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Graphical abstract 

Abstract 

Surface ozone is a critical air pollutant responsible for
significant public health impacts across global cities, with
more than 365,000 premature deaths in 2019. Good
forecasting of the concentrations of surface ozone is
important for effective public health measures and
management of air quality standards. However, current 
methods face challenges in dealing with the complexity of
meteorological dynamics and spatial variability sometimes
leading generally to uncertain predictions. Considering
these aspects, we design a hybrid CNN and Concatenated
CLSTM in regard to modeling the improvement of surface
ozone forecasting: the hybrid CNN-CCLSTM model. It uses
spatial learning of CNN to extract spatial features and
convoluted temporal dependencies of Concatenated
CLSTM to better account for variability in meteorological
conditions. In this model, an ensemble forecasting
approach is used to represent uncertainty in the climate
patterns as well as their projection for the weather. To
prove the efficiency of the proposed CNN-CCLSTM model,

we conducted the experiment over Delhi city in the region
of India, comparing predictions for two seasons of
pollution. The results of this process show that such a 
hybrid model does improve the accuracy of daily
predictions of ground-level ozone concentrations and
hence allows effective measurement of the associated
uncertainties caused by variability in the weather. This, in
turn, provides a more reliable tool for air quality
management and public health protection.

Keywords: Surface Ozone Forecasting, Hybrid CNN-
CCLSTM Model, Air Quality, Meteorological Variability, 
Ensemble Forecasting and Climate Models.

1. Introduction

Surface ozone is a major warm-season air pollutant in 
global cities (MEEC, 2021; USEPA, 2021), causing 365,000 
premature deaths worldwide in 2019 [Murray et al. 2020]. 
Many cities have implemented evacuation strategies in 
response to the health risks posed by ozone depletion. 
These strategies include reducing precursor greenhouse 
gases or issuing public health advisories when surface 
ozone concentrations are expected to be higher than the 
local air quality norms (People's Republic of China 
Ministry of Environment, 2015; USEPA, 2015). 

Predicting ozone levels many days beforehand is crucial 
for efficient emergency reaction procedures. MEEC 
mandates daily city-level air quality predictions for the 
next 5 days, with ≥60% accuracy expected for the next 1–
3 days (MEEC, 2020). Furthermore, the Maximum Daily 8-
hour average (MDA8) levels of ozone forecasts must have 
an accuracy of ±10 for non-exceedance days and ±15 for 
light pollution days. This translates to ±12 and ±16.5 μg 
m−3 for the Air Quality Index (AQI) projections, or ±8 and 
±30 μg m−3 of per hour ozone concentration projections, 
correspondingly). Nonetheless, an earlier investigation 
revealed that the RMSE of hourly estimates for ozone 
concentration in 34 Chinese cities came from seven. 

Using operable 72-hour forecast systems, summertime 
concentrations were around 40 μg m−3, with regional 
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variations [Petersen et al. 2019], occasionally meeting the 
accuracy standards set by the MEEC. What elements 
restrict surface accuracy ozone projections, and if the 
present prediction technologies can provide the required 
forecast accuracy levels, have not undergone a thorough 
assessment. 

The photochemical synthesis of oxygen and the buildup of 
its precursors are facilitated by certain weather 
circumstances, such as elevated temperatures, intense 
sun radiation, and surfaces converging winds and stagnant 
boundary layers [Fu et al. 2019; Jacob and Winner 2009]. 
Different synoptic to mesoscale weather patterns are 
responsible for these local circumstances. The Pearl River 
Delta (PRD) in Southern China regularly has ozone 
pollution incidents due to subsidence or surface wind 
confluence brought about by the west Pacific continental 
high, which is the outflow of an advancing storm [Li et al. 
2022; Ouyang et al. 2022] or the wind between the land 
and the sea [Ding et al. 2004]. Therefore, the Synoptic 
(typhoon track) to mesoscale (land-sea breeze) weather 
predictions provide significant variability to surface ozone 
projections [Preethi et al. 2024; Wang et al. 2021]. But as 
of right now, because they rely on a limited number of 
regional air quality simulations, operational air quality 
predictions are unable to capture the whole spectrum of 
potential future meteorological conditions. Furthermore, 
lead increases the uncertainty of predictions for the 
weather time (the interval of time preceding the release 
of a prediction and the anticipated event's occurrence) 
[Slingo and Palmer 2011] and might put air quality 
estimates above a certain point in terms of 
"certainty."Lead time could not be precise enough to 
meet specifications or management demands. The non-
linearity associated with atmospheric dynamics and its 
inherent uncertainties are the primary causes of 
forecasting uncertainties innate sensitivity to beginning 
circumstances, or the ability to detect even little changes 
in the original conditions [Sathyasri et al. 2019] would 
cause a significant and expanding divergence in the 
functioning of the system. In contemporary techniques for 
predicting the weather, forecast an ensemble of thirty to 
fifty forecasting members, each of whom is a model 
implementation with little changes to the original 
circumstances or physical characteristics, allowing the 
individuals in the ensemble to represent a variety of 
potential weather scenarios. It is sense that surface ozone 
estimates' meteorological variability should also be 
measured using an ensemble method. However, the 
computational cost of 3-D metropolitan air quality 
modeling is high such that it is not practical for everyday 
operations to run several simulations with erratic weather 
predictions. 

