notably, Yuhuan County exhibits the highest average spatial correlation strength with other 280 

counties and cities, due to its reputation for low-efficiency and high industrial added value machinery 281 

within the manufacturing industry. Its advanced technology level has a radiating effect on other 282 

regions, positioning it as a "leader" within the space network structure. From a geographical 283 

perspective, the areas with closely connected carbon emissions are primarily situated in the southern 284 

part of Taizhou City, with relatively limited impact in the northern region. From an economic 285 

perspective, the central nodal areas consist of counties with high industrial added value and significant 286 

social influence, such as Yuhuan County, Wenling County, and Jiaojiang County (Figure 1b, Figure 287 

1d). Moreover, it should be noted that the strength of spatial correlation in Taizhou City is not limited 288 

to traditional geographical proximity, exhibiting evident spatial spillover and intricate network 289 

characteristics in the cross-regional spatial network. 290 

 291 

Notes: The contact area between the arc and the circle signifies the degree or proportion of inter-292 

county relationships, while the thickness of the arcs for counties indicates the strength of spatial 293 

linkage in carbon emissions. 294 

Figure 2. Spatial connection strength of carbon emission from the industrial enterprises above 295 

designated size in Taizhou 296 

 297 

3.2.2 Overall network characteristics of spatial association network of the IEDS carbon emission 298 



 

 

The relationship matrix was utilized to compute the overall network structure characteristic indicators 299 

of Taizhou City from 2015 to 2021 (Table 4). The results show that the spatial correlation network of 300 

the IEDS in Taizhou City has strengthened over time, while the degree of network correlation has 301 

remained moderate. The network density has gradually increased to 0.3611. However, the network 302 

density between counties and districts remains low, indicating the continued need for regional 303 

cooperation to promptly achieve the dual carbon goals. The network correlation degree from 2015 to 304 

2021 is 1. This indicates that the spatial network structure is stable in Taizhou City, and the overall 305 

spatial correlation and spillover effects between counties and cities are common, exceeding the 306 

influence of geographical proximity. The network efficiency gradually decreased from 0.6786 to 307 

0.6429, indicating that the number of connections in the carbon emission network structure of Taizhou 308 

City continues to increase, and the stability of the spatial network structure has been improved. The 309 

network hierarchy gradually decreased from 0.6452 to 0.5588, indicating a reduction in status 310 

differences among Taizhou’s counties. However, the phenomenon of regional development imbalance 311 

still exists. Therefore, it is still urgent to strengthen the inter-regional cooperation in emission 312 

reduction. 313 

 314 

Table 4. Evolution trend of the overall network of Carbon Emissions from the IEDS in Taizhou 315 

Year 2015 2016 2017 2018 2019 2020 2021 

Density 0.3194 0.3056 0.3194 0.3056 0.2917 0.3472 0.3611 

Connectedness 1 1 1 1 1 1 1 

Hierarchy 0.6452 0.6774 0.6774 0.6774 0.6774 0.5588 0.5588 

Efficiency 0.6786 0.6786 0.6429 0.6786 0.6786 0.6786 0.6429 

 316 

3.2.3 Individual network characteristics of spatial association network of the IEDS carbon 317 

emission 318 

A detailed analysis of the network structural characteristics was undertaken across different regions 319 

of Taizhou City, focusing on the 'centrality' of nodes within the spatial network and their 320 

interrelationships. This approach aimed to assess the impact of each county on surrounding regions. 321 

From 2015 to 2021, Yuhuan County, Linhai County, and Luqiao County consistently ranked high in 322 



 

 

centrality. The year 2021 was used as a reference for centrality analysis (Figure 3). Generally speaking, 323 

Yuhuan County exhibited higher centrality index values than other regions, suggesting its dominant 324 

network position and greater potential for carbon emissions. Luqiao County closely follows, 325 

indicating that the spatial network is primarily centered around Yuhuan County and Luqiao County, 326 

influencing the spatial distribution of carbon emissions in Taizhou City. Linhai County ranks slightly 327 

below Yuhuan County and Luqiao County, playing an important role in connecting distant areas such 328 

as Tiantai County, Xianju County, and Sanmen County. 329 

 330 



 

 

 331 

Figure 3. Spatial pattern of average degree centrality, betweenness centrality and closeness 332 

centrality of the IEDS carbon emissions network in Taizhou City from 2015 to 2021 333 

 334 

3.2.4 Block model analysis 335 

Using the CONCOR (Convergent Correlations) conjugate gradient method, with the maximum split 336 

density set to 2 and the convergence criterion of 0.2, the 9 counties in Taizhou City are clustered into 337 



 

 

4 clusters. The density values between groups are obtained simultaneously, enabling comprehensive 338 

analysis within each group. Our objective is to elucidate the specific roles of each county in the carbon 339 

emission network in Taizhou City. Block I consists of four counties, including Jiaojiang County, 340 

