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Abstract 35 

Crop yield forecasting is an essential element for farm management directly impacting food 36 

security, economic planning and sustainability of resources. This study integrated remote sensing data 37 

and machine learning approaches to develop an advanced turmeric yield modelling framework for 38 

turmeric crops grown in the study area. The input parameters included vegetation indices, soil texture 39 

and meteorological and hydrological variables. The findings showed that the Back Propagation 40 

Neural Network (BPNN) model (R2 = 0.96) outperformed other models utilized in this study in 41 

predicting turmeric yield. Sensitivity analysis further highlighted that the turmeric yield was highly 42 

sensitive to the Normalized Difference Vegetation Index) NDVI, Moisture Stress Index (MSI) and 43 

precipitation. This modelling approach provided a reliable tool for early yield estimation at the 44 

maturity phase with a 0.86 % deviation from the actual turmeric yield, aiding farmers and 45 

policymakers in optimising crop management practices and enhancing decision-making processes. 46 

This study presented a holistic approach for scalable data-driven agricultural innovation contributing 47 

to efficient and sustainable crop production systems. 48 

Keywords: Crop yield, Turmeric, Remote Sensing, Vegetation Indices, Machine learning 49 

 50 

1. Introduction 51 

Crop yield reflects agricultural productivity and is directly related to food security, the income 52 

and economic well-being of farmers. Crop production forecasts based on weather conditions will 53 

help farmers, policymakers and administrators in coping with adversity (Das et al. 2018). Crop 54 

yield models which provide timely and accurate yield estimates using satellite data and advanced 55 

analytics, play a key role in agricultural insurance by supporting risk assessment, policy 56 

formulation and claim management (Mateo-Sanchis et al. 2020; Mena et al. 2024; Rojas et al. 57 

2011). 58 



 

 

Crop yield was forecasted by using traditional models based on soil characteristics 59 

and climatic factors utilising simple and multiple linear regression models (Abrougui et al. 2019). 60 

A model such as SPUDSIM was limited to predict the potato yield at the state level (Resop et al. 61 

2012). Crop models demand extensive input parameters including soil properties, weather 62 

parameters and yield variables for validation and assessment, as they replicate crop growth 63 

regularly (Ahmad et al. 2018). Remote sensing technology offers crop information, 64 

environmental conditions and land management. MODIS-derived vegetation indices such as 65 

NDVI, Enhanced Vegetation Index (EVI), Land Surface Temperature (LST), Leaf Area Index 66 

(LAI)  and Vegetation Condition Index (VCI) were employed for crop yield estimation (Ronchetti 67 

et al. 2023; Potopova et al. 2020; Johnson. 2014; Setiyono et al., 2018). Sentinel 2-derived indices 68 

like NDVI, Red Edge NDVI, Chlorophyll Index Red Edge (CIRE) and Canopy Chlorophyll 69 

Content were employed in the construction of crop yield models (Hunt et al. 2019; Schwalbert et 70 

al. 2018; Dimov et al. 2022; Hara et al. 2021). Crop yield at maturity stages had the greatest 71 

precision in comparison with other crop developmental stages (Amankulova et al. 2023; 72 

Nevavuori et al. 2019; Tedesco et al. 2021; Zhou et al. 2017). Most of the studies considered 73 

either vegetation indices such as NDVI and EVI or environmental factors (e.g., precipitation, 74 

temperature) and rarely combined both data types for holistic modelling (Muruganantham et al. 75 

2022). The literature review emphasized that multisource data fusion can enhance prediction 76 

accuracy but is underutilized for underrepresented crops such as turmeric (Joshi et al. 2023). This 77 

study offered a comprehensive modelling strategy that addresses this gap directly by integrating 78 

Sentinel-2 indices (NDVI, EVI, LAI, MSI, NDRE) with real-time precipitation, temperature, 79 

relative humidity and reservoir outflow. While Sentinel-2 data are universal in applications to 80 

common crops, their utilization for turmeric, particularly by employing several indices was 81 

limited.  This study employed such indices to forecast turmeric yield and opened up new fronts 82 

in Sentinel data-specific crop applications. 83 



 

 

The Feed Forward Neural Network (FFNN) model was built to forecast maize yield 84 

in Kenya based on precipitation, temperature, evapotranspiration, soil moisture and Landsat 85 

7 NDVI (Mwaura & Kenduiywo, 2021). Generalized Regression Neural Network (GRNN) 86 

models were employed to simulate paddy yield with enhanced precision (Joshua et al. 2021). 87 

BPNN models simulated winter wheat yield more accurately at the field scale level (Tang et 88 

al. 2022). Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) 89 

models were employed in constructing crop yield models (Sun et al. 2019). RNN models 90 

efficiently captured temporal relationships and were best suited for accurate time-series-based 91 

crop yield prediction (Bali & Singla. 2021). Research showed that the MLP model enhanced 92 

crop yield prediction accuracy from crop phenology (Yesilkoy & Demir. 2024). An Artificial 93 

Neural Network (ANN) model was introduced for curcumin content estimation based on soil, 94 

climate parameters, pH and organic carbon with R2 = 0.91 (Akbar et al. 2016). A model of 95 

yield prediction of turmeric was established through the application of ANN employing soil 96 

and climatic parameters as the input variables and estimated the yield as R = 0.88 (Akbar et 97 

al. 2018). Machine learning models were applied to analyze the yield trend of turmeric 98 

employing rainfall, temperature, soil moisture, pH value and mean wind speed to predict 99 

yields. The predictive models employed were RNN, LSTM, BPNN and Gated Recurrent Unit 100 