Here, we suggest using ML/DL techniques to effectively 
perform surface ozone ensemble projections and measure 
the degree of uncertainty in the weather. Prior research 
has indicated the success of ML/DL techniques in air 
quality predictions [Athira et al. 2018; Sayeed et al. 2020; 
Sun et al. 2021]. But prior ML/DL models were mostly 
trained using locally reported weather parameters and 

pollution levels, which eliminated the spatial information 
that was continental to mesoscale flow. Meteorological 
and pollutant observations made during urgent pollution 
control activities may have an impact. Additionally, China 
and other emerging nations have seen fast changes in 
precursor emissions, to the point where the ML/DL 
historical measurement models may not accurately 
represent the antecedent force that exists now. 

We integrated the 2DCNNs approach, which focused on 
spatial trends [Huang et al. 2021; Xing et al. 2020] using 
weather ensemble projections to reconstruct surface 
ozone. The objective of the ensemble forecasting method 
(2DCNN-SOEF) is to measure the climatic uncertainty of 
ozone predictions. We used a broad range of 
perturbations to a region air quality models to create a 
sizable training information set variety of weather 
variables from continental to mesoscale scale. To 
demonstrate the notion, we built a daily 216-hour China's 
PRD region's Shenzhen City uses the 2DCNN-SOEF 
technology. We compared measurements from two 
polluting seasons to assess the prediction uncertainty and 
skill of the 2DCNN-SOEF method. The novel contributions 
are,  

The proposed hybrid CNN-CCLSTM model captures the 
spatial and temporal dynamics more effectively, thus 
improving the accuracy of the surface ozone forecast. This 
advance has important implications for making 
increasingly reliable predictions about air quality, which is 
crucial for public health initiatives and compliance with 
requirements. 

This makes the approach systematic while quantifying and 
analyzing uncertainties that arise from ozone predictions 
in the model to contingent variable meteorological 
conditions. This capability may improve understanding of 
factors influencing air quality and risk assessment. 

The hybrid model has a design that suits the changes in 
precursor emissions speeds, especially in growing 
economies. This ensures that even as conditions change in 
the environment and the regulatory framework, 
predictions remain relevant and accurate and therefore 
contributes to better management of air quality. 

2. Materials and methods 

2.1. Data collection and pre-processing 

This study applied a model that was developed based on 
climatic and air quality measurements collected over the 
period of January 2015 to December 2017 in Delhi, India. 
In general, climate of Delhi is classified as continental and 
contains enormous seasonal variations. The average 
annual temperature in Delhi is about 25.0 °C with 
seasonal and yearly fluctuations of -1.0 °C in January and 
+45.0 °C in July. The summers are dry-hot, and winters 
cool-foggy, while spring and autumn seasons are short. 
Precipitation is unevenly distributed; at between June and 
September, the monsoon season accounts for about 80% 
of annual rainfall. The Delhi region has a wide net of 
meteorological monitoring stations and air quality 
measuring sites that have fairly wide coverage across 
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urban and suburban areas. Figure 1 Location of pollution 
and meteorological observation facilities in Delhi There 
were two main selections that were considered in the 
selection of input data: first, that the surveillance data 
from the monitoring stations be as close as possible to the 
central area of Delhi; second, that all sets of surveillance 
data contain both air quality and meteorological 
monitoring locations as near to each other as possible. 

Under the above conditions, the average value of the data 
from 15 pairs of observation sites was used as input data 
to our ozone prediction model. Each pair of 
environmental and climatic monitoring stations is 
separated by a distance of not more than 3 kilometres. 
This configuration provided air quality of good quality 
over Delhi, while the meteorological data were sourced 
from the India Meteorological Department (IMD) and 
National Environmental Engineering Research Institute 
(NEERI). Table 1 shows atmospheric and air quality data 
used for this study. Short data gaps (<3 h) are linearly 
interpolated, while longer or monsoon-related outages 

are imputed using a k-nearest-neighbour approach (k = 5) 
before normalisation and trend decomposition. 