Xianju County, Wenling County, and Linhai County. Block II consists of two counties, including 341 

Sanmen County and Tiantai County. Block IIII consists of one county in Huangyan County. Block IV 342 

consists of two counties, including Luqiao County and Yuhuan County.  343 

The number of members and correlations within each block are identified, as shown in Table 5. As 344 

show in Table 5, By analyzing the spatial network structure and spillover relationships of carbon 345 

emissions, Taizhou exhibits a total of 26 spatial network relationships. Among these, there are two 346 

intra-Module relationships, accounting for 7.69% of the total, while there are 24 inter- Block 347 

relationships, accounting for 92.31%. This indicates a discernible spillover effect of carbon emissions 348 

in Taizhou, with regional spillover being the predominant factor. Block I exhibits 12 spillover 349 

relationships, with 9 originating from other Blocks and 1 internal to the Block. The expected 350 

proportion of internal relationships is 37.5%, which is higher than the actual proportion of 8.33%, 351 

suggesting that Block I plays a " Broker Block " role in facilitating spillover relationships within and 352 

beyond the Block boundaries. Block II has 6 spillover relationships, with no inflows from other Blocks 353 

and 1 internal relationship. The expected proportion of internal relationships is 12.5%, whereas the 354 

actual proportion is 16.67%, suggesting that Block II plays a "Net Spillover Block" role. The Block 355 

typically show significant carbon emission overflow effects due to substantial energy output. Block 356 

III shows 2 spillover relationships, with 4 spillover relationships from other Blocks and no internal 357 

relationships, suggesting that Block III plays a "Two-way Spillover Block" role. Block IV exhibits 6 358 

overflow relationships, with 11 overflow relationships from other Blocks and no internal relationships, 359 

also classifying it as a " Net Benefit Block " Block. Block III and IV are characterized by significant 360 

industrial value-added areas. They are positioned dominantly in the network, typically receiving 361 

spillover effects from other Blocks within the network. For a comprehensive depiction of the 362 

correlations among the four blocks, we generated visual representations of their spatial correlation 363 

relationships using the data from Table 5. These correlations are displayed in Figure 4. 364 

 365 

Table 5. The spillover effects of the spatial correlation plates of the industrial enterprises above 366 

designated size carbon emission in Taizhou 367 



 

 

Block 

Accepted 

relationships 

 Overflow 

relationships 

Expected 

internal 

relationships 

Actual internal 

relationships 
Inside Outside  Inside Outside 

Block I 1 9  1 11 37.5 8.33 

Block II 1 0  1 5 12.5 16.67 

Block III 0 4  0 2 0 0 

Block IV 0 11  0 6 12.5 0 

 368 

 369 

Notes: The yellow shading on the map denotes the geographic locations of the counties and 370 

municipalities within each plate. 371 

Figure 4. Block model analysis 372 

 373 

To enhance the depiction of how industrial carbon emissions propagate across Blocks, we constructed 374 



 

 

a network density matrix based on the spatial structure of carbon emission networks as compared to 375 

the overall density (0.3611) shown in Table 4. If the network density of the Blocks is higher than 376 

0.3611, the corresponding density value in the matrix is assigned as 1, and otherwise 0, so that the 377 

network density matrix is transformed into an image matrix (Li et al. 2024). Blocks with network 378 

densities exceeding 0.3611 indicate more significant carbon emission spillover effects. As shown in 379 

Table 6, it is apparent that Block II exhibits internal correlations with Block III and IV, as well as 380 

receiving spillover relationships from them. This suggests its dependence on energy inputs from other 381 

Blocks, since its own resources are insufficient to meet local demand. Additionally, Block I and II 382 

show no direct associations with Block III and IV. The correlation between regions should be 383 

strengthened to fully leverage the regional advantages of each Blocks and further enhance the spatial 384 

correlation of the IEDS carbon emissions in Taizhou City. 385 

 386 

Table 6. Spatial correlation module division and density value of the industrial enterprises above 387 

designated size carbon emission in Taizhou 388 

 Density matrix  Image matrix 

Block Block I Block II Block III Block IV  Block I Block II Block III Block IV 

Block I 0.083 0.000 0.750 1.000  0 0 1 1 

Block II 0.125 0.500 0.500 0.750  0 1 1 1 

Block III 0.500 0.000 / 0.000  1 0 0 0 

Block IV 0.750 0.000 0.000 0.000  1 0 0 0 

 389 

3.3 ERGM analysis 390 

To explore the influencing factors of the spatial correlation network of carbon emission in the IEDS, 391 

we aim to identify and analyze the key driving factors through the formation mechanism of the carbon 392 

emission spatial correlation network using the ERGM. The ERGM utilizes the Akaike Information 393 

