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Abstract: The digital economy development (DED) contributes to breaking the path dependency 15 

dilemma of industrial carbon lock-in and achieving high-quality development that balances economic 16 

and ecological benefits. This study, based on the panel data from 274 cities in China from 2013 to 17 

2022, aims to identify the phased relationship between the digital economy development and 18 

industrial carbon unlocking efficiency (ICUE). The main findings are as follows: (1) The impact of 19 

digital economy development on industrial carbon unlocking efficiency exhibits a double-threshold 20 
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effect. After verification through grouped instrumental variable (IV) regression, the conclusion 21 

remains valid. It shows a "U-shaped" relationship of first decreasing then increasing, and finally 22 

reaching equilibrium. (2) Digital economy development could significantly promote industrial carbon 23 

unlocking efficiency in multi-dimensional adjacent regions based on the "tunnel model"; (3) Once 24 

digital economy development enters maturity stage, industrial carbon unlocking efficiency is mainly 25 

improved through two key pathways: technological innovation and institutional regulation; (4) Based 26 

on training and simulations of existing samples, cities most likely to achieve optimal industrial carbon 27 

unlocking performance in digital industry development are mainly concentrated around China's "Hu 28 

Huanyong Line" and the southeast coastal areas, which can fully leverage their resource endowments, 29 

location advantages, and leading roles. 30 

Keywords: digital economy; industrial carbon unlocking; panel threshold model; techno-institutional 31 

complex; tunnel model; machine learning model 32 

 33 

1. Introduction 34 

The report of the 20th National Congress of the Communist Party of China (CPC) emphasized the 35 

key strategy of “promoting green development and fostering harmony between humanity and nature”. 36 

In addition, a coordinated approach for industrial restructuring while simultaneously advancing 37 

carbon reduction, pollution control, green expansion and economic growth has been proposed to 38 

manifest the determination of Chinese government to achieve carbon peaking by 2030 and carbon 39 

neutrality by 2060 (Cai et al., 2024). In practice, since the 12th Five-Year Plan has firstly incorporated 40 

the reduction of CO2 emission per unit of GDP as a binding target in China’s national economic and 41 

social development planning, subsequent several Five-Year Plans continued to include similar 42 

mandatory carbon reduction targets.  43 



 

 3 

However, at the end of 2021, China’s total annual CO2 emissions were 10.523 billion tons, 44 

accounting for 45% of global emissions and still the world’s largest emitter1. The persistent challenge 45 

stems from the entrenched reliance on fuels in certain regions, which locks industrial development 46 

into carbon-intensive energy systems, creating the dilemma of “industrial carbon lock-in” (Unruh, 47 

2000). Carbon lock-in results from the path dependency of traditional industry development, leading 48 

to a self-reinforcing and stable operational model (Niu &Liu, 2021). It inhibits the adoption and 49 

diffusion of low-carbon technologies, thereby weakening the effectiveness of carbon reduction 50 

policies. 51 

The digital economic development (DED) characterized by the fusion of financial and 52 

technological elements (Tian et al., 2024), provides a promising pathway for carbon unlocking due 53 

to its features of “low-carbon emission, high output, and high returns.” The digital transformation is 54 

usually linked with carbon sink and negative carbon technologies, and DED embodies both 55 

technological and institutional transformation, providing a dual-pronged approach for industrial 56 

carbon unlocking. On one hand, as digital technologies increasingly permeate various sectors, their 57 

integration with traditional industries has become a crucial driving force for economic transformation 58 

and stable growth. On the other hand, the institutional reforms of DED, such as piloting the 59 

establishment of “National Big Data Comprehensive Pilot Zones” and the “Broadband China” 60 

initiative, have emerged as key mechanisms for cities to realize their “dual carbon” goals. However, 61 

some scholars have also proposed the concept of “digitization paradox”, which is adopted to describe 62 

the economic growth paradox (Li and Wu, 2023) or carbon reduction paradox (Bai et al., 2023) with 63 

the development of digital economy and technology. The study aims to explore the relationship 64 

 
1 Referring to: Analysis of global carbon dioxide emissions in 2021: more than half of carbon emissions in the Asia-Pacific region, 

https://www.163.com/dy/article/HF7K0OPQ055360RU.html  

https://www.163.com/dy/article/HF7K0OPQ055360RU.html
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between DED and industrial carbon unlocking in China, with a focus on the puzzle of the “digitization 65 

paradox” in carbon unlocking. The findings hold significantly theoretical and practical value for 66 

promoting China’s low-carbon transformation. 67 

 68 

2. Literature review 69 

In recent years, the relationship between DED and urban carbon emissions has gradually gained 70 

significant academic attention. DED is not only seen as a new driver of economic growth, but also a 71 

key enabler of sustainable development (Nara et al., 2021). Some studies suggest that DED facilitates 72 

the transition to a green economy by accelerating industrial upgrading through the widespread 73 

dissemination and integration of knowledge, ultimately promoting low-carbon development (Paschou 74 

et al., 2020). However, some other studies indicate that the relationship between DED and carbon 75 

emissions is nonlinear. The carbon reduction effect of DED will only become apparent when it 76 

reaches a certain scale (Kwilinski, 2024; Xin et al., 2023a). Due to the “carbon-intensive” 77 

characteristic of digital industry expansion and infrastructure construction in its early stage, which 78 

leads to increasing energy consumption (Bai et al., 2023). At the same time, various digital technology 79 

types could cause differential impacts on carbon reduction. At the early stage of the integration of 80 

digital innovation such as information, calculation, communication and connection technologies, it 81 

could be identified that carbon emission will rapidly grow with the construction of digital 82 

infrastructure without other policy intervention (Jiang et al., 2021). But the commercial application 83 

of digital technology, such as the visualization reform, digital transformation, could gradually result 84 

in carbon reduction significantly, since these digital technologies development are linking to 85 

industrial process emission reduction and carbon sink, negative carbon technologies (Zhang et al., 86 

2022).  87 
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In the field of the industrial carbon lock-in, existing literature has explored its formation 88 

mechanism, measurement methods and possible mitigation pathways. Unruh (2000) first proposed 89 

the concept of “carbon lock-in”, arguing that economic development has gradually locked into a fossil 90 

fuel-based energy system during the evolution of modern industry. Furthermore, the interaction 91 

between outdated technologies and rigid institutional frameworks reinforces the carbon dependency 92 

(Unruh &Carrillo-Hermosilla, 2006). Various methods have been developed to measure the degree of 93 

carbon lock-in. The traditional approach of calculating carbon overload rate is defined as the ratio 94 

between carbon sequestration capacity and carbon emissions (Zhao et al., 2024). Another method is 95 

to construct an indicator system that evaluates carbon lock-in from multiple dimensions, including 96 

industrial structure, institutional framework, technological progress, and social norms (Niu &Liu, 97 

2021). Regarding carbon unlocking strategies, existing research has explored the key pathways, 98 

including local government interventions (Dong et al., 2020), reducing income inequality (Jin et al., 99 