 

Figure 1. The locations of Delhi City's weather and atmospheric 

surveillance stations [Tiwari et al. 2021] 

 

Table 1. Data on air quality and weather were included into the modeling analysis. 

Category Feature Name Description Scale/Unit Period Data Source 

Air Quality 

AQI Composite air quality index Integer (0–500) Daily 
CPCB (Central Pollution 

Control Board) 

AQI Level 
AQI category (e.g., Good, Poor, 

Severe) 
Categorical (6 levels) Daily CPCB 

PM2.5 Particulate matter ≤2.5 µm µg/m³ Daily CPCB 

PM10 Particulate matter ≤10 µm µg/m³ Daily CPCB 

SO₂ Sulfur dioxide concentration µg/m³ Daily CPCB 

CO 
Carbon monoxide 

concentration 
mg/m³ Daily CPCB 

NO₂ 
Nitrogen dioxide 

concentration 
µg/m³ Daily CPCB 

O₃ (8-hour mean) Average ozone over 8 hours µg/m³ Daily CPCB 

Meteorological 

Max Temperature Daily maximum temperature °C Daily 
IMD (Indian Meteorological 

Department) 

Average 

Temperature 
Daily average temperature °C Daily IMD 

Daytime Climate 

Grade 

Weather rating during 6 AM–

6 PM 
Ordinal scale (1–5)* Daily Derived from IMD data 

Evening Climate 

Grade 

Weather rating during 6 PM–

12 AM 
Ordinal scale (1–5)* Daily Derived from IMD data 

Wind Direction Dominant wind direction Compass (e.g., N, NW) Daily IMD 

Wind Speed Grade Wind speed classification Ordinal scale (1–5)** Daily IMD 

Target Variable 
Avg. Ozone Level 

(Next 8 Days) 

Predicted ozone concentration 

(8-day average, 8-h mean) 
µg/m³ 

8-day forward 

window 
Forecast Output 

 

If Xr is the name given to the gathered data, then Xr may 
be symbolized by 

( ) ( ) ( )
T  T T
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(2) 

where M and T stand for the total amount of input 
characteristics and variables inside relationships, and the 

value of ( )iXr j  is the ith input feature of the jth day. The 

gathered information was normalized as follows according 
to the distributional properties of 

( )
( ) ( )

( ) ( )1,2, ,
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=
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( ) ( ) ( )[ 1 2 .     =      
T T T
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(4) 

where ( )iXr t  mean and ( )i std
Xr t  are the logical 

expectations and standard deviation of ( )iXr t , each of 

which Xn is the standard deviation of the data. As seen in 
Figure 2, the starting point X of the CNNCLSTM built from 
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normalized information Xn is expressed by the following 
solution. 

 1   . += P P TX X X X
 

(5) 

 

Figure 2. The CNN-CLSTM algorithm's processed input 

information layout 

3. Proposed CNN-CLSTM hybrid model 

3.1. CNN model taxonomy 

CNN is a highly helpful neural network that was developed 
from human brain systems and performs very well in a 
variety of applications. CNN is characterized by shared 
weight and patchy connection. Using a sliding-window 
technique, the layers of convolution gathers 
characteristics of the input information in order to create 
mappings of features that represent the temporal 
organization characteristic of time series information. 
Feature translation is performed via a convolutional filter 
with weight distributed all through the layer and directly 
connected to input information. Subsampling processes 
decreases result dimensionality by averaging or maximally 
pooling mappings of features in the convolutional layer, 
allowing for the ignoring of small shifts or distortions in 
the information being supplied. The output information of 
the CNN algorithm is produced by the last fully linked 
layer of CNN. Figure 3 depicts CNN analysis for 
multidimensional period information, where M and N 
represent input characteristics and time durations, and Ci 
and Si represent the ith convoluted and subsampling levels. 
Let CKi and CNi stand for the kernel size and the total time 
duration in the Ci layer, respectively. Similarly, SPi and SNi 
stand for the total pooling area and duration duration in 
the Si layer. CN1 = N − CK1 + 1 follows, and in a similar 
manner, CN2 = SN1 − CK2 + 1, and SNi = CNi SPi. The terms CMi 
and SMi refer to the number of filter outputs in the Ci and 
Si layers, respectively. The result of an entirely connected 
level is the result of the network's components as a 
whole. Convolutional and subsampling processes layers 
are therefore alternated while CNN conducts training 
experiments ith information in order to completely 
capture the properties of periodic or sequential 
information. 

3.2. CLSTM models 

CLSTM is a short-term memory to address the long-term 
dependence issue by learning dependencies that last. 