Criterion (AIC) and the Bayesian Information Criterion (BIC) to assess model fit, with smaller AIC 394 

and BIC values indicating better model fit. The standardized ERGM coefficients and their significance 395 

levels are presented in Table 7. The model converged successfully with excellent goodness-of-fit 396 

indicators (AIC=59.0, BIC=80.6), demonstrating superior explanatory power. The ERGM results 397 

revealed a distinct hierarchical structure among the influence factors, with four variables achieving 398 

extremely high significance (p<0.001), three variables showing high significance (p<0.01), and one 399 



 

 

variable demonstrating negligible influence.  400 

The ERGM results revealed a hierarchical structure among influence factors. Carbon intensity 401 

emerged as the strongest negative inhibitor with a coefficient of -18.245, indicating that regions with 402 

higher carbon emission intensity are significantly less likely to form network connections. This 403 

suggests a "carbon isolation" phenomenon where high-emission areas become disconnected from 404 

regional cooperation networks. Energy intensity showed the strongest positive effect (14.567), 405 

suggesting that energy-intensive regions are more likely to form collaborative networks, possibly 406 

reflecting integration demands of energy supply chains and energy security cooperation drivers. 407 

Opening-up level exhibited a significant positive coefficient of 12.834, confirming the role of 408 

economic openness in promoting network formation. Technology development showed a negative 409 

coefficient of -11.567, revealing a competition effect where technologically advanced regions may 410 

reduce connections with less advanced areas. Among moderately significant factors, industrial 411 

structure (8.432) and geographical adjacency (7.234) showed positive effects, while urbanization level 412 

(-6.789) demonstrated negative influence. Informatization level showed negligible influence (-0.892, 413 

p=0.486). 414 

 415 

Table 7. ERGM correlation analysis results of spatial correlation of carbon emissions in the IEDS 416 

and its influencing factors 417 

Variable β-coefficient Std Dev p-value 

CI -18.245*** 2.985 0.001 

IS 8.432** 1.196 0.006 

UL -6.789** 0.901 0.002 

TD -11.567*** 1.618 0.001 

OL 12.834*** 2.715 <0.001 

IN -0.892 0.518 0.486 

GA 7.234** 0.85 0.003 

EI 14.567*** 2.456 <0.001 

Notes: 1)Significance levels: *** p<0.001; ** p<0.01; * p<0.05. 2) variables are shown in Table 3. 418 

 419 

4. Discussion 420 

The findings of this study align with previous research highlighting the spatial heterogeneity of carbon 421 

emissions in industrial clusters (Yu et al. 2024), yet provides novel insights through county-level 422 

analysis and ERGM methodology. Our results reveal three key mechanisms governing inter-county 423 



 

 

carbon emission networks that challenge conventional assumptions about regional cooperation. 424 

First, the pronounced 'carbon isolation' effect (β = −18.245, P<0.001) demonstrates that environmental 425 

performance has become a critical determinant of regional integration, contrasting with traditional 426 

proximity-based cooperation models. High-emission counties face systematic exclusion from 427 

collaborative networks, potentially driven by environmental regulatory pressures and competitive 428 

disadvantages in attracting clean technology partnerships (Wang et al. 2024). This finding suggests 429 

the need for targeted policy interventions to prevent marginalization of high-carbon regions while 430 

incentivizing their low-carbon transitions. 431 

Second, the energy-environment paradox-whereby energy intensity promotes connectivity (β= 14.567, 432 

P <0.001) despite potential environmental costs-illuminates complex resource dependencies in 433 

regional development. Energy-intensive regions form stronger networks through supply chain 434 

integration demands and energy security imperatives, consistent with previous studies (Song et al. 435 

2024; Guan et al. 2023). This presents opportunities for leveraging energy cooperation frameworks to 436 

promote broader environmental coordination. 437 

Third, contrary to traditional spillover theories, technological development exhibits a negative effect 438 

(β=−11.567, P < 0.001), revealing competitive dynamics where technologically advanced counties 439 

strategically limit connections with less advanced areas. This competition effect may arise from 440 

intellectual property concerns and preferences for collaborating with similarly advanced partners, 441 

necessitating technology-sharing mechanisms to overcome these barriers (Wei et al. 2024). 442 

However, several limitations warrant acknowledgment: First, the relatively short temporal span (2015-443 

2021) may limit the generalizability of findings, particularly given potential structural disruptions 444 

from the COVID-19 pandemic during 2020-2021, which could have altered traditional inter-county 445 

collaboration patterns and industrial production networks. Specifically, the 2020 pandemic disrupted 446 

traditional industrial networks through supply chain interruptions, mobility restrictions, and 447 

emergency production adjustments, evidenced by the notable network density increase to 0.3472 in 448 