2020), and implementing energy and environmental policies.  100 

The existing literature emphasizes the urgent need to explore effective carbon unlocking pathways 101 

for industrial development under the constrains of the carbon peaking and carbon neutrality goals. As 102 

a key driver for achieving dual-carbon goals, the digital economy fosters both economic growth and 103 

ecological sustainability. Meanwhile, it cannot be ignored that the construction of digital 104 

infrastructure might rely on carbon-intensive industries and greatly promote carbon lock-in. However, 105 

current research lacks a rigorous identification of the non-linear relationship between DED and 106 

industrial carbon unlocking efficiency. Additionally, few studies assess carbon unlocking 107 

performance from the perspective of input-output efficiency. To address these gaps, this study is 108 

grounded in the “digitization paradox” hypothesis of industrial carbon unlocking. It aims to identify 109 

the phased relationship between DED and industrial carbon unlocking efficiency (ICUE) based on 110 
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China’s city samples. Specifically, it examines the impact mechanisms of DED on ICUE within the 111 

“techno-institutional” framework. Furthermore, leveraging policy learning models from machine 112 

learning, the study proposed optimization strategies for enhancing ICUE through DED. 113 

 114 

3. Theoretical framework 115 

The study explores the relationship between DED and ICUE in China, grounded in the 116 

digitization paradox, externality theory, and the “techno-institutional” analytical framework. 117 

Furthermore, it aims to identify the impact effects, potential mechanisms, and optimization 118 

strategies. The specific analytical framework is shown in Figure 1.  119 

 120 

 121 

 122 

Figure 1. Logical framework 123 

 124 

3.1 The digitization paradox of industrial carbon unlocking 125 

The DED promotes industrial carbon unlocking through both technological innovation and 126 

institutional regulation mechanisms: (1) Technological innovation perspective. The DED is closely 127 
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related to big data technologies and holds significant potential to achieve both economic growth and 128 

ecological sustainability (Wu et al., 2025). Firstly, digital technologies facilitate knowledge diffusion, 129 

accelerate industrial upgrading and transformation, thereby paving the way for low-carbon economy. 130 

Secondly, digitization enhances energy monitoring and management capabilities, it partially replaces 131 

the public supervision which could reduce the cost of clean energy utilization, and supports the 132 

transition to renewable energy (Cai, et al., 2025). (2) Institutional regulation perspective. Industrial 133 

carbon lock-in is reinforced by self-perpetuating institutional frameworks. Bergek et al (2013) 134 

emphasized the necessity to empower participants within new technological innovation system to 135 

overcome the institutional barriers of carbon lock-in. The widespread adoption of digital technologies 136 

requires strong government policy support to mobilize resources and create market demand. For 137 

example, increasing subsidies for local digital infrastructure can foster technological innovation, 138 

improve energy efficiency, and ultimately break the vicious cycle of carbon lock-in (Healy &Barry, 139 

2017). 140 

However, the DED heavily relies on industrial infrastructure construction, electronic component 141 

manufacturing, digital machinery production, and other high energy-intensive industries. Therefore, 142 

the early stage of DED may drive up energy consumption, and hinder industrial carbon unlocking. In 143 

the initial phase of digitization, the marginal benefits derived from investments in digital 144 

infrastructure are lower than the marginal costs. It results in a U-shaped relationship between digital 145 

investment and total factor productivity (TFP) (Jin &Yu, 2022). The increase in TFP driven by 146 

digitization on the early stage often triggers a series of rebound effects, leading to an unexpected rise 147 

in overall energy consumption. This rebound effect could possibly offset the positive effects of 148 

technological innovation and industrial restructuring, aligning with the Jevons Paradox (Blake, 2005). 149 

Given this reassessment of the digitization paradox, this study proposes the following hypothesis: 150 
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H1: The relationship between DED and ICUE in China follows a U-shaped pattern at city-level, 151 

initially decreasing and then increasing. 152 

 153 

3.2 Spatial spillover effect and “tunnel model” of digital economy 154 

According to the externality theory and regional interdependence theory (Ertur &Koch, 2007), 155 

the DED could significantly promote ICUE in cities with multi-dimensional proximity (Chaudhuri, 156 

1996). The concept of muti-dimensional proximity city networks suggests that, as the digital economy 157 

evolves, spatial spillover effects have transcended the traditional geographical clusters, forming 158 

interconnected networks across geographical, technological, relational, cognitive, and cultural 159 

dimensions through the “tunnel model” of digital technologies. The potential mechanisms include: 160 

(1) Trickle-down effect: when the regional central city’s DED exceeds a certain threshold, industrial 161 

relocation, investment diffusion and technological spillovers will expand to surrounding areas. That 162 

is, cities with highly developed digital industries enable their multi-dimensional adjacent cities to 163 

utilize digital infrastructure, improve local energy and industrial structure, while mitigating the 164 

negative effects associated with the early stage of DED (Liu et al., 2024). (2) Learning-Sharing 165 

effect: Innovations in digital technologies, such as big data, block-chain, and artificial intelligence, 166 

have improved the efficiency of cross-border information, talent, and technology flows. This process 167 

promotes the cross-regional transmission of advanced technologies, facilitates spatial interactions and 168 

shared utilization of new digital infrastructure (Fichman et al., 2014). (3) Race-to-the-top 169 

Competition effect: Driven by the local government promotion tournament mechanism and the 170 

project-based nature of digital industry development, local governments increasingly prioritize 171 

leveraging the digital economy to promote industrial carbon unlocking. This focus might trigger a 172 

race-to-top competition among cities in the field of digital technology development. Through 173 
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demonstration and spillover effects with inter-city competition (Fluck &Mayer, 2005), it could realize 174 

the improvement of ICUE in surrounding cities. Accordingly, we propose the following hypothesis: 175 

H2: The DED exhibits a significant spatial spillover effect, improving the ICUE of cities with 176 

multi-dimensional proximity. 177 

 178 

3.3 Identification of carbon unlocking pathways with DED under the “Techno-Institutional” 179 

framework 180 

 The techno-institutional complex formed by the inertia of high-carbon energy consumption 181 

reinforces the industrial carbon lock-in effect in certain cities, making industrial production and social 182 

consumption dependent on carbon-based energy systems. It not only hinders the adoption of low-183 

carbon technologies, but also weakens the effectiveness of relevant carbon reduction policies (Seto 184 

et al., 2016). (1) Technological pathways: Firstly, the existing fossil fuel-based energy system has 185 

been highly mature, with strong complementarity among mainstream technologies, which reduces 186 

the uncertainty of sustained investment. In contract, low-carbon and renewable energy technologies 187 

lack integration with dominant energy system, contributing to higher short-term opportunity costs for 188 

their adoption (Janipour et al., 2020). Secondly, there are still substantial sunk costs in transforming 189 

fossil fuel infrastructure, including industrial production lines, logistics support, and equipment, 190 

which lock the energy system into a high-carbon trajectory (Arbuthnott &Brett, 2013). To achieve 191 

scale economy and maintain competitive advantages, related carbon-intensive enterprises tend to 192 

adhere to current energy utilization and production models. (2) Institutional pathways: Firstly, the 193 

vested interests in high-carbon energy sector have institutional advantages in power distribution, 194 

allowing them to formulate policy rules that obstruct the transition to low-carbon energy. For example, 195 

in Norway, high emission private enterprises leveraged exclusive social networks to resist tax 196 
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incentives policies for renewable energy vehicles, thereby maintaining fossil fuel dependence in the 197 

transportation sector (Normann, 2017). Secondly, existing policies, technical standards, and energy 198 

production contracts predominantly encourage firms to focus on technological innovation and 199 

production related to fossil fuels, leaving little institutional improvement space for disruptive green 200 

innovation niche (Sanden &Hilman, 2011). Therefore, breaking carbon lock-in requires strategies that 201 

address both technological and institutional barriers. 202 

The relationship between DED and industrial carbon lock-in exhibits a strong correspondence 203 

within the “techno-institutional” framework. The digital economy can similarly break industrial 204 

carbon lock-in through both technological innovation and institutional regulation. However, the initial 205 

construction of digital infrastructure might partially offset the optimization effects driven by digital 206 

innovation and industrial structural improvements. Thus, this study put forward Hypothesis 3: 207 