(GRU). For predicting turmeric yield, GRU performed better than the other algorithms (Raju 101 

et al. 2023). A hybrid method integrating deep learning and remote sensing data assimilation 102 

(Temporal Fusion Transformer) was created to make interactive wheat breeding yield 103 

prediction possible (Yang et al., 2025). A hybrid CNN-LSTM with skip connections and 104 

attention-based mechanisms was used to make high-accuracy predictions of wheat and rice 105 

yields in India (Dharwadkar et al., 2023). The Multi-Modal Spatial-Temporal Vision 106 

Transformer (MMST-ViT) employed remote sensing images and meteorological data to 107 

enhance yield prediction (Lin et al., 2023). Deep Learning architectures have been widely 108 

employed for predicting yields. This research although concentrating on a traditional method 109 



 

 

provides a baseline for future incorporation of sophisticated deep learning methods designed 110 

for crop-specific use like that of turmeric. Nonetheless, the effectiveness of deep learning 111 

models frequently relies on the availability of large, high-quality datasets and substantial 112 

computational resources. This research employed a suite of models chosen for their trade-off 113 

between model complexity, performance and interpretability. They are particularly well-114 

adapted to structured, medium-sized datasets where overfitting is a problem and 115 

interpretability is critical to agricultural decision-making. 116 

While machine learning methods had been used in other crops, the application of 117 

turmeric had been minimal using sophisticated neural networks like FFNN, BPNN, MLP, 118 

GRNN and RNN. The effective use of sophisticated machine learning techniques in overall 119 

agriculture has been studied but it was noted that they can only be used in crops such as 120 

turmeric (Aslan et al. 2024). Research indicated that the joint application of remote sensing 121 

and ANN was a useful instrument in crop yield estimation  (Bassine et al. 2023; Bharadiya et 122 

al. 2023; Huber et al. 2024; Kavipriya and Vadivu, 2024; Khaki and Wang, 2019; Sajid et al. 123 

2022). The models utilized in this research were constructed with great consideration of 124 

hyperparameter tuning in order to maximize performance, with hyperparameters including the 125 

number of hidden layers, neurons per layer, learning rate, activation functions and batch size 126 

systematically experimented and tested. The FFNN architecture consisted of 10 hidden layers, 127 

chosen based on preliminary experiments aimed at balancing model depth with overfitting 128 

risk, consistent with similar applications in crop yield prediction (Singh et al. 2023). An L2 129 

regularization parameter (λ = 0.0001) was applied to reduce overfitting by penalizing large 130 

weights (Goodfellow et al. 2016). A dropout rate of 20% was introduced between layers to 131 

further prevent overfitting by randomly deactivating neurons during training, aligning with 132 

best practices suggested in deep learning literature (Srivastava et al. 2014). The 133 

hyperparameters were either empirically chosen from repeated trials or tuned through trial-134 



 

 

and-error and performance measures to ensure model stability at the cost of interpretability 135 

important for real-world agricultural applications. 136 

More recent studies have become more concerned with assessing climate change 137 

impacts on agriculture based on the Share Socioeconomic Pathway (SSP) scenario, which 138 

prescribes various socio-economic development paths and corresponding greenhouse gas 139 

emissions. Climate impacts on rice yield under SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 140 

were projected based on Coupled Model Intercomparison Project (CMIP6) models. Findings 141 

revealed that rice yield may increase in lower emissions up to the middle of this century, with 142 

subsequent stabilization (Xu et al., 2024). Climate change impacts on crop yield anomalies 143 

were examined in the SSP scenario. The research estimated elevated heat and drought stress 144 

with higher frequency yield losses, particularly for wheat (Schmidt & Felsche, 2024). Such 145 

research underscores the need to include SSP scenarios in crop modelling in order to 146 

comprehend potential future issues better and guide policy decisions. 147 

Recent developments in underground crop remote sensing have opened new 148 

possibilities for enhancing yield prediction accuracy by incorporating subsurface biophysical 149 

parameters. Techniques such as root zone moisture estimation, soil nutrient mapping through 150 

proximal spectroscopy and subsurface structure assessment using microwave and Ground 151 

Penetrating Radar (GPR) have demonstrated strong potential in early stress detection and soil-152 

plant interaction modelling (Bulacio Fischer et al. 2025; Li et al. 2023). Although the present 153 

study primarily employed above-ground spectral indices and climatic inputs, future model 154 

extensions may benefit from integrating these underground sensing modalities to capture 155 

below-surface dynamics affecting turmeric growth, especially under climate-induced stress 156 

conditions. Turmeric yield estimation is especially challenging since it relies on underground 157 

biomass (rhizomes), which is hard to estimate using conventional remote sensing techniques. 158 

Crop yield research indicated that combining spectral indices with environmental factors can 159 

enhance predictions for underground crops but recognizes that this continues to be an 160 



 