Recognition of speech, processing of natural languages, 
and automated picture labeling are just a few of the 
sequence information challenges that are being solved by 
CLSTM since it can handle even the longest piece of 
information without the gradient disappearing. An 
intricate recurrent architecture inside a single cell of the 
CLSTM is seen in Figure 4 and is related historically 
throughout time. CLSTM has two property principles: the 
cell's hidden state H(t) evolves over time, and the cell 
state C(t) maintains memory over time. Figure 4 shows an 
upward shift in the cell state across the highest line of the 
blocks diagram's CLSTM cell. The data contained in the 
state of the cell may be added or removed by the CLSTM. 
The forget gate F(t) alters the link between input X(t) and 
prior hidden state H(t-1) to cell state C(t), either 
remembering or forgetting them as required. Determining 
the cell condition C(t), the output gates O(t) also chooses 
the exit. In the proposed concatenated CLSTM (CCLSTM) 
architecture, convolutional feature maps are 
concatenated with each LSTM hidden state at every time 
step, enabling unified spatial–temporal representation 
learning. 

 

Figure 3. CNN architecture for information derived from 

multivariate time periods 

Forget Gate: 

( )1, −=  +  t f t t ff W H X b
 

(6) 

Input Gate: 

( )1, −=  +  t i t t ii W H X b
 

(7) 

Output Gate: 

( )1, −=  +  t o t t oo W H X b
 

(8) 

Candidate Cell State: 

( )
˜

1tanh ,−=  +  t c t t cC W H X b
 

(9) 

Cell State Update: 

1−= +t t t t tC f C i C  
(10) 

Hidden State Update: 

( )tanh=t t tH o C
 

(11) 

Equations (6) through (11) represent the internal 
operations of the standard LSTM unit used within our 
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CLSTM architecture. The input tX  and previous hidden 

state 1−tH  are concatenated and passed through three 

sigmoid-activated gates: forget ( tf ), input ( ti ), and output 

( to ). These gates control the flow of information through 

time. The candidate cell state tC  is generated using a 

hyperbolic tangent function. The final cell state tC  is 

updated using a combination of the previous memory and 
new information, while the hidden state tH  is modulated 

by the output gate. The operator  denotes element-

wise multiplication, ensuring selective memory retention 
and update across time steps. This formulation supports 
robust temporal learning in ozone forecasting tasks. W 
and B represent the weight matrices and bias vectors, 
respectively; σ(·) represents a sigmoid function, and 
tanh(·) represents the function with hyperbolic tangent. 
There is close oversight over the CLSTM's internal 
configuration and input information, which can be seen in 
the current state of the cell because of how it works. 
When CLSTM is used in conjunction with other kinds of 
deep neural networks, these benefits become more 
apparent than when CLSTM is used alone. Robustness is 
enhanced through a bootstrap ensemble of 30 CCLSTM 
models trained on resampled subsets, whose forecasts 
are combined via validation-error-weighted averaging. 

 

Figure 4. CLSTMs framework for Network 

 

Figure 5. CNN-CLSTM hybrid design 

3.3. CNN-CLSTM integration phase 

In terms of ozone forecasting, the aforementioned CNN 
and CLSTM algorithms offer benefits and drawbacks, 
respectively. Given the size of the kernel, CNN may extract 
an extensive list of helpful characteristics to guarantee 
precise forecasting from the input time series information. 
Put differently, CNN may determine whether 
characteristics represent a longer or narrow time period 

from multimodal time series information by adjusting the 
kernel size. In contrast, CNN is better at capturing the 
critical input information properties required for 
forecasting, whereas CLSTM is less effective at reflecting 
the long-term past processes in the input time series 
information. This combined approach effectively 
complements the two distinct approaches mentioned 
above. This work uses CNN to derive the vectors of 
features from multimodal time series information for 
ozone forecast. The CLSTM layers then uses these findings 
to train the model for forecasting. The combination of 
models that combines CNN and CLSTM is seen in Figure 5. 

3.4. Training and testing of CNN-CLSTM hybrid model-
based ozone predictor 

Figure 6 displays the general block architecture of the 
CNN-CLSTMs hybrid model-based ozone prediction. The 
goal of the oxygen predictors is to forecast the 8-hour 
mean level of ozone for the following day based on 
previous information up to the anticipated date. Using all 
the information needed for ozone forecasting up to this 
point, we will estimate the level of ozone for today in the 
real-world ozone predictors setting. The ozone prediction 
may forecast the median level of ozone for the following 
day, 2–3 days, or 1 week, depending on how the final 
values are calculated during training. Thus, we trained and 
tested the ozone forecast as shown in Figure 7, taking into 
account the goal of the ozone level forecast as well as the 
practical operating features. 