H3: In the early stage of DED, digital infrastructure investment weakens ICUE. However, once 208 

the construction of digital infrastructure reaches a certain level of maturity, the DED mainly enhances 209 

ICUE through a dual mechanism of technological innovation and institutional regulation. 210 

According to the empirical results, the improvement effects of carbon unlocking efficiency before 211 

and after the maturity threshold are -29.17% and 38.39%, respectively, showing a "U-shaped" 212 

relationship of first decreasing then increasing, and finally reaching equilibrium. At the same time, 213 

the key carbon unlocking pathways of “techno-institutional” complex are identified through 214 

intermediary mechanism analysis while “tunnel model” of DED is also proved with spatial 215 

econometric regression. These theoretical hypotheses above have been quantitatively validated. 216 

 217 

 218 

 219 
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4. Data, Variables and Models 220 

4.1 Data source 221 

The study selects a sample of 274 Chinese cities from 2013 to 2022. Data of carbon emissions 222 

and most socio-economic variables come from the China City Statistical Yearbook, China Regional 223 

Statistical Yearbook, China Energy Statistical Yearbook, and various municipal-level statistical 224 

yearbooks. The indicator Digital Inclusive Finance Index is calculated based on the Digital Inclusive 225 

Finance Indicator System and Index Compilation (Guo et al., 2020). The Green Patent Authorization 226 

data comes from the National Intellectual Property Patent Database, while Industrial Land Transfer 227 

data is obtained from the transaction records on the China Land Market website. 228 

 229 

4.2 Variables measurement 230 

4.2.1 Dependent variable: Industrial Carbon Unlocking Efficiency (ICUE) 231 

The measurement of ICUE should consider the balance between socio-economic benefits and 232 

ecological sustainability, and systematically evaluate the efficiency of industrial carbon unlocking at 233 

the city level from an input-output perspective. Following the Super-efficiency SBM model proposed 234 

by Tone &Tsutsuim (2009), the study constructs an input indicator system from institutional, 235 

technological and social dimensions, and the output indicator system consists of desirable economic 236 

output and undesirable carbon emissions output (Table 1), aiming to evaluate the multi-objective 237 

performance of economic growth and carbon reduction. 238 

 239 

Table 1. The input-output indicator system for the measurement of ICUE 240 

Dimension Indicator type Specific indicator Measurement method 

Input 

indicators 

Institutional 

input 

Environmental 

regulation level 

Ratio of energy conservation 

&environmental protection 

expenditure to local fiscal 

expenditure 
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Institutional 

quality level 
Marketization index 

Technological 

input 

R&D investment 
Ratio of R&D expenditure to 

local GDP 

R&D human 

resources 

Number of R&D personnel 

per 10000 people 

Social input 

Public 

environmental 

awareness 

Environmental attention index 

(Baidu search index) 

Urban greening 

investment 
Built-up area greening rate 

Output 

indictors 

Desirable 

output 

Economic 

development level 
GDP per capita 

Undesirable 

output 

Carbon emission 

intensity 

Ratio of local CO2 emissions 

to GDP 

 241 

4.2.2 Independent variable and threshold variable: Digital economy development (DED) level 242 

and Digital infrastructure level 243 

This study comprehensively evaluates the DED level across multiple domains, including digital 244 

infrastructure, digital industries and digital finance (Xin et al., 2023b). Several sub-dimension 245 

indicators are selected to construct the assessment framework for the DED level (dig_econ), namely: 246 

long-distance optical cable density, per capita broadband internet access ports, mobile phone 247 

penetration rate, internet penetration rate, employment ratio in information transmission, computer 248 

services and software industries, per capita telecommunications business revenue, and the digital 249 

inclusive finance index (Table 2). Entropy method is adopted to determine the indicator weights, with 250 

a standardized scoring process involving normalization, weight assignment, weighted aggregation 251 

and logarithmic transformation to generate a panel dataset reflecting the DED level. 252 

According to hypothesis 1, in the early stage of DED, the high-carbon energy requirement for 253 

digital infrastructure construction might result in its marginal costs exceeding marginal benefits, 254 

however, it could promote low-carbon transition when digital infrastructure emerging from the 255 

integration of digitalization and low-carbon development (Lei et al., 2025). Therefore, the study 256 
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employs the digital infrastructure level (dig_infra) as the threshold variable. 257 

Table 2. The measurement index system of DED level 258 

Dimension Indicator 

Digital 

infrastructure 

Long-distance optical cable density 

Per capita broadband internet access ports 

Mobile phone penetration rate 

Internet penetration rate 

Digital industry 

Employment ratio in information transmission, computer 

services and software industries 

Per capita telecommunications business revenue 

Digital finance Digital inclusive finance index 

 259 

4.2.3 Mechanism variables: Corporate green innovation and Governmental industrial 260 

regulation 261 

Based on hypothesis 3, the study explores the mechanism pathways of DED promoting ICUE 262 

within the “techno-institutional” framework. The technological pathway could be measured by 263 

Corporate green innovation at city level, with the number of granted green patents (patent) as an 264 

indicator, aiming to capture the scale of corporate green innovation output from a technological 265 

perspective. The calculation is based on the total number of granted green invention patents and green 266 

utility model patents each year.  267 

The institutional pathway could be evaluated by the intensity of local government industry 268 

regulation, measured by the deviation of industrial land transfer prices at city level. Local 269 

governments regulate the industrial sectors through differential land supply strategies, utilizing 270 
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selective industrial land pricing mechanisms (Wang et al., 2021). Specially, when local governments 271 

exhibit a weak preference for selective land supply, they tend to adopt unified pricing policy, leading 272 

to low deviations in industrial land prices. Conversely, they adopt a “one plot, one price” method to 273 

screen industrial projects, resulting in significant deviations in industrial land prices. The formula for 274 

calculating industrial land price deviation is shown as follow: 275 

 276 

𝐿𝑎𝑛𝑑_𝑆𝐷𝑖𝑡 =
√∑ (𝑃𝑖𝑗𝑡−𝑃𝑗𝑡)2𝑛

𝑗=1

𝑛
                    (1) 277 

 278 

Where Land_SDit represents the industrial land price deviation index, used to measure the 279 

intensity of local government industry regulation. Pijt denotes the average land transfer price for 280 

industry j in city i in year t, while Pijt is the overall average land transfer price for all industries in 281 

city i in year t. And n represents the number of industrial sectors.  282 

 283 

4.2.4 Instrumental variable: 284 

Given the potential endogeneity caused by reverse causality or omitted variables in the 285 

relationship between DED and ICUE, the study adopts an instrumental variable (IV) approach, 286 

following the methodology proposed by Chen &Chen (2018). Local governments’ preferences for 287 