 

enormous challenge (Ishaq et al. 2024). This study bridges the gap by merging Sentinel-2 161 

indices with climatic and hydrological information, which could correlate surface conditions 162 

with subterranean biomass growth. This study employed remote sensing variables, machine 163 

learning models and environmental traits to construct a valid model for forecasting turmeric 164 

yield. Remote sensing facilitates the extraction of phenological crop data (Ji et al. 2021). This 165 

fusion poses notable challenges, including differences in spatial and temporal resolution, 166 

variable data quality and the need for normalization across disparate sources. Such challenges 167 

are rarely addressed in prior studies, which often focus on above-ground crops like wheat, 168 

rice, or maize that show clearer spectral signals. Unlike models tailored for crops with visible 169 

yield indicators, this approach is structured to capture subtle variations in biophysical and 170 

environmental parameters that indirectly influence underground biomass. This positions the 171 

study as a novel contribution to the field, both in terms of methodology and its application to 172 

traditionally underrepresented crop types. This research examined all phases of plant growth 173 

and paved the way for prediction at an early stage. Contributing to the debate on relationships 174 

between climate parameters, soil condition and vegetation indices, this research facilitates 175 

future research in sustainable agriculture and the environmental context. The research 176 

objectives are listed below. 177 

i. To carry out a correlation analysis between the input variables and turmeric yield.  178 

ii. To develop machine learning-based turmeric yield models (FFNN, BPNN, GRNN, MLP and 179 

RNN). 180 

iii. To examine the sensitivity of the input variables in influencing the turmeric yield. 181 

iv. To assess the model's predictive ability in forecasting turmeric yield at each growth stage. 182 

 183 

 184 

 185 



 

 

2. Materials and Methods 186 

2.1 Study Area 187 

The study area, Lower Bhavani Basin is the sub-basin of the Cauvery Basin in Tamil 188 

Nadu, India. It comprises parts of Erode, Coimbatore and Tiruppur districts. The area of this 189 

basin is 2424 Km2. Bhavani River, a tributary of the Cauvery River, flows in this basin and 190 

acts as a source of irrigation. The average rainfall in this basin is 130 mm. The temperature 191 

ranges from 22 to 38℃. The average relative humidity of this area ranges from 65 – 95 %. 192 

About 59 % of the geographical area of the study area is subjected to agricultural practice. The 193 

major crops grown in the basin are turmeric, sugarcane, banana, groundnut and paddy. The 194 

crop chosen for this study is turmeric. Turmeric crops are grown in an area of 4694.82 ha. The 195 

study area map is shown in Error! Reference source not found.. 196 

 197 

 198 

 Figure 1 Study area map 199 

 200 

 201 

 202 



 

 

2.2 Methodology 203 

The non-spatial datasets such as precipitation, temperature, relative humidity, soil 204 

texture, reservoir outflow and turmeric yield data were obtained from the local administration 205 

department of the study area. Precipitation during the cropping period ranged from 0 mm to 470 206 

mm per month (mean = 212 mm; Standard Deviation (SD) = 96 mm), reflecting seasonal 207 

variability. Monthly average temperature ranged from 18°C to 32°C (mean = 26.4°C; SD = 208 

3.1°C). Relative humidity varied between 53% and 95% (mean = 78.6%; SD = 9.2%), indicating 209 

a wide range of atmospheric moisture conditions. Reservoir outflow ranged from 60,000 to 210 

80,000 cusecs (mean = 71,400 cusecs; SD = 5,700 cusecs), ensuring continuous irrigation 211 

availability. Soil texture data were obtained from the regional Agricultural Department, which 212 

classifies soil types based on the United States Department of Agriculture (USDA) soil texture 213 

classification system. Based on the proportions of sand, silt and clay, samples were categorized 214 

into four predominant texture classes Sandy, Loamy Sand, Sandy Loam and Clay Loam. The 215 

spatial dataset such as vegetation indices (NDVI, EVI, LAI, MSI and NDRE) were extracted 216 

from the optical dataset of Sentinel 2 level 1C imagery using band math in ArcGIS. 217 

Preprocessing of the imagery was done employing the Sentinel Application Platform (SNAP) 218 

software. Radiometric Correction involved converting Level-1C Top Of Atmosphere reflectance 219 

to surface reflectance using the Sen2Cor processor within SNAP. Atmospheric Correction was 220 

performed using the Scene Classification and aerosol correction modules in Sen2Cor. Cloud 221 

mask was applied using the Scene Classification Layer band to eliminate invalid pixels.  222 

Including parameters such as vegetation indices, soil and climate data ensures an extensive 223 

modelling approach that reflects real-world environmental interconnections. The use of field-224 

derived and remotely sensed parameters enhances the relevance and applicability of the findings. 225 

The bands in the spatial dataset had been resampled to 10 m spatial resolution. The spatial and 226 

non-spatial data were collected for the period 2016 to 2022. Land Use Land Cover (LULC) maps 227 

were prepared from field survey and Sentinel 2 imagery using a Maximum Likelihood Classifier 228 



 

 

(MLC). The turmeric areas were spatially extracted from the LULC map. The non-spatial 229 

precipitation dataset was interpolated as spatial maps using the kriging interpolation technique. 230 

The categorical values of soil texture data were pre-processed using one hot encoding technique. 231 

These were encoded into binary vectors [0, 1] for each class using the get_dummies() function 232 

in Python, allowing the model to interpret soil types as separate input features. A correlation 233 

analysis was carried out between the input variables and turmeric yield. The FFNN, BPNN, 234 