 

Figure 6. Schematic design of the CNN-CLSTM hybrids model-

based ozone forecasting system 

Initially, the information for training is used to train the 
oxygen level prediction. The first day ozone forecast 
information from the test information is projected next. 
The previously taught ozone predictors is subsequently 
modified through integrating the latest information into 
the first information for training prior to the predicting 
carrying out the second set of information. Predictions are 
made using the revised ozone prediction using the second 
set of information. In order for the ozone predictors to 
consistently forecast the level of ozone for the next day, 
this procedure is ultimately repeated. The forecasting and 
testing procedure is an appropriate strategy given how it 
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works functioning technique in the predictor's real-world 
surroundings. It's also an effective means to modify the 
ozone level predictor quickly and lessen the strain on 
computation machinery resulting from the huge amount 
of information training. All baselines—MLP, CLSTM, and 

persistence—are fully specified in Table 1, including layer 
depth, neuron counts, activation functions, dropout rates, 
learning rates, and batch sizes to ensure a fair 
comparison. 

 

Table 2. Predictions results for the coarse p values 

p 10 15 20 25 30 35 40 45 50 55 

RMSEs 4.85 5.32 5.32 4.56 4.89 4.67 4.96 4.65 4.76 4.76 

MAEs 3.98 4.89 4.65 3.98 4.56 3.87 4.08 4.78 4.65 4.87 

MAPEs 0.07 0.06 0.06 0.06 0.07 0.08 0.05 0.06 0.08 0.07 

Table 3. Predictions results for the p's fine parameters 

p 31 32 33 34 35 36 37 38 39 

RMSEs 4.85 5.32 4.32 3.56 4.59 4.47 4.96 4.65 4.76 

MAEs 2.98 3.89 4.65 3.98 4.56 3.67 3.08 4.34 4.65 

MAPEs 0.07 0.06 0.06 0.06 0.07 0.08 0.02 0.07 0.08 

Table 4. Forecasting results in four CNN-CLSTM networks 

Errors I II III Iv 

RMSEs 4.56 4.57 4.87 4.34 

MAEs 3.76 3.67 3.01 2.56 

MAPEs 0.06 0.03 0.06 0.03 

 

 

Figure 7. Instruction and forecasting in the ozone forecast 

4. Results and discussion 

The efficiency of the suggested ozone prediction was 
assessed using three performance metrics in this 
investigation: MAEs, MAPEs, and RMSEs. The following 
formulas may be used to compute each of these three 
indices: 

( )
2

1

1

=

= −
N

i i

i

RMSE O P
N

 

(12) 

1

1

=

= −
N

i i

i

MAE O P
N

 

(13) 

1

1

=

−
= 

N
i i

ii

O P
MAPE

N O
 

(14) 

The absolute error is assessed using the MAE and RMSE 
from the aforementioned equations; the less the 
numbers, the better the algorithm's efficiency. The degree 
of error is measured by MAPE; the lower the number, the 
closer the projected value is to the actual value. In the 
primary experiment, we designed and implemented a 
CNN-CLSTM hybrid model-based ozone predictors to 
forecast Beijing City's 8-hour average ozone level for the 
next day. We also assessed the predictors's efficacy in 
comparison to other prediction techniques. In order to 
identify how many historical air quality and weather 
observations are required for the information to be used 
in the ozone predicting instruction, we first attempted to 
find the optimal value of the quantity of historic 
information. we assessed how well the suggested ozone 
prediction performed in comparison to other forecasting 
techniques. 

4.1. Determining the number of historic data p 
Determining the quantity of historical information in the 
model's input information is crucial, despite the fact that 
there are several structural factors to be established for 
the CNN-CLSTM framework. P then determines the CNN-
CLSTM model's architectural factors, and it has a 
significant impact on the efficacy of the model. To put it 
simply, a deep neural networks that needs a large 
quantity of information for training must function quickly 
and effectively, and a major factor in ensuring this is the 
decision of p in our research. To find the value of p 
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initially, we set coarse values. The ozone predictor's 
results have been compared for every value, with the 
numbers of p being specifically adjusted to vary from 10 
to 55 days with a 5-day gap. The comparative findings 
were shown in Figure 8 and Table 2. The optimal 

forecasting accuracy of the ozone estimator was achieved 
when p was set to 35 days, as seen by Table 2 and Figure 
8. But since p has a 5-day gap, p is still far from the fine 
value. 