DED are quantified by counting the frequency of digital economy-related terms2 (IV_word) in the 288 

annual work reports of municipal governments. Since these reports are typically released at the 289 

beginning of the year, setting the policy agendas in advance, the carbon reduction performance within 290 

the same year cannot retrospectively affect their intentions. Meanwhile, to address the omitted 291 

 
2  Using Python for text processing, a digital economy-specific corpus was employed to segment and extract 39 relevant terms, 

including “smart economy”, “information economy”, “intelligent economy”, “information and communication technology”, “ICT”, 

and “telecommunication infrastructure.” 
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variable bias caused by geographical and natural factors, the study incorporates the average slop of 292 

the city (IV_pd) as another instrumental variable. All in all, the study constructs an interaction term 293 

between the frequency of digital economy-related terms in local government reports and the 294 

reciprocal of the city’s average slope as the final instrumental variable (IV) for DED. 295 

 296 

4.2.5 Control variables 297 

To mitigate potential confounding effects, the study incorporates a series of control variables, 298 

including: (1) The degree of openness (fore_gdp): It could be measured by the ratio of foreign direct 299 

investment (FDI) to local GDP; (2) Population density (pop_den): It could be measured by the 300 

number of population per unit of administrative area; (3) Industrial structure (second): It could be 301 

represented by the ratio of the added value of the secondary industrial to GDP; (4) Local government 302 

fiscal capacity (fis_income): It could be measured by the proportion of local fiscal revenue to GDP; 303 

(5) Innovation potential (uni_stu): It could be measured by the ratio of the number of registered 304 

higher education students to the total local population. (6) Road transport capacity (traffic): It can 305 

serve as an indicator of the level of local transportation infrastructure. 306 

 307 

4.3 Model designing 308 

4.3.1 Panel threshold model 309 

Some related studies chose to adopt the quadratic regression method of independent variable to 310 

identify the non-linear relationship (Li et al., 2025), but it might cause multi-collinearity issues of 311 

regression coefficients. The study adopts a panel threshold regression model based on Hansen’s panel 312 

threshold framework (Hansen, 1999), with the digital infrastructure level as the threshold variable. 313 

As the threshold value changes, the relationship between DED and ICUE exhibits nonlinear 314 



 

 16 

characteristics. therefore, the baseline regression model for this study is formulated as Equation (2): 315 

 316 

𝐼𝐶𝑈𝐸𝑖𝑡 = 𝛼 + 𝛽1𝑓𝑜𝑟𝑒_𝑔𝑑𝑝𝑖𝑡 + 𝛽2𝑝𝑜𝑝_𝑑𝑒𝑛𝑖𝑡 + 𝛽3𝑠𝑒𝑐𝑜𝑛𝑑𝑖𝑡 +317 

𝛽4𝑓𝑖𝑠_𝑖𝑛𝑐𝑜𝑚𝑒𝑖𝑡 + 𝛽5𝑢𝑛𝑖_𝑠𝑡𝑢𝑖𝑡 + 𝛽6𝑡𝑟𝑎𝑓𝑓𝑖𝑐𝑖𝑡 + 𝜃1𝑑𝑖𝑔_𝑒𝑐𝑜𝑛𝑖𝑡 ∗318 

𝐼(𝑑𝑖𝑔_𝑖𝑛𝑓𝑟𝑎 ≤ 𝛾1) + 𝜃2𝑑𝑖𝑔_𝑒𝑐𝑜𝑛 ∗ 𝐼(𝛾1 ≤ 𝑑𝑖𝑔_𝑖𝑛𝑓𝑟𝑎 ≤ 𝛾2) + 𝜃3𝑑𝑖𝑔_𝑒𝑐𝑜𝑛𝑖𝑡 ∗319 

𝐼(𝑑𝑖𝑔_𝑖𝑛𝑓𝑟𝑎 > 𝛾2)  + 𝜀𝑖𝑡       (2) 320 

 321 

 Equation (2) represents a double-threshold panel regression model, where dig_econ denotes the 322 

digital economy development level, and dig_infra serves as the threshold variable in the study, with 323 

the threshold number determined through estimation. In the equation, i represents the city number, t 324 

denotes the year, and α is the constant term. 𝛽𝑛 represent the coefficients of the control variables, 325 

while 𝜃𝑛 denote the regression coefficients of the core dependent variable dig_econ. Finally, ε is 326 

the error term. 327 

 328 

4.3.2 Spatial econometric model 329 

Given that DED exceeds the geographical constraints, its impacts on ICUE might exhibit spatial 330 

spillover effects. To account for this, a spatial econometric model is constructed based on the baseline 331 

regression model. Previous studies have compared the estimation results of the Spatial Durbin model 332 

(SDM), Spatial Auto-regressive model (SAR), and Spatial Error model (SLM), concluding that only 333 

the SDM could provide unbiased estimates and represent the most general form of spatial econometric 334 

modeling (LeSgae &Pace, 2009). Therefore, the study adopts the following SDM model:  335 

 336 

𝐼𝐶𝑈𝐸𝑖𝑡 = 𝛼 + 𝛽 ∑ 𝑋𝑖𝑡
𝑛
𝑖=1 + 𝜌 ∑ 𝑊𝑖𝑗

𝑛
𝑗=1 𝐼𝐶𝑈𝐸𝑗𝑡 + 𝜎 ∑ 𝑊𝑖𝑗

𝑛
𝑗=1 𝑋𝑖𝑡 + 𝜇𝑖 + 𝜏𝑡 + 𝜀𝑖𝑡     (3) 337 
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 338 

In Equation (3), the DED level is selected as the core independent variable, while 𝐼𝐶𝑈𝐸𝑖𝑡 339 

represents the ICUE of city i in year t. The term 𝑋𝑖𝑡 denotes the set of covariates, including both the 340 

core independent variable and control variables. The spatial weigh matrix 𝑊𝑖𝑗 captures the spatial 341 

dependency between city i and city j. In this study, a nested matrix combining economic distance and 342 

geographical distance is used to identify the spatial spillover effects of DED on multi-dimensional 343 

adjacent cities. The term 𝜇𝑖 represents city-fixed effects, 𝜏𝑡 denotes year-fixed effects, 𝜀𝑖𝑡 is the 344 

error term, and 𝜌 is the spatial auto-regressive coefficient. 345 

 346 

4.4 Descriptive statistics 347 

The descriptive statistics for the dependent variable, independent variables, threshold variable, 348 

mechanism variables, instrumental variables and control variables used in the study are listed in Table 349 