MLP, GRNN and RNN models were developed to forecast turmeric yield using MATLAB by 235 

training with the input variables. A sensitivity analysis between the input variables and the crop 236 

yield results was carried out. Future turmeric yield prediction was done with the best model 237 

developed in this study. To assess the long-term impact of climate change on the turmeric yield 238 

model was trained using historical yield and climate data. The model was used to simulate yield 239 

projections up to the year 2100. Future precipitation projections were sourced from the CMIP6 240 

dataset under five Shared Socioeconomic Pathways (SSPs) which include SSP1-2.6, SSP2-4.5, 241 

SSP3-7.0, SSP4-6.0 and SSP5-8.5. Bias-corrected annual precipitation values from each SSP 242 

were used as input into the trained model to simulate the future turmeric yield. The precision of 243 

the model in determining the yield at every crop growth stage is analysed. 244 

 245 

3. Results and discussion 246 

3.1 Spatial delineation of crop area 247 

To focus on agricultural crop yield prediction, the crop land was extracted by masking out 248 

non-agricultural areas. This ensures that only relevant regions were retained for further 249 

classification. Using training samples collected from ground truth data, spectral signatures were 250 

analysed to classify turmeric cultivation areas. The classification successfully differentiated 251 

turmeric fields based on their spectral reflectance patterns in satellite imagery. The final classified 252 

map displayed turmeric cultivation areas distinctly, providing a spatial representation of their 253 

distribution. This classification served as a crucial input for subsequent yield prediction modelling 254 



 

 

and analysis.  The map showing turmeric regions in the study area is shown in Error! Reference 255 

source not found.. 256 

 257 

 258 

Figure 2 Map showing turmeric regions in the study area 259 

 260 

3.2 Analysis of the accuracy assessment results 261 

The accuracy assessment of the classification further validated the effectiveness of the 262 

approach in mapping crop-specific land cover. The classified output was validated using the kappa 263 

coefficient, which quantifies classification agreement beyond chance.  Overall accuracy indicated 264 

that 91.67% of the classified pixels match the reference data, demonstrating a high accuracy in 265 

the classification. The Kappa Coefficient was approximately 0.90, indicating almost perfect 266 

agreement in classification. The Turmeric classes were classified with 100% accuracy, confirming 267 

that their spectral signatures were distinct and that their areas did not overlap significantly.  268 



 

 

3.3 Correlation Analysis  269 

The correlation analysis results of turmeric yield with input parameters are shown in 270 

Error! Reference source not found.. Adequate precipitation ensured the plant received enough 271 

water, leading to healthy growth and higher yields and had a very strong correlation with turmeric 272 

yield with R2 = 0.92. A higher MSI in the study area, indicating lower water stress, correlated 273 

strongly with better turmeric yields (R2 = 0.90) since the crop was sensitive to moisture 274 

availability. NDVI (R2 = 0.86), EVI (R2 = 0.87), LAI (R2 = 0.87) and NDRE (R2 = 0.83) had a 275 

strong correlation with turmeric yield as the plant benefits from a healthy and dense canopy, which 276 

supported better photosynthesis and ultimately higher yields.  277 

 278 

 279 

 280 

Figure 3 Correlation analysis between input parameters and turmeric yield 281 

 282 

High relative humidity reduces water loss through evapotranspiration, maintains 283 

moisture levels and promotes better growth in the turmeric plants and had a strong correlation 284 



 

 

with turmeric yield with R2 = 0.74. Reservoir outflow influences irrigation water availability 285 

and was strongly correlated with turmeric yield with R2 = 0.71. Turmeric can tolerate a range 286 

of temperatures and there is an optimal range that promotes maximum growth and yield, leading 287 

to this moderate correlation (R2 = 0.61). The influence of soil texture on turmeric yield was less 288 

and had a moderate correlation with R2 = 0.49. These key trends demonstrated that water-related 289 

parameters, both direct (rainfall) and indirect (MSI, RH, reservoir outflow) were dominant 290 

drivers of turmeric yield in the study area. Vegetation indices were closely clustered suggesting 291 

that canopy health and density are consistently strong predictors of yield. Climatic and 292 

vegetation indices outperformed temperature and soil texture implying soil texture was less 293 

limiting in the region, or may not vary much. The combination of rainfall, vegetation vigour 294 

and irrigation (reservoir outflow) indicated a synergistic effect, where both natural and managed 295 

water sources support yield. 296 

 297 

3.4 Turmeric yield models 298 

This study developed FFNN, BPNN, MLP, GRNN and RNN to predict turmeric yield in 299 

the study area.  All the models were trained and validated using a systematic data split, with 70% 300 

of the dataset used for training, 15% for validation and 15% for testing to ensure robust evaluation 301 

and prevent overfitting. Hyperparameters for each model were selected based on both empirical 302 

tuning and literature support, ensuring a balance between model complexity and generalizability. 303 

To ensure consistency and comparability across the multisource input variables, all input features 304 

were normalized using Min-Max scaling to a range between 0 and 1. This normalization process 305 

is particularly important when integrating variables with differing units and magnitudes, such as 306 

vegetation indices (NDVI, EVI, NDRE, MSI, LAI), climatic variables (rainfall, temperature, 307 

relative humidity), reservoir outflow, and soil texture. This step mitigates the influence of varying 308 

scales, ensures equal contribution of all features during model training, and enhances model 309 

convergence and stability. Normalization was applied prior to data partitioning to prevent data 310 



 

 

leakage. After training and tuning with a 70:15:15 split (training: validation: test), each model's 311 

final performance was evaluated on the test data. The performance metrics listed in Error! 312 