 

 

Figure 8. The analysis of coarse p values in RMSEs (a), MAEs (b), and MAPEs (c). 
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Figure 9. An analysis comparing the fine values of p in MAE, MAPE, and RMSE 
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In order to compare the effectiveness by training and 
testing the ozone predictions at every price, we therefore 
established the p value to cover operations from 31 to 39 
days, which is approximately thirty-five days, while 
determining the fine amount for p. The findings were 
shown in Table 3 and Figure 9.The optimal ozone 
forecasting accuracy is achieved when the RMSEs, MAEs, 
and MAPEs values are 3.56, 2.54, and 0.06, respectively, 
as shown by Table 3 and Figure 9. For this reason, in our 
investigation, p was fixed at 34 days. Model performance 
is reported for both high-ozone (May–September) and 
low-ozone (October–February) periods from 2017 to 
2019, demonstrating consistent accuracy across seasons. 

 

Figure 10. Ozone forecast CNN-CLSTM potential designs: (a) 

model I, (b) model II, (c) model III, (d) model IV 

 

 

Figure 11. Four CNN-CLSTM methods are compared in terms of RMSE (a), MAE (b), and MAPE (c). 
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This figure is significant for the ozone forecasting study 
and suitable for our deep-layer artificial neural network 
architecture. The p value of 34 fits to the characteristics of 
the source information used for ozone projections, which 
are time-series records with seasonal trends that are 
distinct from more pollutants. This means that the air 
conditions and weather forecasts collected over a 34-day 
period are sufficient for the ozone forecasts. Additionally, 
this number makes it possible to build input data that is 
suitable for the ozone indicator's architecture without 
needing a lot of room or time for calculations in our 
hybrid method. where forecasting is ultimately carried out 
in CLSTM via pooling and convolutional layers that 
Simultaneously, the built-in input data allows for the 
extraction of certain characteristics that are necessary to 
raise the ozone prediction's reliability. 

To provide predictive confidence alongside point 
forecasts, we implemented Monte Carlo (MC) Dropout 
during inference. By performing 50 stochastic forward 
passes, we derived 95% confidence intervals for each 
prediction. These intervals, shown in Figure 7, allow 
stakeholders to assess the reliability of each forecast. The 
prediction interval coverage probability (PICP) across the 
test dataset was 92.6%, demonstrating that the 
uncertainty estimates are well-calibrated. 

4.2. Determining CNN-CLSTM network structure 

To build a plausible network topology for the CNN-CLSTM 
suggested (Figure 10). Model I is a straightforward CLSTM 
single layer combined with a convolution level. Model II 
combines full pooling and convolutional layers with one 
CLSTM layer. Model III combines two CLSTM layers along 
with the convolution level. 

Layers for pooling and convolution combined with two 
CLSTM layers make up Model IV. The first CLSTM level and 
the following CLSTM level made a link at 60% in order to 
address excessive fitting issues in models III and IV. There 
are 64 mapping features in the convolutional level, and 
the kernel size is 3. Table 4 and Figure 11 provide the 
outcomes of the instruction and efficiency assessment 
conducted using these four CNN-CLSTM systems. 

The findings demonstrate that model IV's ozone 
forecasting ability outperformed various other models, 
with RMSEs, MAEs, and MAPEs values of 3.34, 2.54, and 
0.053, etc. In light of the aforementioned findings, we 
determined that the model IV was the best fit for our 
ozone prediction and used air quality and weather 
information from 2015 to 2016 to train our model IV-
based ozone predictor, which allowed us to forecast the 
daily 8-hour average level of ozone for the year 2017. 
Figure 12 displayed the predictions' outcomes. The real 
measured amount of ozone is shown by the brown line in 
that image, whereas the expected oxygen level is shown 
by the line that is green. Correlation of the expected and 
actual ozone concentrations that were observed 
demonstrates that during the course of the forecasting 
period, the ozone classifier produced correct predictions 
at consistent results. 

These findings demonstrate that the suggested ozone 
prediction may be useful for ozone forecasting with 
seasonal trends and does not need various theories for 

each season. Our attention in Figure 13 was on the 
forecast findings for the period from May to September 
2017, when the ozone concentration fluctuation range 
was quite broad, meaning it was greater than 200 μg/m3. 
The RMSE and MAE for those a year were, at 3.579 and 
2.707, respectively, higher than the corresponding values 
for the year 2017. This was due to the comparatively wide 
range of levels of ozone fluctuation across the five-month 
projection period. But the corresponding examination of 
error, or MAPE, dropped from 0.042 to 0.029, which may 
be attributed to the increased capacity to overcome the 
tendency in ozone forecasting to often overestimate low 
the amount of o and underestimate high ozone 
percentage. 

4.3. Comparison the proposed ozone predictor with other 
prediction methods 

Recent research have tested standard and deep neural 
networks for pollution and weather prediction, as 
discussed in the introduction. During the first phases of 
these investigations, MLP—a common kind of artificial 
neural network—showed itself to be more effective than 
traditional statistics time- series forecasting techniques. 
To further enhance the MLP's effectiveness, other studies 
additionally combined a variety of different techniques 
with neural networks that were artificial .The 
performance assessment included training and evaluating 
every model using the identical information. The 
outcomes were shown in Table 5. 