3. In order to reduce the heteroscedasticity of the results, natural logarithm transformation is applied 350 

to continuous variables where appropriate. 351 

 352 

Table 3. The descriptive statistics 353 

Type Variable Symbol Sample Mean Std. Dev. Min Max 

Dependent 

variable 

Industrial carbon 

unlocking efficiency 

ICUE 2694 1.014 0.114 0.381 2.899 

Independent 

variable 

Digital economic 

development level 

dig_econ 2740 0.006 0.005 0.001 0.056 

Threshold 

variable 

Digital infrastructure 

level 

dig_infra 2720 0.036 0.035 0.003 0.703 

Mechanism 

variables 

Green patent grants patent 2740 841.341 2356.129 0 34670 

Deviation of industrial 

land price 

lnland_SD 2740 4.393 0.778 1.882 9.963 

Instrumental 

variables 

Frequency of digital 

economy-related 

terms 

IV_word 2660 39.501 24.685 0 188 

Slope IV_pd 2740 10.626 5.567 1.592 27.139 

Interaction term IV 2660 5.505 5.837 0 45.618 

Degree of openness fore_gdp 2740 0.002 0.003 0 0.029 
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Control 

variables 

Population density lnpop_den 2740 5.771 0.901 1.609 7.882 

Industrial structure lnsecond 2740 3.778 0.263 2.368 4.477 

 lnfis_income 2740 6.599 0.331 5.457 7.729 

Innovation potential lnuni_stu 2740 10.669 1.285 5.793 14.161 

Highway transport 

capacity 

lntraffic 2740 8.126 1.111 2.303 12.016 

 354 

Before conducting the baseline regression, the study first conducts a preliminary analysis of the 355 

sample data. Through plotting a scatter diagram of DED level and ICUE, we compare the goodness 356 

of fit between linear and nonlinear regression models. As shown in Figure 2, the quadratic fit 357 

demonstrates a significantly higher goodness of fit than the linear model, indicating that the 358 

relationship between DED and ICUE can be better captured using a quadratic function. The 359 

preliminary result supports the nonlinear hypothesis mentioned above.  360 

 361 

Figure 2. Sample scatter plot of the relationship between the DED level and ICUE 362 

 363 

Additionally, most sample points are concentrated on the left side of the threshold value, 364 

indicating that most sample cities are still in the early stage of DED, where their improvement on 365 

ICUE remains relatively limited.  366 

 367 
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5. Empirical results 368 

5.1 Panel threshold regression results 369 

The study adopts a panel threshold regression model, which can accurately estimate the number 370 

of thresholds and perform statistical significance tests on the threshold variables. The econometric 371 

methods help avoid subjective bias caused by qualitative judgments when determining the quantity 372 

and value of thresholds. According to Equation (2), digital infrastructure level is selected as the 373 

threshold variable. By conducting hypothesis tests for single-threshold, double-threshold and triple-374 

threshold models, the study identifies the optimal number of thresholds for the baseline model. 375 

The test results of threshold effect are shown in Table 4. After 500 bootstrap iterations, it could 376 

be observed that the single-threshold and double-threshold effects are significant at the 5% and 1% 377 

confidence levels, respectively. Therefore, double-threshold model is adopted for more precise 378 

estimation results based on the existing samples. 379 

 380 

Table 4. Test results for the threshold effect of digital infrastructure level 381 

Threshold number F-value P-value 
Bootstrap 

iterations 

1% critical 

value 

5% critical 

value 

10% critical 

value 

Single threshold 6.724** 0.010 500 6.236 2.820 2.196 

Double threshold 5.940*** 0.000 500 3.646 2.252 1.946 

Triple threshold 0.000 0.513 500 0.000 0.000 0.000 

(Notes: *p<0.10, **p<0.05, ***p<0.01.) 382 

 383 

 Table 5 presents the estimated threshold values and their corresponding 95% confidence intervals. 384 

Figure 3 illustrates the likelihood ratio (LR) function curve of the estimated double-threshold model. 385 

The threshold estimates could be obtained at the points (𝛾) where the likelihood ratio statistic (LR) 386 

intersects the 5% significance level line. From the LR plot (Figure 3), it can be observed that the 387 

single-threshold value at 0.034 could reject the null hypothesis, although the F-value for the double-388 

threshold effect is also statistically significant, and the 0.034 threshold value matches the single-389 
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threshold estimate (Table 5). Given these findings, the study adopts the double-threshold model for 390 

exploratory analysis, identifying two threshold values, 0.034 and 0.061, for digital infrastructure level. 391 

 392 

Table 5. Threshold value estimation results 393 

Threshold  

Threshold 

estimator 

95% confidence 

interval 

Single threshold (γ1) 0.034 (0.016, 0.092) 

Double threshold (γ1) 0.061 (0.016, 0.105) 

Double threshold (γ2) 0.034 (0.029, 0.037) 

Triple threshold (γ3) 0.039 (0.037, 0.051) 

 394 

 395 

 396 
(a) First threshold estimator.             (b) Second threshold estimator       397 

Figure 3. Likelihood ratio function diagram of the threshold estimators 398 

 399 

Table 6. Panel threshold model estimation results 400 

Variables Coefficient T-value Prob. Sample quantity 

dig_econ×I(dig_infra≤0.034) -2.427** -2.21 0.027 1782（66.1%） 

dig_econ×I(0.034＜dig_infra≤0.061) 3.167** 2.01 0.045 870（32.3%） 

dig_econ×I(dig_infra＞0.061) 0.339 0.50 0.616 42（1.6%） 

fore_gdp 0.128 0.10 0.917  

lnpop_den 0.001 0.27 0.789  

lnsecond 0.005 0.39 0.697  

lnfis_income -0.019* -1.79 0.073  

lnuni_stu 0.0002* 1.75 0.080  

lntraffic 0.0038 1.19 0.233  

_cons 1.084*** 13.15 0.000  

F-statistics 2.21**  0.019  

Adjusted-R2 0.0249      

(Notes: *p<0.10, **p<0.05, ***p<0.01.) 401 

 402 

 Table 6 presents the panel regression results of the double-threshold model. The regression 403 
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coefficients of the core independent variable (dig_econ) vary across different threshold intervals, 404 

exhibiting a nonlinear relationship with the ICUE. Based on the estimated thresholds, the study 405 

classifies the digital infrastructure level into three different stages: (1) Expansion phase (Early stage: 406 

dig_infra ≤ 0.034). The relationship between DED and ICUE is significantly negative (θ=-2.427，407 

p=0.027), indicating that in the expansion stage of DED, the expansion of energy-intensive digital 408 

infrastructure offsets the carbon reduction of technological innovation and industrial restructuring. 409 

This phenomenon confirms the Jevons Paradox, which assumes that efficiency improvement leads to 410 

increased overall energy consumption. (2) Maturity phase (Mid-stage: 0.034 ≤ dig_infra ≤ 0.061). 411 

The relationship becomes significantly positive (θ=3.167，p=0.045). At this stage, the optimization 412 

effect of DED dominates, since digital innovation and institutional improvements play a key role in 413 

promoting ICUE. (3) Equilibrium phase (Final stage: dig_infra ＞0.061). The relationship remains 414 

positive but statistically insignificant (θ=0.339，p=0.616). It demonstrates that with the deep 415 

integration of new generation information technology and the real economy, a dynamic equilibrium 416 

between DED and ICUE has been realized. These empirical findings are consistent with the 417 

theoretical predictions of Xu et al. (2024). 418 

 Furthermore, the comparative analysis of regression coefficients for different stages and sample 419 

distributions reveals important findings. During the maturity stage, a 10% increase in DED level 420 

promotes the ICUE by 31.67%, significantly exceeding the rebound effect of -24.27% observed in 421 

the expansion stage. This indicates that as digital infrastructure reaches a certain scale, its role in 422 

promoting ICUE through agglomeration effects becomes increasingly prominent. Overall, the 423 

positive impact of DED om improving ICUE outweighs the initial carbon lock-in effect observed in 424 

the early stages. Additionally, the examination of sample distribution at different stages shows that 425 