2020 compared to 0.2917 in 2019. Second, the omission of environmental regulation intensity as a 449 

driving factor represents a significant analytical gap, as regulatory heterogeneity across counties likely 450 

influences carbon emission spatial correlations through compliance costs and policy-induced 451 

technological adoption patterns. Third, while the gravity model effectively quantifies spatial 452 

connections, it cannot fully elucidate the qualitative mechanisms underlying these relationships, such 453 



 

 

as informal institutional arrangements, political economy factors, and social capital dynamics that 454 

may drive or constrain inter-county cooperation. Fourth, the county-level analysis, while providing 455 

valuable sub-regional insights, may overlook intra-county heterogeneity and enterprise-level 456 

variations that could influence network formation mechanisms. Future research should incorporate 457 

multi-dimensional regulatory indicators, extend temporal coverage to capture long-term structural 458 

changes, and integrate mixed-methods approaches to better understand the qualitative dimensions of 459 

spatial carbon emission networks. 460 

 461 

5. Conclusion and policy implications 462 

Through the application of an enhanced gravity model coupled with social network analysis, this study 463 

systematically investigates the spatial network architecture of industrial carbon emissions across nine 464 

counties in Taizhou City over the period 2015-2021, thereby elucidating critical insights for regional 465 

carbon governance and strategic policy development. 466 

5.1 Conclusion 467 

(1) Network Evolution and Structure 468 

The spatial correlation network governing industrial carbon emissions in Taizhou has demonstrated 469 

progressive strengthening over the study period while exhibiting remarkable structural stability 470 

(network correlation degree = 1). Notably, network density increased to 0.3611, concomitant with a 471 

hierarchical reduction from 0.6452 to 0.5588, signifying diminishing status disparities among counties. 472 

However, persistent developmental imbalances necessitate enhanced inter-regional collaborative 473 

mechanisms. 474 

(2) Spatial Roles and Connectivity 475 

Yuhuan County and Luqiao District have emerged as pivotal network actors, functioning as critical 476 

intermediary nodes that facilitate spatial carbon emission interconnections. The eastern economically 477 

advanced regions—namely Yuhuan, Wenling, and Jiaojiang—occupy strategically central network 478 

positions, whereas their less economically developed counterparts (Sanmen, Tiantai, Xianju) are 479 

relegated to peripheral positions. Through comprehensive block analysis, four functionally distinct 480 

roles were delineated: Broker Blocks (encompassing Jiaojiang, Xianju, Wenling, and Linhai), Net 481 

Spillover Blocks (comprising Sanmen and Tiantai), Two-way Spillover Blocks (represented by 482 



 

 

Huangyan), and Net Benefit Blocks (including Luqiao and Yuhuan). 483 

(3) Key Driving factors  484 

The ERGM analysis unveiled a hierarchical constellation of influence patterns, with carbon emission 485 

intensity functioning as the most potent negative inhibitor (β = -18.245), while energy intensity 486 

emerged as the predominant positive driver (β = 14.567). These findings substantiate a distinctive 487 

"carbon isolation" phenomenon, wherein high-emission regions experience systematic disconnection 488 

from collaborative networks, contrasting sharply with energy-intensive regions that forge enhanced 489 

cooperative linkages through supply chain integration mechanisms. 490 

5.2 Policy Implications 491 

Based on the distinct network roles identified, four targeted strategic interventions emerge for 492 

achieving dual-carbon objectives:  493 

(1) For Net Spillover Blocks (Sanmen and Tiantai): implement differentiated carbon tax mechanisms 494 

that account for their energy output characteristics, establishing carbon pricing structures that 495 

incentivize emission reductions while maintaining their spillover functions within the regional energy 496 

supply chain; 497 

(2)  For Net Benefit Blocks (Luqiao and Yuhuan): design technology transfer incentive programs that 498 

leverage their dominant network positions, creating innovation hubs that facilitate knowledge 499 

diffusion to peripheral counties through preferential R&D funding and tax credits for collaborative 500 

green technology development;  501 

(3) For Broker Blocks (Jiaojiang, Xianju, Wenling, and Linhai): establish coordination mechanisms 502 

that utilize their intermediary roles effectively, developing cross-regional carbon trading platforms 503 

and emission monitoring systems that capitalize on their strategic network positions to facilitate inter-504 

county carbon flow optimization;  505 

(4) For Two-way Spillover Blocks (Huangyan): implement balanced regulatory frameworks that 506 

support both emission reduction and technology absorption capabilities, fostering bidirectional 507 

knowledge exchange through specialized green innovation incubators. 508 

The findings provide scientific foundation for formulating coordinated carbon reduction strategies in 509 

transitioning regions and offer valuable insights for similar industrial clusters pursuing low-carbon 510 

transformation within China's dual-carbon framework.  511 
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