Reference source not found. represent the validation results used to compare model accuracy 313 

and generalization ability. 314 

 315 

a. FFNN  316 

The FFNN model had an R² value of 0.78. The number of hidden layers for this FFNN 317 

model was 10. The FFNN model was trained using the Adam optimizer, a learning rate of 318 

0.001 and a batch size of 32. The ReLU activation function was applied to each hidden layer 319 

The FFNN model was trained with a learning rate of 0.001 and batch size of 32. The ReLU 320 

activation function was applied to each hidden layer and the model was trained over 100 epochs 321 

using Mean Squared Error (MSE) as the loss function.  Each hidden layer captured and refined 322 

features from the input data, resulting in an improved comprehension of the variables that 323 

affect turmeric yield. 324 

 325 

b. BPNN 326 

The BPNN model produced an R² value of 0.96. The model had 10 hidden layers and 327 

was trained for 100 epochs. A batch size of 32 was chosen for effective training. L2 328 

regularization (λ = 0.0001) was used to avoid overfitting. The dropout rate was chosen as 20% 329 

to enhance generalization. The backpropagation algorithm updated model weights repeatedly, 330 

optimizing feature relationships for enhanced prediction accuracy. This stratification preserved 331 

class balance and avoided temporal leakage. The model's performance was assessed not only 332 

on the test set but also across 10 repeated runs with different random seeds to evaluate 333 

generalization. 334 

 335 



 

 

c. MLP 336 

The MLP model had an R² value of 0.68. The training was done with 10 hidden layers 337 

and 100 epochs, employing the Stochastic Gradient Descent (SGD) optimizer with a 338 

momentum value of 0.9. The learning rate was 0.01 and the batch size was 64 for stable 339 

training. ReLU activation was used in hidden layers and dropout (15%) was added.  340 

 341 

d. GRNN 342 

The GRNN model provided an R² value of 0.81. The model utilized a radial basis 343 

function (Gaussian kernel) with the smoothing factor fixed at 0.1 to regulate the bias-variance 344 

trade-off. The batch size was 64 and early stopping was performed using a 15% validation set. 345 

Hyperparameters tuned included learning rate (0.1), momentum (0.99), dropout (15%) and 346 

batch size (64). 347 

 348 

e. RNN  349 

The RNN model generated an R² of 0.72. The model was trained on 10 hidden layers 350 

and 100 epochs with the Adam optimizer with a learning rate of 0.001. The batch size was set 351 

to 32 for computational efficiency. Gradient clipping (max norm = 5) was implemented to 352 

avoid exploding gradients.  25% dropout was used to enhance generalization. Temporal 353 

dependencies were explicitly captured by structuring the input data as time-series sequences 354 

across multiple crop growth stages from 2016 to 2022. For the RNN model, time-dependent 355 

features such as vegetation indices and weather variables were organized into sequential input 356 

windows representing monthly intervals throughout the growing season. This allowed the 357 

model to learn temporal dynamics in crop development and environmental variability. Each 358 

input sequence was associated with a corresponding yield label, enabling supervised learning 359 

over temporal patterns. Padding and masking techniques were not required, as sequence 360 



 

 

lengths were consistent across samples. Hyperparameters for the RNN were selected based on 361 

grid search and manual tuning. The Adam optimizer was used due to its efficiency in handling 362 

sparse gradients. These tuning processes were validated using k-fold cross-validation and a 363 

hold-out validation set, ensuring that parameter choices enhanced temporal pattern learning 364 

while minimizing overfitting. 365 

Of the models that were trained for predicting turmeric yield, BPNN showed the best 366 

accuracy with an R² value of 0.96. The GRNN, FFNN, MLP and RNN had moderate 367 

prediction performance, with GRNN using a non-iterative technique and a radial basis 368 

function to produce a localized estimation of yield. The RNN model used recurrent 369 

connections to capture temporal dependencies. Overall, BPNN emerged as the most 370 

successful model and was considered for further analysis to improve its accuracy and 371 

robustness for predicting turmeric yield. 372 

 373 

 374 

Table 1 Validation metrics of the turmeric yield models 375 

 376 

Model R2 RMSE 

(t ha-1) 

MSE 

(t ha-1) 

MAE 

(t ha-1) 

FFNN 0.78 3.92 15.37 5.78 

BPNN 0.96 0.22 0.05 1.04 

MLP 0.68 4.78 22.85 7.32 

GRNN 0.81 5.23 27.37 8.45 

RNN 0.72 6.10 37.21 9.80 

 377 

 378 



 

 

In comparison with previous literature, the present study's BPNN model, which had 379 

an R² of 0.96, performed much better than the R² of 0.80 in earlier research, indicating the 380 

improved capability of the proposed model to identify intricate nonlinear interactions for 381 

precise turmeric yield prediction (Tang et al. 2022). The R² of 0.81 achieved by the GRNN 382 

model in this research is slightly lower than the R² of 0.90 discussed in previous studies but 383 

still within a similar range and may differ due to variations in crop type, spatial scale, or input 384 

diversity of the model (Joshua et al. 2021). The FFNN model yielded an R² of 0.78, which 385 

was in close agreement with the R² of 0.64 reported in similar studies, indicating consistent 386 

performance on different datasets and environmental settings (Mwaura & Kenduiywo, 2021). 387 

Likewise, the MLP model had an R² of 0.68, significantly greater than the 0.37 reported 388 

elsewhere, reflecting improved generalization and stability of the current model despite 389 

differences in architecture and data properties (El-Kenawy et al. 2025). The RNN model had 390 

an R² value of 0.72, very similar to the R² value of 0.75 from existing research, confirming 391 

recurrent architectures' success in modelling temporal relationships for crop yield prediction 392 