66.1% of the samples remain in the expansion stage, while 32.3% have entered the maturity stage, 426 
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achieving the efficiency improvement of carbon unlocking driven by digital transformation. Only 1.6% 427 

of the samples belong to the equilibrium stage, with DED and industrial carbon unlocking reaching a 428 

dynamic balance.  429 

Given this distribution, the study mainly focuses on the initial two stages of DED, with a 430 

particular emphasis on analyzing the U-shaped relationship between DED and ICUE at city level. 431 

 432 

5.2 Instrumental variable regression 433 

The study adopts a composite instrumental variable (IV) for the variable DED level, which is 434 

constructed as the interaction term between the frequency of digital economy-related words in 435 

government work reports and the reciprocal of local average slope. Within the 2SLS estimation 436 

framework, this method allows for a more robust evaluation of the relationship between DED and 437 

ICUE, addressing potential endogeneity issues caused by reverse causality and omitted variable bias. 438 

 439 

Table 7. The relationship between DED and ICUE: IV estimation 440 

Variable 

Expansion phase (dig_infra≤0.034) Maturity phase (dig_infra＞0.034) 

First stage: dig_econ Second stage: ICUE First stage: dig_econ Second stage: ICUE 

(1) (2) (3) (4) 

IV 0.0001***  0.0001***  

 (7.35)  (4.77)  

dig_econ  -2.917***  3.839* 

  (-2.61)  (1.68) 

fore_gdp 0.099*** 1.342 0.309*** -4.079 

 (4.60) (1.19) (4.01) (-1.50) 

lnpop_den -0.0004*** -0.0063 -0.0009*** -0.0013 

 (-4.88) (-1.34) (-3.34) (-0.16) 

lnsecond 0.0025*** 0.301 0.0011 -0.0089 

 (11.80) (1.47) (1.39) (-0.40) 

lnfis_income 0.0006*** -0.0084 0.0044*** -0.0395 

 (3.52) (-0.95) (6.72) (-1.29) 

lnuni_stu -0.000018 0.0019 0.0006*** -0.0092 

 (-0.32) (0.69) (3.09) (-1.60) 

lntraffic 0.0004*** 0.0033 0.0009*** -0.0079 

 (6.21) (0.76) (5.17) (-1.04) 
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_cons -0.0094*** 0.954*** -0.044*** 1.440*** 

 (-6.47) (10.38) (-8.77) (5.08) 

City FE YES YES YES YES 

Year FE  YES YES YES YES 

Observations  1782 1782 870 870 

R2  0.3468  0.7380 

Kleibergen-

Paap rk Wald F 

statistic 53.984  22.734  

(Notes: *p<0.10, **p<0.05, ***p<0.01. values in parentheses are T-statistics) 441 

 442 

 It can be observed that columns (1) and (2) of Table 7 present the IV estimation results for the 443 

expansion phase, while columns (3) and (4) report the results for the maturity phase. Firstly, the first-444 

stage regression analysis of IV estimation shows that, regardless of whether the dig_infra is on the 445 

left or right side of the threshold, the IV is significantly and positively correlated with DED level at 446 

a 1% confidence level. The Kleibergen-Paap rk Wald F-values of the first stage regression are 53.984 447 

and 22.734, both far above the critical threshold of 10, indicating that the IV is strongly relevant and 448 

alleviating weak instrument concerns. Secondly, the second-stage regression results of the IV 449 

estimation reveal that the impact of DED on ICUE is consistent with the baseline regression results 450 

reported in Table 6 in terms of both coefficient direction and significance level, further verifying the 451 

U-shaped relationship between DED and ICUE. However, in terms of absolute coefficient values, the 452 

IV estimation results exhibit a certain degree of inflation, indicating that potential endogeneity issues 453 

lead to partial underestimation of estimated effects in the baseline regression.  454 

In summary, Hypothesis 1 has been quantitatively validated through panel threshold regression 455 

and causal inference analysis using segmented IV approach. 456 

 457 

5.3 Spatial spillover effect and tunnel model analysis  458 

Spatial Durbin Model (SDM) is adopted to explore the spatial spillover effect of DED on ICUE. 459 
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Since the DED relies on internet, block-chain, big data and other technological industries, it possesses 460 

a “tunnel model” advantage that transcends geographical distance. Therefore, the study adopts a 461 

composite nested matrix of economic distance and geographical distance as the spatial weight matrix. 462 

The detailed analysis results are shown in Table 8. 463 

 464 

Table 8. The relationship between DED and ICUE: SDM analysis 465 

Variable Main W*X LR_Direct LR_Indirect 

dig_econ -0.620 0.980* -0.614 0.721* 

(-0.63) (1.64) (-0.63) (1.67) 

fore_gdp -0.109 4.022 -0.269 4.713 

(-0.07) (0.36) (-0.20) (0.39) 

lnpop_den -0.065 0.171 -0.059 0.140 

(-0.78) (0.29) (-0.64) (0.20) 

lnsecond 0.027 0.018 0.029 0.032 

(1.06) (0.17) (1.06) (0.25) 

lnfis_income -0.009 -0.098 -0.013 -0.103 

(-0.60) (-1.52) (-0.67) (-1.35) 

lnuni_stu -0.015 0.062 -0.015 0.074 

(-1.38) (0.67) (-1.39) (0.66) 

lntraffic 0.011* -0.007 0.011* -0.006 

(1.88) (-0.41) (1.93) (-0.31) 

ρ (W×ICUE) 0.115***  Variance 

sigma2_e 

0.012*** 

(3.79)  (37.01) 

City FE YES YES YES YES 

Year FE YES YES YES YES 

Observations 2740 2740 2740 2740 

(Notes: *p<0.10, **p<0.05, ***p<0.01. values in parentheses are T-statistics) 466 

 467 

 Several key findings can be concluded from the estimation results in Table 8. Firstly, the spatial 468 

autoregressive coefficient ρ (W×ICUE) is significantly positive at the 1% level, indicating that ICUE 469 

has a strong positive spillover effect at city level. It validates the appropriateness of adopting spatial 470 

econometric model to estimate the spillover effects of DED. Secondly, the two indicators reflecting 471 

the local impact of DED on ICUE (Main and LR_Direct) are both statistically insignificant. It 472 

indicates that without considering spatial spillover effects, the direct impact of DED on ICUE is not 473 

significant, which is consistent with the nonlinear relationship assumed in the study above. Finally, 474 
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to accurately estimate the spatial spillover effect of DED, in addition to checking the spillover effect 475 

coefficient W*X in the SDM, it is also necessary to decompose the influence of the independent 476 

variables. The indirect effect coefficient (LR_Indirect) further quantifies the spatial effect of DED. 477 