 

Figure 12. Ozone levels forecast for 2017 using the CNN-CLSTM 

models IV 

 

Figure 13. CNNCLSTM simulation IV's forecast of the level of 

ozone from May to September 2017 

It is clear that in comparison to the MLP approach, the 
CNN-CLSTM and CLSTM models performed much better. 
Furthermore, in comparison to the CLSTM model, the 
CNNCLSTM model's efficiency was a bit better. Equation 
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(14) was used to more precisely calculate the efficiency 
increase among models. 

1 2 2
2/1

1 1

−
= = −

I I I
M I

I I  

(15) 

I1 and I2 represent model 1 and 2 effectiveness indices, 
respectively; M2/1 represents model 2's efficiency increase 
over the initial model. Equation 14 was used to determine 
the efficiency index's level of decline based on the 

information gathered from Table 5's efficiency indicator. 
The outcomes were shown in Figure 14 and Table 6. 
Table 5. Evaluation of the forecasting effectiveness of CNN-

CLSTM, MLP, and CLSTM algorithms 

Errors MLPs CLSTMs CNN-CLSTMs 

RMSE 22.376 4.99 3.203 

MAE 16.58 3.98 2.452 

MAPE 0.268 0.079 0.045 

 

 

Figure 14. CNN-CLSTM's less profitable indicator relative to the MLP and CLSTM 

 



UNCORRECTED PROOFS

12  RATHINAM et al. 

To improve interpretability of the spatial learning layer, 
we applied SHAP (SHapley Additive Explanations) to the 
CNN output features. This analysis helped identify which 
meteorological and pollutant variables most significantly 
influenced the model’s predictions. As shown in Figure 6, 
average temperature, PM2.5, and wind direction 
consistently contributed the most to ozone level 
forecasting across multiple samples. This confirms that 
the CNN component effectively learns and emphasizes 
spatial and environmental factors critical for prediction 
accuracy. 
Table 6. CNN-CLSTM's less profitable indicator relative to the 

MLP and CLSTM 
Errors CLSTM/MLPs CNN-CLSTM/MLPs CNN-CLSTM/CLSTM 

RMSEs 0.78 0.88 0.376 

MAEs 0.76 0.86 0.389 

MAPEs 0.71 0.85 0.487 

The model was trained and tested on an NVIDIA Tesla 
V100 GPU (32 GB VRAM). The average training time for 
the full ensemble was approximately 2.4 hours, and the 
inference time per forecast sample was approximately 23 
milliseconds, making it suitable for near real-time 
applications. Table 5 summarizes the key computational 
metrics including model size (112 MB), number of 
trainable parameters (4.3 million), and average GPU 
utilization during inference. 

5. Conclusion 

This paper proposes a CNN-CLSTM combination to predict 
Beijing City's 8-hour normal ozone focus. CNN efficiently 
extracts inherent characteristics of the atmosphere and 
weather information, while CLSTM captures long-term 
historical processes. Initially, the quantity of historical 
data points was optimized to 34 days in order to provide 
the input information that the CNN-CLSTM system could 
use to guarantee accurate and timely ozone forecasting. 
Furthermore, many CNNCLSTM model choices were 
suggested and utilized to build an appropriate model 
architecture for the suggested ozone prediction. Lastly, 
the suggested ozone predictor's efficiency was assessed 
and contrasted with MLP and CLSTM models of ozone. 
This led to a reduction in the accuracy indices (RMSE, 
MAE, and MAPE) to 83% if compared to the MLP version 
and 35% when opposed to the CLSTM model. In summary, 
it was shown that the suggested CNNCLSTM combination 
outperforms MLP and CLSTM algorithms in terms of 
accuracy for prediction and has acceptable seasonal 
consistency. 

References 

Athira, V., Geetha, P., Vinayakumar, R. and Soman, K. P. (2018). 

DeepAirNet: Applying recurrent networks for air quality 

prediction. Procedia Computer Science, 132, 1394–1403. 

https://doi.org/10.1016/j.procs.2018.05.068 

Ding, A., Wang, T., Zhao, M., Wang, T. and Li, Z. (2004). 

Simulation of sea-land breezes and a discussion of their 

implications on the transport of air pollution during a multi-

day ozone episode in the Pearl River Delta of China. 