(Bali & Singla. 2021). In general, the results of this study show not only consistency with 393 

prior research but also enhanced prediction performance, especially for the BPNN model, thus 394 

justifying the methodological decisions and reliability of the implemented framework. 395 

The Table Error! Reference source not found.  presents the mean R², standard 396 

deviation and 95% confidence intervals (CI) for each model across 10 trials to assess if the 397 

performance differences are statistically significant. 398 

 399 

 400 

 401 

 402 



 

 

Table 2 Summary of Model Performance with Statistical Significance 403 

 404 

Model Mean R2 Standard 

Deviation 

95 % CI Lower 95 % CI Upper 

BPNN 0.9462 0.0071 0.9417 0.9506 

FFNN 0.7786 0.0064 0.7746 0.7826 

MLP 0.6775 0.0118 0.6702 0.6849 

GRNN 0.8085 0.0067 0.8043 0.8126 

RNN 0.7152 0.0081 0.7101 0.7202 

 405 

  The very low p-value = 3.2 × 10⁻¹⁶ (< 0.05) calculated from the ANOVA test indicated a 406 

statistically significant difference in mean R² values among the five models. BPNN outperformed all 407 

other models significantly, with a narrow confidence interval, suggesting high stability and low 408 

sensitivity to random initialization. MLP showed the lowest predictive power and the widest interval, 409 

indicating comparatively poor and less stable performance. The differences between intermediate-410 

performing models (FFNN, GRNN, RNN) are also significant due to the overall low variance and 411 

tight intervals. 412 

 413 

3.5 Sensitivity analysis 414 

Sensitivity analysis determined the elements that most significantly affect crop yield. 415 

The One AT a Time (OAT) sensitivity analysis has been performed and the results are shown in 416 

Error! Reference source not found.. The results showed that MSI, NDVI and precipitation 417 

significantly impacted turmeric yield since these factors have a direct impact on plant health, 418 

water availability and soil fertility. MSI was the most important parameter having maximum 419 

sensitivity. Maximum sensitivity could be attributed to the biological nature of turmeric. 420 

Turmeric is a water-requiring crop and the growth of rhizomes is most sensitive to moisture 421 



 

 

stress. MSI is an index of plant water stress. High MSI indicates water-deficient conditions, 422 

which affect photosynthesis and rhizome growth and consequently reduce yield. The rhizome, 423 

as the economic yield fraction of turmeric, is particularly sensitive during water-sensitive growth 424 

phases like sprouting and bulking. Therefore, even limited water stress during these growth 425 

phases can significantly influence the final yield. Hence, such an intimate relationship between 426 

plant water status and turmeric productivity is suitably depicted by the dominant role of MSI in 427 

the model. This high reliance supports the agronomic observation that ensuring proper irrigation 428 

and reducing drought stress is vital to maximize turmeric yield and implies that MSI can be used 429 

as a surrogate for crop health monitoring and irrigation scheduling in turmeric production 430 

systems. NDRE and reservoir outflow had a moderate impact on turmeric yield. LAI, 431 

temperature, relative humidity and EVI had a lower impact on yield because turmeric was less 432 

sensitive to minor variations in these parameters. The significance of input variables in 433 

decreasing order were MSI, NDVI, precipitation, NDRE, reservoir outflow, LAI, temperature, 434 

soil texture, relative humidity and EVI. The significance levels of MSI, NDVI, precipitation, 435 

NDRE, reservoir outflow, LAI, temperature, soil texture, relative humidity and EVI in 436 

influencing turmeric yield were 26.33%, 24.84%, 17.97%, 8.79%, 8.76%, 4.53%, 3.28%, 437 

2.52%, 1.54% and 1.44%, respectively. The results revealed that MSI (26.33%), NDVI (24.84%) 438 

and precipitation (17.97%) had the highest influence, highlighting their direct relationship with 439 

water stress, vegetative vigor and moisture availability. NDRE (8.79%) and reservoir outflow 440 

(8.76%) had a moderate influence, supporting the role of canopy health and irrigation in yield 441 

formation. Other variables like LAI (4.53%), temperature (3.28%), soil texture (2.52%), relative 442 

humidity (1.54%) and EVI (1.44%) showed relatively lower sensitivity, suggesting that minor 443 

fluctuations in these inputs had limited impact on yield outcomes. These results underscore the 444 

importance of water-related and vegetation indices in accurately modelling turmeric yield and 445 

validate the model’s responsiveness to biophysically relevant inputs.  446 



 

 

 447 

Figure 4 OAT Sensitivity analysis results for turmeric yield 448 

 449 

In addition to the OAT sensitivity analysis, the Global Sensitivity Analysis (GSA) was 450 

conducted utilizing Sobol indices through the SALib Python package and the results are 451 

shown in Error! Reference source not found.. The technique measures both individual (first-452 

order) and interaction (total-order) impacts of input parameters on turmeric yield prediction. 453 

Identifying MSI (0.24), NDVI (0.23) and precipitation (0.22) as the dominant parameters, 454 

which had the maximum total-order indices were established, reflecting their leading 455 

contributions both through direct impact and through interaction. NDRE (0.20) and reservoir 456 

outflow (0.18) also yielded high total-order contributions, with LAI (0.16) and temperature 457 