The results indicate that both mutually verified spatial spillover effect coefficients are significantly 478 

positive at the 10% level. Specially, a 10% increase of local DED level contributes to 7.2% 479 

improvement of ICUE in surrounding areas. The effect is mainly caused by the functional borrowing 480 

of digital infrastructure from neighboring regions. Through trickle-down effect and learning-sharing 481 

mechanism, the DED generates positive externalities while mitigating the negative externalities of 482 

digital infrastructure construction. At the same time, inter-governmental competition tends to be 483 

rational, with no obvious “race-to-top” effect observed. 484 

 From the magnitude of the coefficients, the spatial spillover effect is noticeably lower than the 485 

optimization effect of DED on ICUE in the maturity phase, indicating that the spatial spillover effect 486 

has a certain temporal lag. This finding is consistent with the remaining literature (Li &Wang, 2022), 487 

thus quantitatively verifying Hypothesis 2. 488 

 In practice, China has initiated the construction of eight national computing center nodes and 489 

planned ten national data center clusters, forming the foundation of a nationwide integrated big data 490 

center system. The initiative, known as the “Eastern data, Western computing” project, promotes a 491 

“tunnel-type” development model that bridges spatial non-adjacent regions, thereby facilitating 492 

regional coordination (Bell &Oliver, 2022). On one hand, the project systematically shifts the high-493 

intensity computing demand from the eastern region to the western region, promoting cross-regional 494 

data flow and alleviating energy constraints in the east, while simultaneously opening up new 495 

development pathway for the west. On the other hand, by leveraging the functional borrowing of 496 

digital infrastructure in computing center cities, the project promotes the diffusion of positive 497 
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externalities in multi-dimensional adjacent areas, preventing the occurrence of the “Jevons Paradox” 498 

in the early stage of DED. A typical case is the establishment of the National Big Data Science and 499 

Technology Innovation City in Guiyang, which has significantly contributed to the high-quality 500 

economic development with digital technology.  501 

 502 

5.4 The mechanism analysis of carbon unlocking 503 

According to Hypothesis 3, the study adopts mediation effect analysis to quantitatively verify the 504 

mechanism of digital economy driving industrial carbon unlocking. The mechanisms can be measured 505 

from three perspectives: digital infrastructure construction, governmental industrial regulation and 506 

corporate green innovation. Table 9 shows the mechanism analysis of how DED weakens ICUE 507 

during the expansion phase, while Table 10 shows the mechanism of how DED promotes ICUE 508 

during the maturity phase. Specially, columns (1) and (2) demonstrate the role of governmental 509 

industrial regulation, columns (3) and (4) examine the role of corporate green innovation, and 510 

columns (5) and (6) explore the impact of digital infrastructure construction. 511 

 512 

Table 9. The mechanism analysis in the stage of expansion phase 513 

Variable 

lnland_SD ICUE patent ICUE dig_infra ICUE 

(1) (2) (3) (4) (5) (6) 

dig_econ 0.026  138.801***  0.116***  

 (0.53)  (4.88)  (2.61)  

lnland_SD  0.0029     

  (0.62)     

patent    -1.16×10-6   

    (-0.16)   

dig_infra      -0.847*** 

      (-2.87) 

fore_gdp -2.137 1.054 -1072.297 1.028 0.112** 1.106 

 (-0.31) (0.84) (-0.26) (0.81) (2.11) (0.73) 

lnpop_den 0.054 -0.0024 89.317*** -0.0022 -0.0003 0.0009 

 (1.40) (-0.52) (3.56) (-0.48) (-1.18) (0.17) 

lnsecond -0.081 0.188 -103.721** 0.019 -0.003*** 0.025 

 (-1.04) (1.45) (-2.24) (1.43) (-4.89) (1.54) 
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lnfis_income -0.115** -0.0136 -51.592 -0.0139 -0.0008* -0.016 

 (-2.00) (-1.32) (-1.50) (-1.34) (-1.86) (-1.34) 

lnuni_stu 0.105*** 0.0011 133.637*** 0.0017 0.0021*** 0.0012 

 (3.97) (0.31) (8.03) (0.43) (12.00) (0.30) 

lntraffic -0.049*** 0.0015 -16.205 0.0014 -0.0028*** -0.0016 

 (-2.69) (0.45) (-1.46) (0.42) (-19.26) (-0.39) 

_cons 4.301*** 0.999*** -753.036** 1.008*** 0.042*** 1.044*** 

 (7.66) (11.05) (-2.18) (11.21) (10.30) (9.95) 

City FE YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES 

Observations 1842 1817 1842 1817 1842 1799 

R2 0.0719 0.0042 0.2557 0.0074 0.3645 0.0543 

(Notes: *p<0.10, **p<0.05, ***p<0.01. values in parentheses are T-statistics) 514 

 515 

 Table 9 shows that when DED is in the expansion phase, the mechanism variables, industrial 516 

land price deviation (lnland_SD) and the number of corporate green patent grants (patent), cannot 517 

form a complete causal chain. It indicates that in the early stage of DED, the “techno-institutional” 518 

framework does not effectively promote industrial carbon unlocking. Instead, a rebound effect 519 

emerges due to large-scale digital infrastructure construction. Specially, DED significantly enhances 520 

digital infrastructure construction (β=0.116，T=2.61), which in turn significantly weakens local ICUE 521 

(β=-0.847，T=-2.87). 522 

 523 

Table 10. The mechanism analysis in the stage of maturity phase 524 

Variable 

lnland_SD ICUE patent ICUE dig_infra ICUE 

(1) (2) (3) (4) (5) (6) 

dig_econ 0.349***  2009.955***  1.666***  

 (5.40)  (7.92)  (6.02)  

lnland_SD  0.014**     

  (2.16)     

patent    6.26×10-6*   

    (1.86)   

dig_infra      0.069 

      (0.70) 

fore_gdp -8.871 -0.716 -44689.32 0.237 -1.489*** -1.177 

 (-0.96) (-0.37) (-1.22) (0.07) (-2.25) (-0.60) 

lnpop_den 0.310*** -0.0002 691.536*** -0.223 0.0104*** 0.0049 

 (5.80) (-0.02) (4.34) (-1.32) (4.83) (0.74) 

lnsecond -0.364*** 0.008 -2327.959*** 0.0012 -0.022*** 0.0026 

 (-3.08) (0.41) (-5.75) (0.02) (-3.36) (0.12) 
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lnfis_income 0.210** -0.0067 2174.783*** -0.057 0.0252*** 0.0006 

 (2.10) (-0.41) (6.25) (-1.14) (4.51) (0.04) 

lnuni_stu 0.191*** -0.0059 378.801*** -0.061 0.0017 -0.0056 

 (5.13) (-1.27) (3.31) (-1.35) (1.08) (-1.18) 

lntraffic -0.069*** 0.0012 363.097*** 0.016 -0.0075*** 0.0026 

 (-3.15) (0.27) (4.33) (1.13) (-5.15) (0.52) 

_cons 1.160 1.039*** -15565.51*** 3.305*** -0.055 1.054*** 

 (1.39) (8.20) (-5.60) (2.87) (-1.16) (6.71) 

City FE YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES 

Observations 898 877 898 877 878 857 

R2 0.3569 0.0608 0.4117 0.0293 0.1926 0.0191 

(Notes: *p<0.10, **p<0.05, ***p<0.01. values in parentheses are T-statistics) 525 

 526 

 Table 10 shows that when DED reaches the maturity stage, the industrial carbon unlocking 527 

pathway under the “techno-institutional” framework holds a dominant position. From an institutional 528 

perspective, DED significantly prompts local governments to strengthen industrial regulation 529 