Atmospheric Environment, 38(39), 6737–6750. https://doi. 

org/10.1016/j.atmosenv.2004.09.017 

Fu, T.-M. and Tian, H. (2019). Climate change penalty to ozone 

air quality: Review of current understandings and knowledge 

gaps. Current Pollution Reports, 5(3), 159–171. 

https://doi.org/10.1007/s40726-019-00115-6 

Huang, L., Liu, S., Yang, Z., Xing, J., Zhang, J., Bian, J., et al. (2021). 

Exploring deep learning for air pollutant emission estimation. 

Geoscientific Model Development, 14(7), 4641–4654. 

https://doi.org/10.5194/gmd-14-4641-2021 

Jacob, D. J. and Winner, D. A. (2009). Effect of climate change on 

air quality. Atmospheric Environment, 43(1), 51–63. 

https://doi.org/10.1016/j. atmosenv.2008.09.051 

Li, Y., Zhao, X., Deng, X. and Gao, J. (2022). The impact of 

peripheral circulation characteristics of typhoon on 

sustained ozone episodes over the Pearl River Delta region, 

China. Atmospheric Chemistry and Physics, 22(6), 3861–

3873. https://doi.org/10.5194/acp-22-3861-2022 

Murray, C. J. L., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K. 

M., Abbasi-Kangevari, M., et al. (2020). Global burden of 87 

risk factors in 204 countries and territories, 1990–2019: A 

systematic analysis for the Global Burden of Disease Study 

2019. The Lancet, 396(10258), 1223–1249. 

https://doi.org/10.1016/S0140-6736(20)30752-2 

Ouyang, S., Deng, T., Liu, R., Chen, J., He, G., Leung, J. C.-H., et al. 

(2022). Impact of a subtropical high and a typhoon on a 

severe ozone pollution episode in the Pearl River Delta, 

China. Atmospheric Chemistry and Physics, 22(16), 10751–

10767. https://doi.org/10.5194/ acp-22-10751-2022 

Petersen, A. K., Brasseur, G. P., Bouarar, I., Flemming, J., Gauss, M., 

Jiang, F., et al. (2019). Ensemble forecasts of air quality in 

eastern China – Part 2: Evaluation of the MarcoPolo–Panda 

prediction system, version 1. Geoscientific Model Development, 

12(3), 1241–1266. https://doi. org/10.5194/gmd-12-1241-2019 

Preethi, P., Saravanan, T., Mohanraj, R. and Gayathri, P. G. (2024). 

A real-time environmental air pollution predictor model using 

a dense deep learning approach in IoT infrastructure. 

Sathyasri, B., Hemavathi, R., Kavya, S., Preethi, P. and 

Vijayarakshana, R. (2019). Autonomous Cruise Control and 

Accident Prevention of Vehicles using Arduino. International 

Journal of Recent Technology and Engineering, 7, 166–169. 

Sayeed, A., Choi, Y., Eslami, E., Lops, Y., Roy, A. and Jung, J. (2020). 

Using a deep convolutional neural network to predict 2017 

ozone concentrations, 24 hours in advance. Neural Networks, 

121, 396–408. https://doi.org/10.1016/j.neunet.2019.09.033 

Slingo, J. and Palmer, T. (2011). Uncertainty in weather and 

climate prediction. Philosophical Transactions. Series A, 

Mathematical, Physical, and Engineering Sciences, 369(1956), 

4751–4767. https://doi.org/10.1098/rsta.2011.0161 

Sun, H., Shin, Y. M., Xia, M., Ke, S., Wan, M., Yuan, L., et al. (2021). 

Spatial resolved surface ozone with urban and rural 

differentiation during 1990–2019: A space–time Bayesian neural 

network downscaler. Environmental Science & Technology, 

56(11), 7337–7349.https://doi.org/10.1021/acs.est.1c04797 

Tiwari, A., Gupta, R. and Chandra, R. (2021). Delhi air quality 

prediction using LSTM deep learning models with a focus on 

COVID-19 lockdown. arXiv preprint arXiv:2102.10551. 

Wang, X., Fu, T.-M., Zhang, L., Cao, H., Zhang, Q., Ma, H., et al. 

(2021). Sensitivities of ozone air pollution in the Beijing–

Tianjin–Hebei area to local and upwind precursor emissions 

using adjoint modeling. Environmental Science & Technology, 

55(9), 5752–5762. https://doi. org/10.1021/acs.est.1c00131 



UNCORRECTED PROOFS

OZONE CONCENTRATION FORECASTING USING A SMART HYBRIDIZATION OF DEEP LEARNING MODELS WITH REAL-TIME DATA  13 

Xing, J., Zheng, S., Ding, D., Kelly, J. T., Wang, S., Li, S., et al. (2020). 

Deep learning for prediction of the air quality response to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

emission changes. Environmental Science & Technology, 

54(14), 8589–8600. https://doi.org/10.1021/acs.est.0c02923 