(0.07) yielding moderate sensitivity. Parameters like relative humidity, soil texture and EVI 458 

had a lower overall impact. However, the greater difference between their total- and first-order 459 

indices indicated that their influence derives mostly from interactions. These results generally 460 

corresponded to the OAT results, with the added point of highlighting the value of global 461 

sensitivity methods in uncovering interactive effects among input variables that would 462 

otherwise be overlooked. 463 



 

 

 464 

Figure 5 Global Sensitivity Analysis results for turmeric yield 465 

 466 

This approach enhanced the robustness of the sensitivity interpretation by capturing 467 

both main and interaction effects across the parameter space. The consistency in the top 468 

variable rankings between the OAT and Sobol-based GSA supported the reliability of the 469 

originally adopted OAT approach, especially for identifying the primary drivers of model 470 

performance. 471 

 472 

3.6 Spatial validation   473 

The spatial validation of the BPNN model further underscores its reliability and 474 

adaptability across different regions. The model trained on data from Erode, Coimbatore and 475 

Tiruppur was tested on Salem and Dharmapuri, two agriculturally significant turmeric 476 

producing districts with distinct microclimatic and soil conditions. The model’s predictive 477 

accuracy remained high, with R² values of 0.91 in Salem and 0.89 in Dharmapuri, indicating 478 

a strong correlation between predicted and observed yields. The relatively low Root Mean 479 



 

 

Squared Error (RMSE) values (0.31 t/ha and 0.36 t/ha, respectively) further highlighted the 480 

model's robustness in capturing yield variability in unseen regions. These findings validated 481 

the model's transferability across agro-climatic zones making it a promising tool for large-482 

scale yield forecasting. 483 

 484 

3.7 Future prediction  485 

The BPNN model projections revealed distinct trends in turmeric yield under varying 486 

climate futures and are shown in Error! Reference source not found.. SSP1-2.6 and SSP2-487 

4.5 which assume lower greenhouse gas emissions and more sustainable trajectories, indicated 488 

relatively stable yield patterns with a slight increase toward the end of the century. The average 489 

predicted yield under these scenarios remained between 4.8 and 5.2 t/ha throughout the 490 

century, with modest fluctuations and narrower confidence intervals indicating more reliable 491 

and consistent rainfall patterns. SSP3-7.0 and SSP4-6.0 yield projections showed increased 492 

variability, particularly around mid-century, reflecting the effects of more erratic or regionally 493 

imbalanced rainfall distributions. Predicted yields under these scenarios occasionally dip 494 

below 4.8 t/ha, indicating the potential stress turmeric crops may face due to irregular 495 

precipitation. SSP5-8.5, the high-emission scenario resulted in the highest average projected 496 

yields (around 5.6 to 6.2 t/ha). However, the wide confidence bands suggested substantial 497 

uncertainty, potentially due to extreme rainfall events or anomalies under this fossil-fuelled 498 

development pathway. 499 

Overall, the results highlighted that even when other biophysical and environmental 500 

conditions remain constant, variations in precipitation alone as shaped by different climate 501 

scenarios can significantly influence turmeric yield. This emphasized the need for rainfall-502 

focused adaptation strategies, such as improved water management and irrigation 503 

infrastructure, to ensure yield stability under future climate conditions. 504 



 

 

 505 

 506 

 507 

Figure 6 Future projection of turmeric yield under SSP scenario 508 

 509 

 510 

Climate scenarios (SSPs) are alternative socio-economic and emission paths each 511 

influencing climatic factors like rainfall and temperature that are essential for growing 512 

turmeric. The application of multiple SSPs brings uncertainty into the projection of the future 513 

because they differ in assumed emissions and connected climate response. For instance, SSP1-514 

2.6 and SSP2-4.5 under the assumption of sustainable development and moderate emissions 515 

respectively, have relatively narrow confidence intervals in projected yields, reflecting more 516 

stable and predictable rainfall and temperature patterns. On the other hand, SSP3-7.0 and 517 

SSP5-8.5 are marked by increased emissions and climatic volatility, leading to wider 518 

confidence intervals and higher uncertainty in projected yields. This heterogeneity emphasizes 519 

the need for incorporating uncertainty bands when analyzing model outputs.  520 

 521 



 

 

 522 

3.8 Robustness Analysis under Severe Climatic Conditions 523 

To assess the robustness of the model in years of extreme weather, a historical 524 

robustness analysis was conducted by distinguishing anomalous climatic years. Specifically, 525 

the years 2017 and 2019, which experienced record-breaking monthly rainfall (>450 mm) and 526 

2016 with record-breaking average temperature (>31°C) were employed for this analysis. The 527 

performance of the model was assessed once again using data from these extreme years. The 528 

results showed that the performance metrics (R² = 0.88, RMSE = 0.26 t/ha, Mean Absolute 529 

Error (MAE) = 0.07 t/ha) were at less than desirable levels justifying that the model was stable 530 

to atypical environmental conditions. The results confirmed that the model has robustness in 531 

the way that it can survive non-typical environmental inputs while still being able to function 532 

when predicting turmeric yield under actual climatic variation. In addition, the model also 533 

performed consistently well under these outlier years which warrants its validity and 534 

applicability to situations in the future. 535 

 536 

3.9  Assessment of Model Performance in Predicting Crop Yield at Growth Stages 537 

The turmeric crop yield was predicted with the data observed in each crop growth 538 

phase and the results are shown in Error! Reference source not found.. The growth phases 539 

of turmeric include the emerging, vegetative, maturity and harvest phases.       540 