(β=0.349，T=5.40), which in turn significantly increases ICUE (β=0.014，T=2.16). And the regulation 530 

instruments such as resource input, punitive measures for non-compliance and reward incentives 531 

could all influence the green performance (Lei et al., 2024). From a technological perspective, DED 532 

significantly enhances the green technological innovation capability of local enterprises (β=2009.955，533 

T=7.92), which also significantly improves local ICUE (β=6.26×10-6，T=1.86). Related literature has 534 

concluded the micro-mechanisms of technological pathway as knowledge spillover, reputation 535 

incentive and supervisory innovation (Lei and Xu, 2025). However, the mediating effect of digital 536 

infrastructure construction is not significant. It indicates that as DED enters the maturity stage, new 537 

infrastructure construction sheds its traditional “carbon-intensive” characteristics and breaks the 538 

“Jevons paradox”. Thus, the mechanism of industrial carbon unlocking driven by the DED, as 539 

proposed in Hypothesis 3, is quantitatively validated.  540 

 541 

 542 
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6. Further analysis: Exploration of optimization directions based on machine learning 543 

Policy learning model is adopted to estimate the marginal benefits of top-down promotion of DED 544 

(such as the National big data comprehensive pilot zone policy) on industrial carbon unlocking under 545 

resource constraints (Athey &Wager, 2021). Additionally, it ranks cities based on their potential for 546 

ICUE improvement and provides decision-making references for optimizing pilot policy 547 

implementation. Specially, following the principle of maximizing ICUE, the policy learning model 548 

combines both existing observational data and policy shocks. By training city-specific response 549 

functions under budget constraints, the model ranks cities based on their potential for improving 550 

ICUE. The heterogeneous impacts of DED driving industrial carbon unlocking in different regions 551 

provide a rich dataset for training the policy learning model.  552 

 553 

Figure 4. The ICUE improvement potential distribution driven by DED in Chinese cities 554 

 555 

Figure 4 illustrates the distribution of ICUE improvement potential under the central 556 
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government’s top-down policy support for DED, using the generalized random forest algorithm. The 557 

results indicate that the cities with the greatest improvement potential for industrial carbon unlocking 558 

performance are mainly concentrated along the “Hu Huanyong Line” and in the southeastern coastal 559 

regions of China.  560 

 561 

7. Conclusion and policy implications 562 

7.1 Conclusions 563 

 The study utilizes panel data of 274 Chinese cities from 2013 to 2022 to explore the nonlinear 564 

relationship between DED and ICUE at the city level. In addition, it identifies the mechanisms driving 565 

this process and proposes optimization strategies. The key findings are shown as follows: 566 

(1) The study firstly adopts a panel threshold regression model to identify the nonlinear “U-567 

shaped” relationship between DED and ICUE. The conclusion remains robust after phased 568 

instrumental variable (IV) analysis. The findings indicate that, during the expansion phase of DED, 569 

the construction of digital infrastructure and growth of carbon-intensive industries hinder the 570 

improvements in ICUE, and even leading to a rebound effect for carbon lock-in. However, once it 571 

exceeds the maturity threshold, the positive effects of technological innovation and institutional 572 

regulation gradually become apparent. 573 

(2) Secondly, spatial econometric analysis reveals that DED has a significantly positive spillover 574 

effect on ICUE in multi-dimensional adjacent areas. Unlike its direct impact on local ICUE, DED 575 

exerts positive externalities through the diffusion and sharing of information technology, thereby 576 

enhancing ICUE in adjacent area by trickle-down and knowledge-sharing effects. Meanwhile, the 577 

functional borrowing of cross-regional digital infrastructure can help alleviate the “Jevons paradox” 578 

observed in the early stage of DED, providing empirical support for China’s implementation of the 579 
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“Eastern data, Western computing” strategy. And it can be summarized as the “tunnel model”. 580 

(3) Thirdly, the study finds that after the DED exceeding the maturity threshold, it plays a crucial 581 

role in improving ICUE through both technological and institutional pathways. Specially, the 582 

technological pathway is reflected in the promotion of digital tools, information-based methods and 583 

green technologies, which improve the efficiency of energy utilization and resource allocation. The 584 

institutional pathway can be manifested as regulatory innovation and governance optimization driven 585 

by digital technologies, creating a more favorable institutional environment for industrial carbon 586 

unlocking. 587 

(4) Finally, based on training and simulation using the existing datasets, the study adopts machine 588 

learning technique to identify potential directions for optimizing top-down support for DED. The 589 

empirical results indicate that cities with the highest potential for performance improvement are 590 

mainly located along the “Hu Huanyong Line” and in China’s southeastern coastal regions. Firstly, 591 

cities along the “Hu Huanyong Line” are mostly located in the core regions with energy and resource-592 

intensive industries layouts due to their unique geographical locations and resource endowments, they 593 

own high potential for improving ICUE. Secondly, these cities mostly play the role of crucial strategic 594 

hub of China, and have the potential to maximize positive externalities of DED through large-scale 595 

digital infrastructure construction. Finally, other southeastern coastal cities exhibit high-intensity 596 

economic activity, integral industrial chains and mostly exceeding the maturity stage threshold of 597 

DED. Improving ICUE in these areas could serve as an exemplary role for carbon reduction across 598 

the whole country. 599 

 600 

 601 

 602 
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7.2 Policy implications 603 

 Based on the empirical findings of this study, the following policy implications are proposed: 604 

(1) Accelerating digital economy development and seizing the opportunity window for 605 

industrial carbon unlocking. The central government should strengthen support for cities 606 

developing the digital economy, especially by providing policy incentives for the digital 607 

transformation of small and medium-sized enterprises, digital infrastructure construction and digital 608 

talent cultivation. Policymakers should seize the opportunity window for industrial carbon unlocking 609 

in high-potential cities, especially cities along the “Hu Huanyong line” and southeastern coastal cities, 610 

by coordinating the city demands, technological capabilities and policy support, these cities could 611 

maximize the performance of industrial carbon unlocking driven by the digital economy, while 612 

amplifying its positive spillover effects, such as their resource endowment, geographical connectivity 613 

and demonstration role, 614 

(2) Promoting regional coordination for digital economy development to maximize spillover 615 

effects. A coordinated development strategy for the digital economy should be formulated to 616 

strengthen inter-regional information sharing, technological exchange and policy alignment. In 617 

practice, priority should be given to strengthening the inter-connectivity of digital infrastructure to 618 

facilitate functional borrowing across regions. Additionally, cross-regional industrial policies and 619 

subsidies support should be implemented to promote effective linkages among digitization 620 

transformation enterprises, ultimately establishing a well-balanced, market-oriented digital economy 621 

ecosystem on a national scale. 622 

(3) Strengthening technological innovation and institutional reform to promote industrial 623 

carbon unlocking. Policymakers should prioritize incentives for digital technology innovation, 624 

particularly in the development and application of green and low-carbon technologies. Digital 625 
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technology identification and hedging policies should be promoted in the early stage to reduce the 626 

adverse environmental effects caused by digital technology exploration (Xin et al., 2023a). At the 627 

same time, institutional framework supporting digital economic growth should be refined, 628 

incorporating both command-and-control policies (e.g., differentiated industrial land allocation 629 

policies) and market-based mechanisms (e.g., carbon emission trading systems). Establishing a 630 

comprehensive and conducive regulatory environment will ensure the effective industrial carbon 631 

unlocking. 632 
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