 541 

a. Emerging Phase 542 

The predicted yield differed from the actual turmeric yield by 30.38 % in the emerging 543 

phase. This implied a relatively high uncertainty in all these predictions, especially during this 544 

early growth phase because of the extremely high sensitivity to environmental conditions. 545 



 

 

Young turmeric plants are notably sensitive to environmental conditions, thus rendering it 546 

difficult to make accurate predictions. 547 

 548 

b. Vegetative Stage 549 

The predicted yield differed from the actual turmeric yield by 26.35 % in the vegetative 550 

stage. This signalled a great prediction error, although lower than the emerging phase of the 551 

most recent research on turmeric. More data will be available as the plant grows, but 552 

environmental and management-induced growth variability will always play a big role in 553 

prediction accuracy. This stage was characterized by vigorous development of the leaves, stems 554 

and biomass. During the vegetative stage, the plant directs its energies toward foliage 555 

improvement for better photosynthesis, which will facilitate rhizome development. The 556 

vegetative growth is highly dependent on light, water and nutrients. The disturbance in these 557 

factors brings a great deal of variability to the growth of each plant and yield, thereby 558 

discriminating against prediction. 559 

 560 

c. Maturity Phase 561 

In this phase, the predicted yield was much closer to the actual yield, with only a 1.23 562 

% difference in turmeric yield. The prediction became more precise at the maturity stage, owing 563 

to a more stable pattern in plant growth and adequate data. During the maturity stage, the 564 

turmeric plant slows down vegetative growth while it starts the process of rhizome development 565 

and maturation. Canopy development is complete and energy is directed towards the swelling 566 

of rhizomes and starch accumulation. This is the stage when the growth rate of a plant becomes 567 

steady with some predictable growth in rhizomes and biomass. There was more consistency 568 

and accuracy in maturity-stage data such as leaf area, plant height and rhizome growth, which 569 

allowed for more precise predictions of yield. Mature plants are more resilient to environmental 570 



 

 

stress. Hence, the impact of adverse conditions on growth is less disturbing than in earlier 571 

stages. This resilience was responsible for reducing variations in growth and thus increasing the 572 

accuracy of prediction.  573 

 574 

d. Harvest Phase  575 

The smallest difference was observed during the harvest phase, with a 1.23 % change from 576 

the actual turmeric yield. Although harvest phase estimates remained accurate, there was a modest 577 

increase in deviation compared to the maturity phase. This small difference was due to factors 578 

affecting the crop during the late season, such as weather fluctuations. 579 

The results indicated the model's ability to forecast what the yield at maturity will finally 580 

be with minimum variance relative to the actual outcome right at the maturity stage, as opposed 581 

to the harvest stage. This gives early insights that help allocate resources, schedules for harvesting 582 

and market planning, culminating in practical benefits of earlier decision-making. 583 

 584 

Table 3 Turmeric crop yield prediction at different phases of growth 585 

 586 

Growth Phase Change in predicted yield 

from actual yield (%) 

Emerging Phase 30.38 

Vegetative Phase 26.35 

Maturity Phase 0.86 

Harvest Phase 1.22 

 587 



 

 

4. Conclusions 588 

Correlation analysis indicated that MSI, NDRE and rainfall were highly correlated with 589 

turmeric yield, highlighting the importance of water availability and plant health. The BPNN model 590 

had the highest accuracy (R² = 0.96), which was higher than other models because of its ability to 591 

learn intricate patterns. This led to superior model performance, achieving the highest coefficient of 592 

determination (R²) and the lowest error metrics among all crop yield prediction models evaluated in 593 

this study. Sensitivity analysis validated MSI, NDVI and rainfall as the most significant variables. 594 

Phase-wise yield predictions showed that the BPNN model was able to accurately predict yield at 595 

the maturity phase with only a 0.86% difference, providing early information for harvest planning 596 

and resource allocation. This predictive model connects environmental factors to turmeric 597 

production and encourages climate-resilient farming. It aligns with Sustainable Development Goals 598 

(SDGs) 2 (Zero Hunger), 6 (Clean Water), 12 (Responsible Consumption) and 13 (Climate Action) 599 

by facilitating decision-making, optimizing resources and environmental protection. The use of 600 

remote sensing and machine learning in this research establishes its viability for scaling up 601 

sustainable agriculture solutions. Though the model was customized to turmeric, subsequent 602 

research must investigate adaptation to other crops and implement deep learning techniques for 603 

higher accuracy and resilience. Expanded usability necessitates reformulating inputs and parameters 604 

to accommodate various types of crops. Economic viability, user acceptability and policy 605 

embedding are critical to field-level implementation. Although this research did not incorporate 606 

cost-benefit and farmer feedback studies, spatial validation has confirmed the model’s 607 

transferability, thereby establishing a foundation for future studies focusing on economic feasibility, 608 

user acceptance and policy integration. Future studies may involve a comparative assessment of 609 

sophisticated classification techniques like Random Forest (RF), Support Vector Machines (SVM) 610 

and deep learning-based methods, which are reported to provide better performance in sophisticated 611 

land cover classification applications. Optimization of MLC by using better training sample 612 



 

 

selection, incorporation of ancillary data sets, or hybrid methods can also enhance classification 613 

accuracy to some degree. 614 
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